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ABSTRACT
Cloud databases empower users to leverage vast computing re-
sources for efficient data analysis. However, achieving cost-effective
utilization of these resources remains a challenge. Users often strug-
gle to balance computing resource allocation with their temporal
and financial constraints. To address this, we propose the concept of
Intra-Query Runtime Elasticity (IQRE), which allows a cloud-native
OLAP engine to dynamically adjust the query Degree of Parallelism
(DOP) during query execution. We introduce Accordion, the first
IQRE engine. Accordion features a friendly user interface for par-
allelism adjustments. It includes an auto-tuner that supports both
manual and automatic DOP tuning during query execution. In this
demonstration, we present Accordion’s architecture and provide
attendees with hands-on experience, allowing them to execute
queries and adjust query parallelism during query execution based
on their time or cost budgets.
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1 INTRODUCTION
The development of cloud databases has significantly enhanced
data analysis capabilities by leveraging the massive computational
resources available in the cloud. Modern cloud-native databases
and data warehouses generally adopt a storage-compute separation
architecture, wherein the system is decomposed into a storage
layer and a compute layer. The storage layer is responsible for
persistent data storage, while the compute layer accesses data over
the high-speed network for data processing. Utilizing the auto-
scaling services (as shown in Figure 1) provided by cloud vendors,

∗Huanchen Zhang is also affiliated with the Shanghai Qi Zhi Institute.
†Xiaofeng Meng is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750658

the two layers can be scaled independently, adding or reducing
resources at any time based on the user’s requirements.

When a query is submitted to a cloud database, the query engine
parses it and decomposes execution into multiple parallel tasks.
The number of tasks spawned is controlled by a system parameter
– degree of parallelism (DOP). Higher DOP allows queries to lever-
age more compute resources, accelerating execution but incurring
increased costs. Consequently, query execution involves a trade-off
between performance and cost (as shown in Figure 1). Users may
have varying cost-performance preferences for query execution.
For latency-sensitive queries, users typically provide more com-
puting resources to achieve faster execution despite higher costs.
Conversely, for queries with less latency requirements, users tend
to allocate fewer resources to save cost.

However, it is difficult for users to determine the optimal degree
of parallelism for a query to meet time and cost constraints. This
difficulty arises from the inability to accurately predict the rela-
tionship between query performance and resource consumption
in advance. Current query engines require users to set parallelism
before execution. The parallelism cannot be changed during data
processing. So when a query’s execution performance or cost fails
to meet users’ expectations, they have to wait for the query or
terminate, reconfigure, and restart the query, resulting in wasted
time and monetary costs.

In order to solve the above problem, existing approaches [5, 7]
typically rely on users to provide representative workloads and con-
struct cost-performance models after workload execution. These
methods are often time-consuming, lack generalizability, and are
less accessible for non-specialized users [8]. However, the time-
resource relationship is not available only after the query is exe-
cuted. During query execution, runtime metrics—such as table scan
rates and throughput rates—can be used for predicting the remain-
ing execution time under different degrees of parallelism. If the
parallelism could be adjusted during query execution, users could
balance the cost and performance more flexibly and effectively.

For intra-query elasticity, currently, the database and big data
fields use “dynamic query optimization” to change resource usage
during query execution. It can be categorized into three types: adap-
tive query processing [10], adaptive query execution [1], and query
re-planning [6]. These approaches require pausing query execution
and materializing intermediate results, cannot support flexible DOP
tuning, and may incur additional time and cost overheads.

Our proposal. In this paper, we introduce a novel concept called
Intra-Query Runtime Elasticity (IQRE) and present the first IQRE
query engine, Accordion. IQRE enables the dynamic adjustment
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Figure 1: Cost-performance tradeoffs of cloud data analysis.
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Figure 2: Architecture of Accordion.

of query parallelism during execution without pausing data pro-
cessing. Accordion allows users to initiate a query with minimal
computational resources and subsequently adjust execution speed
or resource consumption based on their requirements. Accordion is
implemented from scratch in C++, following the execution model
of Presto [2], an open-source distributed SQL query engine devel-
oped at Meta. Unlike morsel-driven parallelism [4], which optimizes
fine-grained thread scheduling for query in single-node multi-core
systems, IQRE focuses on optimizing query performance and cost
runtimely in elastic, distributed resource environments.

Demonstration. Participants can interact with Accordion to
experience its (a) friendly user interface, (b) detailed, real-time
query runtime information display, and accurate execution progress
indication, and (c) interactive parallelism tuning interface, including
a DOP tuning guide service, and a DOP auto-tuning service.

2 SYSTEM OVERVIEW
This section presents the architecture and design of Accordion.

2.1 Accordion Architecture
Accordion is a distributed query engine that adopts the vectorized
push-based model. As illustrated in Figure 2, a Accordion cluster
consists of a coordinator node and multiple worker nodes. The
coordinator is responsible for query parsing, analyzing, planning,
optimizing, and task scheduling. Worker nodes are responsible for
query processing and result return. Upon receiving a query, the
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Figure 3: The distributed physical plan of the example query.

coordinator analyzes the SQL statement, generates a distributed
physical plan through optimization, and then schedules tasks — the
smallest unit for distributed execution — on the worker nodes. Each
worker node contains a task manager for creating and terminating
tasks. Worker nodes execute these tasks to process data from base
tables or to handle intermediate data generated by other workers.
Accordion uses the Apache Arrow [3] as the data exchange format.

Once a query is scheduled for execution, Accordion is able to
modify the parallelism of the query by performing an operation
on the query at runtime. This operation is implemented by two
modules, the automatic DOP tuner (green) and the runtime DOP
tuning module (orange). The auto-tuner contains a predictor and
tuning request filter. The Predictor handles prediction tasks. It ob-
tains query runtime information from the scheduler to estimate the
remaining execution time and the anticipated time after parallelism
adjustments. These results are returned to users or used for DOP
auto-tuning. The request filter is used to filter unreasonable tuning
requests (e.g., requests that would cause a waste of resources and
requests for finished queries). The runtime DOP tuner includes a dy-
namic optimizer and scheduler. When a tuning request arrives, the
optimizer decides the DOP tuning type and invokes the scheduler
to execute it.

2.2 Query Execution Model
This section describes the details of query plan construction and
DOP runtime tuning. Consider an SQL statement:
SELECT c_custkey ,SUM(l_extendedprice)
FROM lineitem

INNER JOIN orders ON l_orderkey=o_orderkey
INNER JOIN customer ON c_custkey=o_custkey

WHERE o_orderdate < 1994 -03 -05 GROUP BY c_custkey

Accordion obtains a physical plan after parsing, analyzing, and
optimizing the query. During query optimization, there are two
special types of nodes in the plan: the exchange node and the
local exchange node. These nodes are introduced during the query
optimization phase to partition the plan into sub-plans.
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Figure4:DOPtuningsinAccordion.

Figure5:IncreasingordecreasingtheDOPofstage3.

Thequeryoptimizerdividesthephysicalplanintomultiplefrag-
mentsbasedonthelocationsoftheexchangenodes,resultingina
fragment(stage)treeasillustratedinFigure3.Duringthequery
schedulingphase,theschedulerconstructsaninitialdistributed
executionplanbasedonthestagetree,traversingitinabottom-up
mannertogeneratetasksforeachstageandestablishcommunica-
tionlinksbetweenthem.Figure4presentsapartiallydistributed
executionplanforthestagetree,displayingonlystages1,3,4,and
5.Eachstageisassignedsometasks,witheachtaskidentiiedby
auniquetaskIDthatconsistsofthestagenumberandthetask
sequencenumber.
Afragmentcannotbeexecuteddirectlywithinatask;itirstbe

subdividedintoacollectionofpipelines.Thedivisionisperformed
bypipelinebreakers,whichincludethelocalexchangenodeand
thehashjoinnodeinthisplan.Apipelineproducesmultipledrivers,
eachrepresentinganexecutablephysicaloperatorsequencethat
canbescheduledonthreads.

2.3 Intra-QueryDOPruntimetuning

Figure4showsthetwoDOPtuningtypessupportedbyAccordion,
theintra-taskDOPtuning(1○)(changingthenumberofdriversfor
thepipeline)andtheintra-stageDOPtuning(2○)(changingthe
numberoftasksforstage).
Intra-TaskDOPTuning.Accordiondynamicallycreatesnew

driversduringtaskexecutiontoincreaseintra-taskDOP(Figure4).
Togracefullyterminateadriver,Accordionusesan“endpage”
mechanism—aspecialpagewithnodatathatnotiiesdriversof

normalexecutioncompletion.Theendpagepropagatesthrough
alloperatorsinthedriver,ensuringpropertermination.Toreduce
taskparallelism,thesystemsendsanendsignaltocomponentslike
theexchanger,taskoutputbufer,andexchangeoperator,which
generateendpagestonotifydownstreamtasksanddriverstoexit.
Intra-StageDOPtuning.Figure5showsthestageDOPtuning

process,usingthepartialexecutionplanforthequeryshownin
Figure3.Increasingstageparallelismrequiresthreesteps:(1)gen-
eratingtask3_2forstage3,(2)addingtheaddressoftask3_2to
thetasksofthedownstreamstagesofstage3.(3)task3_2notiies
thetasksoftheupstreamstagestogenerateanewbuferID“2”
fordataexchange(stage3containsthejoinoperation,sotask3_2
needstogetdatafromthetasksinstage5torebuildthehashtable).
Toreducetheparallelismofstage3,thesystemsendsendsignalsto
thetaskoutputbufersoftheupstreamstage,specifyingthebufer
ID“2”tobeclosed.Thecorrespondingoutputbufersgenerateend
pages,informingthetask3_2instage3toterminate.Aftereach
driverintask3_2exitsnormally,theentiretaskexitsnormally.Then
task1_0andtask1_1ofstage1willdeletetheaddressoftask3_2.
Atthispoint,theDOPreductionforstage3iscomplete.Datapro-
cessingisnotpausedduringallDOPtunings.Moredetailsabout
DOPtuningandoverheadcanbefoundinourresearchpaper[9].

2.4 AutomaticDOPTuning

Accordionprovidesauser-friendlyinterfacefortuningquerypar-
allelism,withtheauto-tunermanagingrequestsuniformly.Users
cansendtwotypesofrequeststotheauto-tuner,“stage/taskparal-
lelismtuningrequest”(whereusersmanuallyadjustparallelism)
and“stageexecutiontimeconstraintrequest”(whereparallelism
isautomaticallydeterminedbasedonthedesiredexecutiontime).
Theauto-tunerincorporatesthreekeycomponents:runtimebottle-
necklocalizationtoidentifystagesrequiringtuning,requestilter
todiscardinvalidrequests,andstageremainingtimeprediction,
whichestimatesstageruntimeunderdiferentDOPsbasedontable
scanrates.Moredetailsareavailableinourresearchpaper[9].

3 DEMONSTRATIONOVERVIEW

Thissectionpresentsthesettingandplanofourdemonstration.
DemonstrationSetup.Thefollowingdescribesthesystemsetup.

Environment.WewilldeployAccordiononAWSfordemonstration
using21EC2(c5.2xlarge)instances,eachwith16GBRAM,30GB
SSD,and10GbpsNIC.Thedeploymentconsistsof10storagenodes,
10computenodes,and1coordinatornode.Amongthecompute
nodes,5nodesformtheinitialcluster,whiletheremaining5nodes
areusedforresourcescaling.

Datasets.WewilldemonstrateAccordionusingTPC-HwithSF100.
Accordioncurrentlysupportsbothbuilt-inTPC-Hqueriesand
simplecustomSQLquerieswithoutsub-queries.
DemonstrationPlan.WewillshowcaseAccordionasfollows.
UsersareinvitedtoplaywiththeinterfaceofAccordionandexplore
itsinternalfunctionalitiestounderstandhowthesecouldadjust
theperformance/costofqueries.

SystemUserInterface.UponstartingtheAccordionengine,users

canaccessitsmaininterfacevia“IP:9082”,asshowninFigure6.
Theinterfaceconsistsofaqueryinputboxontheleftandaquery
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progress indicator on the right. Users can configure the initial
task/stage DOP through a configuration file (default: 1, meaning
the query starts with minimal computational resources).

Users enter SQL statements into the input box to execute queries.
Once a query is submitted to the Accordion cluster, the execution
progress is dynamically visualized in the right panel. Each query
is represented by multiple progress bars, corresponding to its ta-
ble scan stages. Query execution is considered complete when all
progress bars are fully filled.

When query execution begins, users may find the progress bar
advancing slowly and become dissatisfied with performance, as
queries are initially executed in a "cost-first" manner by default. To
accelerate execution, users can leverage IQRE. As shown in Fig-
ure 6, clicking the “Controller” button opens the controller interface
(Figure 7). The controller interface provides comprehensive query
execution insights, including (1) the query plan, (2) throughput
rates and estimated remaining execution times for each stage, and
(3) DOP information of stages, and task pipelines. The interface
offers a clear overview of the query execution, enabling users to
effectively monitor performance and manage resource allocation.
Manual DOP Tuning. To assist users in manually adjusting the de-
gree of parallelism (DOP), the auto-tuner provides a guided service.
Users begin by entering a DOP multiplier and clicking the “Get Tip”
button (box 1○ in Figure 7). The system then displays suggestions in
the information box at the top of the interface (box 2○ in Figure 7).
In this case, the auto-tuner recommends increasing the parallelism
of stage 1, as it is currently the execution bottleneck. The estimated
remaining execution time after adjustment is 12.43 seconds.

To apply the suggested changes, users click the “Stage 1” button
(box 3○ in Figure 7) and then select “Add Task” to increase the
number of tasks for stage 1 (add two tasks). Additionally, they can
click the “Driver” button to enhance intra-task parallelism. Upon a
successful request, the “Response” box will display “ACCEPT”. At
this point, Accordion adds compute nodes and adds tasks for the
query, leading to a noticeable increase in the throughput of stage 1.
When users return to the main interface, they will observe a faster
progress bar, reflecting improved execution speed. After the query
finishes, users get the result using the “Complete” button.

Users can refine the initial query parallelism through an iterative
process of executing queries and adjusting DOPs, updating the con-
figuration file as needed. However, as parallelism settings evolve,
some queries may consume more resources than necessary, espe-
cially when fast execution is not a priority. To optimize resource
utilization and reduce costs, users can leverage the “Close Task”
button in the interface to dynamically lower the parallelism at each
query stage, freeing up compute resources.
Automatic DOP Tuning. Users may find it tedious to adjust DOP
manually, so Accordion provides an automatic DOP tuning service.
Users simply enter the desired execution time for the current stage
in the “Expected Time” box and click the “Auto Tune” button (box
4○ in Figure 7). Accordion then automates the tuning process by
identifying the stage requiring adjustment, analyzing its remaining
execution time, and optimizing the DOP accordingly. The system
ensures that the selected DOP meets the user’s time constraints
while minimizing computational resource consumption.

Welcome to Accordion Cloud !

SQL>
SQL>
SQL> select    l_orderkey ... 

 from    orders, lineitem 
 where    ... ;

SQL>

#QUERY-2024-09-26-172446-da95fe9

 Execution time: ---s

Stage:2 
Stage:3

#QUERY-2024-09-25-123415-4fca483

 Execution time: 34.032s

Controller

In Progress

Controller

 Complete

Figure 6: The main interface – it includes a SQL input box on
the left and the query execution progress tracking box on the right.
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