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ABSTRACT
There is growing interest in Secure Collaborative Analytics, but
fully oblivious query execution in Secure Multi-Party Computation
(MPC) settings is prohibitively expensive. Recent related works
proposed different approaches to trimming the size of intermediate
results between oblivious query operators, resulting in significant
speedups at the cost of some controlled information leakage. In
Reflex, we generalize these ideas into a flexible and efficient trim-
ming method for the output of the oblivious operators, that we
call Resizer. Resizers can be seamlessly integrated between MPC-
based query operators. This allows for precisely controlling the
security/performance trade-off on a per-operator and per-query
basis. Our method has the potential to accelerate the performance
of current oblivious query execution by up to 200 times compared
to fully oblivious query execution, and by approximately 7 times
compared to existing approaches with the same security guaran-
tees. Our work lays down the foundation for a future MPC query
planner that can pick different performance and security targets
when composing physical plans.

This demonstration showcases the benefits of Reflex. More pre-
cisely, it focuses on the integration of our proposed resizers into the
oblivious query plan, significantly enhancing performance. Confer-
ence attendees will have the opportunity to observe the efficient
trimming of intermediate results and, additionally, they will be able
to configure the oblivious execution settings, ranging from fully
oblivious to fully revealed. This hands-on experience will highlight
the benefits of our proposal in various obliviousness scenarios.
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1 INTRODUCTION
Many global companies need to analyze internal data for decision-
making, but transferring plain text data across jurisdictions can be
risky or prohibited by regulations like GDPR [6]. This has led to
growing efforts [2, 9, 10] to combine analytical data processing with
secure Multi-Party Computation (MPC) for stronger security and
privacy guarantees. MPC allows multiple parties to jointly compute
a function without revealing more than the final result.

MPC computations are significantly more expensive than plain-
text operations [2]. For example, under the Secret Sharing ap-
proach [1], each arithmetic operation is expressed as a series of
logical circuits evaluated through costly distributed protocols on
encrypted data. Additionally, MPC algorithms must execute oblivi-
ously to avoid leaking information.

This requires redesigning SQL operators to ensure no informa-
tion about their execution, input, or intermediate results is revealed.
Intermediate result sizes cannot be disclosed unless they are the
final output. Consequently, analytical queries often face prohibitive
overhead due to data ballooning in the operator tree. For instance,
an MPC SQL Filter operator must return its entire input table with
a secret shared column indicating selected rows, unlike plaintext
processing. Similarly, Joins must return a secret shared result in
the size of the Cartesian Product of the inputs [9].

To reduce the overheads of oblivious SQL operators, a compelling
performance argument is made [3, 5] by allowing parties to learn
some information about the output size of intermediate operator
results in a SQL query to enhance the query performance. The main
idea is that part of the rows kept only for achieving obliviousness
can be removed, and the ever-increasing output size can be reduced.
Representative examples from related work focus on Join operators
and propose sorting the intermediate output rows and trimming
out a number of rows from the bottom of the intermediate output
table [3]. However, this approach can impact the accuracy of the
results. Nevertheless, this controlled information leakage brings
significant query speedups that, depending on the actual operator
selectivity, can reach several orders of magnitude.

There are two main limitations in related work. First, even
though performance improvements through intermediate size trim-
ming have been demonstrated, this has been done mainly in the
context of Join operators. To our knowledge, no configurable mech-
anism has been proposed that plugs into any oblivious operator and
can balance performance and security trade-offs. Second, a unified
way to quantify the security of different intermediate result size
trimming approaches is lacking. Some related work aims to provide
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Differential Private guarantees, but as we later show, these are not
a direct match to what oblivious query execution would require.

Similar to how databases offer a controlled trade-off between
performance (parallelism) and correctness (consistency levels), we
believe that, in the future, MPC-based databases should offer a way
to choose dynamically, on a per-query basis, how much informa-
tion leakage of intermediate result sizes is acceptable in exchange
for better performance. In our group, we are building Reflex[7],
a system that will make it possible to have such a flexible query
planner for Secure Analytics on shared data.

This paper focuses on the Resizer operator of Reflex (see Sec-
tion 2 for details), which optimizes the performance-security bal-
ance in secure collaborative analytics. Resizer enhances efficiency
by dynamically reducing the output size of oblivious operators
and is designed for seamless integration into MPC-based query
plans. With linear computational complexity, Reflex[7] delivers
significant performance gains over existing methods with minimal
effort. Through the interactive interface (see Section 3), we demon-
strate that our new Resizer, with controlled information leakage,
significantly enhances efficiency and flexibility, adapting to various
real-world scenarios.

2 REFLEX OVERVIEW
In Reflex1, we present a highly adaptable mechanism designed to
reduce the size of oblivious operator outputs below their maxi-
mum oblivious size while preserving result accuracy. This is accom-
plished through the implementation of diverse noise generation
and addition strategies, enabling optimal balancing of the trade-off
between security and performance based on the tolerated level of
information leakage.

To achieve this, we introduce the Resizer operator, denoted as 𝜌 ,
which can be strategically placed within a query plan between the
first and last operators. The Resizer minimizes the output size of
the preceding oblivious operator by trimming randomly-selected
filler rows and operates in an oblivious manner, ensuring that no
information about the actual output of the preceding operator is
disclosed, except for the size of the trimmed noisy output.

To illustrate the operation of the Resizer, consider the following
SQL query:

1 SELECT DISTINCT d.patient_id FROM Diagnoses d
2 JOIN Medications m ON d.patient_id = m.patient_id
3 WHERE m.medication = 'aspirin ' AND d.icd9 = 414
4 AND d.timestamp <= m.timestamp

The corresponding query plan and Reflex-enabled query plan are
depicted in Figure 1a and Figure 1b, respectively. In the Reflex-
enabled query plan, two Resizer operators are inserted to reduce
the input size of the Join operator to 𝑆1 ≤ 𝑁1 and 𝑆2 ≤ 𝑁2, where𝑁1
and 𝑁2 represent the oblivious output sizes of the preceding Filter
operators. This optimization decreases the computational overhead
of the Join operator by limiting it to processing 𝑆1 × 𝑆2 tuples
instead of 𝑁1 × 𝑁2, thereby enhancing efficiency while ensuring
that information leakage remains within the acceptable limits.

1For space reasons, we are presenting Reflex here in a high-level fashion. More details
about its implementation and complexity can be found in the following Arxiv paper [7]

2.1 System and Adversary Model
We consider a system model in which computing nodes execute
secure collaborative analytics protocols on datasets D provided by
data owners. A data analyst submits a query 𝑄 to the computing
nodes and subsequently collects the final result 𝑅.

The translation of a SQL query into a Reflex-enabled query plan
does not rely on any secret information, as we assume that no
data-dependent optimizations are performed for now. Furthermore,
the placement and preconfiguration of Resizer operators within
the query plan do not depend on secret data. However, during the
generation of the final Reflex-enabled query plan, data owners can
provide input to fine-tune the preconfiguration of Resizer operators,
thereby minimizing information leakage. Additionally, the data
analyst can specify performance constraints to be considered during
this process. Consequently, this translation step can be executed by
one of the computing nodes. If data-dependent optimization steps
are required for the query plan, the translation should be performed
either by a trusted system broker or through an oblivious protocol
among the computing nodes.

Adversary model.We consider a semi-honest adversary model
where the computing nodes adhere to the protocol honestly but
may attempt to infer information about the input datasets or the
intermediate results of𝑄 ’s operators. At most, one computing node
may be corrupted, and computing nodes are assumed not to collude.
All parties, including data owners, computing nodes, and the data
analyst are assumed to have knowledge of the database schema
and the queries to be executed.

2.2 The Resizer Operator
As Shown in Figure 1c, the Resizer takes as input the oblivious
output tuples O𝑖 = 𝑂𝑖 (D), the oblivious output size 𝑁𝑖 = |O𝑖 |,
and the column 𝑐𝑖 , which indicates whether a tuple is part of the
operator’s true output. As output, it returns the shuffled oblivious
output O′

𝑖
and the shuffled column 𝑐′

𝑖
, indicating true output tuples,

both trimmed to size 𝑆𝑖 . Note that 𝑖 refers to the index of the operator
in the query plan. Our Resizer has the following components:

Noise Sampling. The noise 𝜂𝑖 is sampled from a pre-configured
noise distribution F (𝜃 ). 𝜂𝑖 plays a pivotal role in determining the
number of filler tuples to be kept along with the actual/true output
tuples of the preceding operator. To satisfy the requirement 𝑆𝑖 =
𝑇𝑖 + 𝜂𝑖 ≤ 𝑁𝑖 (where 𝑆𝑖 is the trimmed noisy output size), the noise
budget 𝜂𝑖 is ideally sampled from the range [0, 𝑁𝑖 −𝑇𝑖 ], where 𝑇𝑖
represents the count of true tuples. However, since𝑇𝑖 is not available
during the query planning phase, the noise distribution can be
configured practically to sample from [0, 𝑁𝑖 ] or [0,∞], ensuring
the probability of 𝜂𝑖 > 𝑁𝑖 −𝑇𝑖 is negligible. At runtime, 𝜂𝑖 can be
adjusted to𝑚𝑖𝑛(𝑁𝑖 −𝑇𝑖 , 𝜂𝑖 ), ensuring the constraints are met.

Noise Addition takes as input the noise budget 𝜂𝑖 , the oblivious
output size 𝑁𝑖 of the preceding SQL operator 𝑂𝑖 , and the column
𝑐𝑖 , which marks true output tuples. The output of this step is an
additional column 𝑘𝑖 , indicating both true and filler tuples. We
propose two noise addition strategies: 1) Sequential noise addition,
which follows a deterministic approach by adding a predefined
noise budget 𝜂𝑖 to the true output size 𝑇𝑖 . Tuples in the oblivious
output O𝑖 are processed sequentially, ensuring that a true tuple is
always retained in the final output. A filler tuple is kept by setting its
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Figure 1: Oblivious Query Plans. 𝑂 indicates oblivious operators, 𝑁𝑖 is input/output sizes, and 𝑆𝑖 is re-sized output after the
Resizer (𝑆𝑖 < 𝑁𝑖 ). Resizer inputs: oblivious output O𝑖 , oblivious output size 𝑁𝑖 , true output column 𝑐𝑖 of operator 𝑂𝑖 . Resizer
outputs: trimmed and shuffled output O′

𝑖
and 𝑐′

𝑖
indicating true tuples.

corresponding 𝑘𝑖 bit to 1, only if the noise budget is not exhausted.
2) Parallel noise addition, where the addition of 𝜂𝑖 filler tuples is
performed stochastically. A coin is flipped 𝑁𝑖 −𝑇𝑖 times, with each
flip determining whether a filler tuple is kept. This strategy offers a
notable advantage due to its high parallelizability, as the coin flips
can be executed independently.

Shuffling. To prevent linkage attacks [4], oblivious output O𝑖 , 𝑐𝑖
and 𝑘𝑖 tuples are shuffled, after adding the filler tuples (i.e., column
𝑘𝑖 has been created) and before trimming the intermediate results.
This ensures that no adversary can link secret shares by observing
the outputs of different oblivious operators or by repeating the same
or similar queries from multiple rounds. The shuffled oblivious
output and additional columns are indicated as O′

𝑖
, 𝑐′

𝑖
and 𝑘′

𝑖
.

Trimming and Revealing After shuffling, column 𝑘′
𝑖
is re-

vealed, indicating which rows in the oblivious output O′
𝑖
should

be retained or discarded before proceeding to the next oblivious
database operations.

3 DEMO SCENARIO: REFLEX IN ACTION
3.1 Web Interface
Part 𝐴 : Overall Comparison. This section compares perfor-
mance and information leakage metrics, demonstrating the benefits
of Reflex’s Resizer. Our new information leakage metric quanti-
fies how many observations of trimmed intermediate result sizes
an attacker would need in order to recover the true intermediate
result size with high probability. Users will understand how Re-
flex enhances oblivious query execution, improving efficiency and
flexibility in balancing security and performance.

Part 𝐵 :Query Configuration. On the sidebar, users can select
the specific query they wish to run. A slider bar is included to allow
users to explore the spectrum of reflex options, ranging from fully
oblivious to fully revealed. By dragging the slider bar, users can ob-
serve the trimming parameters will be automatically configured and
how changes in the security settings in 𝐶 affect the overall perfor-
mance of the system. This interactive feature helps users explore

the trade-offs between maintaining security and achieving optimal
performance. By adjusting the slider bar configuration, users can
select from five distinct execution modes for each query. These
modes include “Fully Oblivious”, “Sorting-based Resizer”, “Reflex
sequential Resizer”, “Reflex parallel Resizer”, and “Fully Revealed”.

Part 𝐷 : Query Generation and Execution. Behind part 𝐷 ,
the backend system efficiently generates a .mpc file using parame-
ters received from the part 𝐵 . This file is then compiled into an
MPC program using the pre-configured settings shown in 𝐶 . The
program subsequently executes the query locally and printing out
the execution time of each operator according to the query plan.

Part 𝐸 :Query Plan and Execution Visualization. Below the
CMD line window, there is a detailed visualization of the query plan
and execution process for the selected query. This section provides
a step-by-step breakdown of how data is processed using the chosen
resizing method, highlighting the placement of Resizers and the
trimmed size of intermediate results. The visualization employs
a traditional query plan tree to illustrate the execution order of
the oblivious operator, including the Resizer. Additionally, users
can press the “Show Animation” button in part 𝐵 to check the
execution process for each of the different execution modes.

3.2 Implementation Details.
We integrate Reflex’s Resizer into the MP-SPDZ framework [8], a
secure MPC framework, to enable foundational oblivious operators
for privacy-preserving query execution. While our implementation
does not yet support fully automated translation of plaintext SQL
queries to oblivious executions, it provides core primitives for se-
cure computation within MP-SPDZ. We employ Replicated Secret
Sharing (RSS) with three parties as the foundational secret-sharing
scheme for Reflex, balancing performance and security while align-
ing with MP-SPDZ’s architecture. For demonstration, the system
is deployed on a local node with an Intel Xeon Gold 5220 CPU
(2.20GHz) and 256GB RAM to ensure stable execution indepen-
dent of cluster connectivity. This local setup mirrors the relative
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Figure 2: The Reflex Demo: 𝐴 Performance Comparison and Information Leakage Metric 𝐵 Query Configuration and
Execution 𝐶 Auto-configured trimming parameters 𝐷 Query Output 𝐸 Query Plan and Query Execution Visualization

performance trends observed in distributed environments, though
absolute metrics may differ. All performance data are pre-measured
across three configurations, which will be visualized in graphical
formats for audience reference. These measurements empirically
validate the framework’s scalability and consistent performance
across local and distributed environments.

4 CONCLUSION
This demonstration introduces Reflex, an efficient and flexible
method for trimming oblivious intermediate results during MPC-
based query execution. The core is the Resizer operator, which
reduces the size of intermediate results without sorting or mod-
ifying upstream operators. The Resizer’s runtime scales linearly
with row count and logarithmically with column count, supporting
future query optimizers focused on both security and performance.
Reflex allows for flexible noise addition strategies, enabling privacy-
preserving database systems to choose noise distributions based on
compile-time and run-time factors. This flexibility impacts security
and query performance, but Reflex can use pre-configured parame-
ters to balance these aspects based on given conditions. Evaluations
show that Reflex significantly reduces runtime, often outperform-
ing existing methods by avoiding sorting algorithms and allowing
parallel execution. Although the queries were hand-compiled for
now, future optimizers would be further improved by compiling
SQL directly into query plans with oblivious operators and resizers.
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