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ABSTRACT

Developing a code-generating Database Management System re-

quires tight pro�ling and performance-tuning iterations. However,

existing pro�lers report results at instruction or function level, mak-

ing it challenging to correlate them with constructs like query plan

operators to derive actionable insights.

In this demonstration, we show how to solve this issue, building

on our previous work, Tailored Pro�ling. We introduce UmbraPerf,

a novel pro�ling tool that combines pro�ling samples with meta-

data to map pro�ling results to a DBMS’s internal abstractions,

from query plan components down to generated code. Its inter-

active frontend visualizes data across multiple abstraction levels,

enabling developers to narrow performance bottlenecks from oper-

ators down to individual instructions. We demonstrate its utility

through two scenarios using our publicly available frontend.
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1 INTRODUCTION

Code-generating Database Management Systems (DBMSs) aim to

produce highly optimized code for query execution. Consequently,

developers of such systems invest substantial e�ort in �ne-tuning

the system. To identify performance bottlenecks and tuning oppor-

tunities, they measure the DBMS with pro�ling tools [1, 3, 5, 10].

However, interpreting pro�ling results is challenging because the

link between the query plan and executed code is lost. Ideally, de-

velopers want pro�ling results mapped to their domain’s familiar

abstractions, e.g., query plan operators and pipelines for a DBMS,

to facilitate rapid optimization iterations.

Most existing pro�ling tools, like Linux perf, hotspot or vTune,

only provide results on assembly instruction-, source line- or function-

granularity [1, 3, 10]. For traditional DBMSs, e.g., Postgres, experi-

enced developers can map most of the results back to the system’s

components because the executed code belongs to the DBMS it-

self, with which they are familiar. Still, pro�ling results of shared

code locations, e.g., a hash table implementation used in multiple
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operators like hash-join or group by, remains challenging, as they

cannot be easily disambiguated. For code-generating DBMSs, this

is even more challenging as they generate machine code for each

query execution, and the connection between the system compo-

nents and generated code is lost during compile time. Furthermore,

advanced optimizations like operator fusion obfuscate boundaries

as they interleave multiple operators in a single tight loop of gen-

erated code, making it exceedingly cumbersome to link pro�ling

results back to the corresponding query plan components.

We addressed this issue in our previous work with Tailored Pro-

�ling to map generated code to system components on multiple

abstraction levels [2]. Building on this, we introduce UmbraPerf,

a tool that collects and visualizes pro�ling data on abstractions

familiar to developers of code-generating DBMSs like Umbra [9],

demonstrating the bene�ts of domain-speci�c pro�ling solutions.

UmbraPerf correlates pro�ling results at the individual sample

level with DBMS components, i.e., operators, pipelines, and gen-

erated IR instructions, even for multiple events and shared code

locations. To our knowledge, no existing pro�ler o�ers this capabil-

ity. UmbraPerf achieves this by preserving the link between system

components, generated code, and the pro�led executed code.

UmbraPerf collects �ne-grained pro�ling data, sampling query

execution at ≈0.2-1MHz, and correlates them with DBMS compo-

nents to provide detailed insights, e.g., each operator’s over-time

activity, memory access- or cache-miss patterns. Our tool’s interac-

tive frontend processes this data on the �y, automatically aggregat-

ing and visualizing pro�ling results at multiple abstraction levels

from high-level, e.g., query plan operators, down to generated in-

structions. Developers can customize the reported results in the

frontend, �ltering for operators, pipelines, or speci�c time inter-

vals. Thereby, UmbraPerf enables rapid detection of optimization

opportunities and seamless transitions from broad overviews to

precise investigations of performance bottlenecks or validation of

applied optimizations.

We demonstrate this by showcasing UmbraPerf’s capabilities in

two scenarios for the DBMS Umbra: (1) Pinpointing a performance

issue caused by L3-cache misses. (2) Evaluating the performance

optimization after introducing a group-join. Both scenarios are in-

teractive and available on our publicly hosted web application.

2 SOLUTION OVERVIEW

UmbraPerf provides pro�ling results for code-generating DBMS’s

query execution tailored to a DBMS’s abstractions and can be used

interactively and without instrumentation overhead for developers.

Our approach is widely applicable to code-generating DBMSs, and

we illustrate its integration using our DBMS Umbra as an example.

UmbraPerf is separated into two components (cf. Figure 1). The

backend, integrated into the query processing engine, tracks the

links between the system components and generated code, collects
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Figure 1: UmbraPerf collects meta-data at di�erent stages of

query processing and combines it with pro�ling data to re-

port performance insights tailored to aDBMS’s abstractions.

required meta-data, instruments the pro�ling, and post-processes

all data. The frontend visualizes the pro�ling results in an interac-

tive web application that processes the pro�ling data and allows

developers to �lter for the insights they need. To understand how

UmbraPerf works in detail, we will �rst provide a brief overview of

Umbra’s query processing and then explain UmbraPerf’s architec-

ture and integration into the DBMS.

2.1 Query Processing

Umbra [9] is a high-performance relational database system that

applies data-centric code generation for query execution. Umbra’s

query processing engine (cf. Figure 1), written in C++, 1 parses a

SQL query into a query plan of relational operators and performs

query optimization through multiple optimization passes on the

plan. 2 Next, Umbra generates Umbra IR code (a custom subset of

LLVM IR) for the optimized query plan. 3 Eventually, we use the

LLVM compiler framework [7] to compile Umbra IR into optimized

native machine code, and 4 execute it to run the query.

Operator Fusion. Since Umbra applies data-centric code generation,

it splits the query plan into tuple materialization points and gener-

ates code pipeline-wise between materialization points, producing

tight loops of Umbra IR instructions with operator fusion [8]. For the

simpli�ed query in Figure 1, the scan over P, the probe side of the

, and materialization in the � form a pipeline. During code gener-

ation, Umbra fuses the instructions generated for the operators in

this pipeline into a tight loop, blurring operator boundaries.

While this execution model produces highly optimized query-

speci�c code, keeping values in CPU registers as long as possible

for excellent data locality (due to operator fusion) and utilizing the

available computing resources, it makes pro�ling and debugging

di�cult. Since Umbra’s query processing engine is split into compile

time, performing all steps until compiling the generated code, and

runtime, actually executing the query with machine-generated code,

the link between the DBMS’s abstractions (i.e., query plan) and the

pro�led runtime code is lost. Thus, existing pro�lers fail to map the

pro�ling results to the system’s components.

2.2 Pro�ling Backend

UmbraPerf’s backend collects meta-data at di�erent stages of the

query processing engine, as shown in Figure 1.

�ery Plan and Cardinalities. DBMS developers use the query plan

with pipelines, operators, and their (estimated) cardinalities as cen-

tral abstraction to reason about optimizations of their system’s

query execution. Thus, UmbraPerf extracts the query plan with

cardinality estimates 5 after the query optimization phase and the

actual cardinalities 8 after the query execution.

Tagging Dictionary. During code compilation, we track the connec-

tion between query plan pipelines and operators to their generated

Umbra IR instructions with Abstraction Tracking and add Register

Tagging to disambiguate shared code locations [2]. Whenever an

Umbra IR instruction is generated, we add a mapping from the in-

struction to its responsible operator and pipeline to the 6 Tagging

Dictionary [2]. Therefore, we create unique IDs for each operator

and pipeline of the query plan. Since Umbra IR follows SSA-form,

we identify generated instructions reusing their Umbra IR vari-

ables as unique IDs. At the end of code generation, we write the

Tagging Dictionary into a meta-data �le, which is used during

post-processing to link the samples back to operators and pipelines.

Profiling�ery Execution. UmbraPerf uses perf record to 7 pro-

�le the query execution. Before running the generated code for

query execution, UmbraPerf starts perf record, attaches it to the

query execution’s process, and stops it after the execution �nishes.

To reduce latency and only record the query execution, we added

interprocess communication to perf. After starting perf record,

UmbraPerf waits for SIGUSR1, indicating perf record is ready, and

then starts the query execution. After query execution, we send

a SIGKILL to perf, notifying it to end pro�ling and wrap up the

perf.data �le. Leveraging perf record’s capabilities, UmbraPerf

samples pro�ling data with 0.2-1 MHz and captures multiple hard-

ware events, e.g., cycles, cache-, branch-misses, memory accesses,

thereby enabling developers to investigate potential correlations at

the level of individual operators.

Postprocessing. After the query execution is �nished, UmbraPerf

produces an .umbraperf-�le, which contains the pro�ling data

augmented to the query plan abstractions. Therefore, we use perf

script to retrieve the individual samples with precise timestamps

and their recorded data from the perf.data-�le. Since Umbra uses

LLVM to compile Umbra IR into machine code, perf script can

utilize the debug info generated by LLVM to resolve native instruc-

tions to Umbra IR instructions. Then, we process the individual

samples and link them to pipelines and operators with the Tag-

ging Dictionary and query plan, producing a .umbraPerf-�le that

contains samples linked to the DBMS abstractions.

2.3 Pro�ling Frontend

While �ne-grained pro�ling data is critical for detailed performance

insights, its practical value depends on how e�ectively developers

can interpret and act upon it.

Performance Considerations. The performance of development tools

is often undervalued despite their potential to accelerate optimiza-

tion iterations. UmbraPerf addresses this issue through a web appli-

cation frontend, which processes the augmented pro�ling samples

of the .umbraPerf-�le in real time using Rust compiled to Web-

Assembly, and visualizes them in interactively customizable views
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(b) Event Correlation View
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(c) Memory Access View

(d) Umbra IR Report

Figure 2: UmbraPerf’s frontend visualizes pro�ling results for di�erent abstractions. It supports �ltering by time interval,

operator, and pipeline, with synchronized views across all components. Operators are consistently color-coded in every view.

built on Vega [6]. Performing client-side data processing, UmbraPerf

minimizes interaction latencies and supports �ltering pro�ling data

for multiple parameters, streamlining the developer’s work�ow.

Design Considerations. Choosing the right level of abstraction is im-

portant to avoid overwhelming developers, but present the results

in a familiar way while still not hiding details. Our tool assists devel-

opers in their analysis by providing four di�erent views (Overview,

Event Correlation, Memory Access Analysis, Umbra IR report), each

o�ering di�erent levels of abstraction, visualizations, and function-

alities. Through these views, developers can transition from high-

to low-level abstractions, seamlessly exploring more details to pin-

point potential bottlenecks more e�ciently. They can select results

for di�erent pro�ling events and visualize them in parallel to iden-

tify correlations. UmbraPerf also supports interactive �ltering for

operators, pipelines, and time intervals to narrow performance in-

vestigation from the entire query execution to speci�c time frames

or speci�c operators. For a seamless transition between the dif-

ferent abstraction levels, our tool synchronizes �ltering selections

between all views and computes them in the background.

Overview (Figure 2a). This view is the starting point for performance

analysis and provides a high-level overview of the query execution:

which operators were involved, ran in parallel, and how much

time did they consume. A header displays key statistics, e.g., query

execution time, sample counts, and developers can choose among

recorded events to switch the visualizations to a speci�c event.

Timeline: Our tool displays the number of recorded samples over

time and supports time-interval-based �ltering to focus on a speci�c

segment of the query execution.

Operator Plan: Since query optimization relies on cardinality

estimates, comparing estimated and actual cardinalities is crucial

for assessing each operator’s impact and identifying prediction

mismatches. Accordingly, UmbraPerf visualizes the physical query

plan by representing operators as nodes and input dependencies as

edges (pipelines), annotated with the actual cardinalities. Hovering

over an operator reveals a tooltip with cardinality estimates and

the top �ve Umbra IR instructions for the selected pro�ling event.

Clicking on an operator toggles its inclusion in the performance

results and synchronizes these changes across all visualizations.

Operator & Pipeline Costs: A bar plot displays each operator’s

performance impact or share of the selected pro�ling event. A

sunburst chart represents the corresponding data for pipelines in

its inner ring and operators of the respective pipeline in the outer

ring. Together, these visualizations enable an assessment of both

individual operator and entire pipeline impacts. Clicking on an

operator/pipeline toggles its inclusion in the results.

Swimlanes: visualize operator activity over execution time for a

selected pro�ling event in relative (percentage) and absolute (sam-

ple count) measures. Swimlanes intuitively show the temporal per-

formance and inter-operator interactions, facilitating the detection

of unexpected behavior in speci�c query execution segments.

Event Correlation (Figure 2b). To further investigate unexpected

operator behavior, we compare results across di�erent pro�ling

events using a dual swimlane view. This visualization facilitates the

identi�cation of correlations and the isolation of potential causes,

e.g., a cache-miss peak for an operator during a segment with low

activity. To convey the context and enable selection, this view also

contains the header, timeline, operator plan, and sunburst graph.

Memory Access Analysis (Figure 2c). Since multiple operators are

executed simultaneously (operator fusion), distinguishing among

them is crucial for analyzing memory access patterns. UmbraPerf
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addresses this by visualizing each operator’s memory accesses as

an X-Ray plot, with the y-axis representing memory addresses and

the x-axis execution time. Developers can choose between each op-

erator’s accessed memory addresses or deltas between consecutive

accesses to detect random access patterns.

Umbra IR Report (Figure 2d). UmbraPerf provides an augmented

perf report-style view for the generated Umbra IR instructions,

the lowest abstraction level in Umbra. Each instruction is annotated

with its operator, pipeline, and performance metrics for the selected

pro�ling event, while hovering over it reveals metrics for all events.

Additionally, developers can apply the same �ltering options as for

the other components to re�ne their analysis. With the Umbra IR

Report, developers can pinpoint performance bottlenecks to the

level of generated instructions while preserving the overall context

of query execution.

3 DEMONSTRATION PROPOSAL

In our demonstration, participants are invited to analyze Umbra’s

query execution using our publicly hosted interactive UmbraPerf

frontend 1 (cf. Figure 2) and investigate pro�ling results for potential

performance bottlenecks. We provide pre-uploaded .umbraperf-

�les for all TPC-H queries and our example scenarios. Visitors can

also run their own queries (for TPC-H, TPC-DS, JOB) on one of

our machines using Umbra and analyze the query execution with

UmbraPerf to experience the pro�ling work�ow in practice.

To illustrate the work�ow of UmbraPerf, we walk through two

example scenarios in this section with the help of DBMS developer

Alice. Scenario 1: Alice investigates TPC-H Query 3 for optimiza-

tion opportunities. Scenario 2: After introducing a group-join, Alice

revisits TPC-H Query 3 to assess the improvements achieved.

3.1 Scenario 1: Identifying Optimization
Opportunities

Alice aims to optimize a slow query by analyzing its execution to

identify performance issues. First, Alice runs the query in Umbra

and pro�les it using the UmbraPerf mode (CMakePro�le), producing

a .umbraperf �le. Next, Alice uploads the �le to the frontend to

begin the analysis:

(1) Alice reviews the Overview’s query plan and swimlanes

(cf. Figure 2a) to determine which operators dominate exe-

cution and detect anomalies.

(2) Selecting di�erent events, Alice observes that join 1 and the

group by operator cause a peak in L3-cache misses.

(3) Alice switches to the Event Correlation view (cf. Figure 2b) to

assess the impact of these cache misses and correlate them

with temporal operator activity, noting that the group by

exhibits frequent cache misses despite limited activity.

(4) To investigate further, Alice examines the memory access

addresses for the group by in the Memory Access Analysis

view (cf. Figure 2c). By comparing these addresses with those

of other operators, Alice identi�es that the L3-cache misses

originate at the same addresses as those in join 1.

(5) Finally, Alice accesses the Umbra IR Report (cf. Figure2d),

selects L3-cache misses as the event, and �lters for join 1,

1Available at https://umbraperf.github.io/umbraperf

group by, and the time interval corresponding to the cache-

miss peak. At the UmbraIR instruction level, Alice discovers

that the cache misses result from building the hash table for

l_orderkey in join 1 and constructing a grouping hash table

for l_orderkey in the group by.

3.2 Scenario 2: Evaluating an Optimization

After identifying the performance issue in Scenario 1, Alice im-

plemented a group-join [4] to avoid building the hash table for

l_orderkey twice in consecutive operators. To validate the ef-

fectiveness of the group-join, Alice pro�les the query again and

compares the new results in a second browser window.

(1) The comparison reveals that query execution is 14% faster,

with L3-cache misses occurring only during the single hash

table build within the group-join as expected.

(2) Now Alice can start �ne-tuning the new operator by exam-

ining the Umbra IR Report to assess the cost and metrics of

each generated instruction for the new operator.

4 CONCLUSION

In this work, we introduce UmbraPerf, a pro�ling tool that bridges

the gap between low-level pro�ling data and the system abstrac-

tions of code-generating DBMSs. UmbraPerf correlates pro�ling

results with DBMS abstractions, such as query plan operators. Its

interactive frontend presents pro�ling results at developer-familiar

abstractions, facilitating rapid performance-tuning iterations, as

demonstrated in our scenarios. While we have integrated Um-

braPerf into Umbra, its design is widely applicable to other code-

generating DBMSs.
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