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ABSTRACT
Multi-model data encompasses structurally distinct data, including
relational, document, graph, key/value, columnar, etc., managed
within a single system, such as amulti-model database or a data lake.
Querying multi-model data requires strategies that balance unifi-
cation and integration across diverse models and query languages.
This paper presents DortDB, an extensible framework enabling
cross-model queries combining well-known query languages and
offering intuitive flexibility and optimization via a unified algebra.
Though a small-scale in-memory prototype is to be demonstrated,
its principles can be extended to distributed systems.
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1 INTRODUCTION
Multi-model data refers to different types of data – relational, docu-
ment, graph, key/value, columnar, etc. – being managed as a whole.
They can be stored in a multi-model database management system
(DBMS) [9] designed to handle diverse data formats while ensuring
optimized performance and querying capabilities. An alternative
approach represents data lakes [1], which store raw data in its
native format without requiring a predefined schema.

Choosing between multi-model DBMSs and data lakes depends
primarily on particular business needs – structured querying and
performance favour DBMSs, while large-scale, unstructured data
analysis benefits from data lakes. But, data lakes, of course, also
offer various querying and data extraction approaches, including
SQL-based query engines (e.g., Apache Presto1), data lakehouses
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1https://prestodb.io/

utilising the analytical queries of a data warehouse (e.g., Delta
Lake2), or search engines (e.g., Elasticsearch3). Some approaches
(e.g., AWS Athena4) enable federated queries over data lakes and
relational or NoSQL DBMSs. However, in all these cases, we must
consider the multi-model aspect of data, i.e., integration of data
with highly contradictory features and thus data-access methods,
such as e.g. flat relational data vs. hierarchical JSON documents or
table joins vs. graph traversals.

A common strategy for multi-model querying, often employed
in polystores [11], follows the principle of unification at front-end
and integration at back-end. This approach presents a unified view
of multi-model data while maintaining mappings to the original
structures. Users then interact with this unified view using a single-
model-specific language. The queries are translated into the un-
derlying models’ query languages, whereas an integration module
combines the intermediate results into the final result.

Conversely, multi-model DBMSs [4] typically extend the query
language of the original model with constructs supporting addi-
tional models (e.g., PostgreSQL’s SQL extension for accessing JSON
documents). This can be seen as an approximation of the inverse
strategy, i.e., integration at front-end and unification at back-end.
Several approaches exist that enable the combination of two query
languages (e.g., SQL/XML or SPARQL embedding in SQL in Virtu-
oso). However, this approach could be generalized to allow users
to flexibly combine multiple query languages, each suitable for a
particular data model, with recursive embedding as needed.

Example 1.1. Consider the example in Fig. 1a, which illustrates data
integration from heterogeneous sources. Customer information is obtained
from a Neo4j database representing a social network, address data is stored
locally in CSV format as relational tables, and order data is retrieved from a
remote web service in XML.

A sample query might “retrieve the most frequently ordered products that
appear first in the orders of customers’ friends, limited to friends residing in
Prague and products ordered by more than two such friends”. The result is
returned as a relational table in CSV format to support, e.g., personalized
recommendations and targeted advertising. Intuitively, the query requires
integration of Cypher for graph traversal, SQL for relational aggregation,
and XQuery for filtering hierarchical data – see Fig. 1b. □

2https://delta.io/
3https://www.elastic.co/elasticsearch
4https://aws.amazon.com/athena/
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<Invoices>
  <Invoice orderId="202501">
    <PersonId>1</PersonId>
    <Orderline prodId="6465" title="Bike" price="199.95" />
    <Orderline prodId="178" title="Lens" price="61.99" />
  </Invoice>
</Invoices>
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PragueDarwinova 143002
PragueKe Karlovu 120003

File System (CSV)

Web Service (XML)

(a)

SELECT products.name, count(*) AS pCount
FROM addresses
JOIN ( LANG cypher
  MATCH ({id: $myId})-[:hasFriend]->(friend)
  RETURN friend.id AS id, friend.address AS address
) friends ON friends.address = addresses.id
JOIN LATERAL ( LANG xquery
  $invoices/Invoice[PersonId=$friends:id]/Orderline[0]/productId
) products
WHERE addresses.city = 'Prague'
GROUP BY products.name
HAVING pCount > 2

(b)

Figure 1: Sample multi-model data (a), cross-model query (b)

This paper introduces DortDB5, an extensible framework that
enables querying multi-model data using virtually any combination
of query languages. Its main advantages are as follows:

• Users can seamlessly combine various data formats with-
out the need to predefine schemas, providing unmatched
flexibility in data integration.

• Users can intuitively switch between query languages based
on their preferences or the specific data fragments they are
working with, ensuring ease of use.

• By selecting the top-level language, the user specifies the
output data format. He/she can thus transform the given
data to any supported format (or a combination of formats).

• Queries are translated into a unified algebra, allowing cross-
model optimization to enhance query performance.

Currently, DortDB is a small-scale prototype designed for use
within a web browser as a multi-model in-memory data pond. How-
ever, the underlying concept can be extended to large-scale envi-
ronments, such as distributed systems utilizing shared RAM.

2 BASIC CONCEPTS
The primary objective of DortDB is to offer a flexible and opti-
mized query execution mechanism for in-memory multi-model
data. Data can be imported from various sources, including web ser-
vices, DBMSs, or local/remote file systems. Once imported, data is
represented as an object model, which can be serialized into JSON.
DortDB adopts a schema-free approach, enabling dynamic and
flexible data management without the constraints of predefined
schemas. Users can define secondary indexes in advance using
expression-based specifications to optimise query performance.

DortDB queries are constructed using multiple query languages,
currently SQL, XQuery, and Cypher (see Fig. 1b). These languages
can be repeatedly nested within one another, allowing for the cre-
ation of complex and sophisticated queries. Once a query is formu-
lated, the system parses it to generate a syntactic tree that captures
the structure of the query. It is then transformed into a logical plan,
represented as a directed graph. Its nodes correspond to algebraic
operators (see Section 2.1). Its edges define the execution order and
dependencies between operations, with a bottom-up orientation
indicating data flow from sources to the final query result.

The logical plan undergoes optimization, such as operator re-
ordering or index utilization. Then, it is executed over the object
data representation following the structure defined by the logical

5Inspired by Josef Čapek’s fairy tale “How Doggie and Kitty were making a cake”.

tree and ensuring that operations are performed in the correct se-
quence. Data streams are processed in memory, benefiting from
client-side caching to reduce redundant data retrieval from storage.
The query output consists of a list of objects (e.g., a list of dictionar-
ies or simple values). The result remains in object representation
within memory. DortDB does not enforce a specific output format
but allows users to transform the results into desired formats.

Example 2.1. A sample workflow of DortDB is depicted in Fig. 2. The
user first imports data into DortDB from various sources (e.g., a web service
providing invoice data, a local Neo4j database with person and friendship
data, and a local file containing address data – see Fig. 1a). Heterogeneous
data formats are normalized into a unified TypeScript object representation,
where data types are denoted by letters (O = object, S = string, N = number,
E = array element). The user then submits a query, which is parsed and
transformed into the unified algebraic form, visualized as a simplified tree
(consisting of operators and data sources), and subsequently optimized. The
query is executed over the object-based data, and the result is returned. The
result can be serialized into a desired format (e.g., CSV). □

2.1 Unified Algebra
The Unified Algebra (see Table 1) defines a formal and extensible
framework for query processing, supporting both structured (e.g.,
relational) and semi-structured (e.g., graph or hierarchical) data. It
integrates relational and XQuery algebras [10], path algebras for
graphs [2], and optimizations for nested queries [6].

Table 1: Operators of the Unified Algebra

Class Name Signature

Tuple

distinct 𝛿 (atts, src)
groupBy 𝛾 (keys, aggs, src)
cartesianProduct ×(left, right)
join ⊲⊳ (left, right, leftOuter, rightOuter, condition)
orderBy 𝜏 (orders, src)
projection 𝜋 (attrs, src)
projectionConcat

⊲⊳→ (mapping, outer, src)
projectionIndex index(name, src)
selection 𝜎 (expr, src)
recursion 𝜙 (min, max, condition, src)
tupleSource name
tupleFnSource name(params)
mapFromItem fromItem(key, src)

Item

calculation calc(args)
conditional cond(expr, whenthens, default)
fnCall fn(args)
literal literal(value)
quantifier quant(type, query)
itemSource name(params)
tupleFnSource name(params)
mapToItem toItem(key, source)

Ambivalent

union ∪(left, right)
intersection ∩(left, right)
difference \(left, right)
limit limit(skip, limit)
nullSource [ ]

XQuery projectionSize size(name, source)
treeJoin treeJoin(expr, source)

Tuple operators manipulate streams of named tuples, which are
analogous to, e.g., relational tuples. Core operators include selec-
tion (𝜎), projection (𝜋 ), join (⊲⊳), cartesianProduct (×), groupBy (𝛾 ),
orderBy (𝜏), and recursion (𝜙). Additional operators, such as pro-
jectionConcat and projectionIndex, facilitate advanced tuple trans-
formations. Furthermore, tupleSource and tupleFnSource generate
streams of tuples dynamically. Item operators process values as
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Figure 2: Data import and query evaluation workflow in DortDB.

opaque items, supporting expression evaluation, function calls, and
SQL-style quantifiers. The calculation (calc) operator represents
general expressions, while, e.g., conditional, fnCall, and literal op-
erators construct complex computations. Ambivalent operators op-
erate on both tuple and item streams. The union (∪), intersection
(∩), and difference (\) operators enable set operations. The limit
operator constrains output size, while nullSource emits a null value.
Finally, XQuery-specific operators extend tuple operations to hierar-
chical data structures. The treeJoin operator generalizes dependent
joins by incorporating hierarchical context, whereas projectionSize
computes the cardinality of tuple streams.

In DortDB’s GUI, the algebra is visualized as a tree, where each
inner node represents a logical plan operator. The root of the tree
corresponds to the final query, while the leaves represent the indi-
vidual data sources. Tuple operators display their output schema at
their respective nodes. The tree structure uses two types of edges:
a solid edge, which indicates that the parent operator is bound to
an existing data stream, and a dashed edge, which signifies that the
child operator is dynamically created or reevaluated multiple times.

3 ARCHITECTURE AND IMPLEMENTATION
DortDB is a three-layer library for querying multi-model data (in
formats like, e.g., CSV, XML, JSON) directly within a web browser. It
is implemented entirely on the client side as a browser module, with
no server communication, assuming all data resides in memory. Its
architecture comprises an in-memory storage layer, a services layer,
and a user-space layer (see Fig. 2), accessible via a unified API for
data import and query execution.

The in-memory storage layer provides a uniform TypeScript ob-
ject representation for heterogeneous data formats, enabling model-
independent processing. The service layer is responsible for data
acquisition and query processing. It supports loading data from ex-
ternal sources such as web services, file systems, and local or remote
DBMSs. It performs internal transformations of source-specific
models to the unified object model. For querying, it accommodates
multiple languages through translation wrappers that convert in-
put queries into a unified algebraic form, which is subsequently
optimized and executed. Query results are returned as TypeScript
objects, with optional serialization to standard formats such as
JSON. Finally, the user-space layer includes graphical and program-
matic interaction. A graphical interface facilitates the construction
and validation of queries.

4 RELATEDWORK
Embedding one query language within another is commonly used
but remains limited in scope. A survey of query languages for
multi-model DBMSs [4] highlights a typical pattern – a primary
language, typically SQL, embeds (often restricted) subqueries from
other data models. This approach is widely adopted by relational
DBMSs such as MS SQL Server, Oracle, and PostgreSQL through
SQL/XML, SQL/JSON, and SQL/PGQ. It is also employed by key/-
value systems like Redis and multi-model DBMSs such as Myria [7]
or Apache Drill [5], which extend SQL to access non-relational
sources. Similarly, CloudMdsQL [8], a polystore, represents data
as tables and accesses NoSQL sources via named table expressions.
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Figure 3: Scenario A – testing and validation GUI for DortDB

Apache AGE6, a PostgreSQL extension, enables Cypher queries via
the embedded cypher() function. However, it only supports trans-
lation from Cypher to SQL, without bidirectional interoperability.

In contrast, DortDB allows any supported query language to be
nested within any other, removing the constraint of a fixed top-level
language (as seen in polystore BigDAWG [3]). Furthermore, nesting
is not restricted to a single level but can extend to arbitrary depths.
Unlike, e.g., OrientDB and ArangoDB, which rely on custom syntax
extensions, DortDB supports multiple query languages natively,
enabling seamless reuse and reducing the learning curve. Addition-
ally, DortDB does not restrict specific query languages to particular
data models, allowing users to choose based on their preferences –
whether for efficiency, backward compatibility, or familiarity.

5 DEMONSTRATION OUTLINE
In the DortDB demonstration, the users will engage in querying
multi-model data using the representation and query language
they consider intuitive and/or most efficient. The system supports
iterative refinement to improve performance and expressiveness.

Scenario A: Users can interact with a GUI designed for testing
and validation (see Fig. 3). They can create their own queries by
combining SQL, Cypher, and XQuery or select predefined queries
from the UniBench benchmark [12] for benchmarking multi-model
applications, executed on preloaded UniBench datasets. Upon sub-
mission, DortDB parses the query and generates a logical execution
plan visualised as a tree, allowing users to inspect and verify its
correctness without executing the query. This scenario emphasizes
syntactic and structural validation in a multi-model context.

Scenario B: The second scenario offers a programmatic interface
through the TypeScript API (see Fig. 4). Users may work with the
UniBench dataset or upload and query a dataset of their choice
imported from external web services, remote databases, or local
6https://age.apache.org/

const db = new DortDB ({

mainLand: SQL(),

additionalLangs: [

Cypher( { defaultGraph 'defaultGraph ' } ), XQuery(),

],

});

db.registerSource (['addresses '], addressCSV );

db.registerSource (['invoices '], invoicesService.firstChild );

db.registerSource (['friends '], friends );

const result = db.query(`
SELECT product.name , count (*) AS pCount

FROM addresses

JOIN ( LANG cypher

MATCH ({id: $myId })-[: hasFriend]->(friend)

RETURN friend.id AS id, friend.address AS address

) friends ON friends.address = addresses.id

JOIN LATERAL ( LANG xquery

$invoices/Invoice[PersonId=$friends:id]/ Orderline [0]/ productId

) products

WHERE addresses.city = 'Prague '

GROUP BY products.name

HAVING pCount > 2`);

Figure 4: Scenario B – TypeScript API for DortDB

files. After data import, users construct and execute queries using
the API, which internally translates them into a unified algebra and
applies query optimization. The results are returned in an object-
oriented format, enabling further processing or serialization.
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