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ABSTRACT

Writing SPARQL queries is often an iterative process, where users

refine queries until they meet their information needs. However,

long-running query executions can lead to inefficient workflows,

as users must wait idly for results Ð potentially without success

due to strict timeouts imposed by public endpoints. In this demo,

we present the Smart SPARQL Advisor (SSA), a system that inte-

grates Query Performance Prediction (QPP) to proactively mitigate

these issues. By predicting query runtimes prior to execution, SSA

alerts users to potentially slow or timeout-prone queries and, when

necessary, employs a large language model (LLM) guided by la-

tent representations from the QPP model to suggest alternative

query formulations. We demonstrate that SSA enables users to

identify performant queries and understand performance bottle-

necks, thereby reducing idle time and avoiding unproductive query

executions. Through this approach, SSA fosters more responsive

and resource-efficient interactions with triplestores, enhancing both

user experience and triplestore utilization.
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1 INTRODUCTION

Formulating SPARQL queries over Knowledge Graphs (KGs) is often

an iterative and time-consuming process. Users typically begin

with a simple and generic query and progressively refine it by

modifying graph patterns until the desired results are obtained [3],

as illustrated in Figure 1. While existing tools support this process

by suggesting semantically relevant formulations, they overlook a

critical aspect: long query execution times.

In public triplestores, such as those hosting DBpedia1 and Wiki-

data2, where strict query timeouts are enforced, users may wait for

minutes Ð only for the query to time out or return uninformative

results after a long delay, requiring further reformulation. This
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1https://www.dbpedia.org/resources/sparql/
2Wikidata: https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual

SELECT ?anc ?birthPlace WHERE {

?person   a                                  dbo:Person

?person   dbo:parent{1,2} ?anc

?anc a                                  dbo:Person

?person  dbo:birthPlace ?personBirthPlace

?anc dbo:birthPlace ?birthPlace

FILTER (?birthPlace != ?personBirthPlace) }
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Figure 1: User iteratively changing the query

disrupts the interactive nature of query formulation, leading to in-

efficient workflows, wasted computation, and reduced productivity.

At the core of this challenge lies the structure of SPARQL and KGs

themselves. SPARQL [4] is the standard for querying KGs in RDF,

which are widely used for storing and querying large-scale het-

erogeneous graphs [4]. A KG is a set of subject-predicate-object

triples [8]. As depicted in Figure 1, a core SPARQL operator is the

Basic Graph Pattern (BGP), comprising a set of triple patterns Ð

triples where the positions may contain variables. For instance, the

subject and object in ⟨?𝑠, dbo:parent, ?𝑜⟩ in Figure 1 are variables

that can match multiple nodes in the KG. Despite the simple data

model, writing SPARQL queries requires a deep understanding of the

KG and is often non-trivial.

Consequently, many systems have been proposed to support

users during query formulation, including natural language in-

terfaces [10], auto-completion [2], and query recommendation [6].

While these tools assist users in composing syntactically and seman-

tically correct queries, they do not consider runtime characteristics

during query authoring. As previously mentioned, since query

formulation is inherently iterative, any significant delay caused

by query evaluation leaves the user idle and interrupts the devel-

opment workflow. This motivates the integration of existing query

authoring systems with functionalities that account for query runtime

Ð a particularly valuable feature in public endpoints where strict time

limits (typically a few minutes1,2) are enforced.

In this paper, we propose Smart SPARQL Advisor (SSA), owl in Fig-

ure 1. SSA reduces idle time during query formulation by predicting

slow queries and proactively suggests alternative similar queries. SSA

integrates two core components: 1) PlanRGCN [7] for Query Per-

formance Prediction (QPP) to determine long-running queries and

2) a query recommendation method using an LLM with PlanRGCN

to propose alternative fast queries to the user.

QPP is often used for learned query andworkload optimization in

DBMS [7, 9]. We demonstrate that it can also be used to guide users
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SELECT ?o2 ?o3 WHERE { 

?s  dbo:parent+        ?o  

?o  dbo:birthPlace ?o2  

?s  dbo:birthPlace ?o3  

FILTER( ?o3 != ?o2) 

}
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SELECT ?o ?o2 WHERE {

?s a dbo:Person

?s dbo:parent{1,2} ?o 

?ancestor a dbo:Person

?s dbo:birthPlace ?o3 

?ancestor dbo:birthPlace ?o2 

FILTER (?o3 != ?o2)

}

Figure 2: SSA Pipeline with Query Performance Prediction and Query Recommendation

towards query reformulations that require less time to complete,

thus improving the query formulation process. If QPP predicts

the user query to be fast, then our system will execute it in the

triplestore and return the results to the user (Steps 1-4.1 in Figure

1). On the other hand, if the query is predicted to be slow, SSA will

warn the user and recommend alternative queries (Steps 1,4.2 in

Figure 1). Our recommendation method works by extracting similar

fast-running queries using embeddings from PlanRGCN to prompt

the LLM to revise the query using the extracted queries and the user

query. In this demo, we showcase the following key contributions:

• A SPARQL Query Advisor (SSA) that determines if a user query

is slow, and preemptively guides the user towards formulating a

query with a shorter runtime.

• A query recommendation method using a novel, runtime-aware

query representation and LLM-based query reformulation.

SSA is presented in Section 2, followed by a walkthrough of our

demonstration scenario in Section 3, and we conclude by discussing

the opportunities this offers in Section 4.

2 SMART SPARQL QUERY ADVISOR

SSA consists of a Web query editor and two components (i) a QPP

component using PlanRGCN, which predicts query runtime and

creates an embedding of the query, and (ii) a Query Recommender

that uses QPP and an LLM to recommend alternative queries to the

user. The pipeline is shown in Figure 2.

2.1 Query Performance Predictor

Performance prediction with PlanRGCN [7] works in three steps: 1)

query plan representation, 2) query graph construction and featur-

ization, and 3) Relational Graph Convolutional Network (RGCN).

Note that query graphs do not correspond to execution plans, but in-

stead represent generalized logical query plans used by PlanRGCN

internally. In the first step, PlanRGCN transforms the unoptimized

logical query plan of a SPARQL query into a query graph [7]. The

query plan is a DAG, where nodes are logical operators, and edges

denote data dependencies. From this, a query graph is constructed

as a labeled multigraph where nodes correspond to operator types

such as triple patterns (TPs), property paths (PPs), and FILTER

expressions. Edges in the graph capture semantic relationships be-

tween operators, such as join connections (e.g., subject-subject,

subject-object), OPTIONAL dependencies, and variable sharing

with FILTERs. Join edges are labeled based on the variable positions

involved in the connection (e.g., S-O, S-S). This graph construc-

tion ensures that logically equivalent queries yield identical query

graphs by being operator-order agnostic, enabling PlanRGCN to

learn over query structures, independent of query plan enumera-

tion. A query graph example is depicted in Figure 2.c.

In the second step, each query-graph node is featurized with

performance-relevant attributes derived from the target KG, which

can easily be extracted via SPARQL queries [7]. Finally, an RGCN

model learns query representations by aggregating information

across the operator nodes and edge types of the featurized query

graph. The output is a runtime interval prediction, i.e., the range

where query execution is expected to finish.

PlanRGCN can be configured to predict runtime intervals across

an arbitrary number of intervals, making the definition of a łlongž

query fully flexible and system-configurable. In practice, thresholds

are often derived from the runtime distribution of historical query

logs. For example, the 50th percentile separates fast from medium

queries, while the 95th percentile distinguishes slow or timeout-

prone queries [7]. In our demonstration, we train PlanRGCN to

predict three runtime intervals, but for SSA’s decision-making, we

merge the first two and treat only the third as slow.

PlanRGCN offers three critical advantages over similar QPP ap-

proaches. First, PlanRGCN is triplestore-agnostic. Since SSA func-

tions as a middleware between the user and a triplestore, we require

a QPP method that does not depend on the internals or specific

features of any one system. PlanRGCN satisfies this need by relying

exclusively on logical plans and KG statistics that can be gathered

through standard SPARQL queries or at loading time. This enables

out-of-the-box deployment across various triplestores.

Second, PlanRGCN operates solely on unoptimized logical query

plans, avoiding any dependency on physical query plans or opti-

mizer decisions. In our context, extracting physical plans would

require additional (and often engine-specific) interactions with the

triplestore’s internal APIs, undermining the lightweight nature of

SSA. By using logical plans directly, PlanRGCN enables fast and
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Figure 3: SSA demonstration scenario: the left arrow shows when SSA predicts the user query as slow, the middle arrow shows

when the query is running potentially longer, and the right arrow shows fast query execution.

efficient runtime prediction without incurring overhead or tight

coupling with the database engine.

Third, PlanRGCN can predict the performance of complex

queries, even when predicates or entities were unseen at train-

ing time. PlanRGCN, and therefore SSA, currently supports BGPs,

property paths, OPTIONAL, and FILTERs. SSA is ready to sup-

port a broader range of queries when they will be supported by

PlanRGCN.

2.2 Query Recommendation via QPP and LLM

Upon detecting a long-running SPARQL query, we generate alter-

native query formulations by leveraging a PlanRGCN model and

an LLM. First, we use PlanRGCN to obtain a latent vector represen-

tation v𝑄 of the input query’s plan. Similarly, we compute latent

representations v𝑄𝑖
for all queries𝑄𝑖 in a query logL, with runtime

shorter than a given target running time 𝜏 (here we use the 50th

percentile of query runtimes in L). Next, we measure the similarity

between the input query and each query in the query log using a

vector similarity function 𝑠𝑖𝑚(·, ·), such as the dot product or co-

sine similarity. Using these similarities, we retrieve the top 𝑋 most

similar queries: S={𝑄𝑖 |𝑆𝑖 is among the top 𝑋 ∧ runtime(𝑄𝑖 )<𝜏}

Finally, we inject a prompt template designed to guide the LLM to-

wards generating runtime-efficient alternatives with the retrieved

queries (S) and the user query to prompt an LLM. The prompt

templates are available in our GitHub repository. The LLM (e.g.,

GPT-4o) is prompted to generate 𝑁 alternative queries. The intu-

ition behind this approach is that the latent representations learned

by PlanRGCN capture both the logical plan and the performance

characteristics, allowing SSA to identify similar queries with fast

executions. By leveraging these representations, we guide the LLM

towards generating alternative query formulations that execute

faster.

3 DEMONSTRATION SCENARIO

We demonstrate SSA on a snapshot of DBpedia loaded into Vir-

tuoso3. In our demo, PlanRGCN has been configured to predict

query runtime in the intervals (0; 0.04], (0.04; 50.8], or (50.8;∞]

seconds. We consider queries with performance in (0; 0.04] and

(0.04; 50.8] as fast-running queries, and (50.8;∞] as slow-running

queries, similar to public endpoint timeouts.

Figure 3 illustrates the interactive web-based interface that users

will engage with during the demonstration. The main screen com-

prises four key components ( 1○ś 5○):

• 1○: A text field where users can specify the SPARQL endpoint

URL, where the triplestore is available. Note that as a prerequi-

site for our system to work on the endpoint, we need a trained

PlanRGCN model and statistics on the stored KG to be queried.

• 2○ & 3○: Configuration options for query recommendation, in-

cluding similarity functions (𝑠𝑖𝑚(·, ·)) and LLM choice.

• 4○: A query editor for users to input their SPARQL queries.

3http://virtuoso.openlinksw.com
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• 5○: Action buttons Ð łResetž clears the input in 3○, and łEvaluate

Queryž initiates the runtime prediction and query processing

pipeline depending on the prediction.

Based on the PlanRGCN prediction and actual runtime, three sce-

narios are possible:

Scenario 1: Slow Query Prediction (Left Arrow). If PlanRGCN predicts

the query to be slow-running, additional interface elements 7○ś 8○

are displayed, and 5○ is replaced with 6○.
6○ is an updated action panel with an additional button allowing

the user to proceed with evaluating the original query, despite

PlanRGCN’s slow runtime prediction. 7○ presents the user with the

runtime prediction information. 8○ contains the list of alternative

query formulations generated using LLM-guided recommendations

based on PlanRGCN embeddings. Selecting one query formulation

replaces the text in 4○ and resets the interface to 1○- 5○, enabling

the user to proceed with the selected query.

Scenario 2: Potential Timeout (Middle Arrow). When a query is pre-

dicted to be fast but risks becoming slow (e.g., due to misprediction

or workload/endpoint conditions), SSA enters a monitoring state.

While the query is executing, a loading box is temporarily displayed

below 5○. If query runtime exceeds half of the threshold between

fast and slow runtime intervals, runtime information about the

prediction ( 9○) and currently elapsed time (10○) is displayed. Fur-

thermore, we also provide the user with alternative queries in case

the user can decide on a different formulation (11○).

Scenario 3: Fast Execution (Right Arrow). The last scenario, depicted

by the right arrow of the top page, describes when query perfor-

mance is fast and predicted fast, where a loading box may briefly

appear with the elapsed time information, similar to Scenario 2.

Upon retrieving the query results, the loading box is replaced with
12○ that displays the results with predicted and actual runtimes.

Results of QPP effectiveness. The effectiveness of SSA hinges

on the prediction quality of PlanRGCN for QPP. For instance, if

PlanRGCN often mispredicts slow queries as fast, then SSA’s ability

to reduce user idle time will be severely hindered. To evaluate this,

we compare PlanRGCN against two state-of-the-art QPP methods:

a neural network-based model [1] and an SVM-based approach [5].

We use a Dell R6415 server with a 16-core AMD 7281 CPU and

256 GB RAM, and a TITAN RTX GPU (24 GB, TU102) as our GPU.

Extended experiments on PlanRGCN for QPP are available [7].

Table 1 reports the confusion matrix for all three models on our

DBpedia test set, consisting of 3,895 queries and a KG of 6.1 × 109

triples. PlanRGCN processed an 11 k-query log in 83 min (fea-

ture extraction) and 64 min (training) [7]. Our results show that

PlanRGCN outperforms the baselines, especially in identify-

ing (50.8;∞] queries. In this interval, PlanRGCN achieves 78.2%

accuracy, while the baselines misclassify a significant portion of

slow queries as faster. Notably, the NN-based method misclassifies

nearly 80% of (50.8;∞] queries, which would result in significant

user idle time for the user. In contrast, PlanRGCN provides much

more reliable performance on (50.8;∞] queries. For I2, PlanRGCN

has reasonable performance, although 33.9% of the queries are mis-

classified as I3. While this is not ideal, such mispredictions are

handled in our system through Scenario 2, which monitors the

query executions and prompts the user to reconsider the query.

Table 1: Confusion matrix on runtime intervals on DBpedia

P NN SVM # Total

I1 I2 I3 I1 I2 I3 I1 I2 I3

I1: (0; 0.04] 85.2 12.6 2.2 89.3 10.6 0.1 0.6 99.4 0.0 1788

I2: (0.04; 50.8] 13.3 51.4 35.3 12.9 85.7 1.4 0.3 99.7 0.0 1688

I3: (50.8;∞] 1.9 19.9 78.2 1.4 79.0 19.6 0.0 100.0 0.0 419

Altogether, these results confirm that PlanRGCN strikes a better

balance across runtime intervals, making it a reliable and practi-

cal choice for QPP in SSA. Its strong predictive performance on

the slow interval ensures that users are effectively warned about

long waiting times, while still maintaining a good accuracy for fast

queries ś enabling more responsible and productive query formu-

lation workflows. QPP inference takes on average 0.013 seconds

while LLM-based reformulation takes ≈3.33 seconds (Phi-3). This

overhead is acceptable since the alternative would be to wait for

the query to time out (ca. 1-2 minutes).

4 CONCLUSION

In this paper, we presented Smart SPARQL Advisor (SSA), an in-

teractive system that combines query performance prediction and

LLM-based recommendation to guide users in crafting efficient

SPARQL queries. We demonstrate the opportunities offered by

proactively predicting query runtimes (using PlanRGCN) and con-

sidering query runtime in the query authoring process. SSA re-

duces user idle time, avoids wasted server resources, and supports

a smoother query formulation experience. SSA advocates for ob-

serving how runtime-aware guidance and intelligent query rec-

ommendations can accelerate SPARQL development and improve

responsiveness in triplestore interactions. Further, SSA showcases

a controlled use of LLMs as a query reformulator by exploiting an

accurate selection of similar relevant queries.
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