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ABSTRACT
Query optimizers rely heavily on selectivity estimates to choose
efficient execution plans, but inaccuracies in these estimates of-
ten result in poor query performance. We introduce Hint-QPT
(Hints for Robust Query Performance Tuning), an interactive tool
designed to help users diagnose and improve query performance.
Hint-QPT proactively recommends robust plans that are resilient to
uncertainty in selectivity estimates, identifies sensitive subqueries
for which selectivity estimation errors greatly affect plan quality,
and provides intuitive interfaces for targeted selectivity adjust-
ments. Users can either choose the recommended robust plans for
execution, or acquire additional statistics on the identified sensi-
tive subqueries to tune query performance. Moreover, Hint-QPT
visualizes the alternative execution plans and their costs under
uncertainty, helping users to better understand their robustness.
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1 INTRODUCTION
Most database systems have cost-based query optimizers: given a
query, they select the execution plan with the lowest cost calcu-
lated using estimated selectivities, which determine the size of the
intermediate results produced by various subplans. Unfortunately,
these selectivity estimates are frequently inaccurate, resulting in
suboptimal or even catastrophic runtime performance. When a
query performs poorly, users often lack clear insights into the un-
derlying causes. Many database systems, such as PostgreSQL, allow
the optimization process to be “hinted” with manually specified
plans or subquery selectivities. However, there are an overwhelm-
ing number of possibilities, and any one hint can affect the rest of
the optimization process in intricate ways. Without guiding prin-
ciples and supporting tools, query performance tuning is often a
frustrating and costly trial-and-error process.
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In this demonstration, we show how Hint-QPT addresses these
challenges in query performance tuning, focusing on inefficien-
cies stemming from unreliable selectivity estimates. Recognizing
that inaccurate selectivities are inevitable, Hint-QPT models and
incorporates estimation uncertainty as a key factor in the tuning
process. Through a friendly interface, Hint-QPT helps users find
“robust” plans whose performance remains competitive despite
uncertainties, identify “sensitive” selectivities whose estimation
errors impact plan optimality the most, further refine plans by se-
lectively acquiring accurate selectivities at runtime, and explore
the robustness of alternative plans over uncertain selectivities. In
effect, Hint-QPT transforms query performance tuning into a more
guided, explainable, and effective process.

In more detail, Hint-QPT supports the following key features:

• Robust PlanRecommendation. Leveraging a principled frame-
work for robust query optimization in PARQO [13], Hint-QPT
proactively recommends a robust execution plan, which min-
imizes the expected performance penalty relative to the true
optimal plans obtained under exact selectivities. Compared with
the default optimizer plan, this robust plan may have a higher
cost at the estimated (and potentially inaccurate) selectivities,
but on expectation, it delivers competitive performance because
the true selectivities often deviate from the estimates.

• Exploration of Selectivity Estimation Errors. Given a query,
Hint-QPT visualizes the selectivities relevant to its optimization
as nodes and edges in a join graph, helping users quickly under-
stand how the subqueries interact. For each selectivity, users can
further explore the distribution of errors in its estimate, accord-
ing to an error model learned in conjunction with the selectivity
estimation model.

• Selectivity and Plan Refinement. Hint-QPT lets users refine
plan choices by selectively adjusting selectivity estimates of sub-
queries. Optimizing a query involves many relevant selectivities,
and adjusting all of them is infeasible. Hint-QPT employs a prin-
cipled method to highlight a small number of sensitive selectivity
dimensions [13] — those whose estimate errors have the greatest
impact on plan optimality (not necessarily those with the highest
uncertainty). Users may choose one (or several) such dimension,
override the default estimate, and let the system reoptimize the
query. To obtain the overriding value, users can let Hint-QPT
acquire the accurate selectivity automatically by executing a
counting version of the corresponding subquery.

• Exploration of Alternative Plans. Hint-QPT provides an in-
teractive visualization module where users can compare alter-
native execution plans in terms of both real execution costs
and estimated costs under uncertainty. The visualization of real
execution costs shows physical operator trees annotated with
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operator-level performance, helping users understand the dif-
ferences among the alternative plans. The visualization of esti-
mated costs under uncertainty compares alternative plans over
the space of possible true selectivities for sensitive dimensions,
illustrating how robust plans mitigate performance degradation
more effectively than default optimizer plans, once we account
for the uncertainty in selectivity estimation.

2 BACKGROUND
The key aim of Hint-QPT is to make query performance tuning
in the presence of selectivity estimation errors a more guided, ex-
plainable, and effective process. To this end, Hint-QPT builds on
the PARQO framework [13], which offers a powerful definition of
plan “robustness” aligned with the end goal of improving query
performance under uncertainty. To quantify uncertainty, we build
a statistical model of the selectivity estimation errors, which allows
us to cast the problem of finding a robust plan as stochastic opti-
mization, and that of identifying sensitive selectivity dimensions as
sensitivity analysis. More details on PARQO can be found in [13];
here we present only the necessary preliminaries to understand the
Hint-QPT demonstration.

Selectivity Dimensions and Error Modeling. Optimization of a
query generally depends on a large number of estimates on the
sizes of various subqueries. To make error modeling practical, we
profile errors in selectivity estimation only for “querylets” [13] —
small subquery templates involving up to three joining tables. This
profiling can be done over samples of historical queries (which has
been done for this demonstration), and can be potentially refreshed
by observing estimation inaccuracies in an ongoing query workload.
From these error profiles, we construct component error models for
all selection and join operations in a query 𝑄 , which we refer to as
𝑄 ’s selectivity dimensions. The product of these component models
gives the overall error model for 𝑄 : suppose ŝ denote the vector of
estimated selectivities (one component for each dimensions); then,
the error model gives us 𝑓 (s|ŝ), the distribution of true selectivities
s conditioned on the estimates1.

Robust Plans. Suppose that the optimizer selects a plan 𝜋 based
on the estimated selectivities ŝ, which may deviate from the true
selectivities s. Users can specify a Penalty function to quantify the
penalty incurred when executing 𝜋 compared to the true optimal
plan under s. For the demonstration, Hint-QPT uses the following
function:

Penalty(𝜋, s) =
{︄
0 if Cost(𝜋, s) ≤ (1 + 𝜏) · Cost★(s),
Cost(𝜋, s) − Cost★(s) otherwise.

Here, 𝜏 = 0.2 is a tolerance factor: we are fine as long as the plan
cost Cost(𝜋, s) is within a factor (1 + 𝜏) of the optimal cost Cost★(s),
but any amount in excess will be penalized proportionally. Then,
the problem of finding a robust plan can be defined as the following
stochastic optimization problem: given 𝑄 , the error model 𝑓 , and

1It is worth noting that our error model captures dependencies among multiple se-
lection and join conditions to the extent that they are captured by profiling querylets
(which involve combinations of these conditions). For example, the component error
model for the join selectivity between tables 𝑅 and 𝑆 in 𝑄 is based on the errors
observed in all querylets involving this join, which may additionally include local
selection conditions on 𝑅 and 𝑆 and even an additional joining table.

selectivity estimates ŝ, find a plan 𝜋 that minimizes the expected
penalty E[Penalty(𝜋, S) |ŝ] where the true selectivities S ∼ 𝑓 (s|ŝ).

More details on how to find robust plans can be found in [13].
Although optimizing for robust plans over a distribution is harder
than optimizing for a single point in the selectivity space, robust
plans offer the benefit that they are expected to performwell despite
errors. Furthermore, we find such plans at compile time, without
needing to gather additional information and adapt at runtime,
making them a good fit for traditional query execution engines.

Sensitive Dimensions. Besides providing a robust plan upfront,
Hint-QPT provides another approach to query performance tuning,
where the user can devote additional effort to improve the estimates
for some selectivity dimensions and reoptimize the query in hope of
finding a better plan. The challenge lies in how to narrow down the
subset of dimensions to improve. Guided by our penalty-based opti-
mization objective, we employ a global sensitivity analysis method
called Sobol’s [13], which quantifies the variance in Penalty(𝜋, s)
across selectivity dimensions by decomposing it into contributions
from individual dimension and their interactions. We identify those
dimensions with the highest contributions to the total variance as
the sensitive dimensions, and present them to the users as candi-
dates for further improvement, e.g., using the accurate selectivities
acquired by executing the corresponding subqueries.

Hint-QPT’s method for prioritizing information gathering to
improve query performance is intuitive to understand because it
aligns with the users’ end goal, and it holds clear advantages over
other, less principled, heuristics. For example, one may simply pick
a selectivity dimension that is more likely to be wrong; however,
correcting its error may not affect the optimal choice at all and can
even result in worse plans, because of the complex interactions
among various selectivities and cost trade-offs in the optimization
process. As another example, one may pick a selectivity dimension
with respect to which the plan cost function has a largest partial
derivative at ŝ; however, having the plan cost sensitive to this
dimension does not imply that the plan would become suboptimal
when the estimate for dimension is corrected — its cost may still be
lower than other alternatives despite its volatility. Overall, because
Hint-QPT’s framework accounts for both estimate uncertainty (via
error modeling) and how errors ultimately affect plan choices (via
the penalty-based objective), it can offer better guidance to users
than heuristic-based local or limited information.

Implementation. Hint-QPT provides a browser-based graphical
user interface for PARQO working on a PostgreSQL Version 16.2
backend (with minor modifications in [12] to enable smoother hint-
ing and interaction). In general,Hint-QPT and PARQO are designed
to work on top of any database optimizer that supports injection of
selectivity and plan hints.

3 DEMONSTRATIONWALKTHROUGH
Our demonstration of Hint-QPT has been pre-loaded with an IMDb
database and error profiles collected from sample queries generated
from the Join Order Benchmark (JOB) [7]. Below, we provide a
walkthrough of the main components of Hint-QPT using Query
q17(a) in JOB as an example (Figure 1).
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Figure 1: A screenshot of Hint-QPT when tuning the execution performance for Query q17(a) in JOB [7].

3.1 Exploration of Selectivity Errors
Users begin by specifying the query to analyze through the S1
button in the panel marked P1 in Figure 1. For convenience, we
have prepopulated the choices using the JOB benchmark queries.
In addition, users can select a JOB query template and then specify
its parameter settings manually or have them randomly gener-
ated. Then, Hint-QPT analyzes the query, generates a join graph
in the P2 panel representing the query structure. This interactive
visualization, based on SQLVis [8], depicts tables (with their local
selections) as nodes and joins as edges. Users can interact with this
graph by clicking on a node or edge to explore the uncertainty in
its selectivity estimate as modeled by Hint-QPT.

In Figure 1, we have selected the edge of mk ⋈︁ k; therefore, in
the P3 panel, Hint-QPT displays some useful information for this
selectivity dimension. More precisely, this edge corresponds to the
subquery mk ⋈︁ 𝜎keyword=‘character-name-in-title’k. Hint-QPT shows
PostgreSQL’s estimate for the result cardinality of this subquery as
well as the estimated unfiltered cardinality (i.e., the product of the
estimates for |mk | and |𝜎keyword=‘character-name-in-title’k |, before ap-
plying the join condition); PostgreSQL’s estimate for this selectivity
dimension is the ratio between these two quantities. Hint-QPT also
shows the distribution of possible estimation error in this selectiv-
ity estimate, as a probability density function learned from error
profiling. The actual errors for this querylet observed during the
profiling process are plotted as red crosses on the horizontal axis.
Users can see from this density function that PostgreSQL tends to
overestimate this selectivity by a considerable factor.

3.2 Robust Plan Recommendation
Once the user submits the query, in additional to PostgreSQL’s
default plan, Hint-QPT also finds a robust PARQO plan aimed at
minimizing its expected penalty, as described in Section 2. For this

demonstration, we execute both plans immediately for comparison
in the P5 panel (ignore “Adjusted Plan” for now; we will discuss it
later). In this case, users will see that the PARQO plan runs much
faster than PostgreSQL’s plan. They can also see that PostgreSQL’s
estimate of the cost of the PARQO plan is higher than that of
PostgreSQL’s own plan (this comparison view is not shown in
Figure 1). This dichotomy is interesting but not surprising, because
the estimated selectivities are often wrong in the first place, and
PARQO optimizes for overall robustness, as opposed to optimizing
for only the cost at the estimated selectivities.

3.3 Selectivity and Plan Refinement
As discussed in Section 2, Hint-QPT selects sensitive selectivity
dimensions whose uncertainties have the largest impact on the
variance of the plan penalty. In the P2 panel, these nodes or edges
are automatically highlighted. For our example query, the two
sensitive dimensions identified are mk ⋈︁ ci and mk ⋈︁ k. Intuitively,
reducing uncertainties in the estimates of these two selectivities
is likely to give the best payoff in terms of improving the query
plan. The P4 panel provides an interface for users to take further
actions: all relevant selectivities and their current estimates are
shown, and ready to be adjusted; again, the sensitive dimensions
are highlighted. Users have two options:

• Adjust by subquery execution: Clicking themagnifier icon (S3)
next to a selectivity dimension triggers the automatic execution
of a counting subquery to obtain the true selectivity value, which
then replaces the current setting.

• Adjust manually: Users can also directly enter a new setting
based on additional knowledge or alternative statistics. For in-
stance, they may run a sampling algorithm to obtain a more
accurate estimate, or simply experiment with a different value
based on their understanding of the data.
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Users can also reset any adjustment by clicking on the undo icon,
which restores the selectivity to the original PostgreSQL estimate.
The interface also provides “bulk” versions of reset and the function
to acquire true selectivities by executing subqueries, though the
latter can be time-consuming for complex queries.

After making adjustments, users click the S4 button: Hint-QPT
will then inject the specified selectivity values into the query op-
timizer and have the query re-optimized. The resulting “adjusted
plan” is then executed and compared with the default PostgreSQL
plan and the robust PARQO plan in the P5 panel. In [13], PARQO
experimentally validated that using our principled method for pick-
ing sensitive dimensions was more effective than other heuristics;
here, using Hint-QPT’s interface, users can validate this observa-
tion themselves. For our running example, the two most sensitive
selectivities,mk ⋈︁ ci andmk ⋈︁ k, have been set to their true values
acquired by subquery execution. In P5, we see that the adjusted
plan achieves much better performance than the PostgreSQL plan.
Also notable is the observation that the PARQO plan performs
comparably to the adjustment plan, even though it does not have
the knowledge of the true selectivities acquired at runtime.

3.4 Exploration of Alternative Plans
Besides the high-level comparison of the three alternative plans
(PostgreSQL, PARQO, and adjusted) in P5, Hint-QPT also provides
an interactive plan exploration interface using Pev2 [2]. The in-
terface parses the EXPLAIN ANALYZE output from PostgreSQL and
visualizes execution plans as annotated operator trees. Each node
represents a physical operator and displays detailed metrics such
as estimated cost, actual running time, as well as estimated and
actual result sizes. Users can deep-dive into the execution details
of the three alternative plans. For nodes with significant selectivity
estimation errors, Hint-QPT annotates them to alert users. A dedi-
cated mode highlights only operator durations, making it easy to
identify the most time-consuming steps within each plan.

Last but not least, to help users understand plan robustness and
the advantages of PARQO’s robust plans, Hint-QPT provides a 3D
interactive diagram (Figure 2) comparing the estimated costs of
the PostgreSQL and PARQO plans over the 2D selectivity subspace
spanned by two sensitive dimensions (users can select which two to
visualize when there are more than two sensitive dimensions). Each
plan is shown as a surface, whose height indicates its costs at a par-
ticular selectivity setting. Not all points on the surface are equally
important to the comparison because, given the current selectiv-
ity estimates, the true selectivities are not uniformly distributed
over the entire space. Hence, Hint-QPT uses a color heatmap on
the surface, showing more probable regions of selectivities/costs
in a darker color. By hovering the cursor over different points on
the surface, users can inspect the details under different possible
outcomes of the true selectivities.

4 RELATEDWORK
Several existing demo systems incorporate visualization tools to
aid users in exploring query optimization internals. MOCHA [11]
explicitly visualizes the query execution process and enables users
to explore alternative plans generated by different physical oper-
ators. Jovis [1] also provides an interface for users to manually
specify join orders using [9]. Similarly, Spanner [10] includes a

Figure 2: Plan cost surfaces on sensitive subqueries.
plan visualizer and supports user-specified join orders. RobOpt [6]
recommends a plan with the lowest sub-optimality risk, predicted
by a learned cost model. Different from these systems, Hint-QPT
provides a more guided and explainable tool to tune query perfor-
mance efficiently. Regarding visualization of plan costs, Picasso [5]
generates detailed plan diagrams across selectivity spaces, clearly
illustrating optimizer plan changes under varying selectivities. Due
to the space limit, we refer the reader to comprehensive surveys
on robust query optimization for a detailed background [3, 4].
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