
JUSTINE (JUST-INsert Engine):
Demonstrating Self-organizing Data Schemas

Benjamin Hättasch
benjamin.haettasch@dfki.de

DFKI & TU Darmstadt
Germany

Leon Krüger
leon.krueger@stud.tu-darmstadt.de

TU Darmstadt
Germany

Carsten Binnig
carsten.binnig@cs.tu-darmstadt.de

TU Darmstadt & DFKI
Germany

ABSTRACT
Relational databases are great for data analysis and exploration,
but require a carefully crafted schema, which causes high manual
overhead. Moreover, entities not considered during schema design
cannot be stored. In contrast, schemaless approaches allow users to
store all kinds of data without the need for a schema, but require
schema-checking on read to ensure that queries can read certain
attributes. We therefore advocate for a new class of database sys-
tems that organize the data in a schema autonomously when it is
inserted schemalessly by users. Such databases should thus be able
to store data semantically meaningful but without requiring the
user to design a schema, neither upfront during setup nor when an
insert is executed. In this demo, we showcase JUSTINE, which is a
first implementation of this new class of database systems that can
automatically adjust a database schema based on input queries. Our
showcase features both (1) an interactive mode where attendees can
enter their own data as well as (2) the execution of a full workload
where users can see how the database schema evolves during batch
execution. The workload can be customized by changing different
parameters.

PVLDB Reference Format:
Benjamin Hättasch, Leon Krüger, and Carsten Binnig. JUSTINE
(JUST-INsert Engine): Demonstrating Self-organizing Data Schemas.
PVLDB, 18(12): 5283 - 5286, 2025.
doi:10.14778/3750601.3750652

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://link.tuda.systems/JUSTINE.

1 INTRODUCTION
The need for structured data. Storing data in a structured format

is often crucial to analyzing it later and gaining value from it. How
well this data can then be used depends heavily on the semantics
of the structure (the schema). Coming up with a useful schema
can be very difficult and can cause high overheads. Moreover, it
might influence what information can be stored and thus have great
effects on the decisions made based on the data later.

Take, for example, the government of a small city that asks
its citizens to report any problems they notice, such as broken

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750652

Figure 1: Functionality of JUSTINE. The data is stored in a
relational database. When a new insert query is executed,
JUSTINE tries to map it to an existing table (which might
use different terms for table or column names). If there is no
suitable table, JUSTINE creates a new one and then inserts the
data. Queries might be incomplete, lacking table or column
names. JUSTINE will try to map them anyhow. Moreover,
queries might contain columns not considered in the schema
yet. JUSTINE will add such columns automatically if needed.

streetlights, trash in the park, or unfavorable traffic conditions.
They want to store these incident reports, but for each kind different
fields are relevant. Additionally, they might already have existing
structured information (e.g., maintenance logs or the schedule of
garbage collections) that they want to link. All these inputs need
to be stored differently to capitalize on the specific information
they contain. Moreover, the contents and structures of all these
inputs might change over time (e.g., suddenly it becomes relevant
to report where exactly electric scooters are blocking the sidewalk
and who owns them). Currently, there are two general options for
storing and accessing such data:

Relational databases provide structure but cause overhead. Tradi-
tional relational database systems require the manual design of a
suitable database schema upfront. This requires both knowledge
about the domain and databases. In the example from above, one
would need to decide whether the different kinds of reports should
be stored in multiple tables or in a single one and which fields
(e.g., location information, report date, comment) are needed. For
reports like full bottle banks, it might be sufficient to request a
generic location from the citizens, like the square where it is lo-
cated. In contrast, for broken streetlights, storing a finer location
identifier (possibly consisting of the street name, closest house
number, and street side) is required. Additionally, the schema must

5283

https://doi.org/10.14778/3750601.3750652
https://link.tuda.systems/JUSTINE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750652
https://www.acm.org/publications/policies/artifact-review-and-badging-current


be manually adapted when additional information with deviating
attributes such as blocked sidewalks (where storing the owning
company would allow to automatically request them to remove the
electric scooters) should be stored. Everything that is not covered
by that schema upfront cannot be stored.1 Thus, a relational data-
base requires continuous remodeling in scenarios with changing
entities and attributes. Their advantage, however, is the possibil-
ity of efficiently querying them to make sense of the saved data
and gain new information. The strict schema makes it easy and
cost-efficient to navigate and browse it in exploratory scenarios.

Are schemaless databases better? Alternatively, schemaless
databases such as key-value stores and other non-relational
databases allow data to be stored without the necessity to define
a schema, but the lack of that schema makes it harder to use it
afterwards. It can be unclear what is stored at all and how the infor-
mation is organized. In our example, government employees pro-
cessing the reports might find it difficult to get an overview, group
related reports, or concentrate on relevant information. When pro-
cessing the data automatically, there is no guarantee that all relevant
attributes are present, and queries (e.g., to identify which scooter
companies should be notified) might fail. Hence, while schemaless
databases allow storing data without schema design in the first
place, that effort will only be postponed for many use cases.

Towards self-organizing schemas. Therefore, we propose working
towards databases with self-organizing data schemas that offer the
data exploration and querying options of a relational database
combined with the possibility of adding new kinds of information
without manual overhead by automatically adjusting the schema.
As a first step towards that vision, we demonstrate JUSTINE, which
allows users to perform vague inserts without the need to specify
a schema upfront. That is relevant since allowing to omit schema
information when setting up the database but then requiring it
in the input queries would just shift the place and time of the
specificationwithout liberating the users from the burden of coming
up with a sensible schema. By allowing them to submit vague
queries, that responsibility is moved to the data system.

Our system needs to support different situations (see Figure 1
for an example): Queries might look complete, but use deviating
terms for table and column names (e.g., timestamp but the database
column is called report_date). JUSTINE needs to map them to the ex-
isting schema. Queries might contain names for table and columns,
but no direct correspondence exists in the existing schema. In that
case, the schema has to be updated by adding the missing columns
or even entirely new tables. Finally, when users are unaware of
whether there is already a suitable structure and neither know what
a good structure would look like, they could create inserts that omit
table and/or column names. Again, JUSTINE needs to search for ex-
isting suitable structures and adjust the schema if there is no direct
correspondence. This functionality of automatic mapping and ad-
justments allows the insertion of arbitrary items into the database
while providing a relational schema after every step. Future inserts
of the same type can then be inserted in those adjusted tables, lead-
ing to a more coherent storage of semantically related concepts.

1Except when using generic tables that resemble key-value stores—which then do not
offer the advantages of strict schemas.

This makes both manual exploration and automated processing
easier.

How does JUSTINE work? JUSTINE stores the data in relations
and changes these relations based on the insert queries if necessary.
The system needs to decide autonomously in which table to place
the values (either determining the correct existing one or propose
the name for a new table) and then to map the values to existing
columns or add new columns.We use two large language models for
this semantic bridging between inputs and schema, which we fine-
tuned for the tasks of table and column mapping. In addition to the
query itself, they are prompted with a representation of the current
schema, including value samples for each relation. The models
work across domains and do not need to be fine-tuned for each
database. JUSTINE then needs to perform necessary adjustments
to the schema (adding columns and/or tables) and can execute an
adapted version of the insert query afterwards.

JUSTINE can be used to match the incoming queries to an exist-
ing schema (by adjusting it if necessary) or can even start with an
empty database and completely derive the schema from the inputs.
We showcase that approach in an interactive web application where
users can enter their own queries and see how the system handles
them, or can execute workloads with customized options like the
degree of missing information and see how the schema evolves.

Video and Artifacts. A video showing our approach in an interac-
tive demo can be found at https://link.tuda.systems/JUSTINE-video.
We publish code, datasets, and the fine-tuned models as open source
at https://link.tuda.systems/JUSTINE.

2 SYSTEM DESIGN OF JUSTINE
How should a good resulting schema look like? The central func-

tionality of our system is determining where to put the data. Trivial
approaches would be storing everything in a very broad table (ig-
noring the table information and using strict string matches for the
columns or enumerating them) or creating a new table for every
insert that lacks the table information. It seems obvious that the
resulting schemas from these approaches will be neither helpful
for manual exploration nor automated analyses. However, in gen-
eral, deciding whether a schema is reasonable is far from trivial.
Even schemas widely considered suboptimal (e.g., two concepts
are stored in the same table with a lot of NULL values) can still be
usable for analysis and discovery.

We aim for schemas where related items are stored in the same
table while unrelated ones are in different tables. Thus, we try to
avoid adding columns that will be NULL formost rows (in case these
NULL values were not already contained in the original inserts).
On the other hand, values with different semantics should not
be mapped to the same column. Table and column names should
reflect the contents and be understandable to the system’s target
audience. These properties should be achieved on a semantic level,
even when the terms used in the inputs vary greatly. All that needs
to be achieved with reasonable computation effort.

Insertion Workflow. Our approach works on top of a relational
database. Some queries can be executed directly. If, however, table
or column names aremissing or do not match the existing schema in
the database, a two-stage mapping approach will be invoked. Both

5284

https://link.tuda.systems/JUSTINE-video
https://link.tuda.systems/JUSTINE


steps are based on Llama 3 models [3] that we fine-tuned for this
task to provide the necessary semantic understanding. Heuristic
approaches (e.g., (fuzzy) string matching) can augment them and
help to reduce computation load for trivial cases (i.e., where names
clearly identify the correct tables and/or columns).

First, JUSTINE invokes a model for table prediction to find a
corresponding table for the insert query. In case there is no exist-
ing suitable match, the model outputs the name for a new table
instead. Based on this, the system can augment the query and (if
there are column names) try again to execute it. If that fails or the
column names are missing, the system invokes another model for
column prediction that operates analogously to the table prediction.
JUSTINE then performs the schema alterations (if necessary) and
executes the adjusted query.

To boost the overall quality, the table prediction model can be
instructed to output multiple (e.g., 3) candidates, from which the
best can then be selected by requesting mappings from the col-
umn prediction model and then ranking them. For this ranking, the
number of new columns that would be needed when inserting the
data into this table, and whether it was at all possible to create a
unique mapping can be used as heuristics. Whether the costs for
this additional inference are appropriate depends on the use case
and are therefore a setting for the users deploying the approach.
In an interactive setting (see Section 3.1), this allows to produce a
concise list of candidates from a large pool of potential matches
from which a user can select, capitalizing on the user’s knowledge
and the human ability to intuitively find agreeing entries if lists are
short enough.

Our system needs to decide which names to use for new tables
and columns at multiple places. This is particularly relevant for
those insert queries where table or column names are completely
missing. However, assuming that those submitting the queries are
often people without experience in database schema design, it might
not be sensible to use included names as-is, even for those queries
that contain column and table names. Thus, JUSTINE prompts
the models to come up with suitable names whenever there is no
existing correspondence and uses the generated values (which may
or may not deviate from the user’s inputs) for altering the schema.

Datasets. To fine-tune models for these tasks, we created a
dataset out of all 52 databases of the BIRD benchmark [2], 151
databases from the Spider challenge [5] and a sample of 99 tables
from WikiDBs [4]. We chose this number of different databases to
prevent overfitting. We sampled from the three different datasets
to utilize the different naming conventions, ranging from manually
adjusted to very generic ones. For all these databases, we computed
the corresponding insert queries to populate the database to the
given state and built two variants of fine-tuning datasets, where
we removed the table or column information, respectively, for a
uniform sample of 50 % of the queries.

Moreover, we identified three different scenarios for such a query
execution:
(1) The relevant table/columns names(s) are not in the database.
(2) The relevant table/columns names(s) are in the database with
the same name.
(3) The relevant table/columns names are in the database with an
alternative name.

For each insert query we created a corresponding database state
by selecting (random) subsets of tables and columns or introduc-
ing synonyms. We balanced these states in a way that the three
scenarios are equally distributed across the dataset.

Fine-Tuning. The table prediction model is based on Llama 3 [3],
fine-tuned with the before-mentioned dataset. For efficient fine-
tuning, we opted for the version with eight billion parameters and
additionally applied QLoRA [1]. The prompt contains an introduc-
tion, the insert query, and the current database state with some
example rows for each table, formatted in CSV format. Using a data
collator that restricted the fine-tuning to the desired output and not
the prompt itself, we were able to further improve the prediction
quality. Our experiments show that directly asking this model to
come up with a new table name in case no suitable match is found
performs better than generating a placeholder and leaving the name
generation task to a second model.

The column prediction model was fine-tuned analogously. We
tested both prompting for each column mapping individually and
requesting all mappings of an insert query at once. In our experi-
ments, the latter did not only provide a higher prediction accuracy,
but was also much better in preventing mapping multiple values to
the same column.

3 DEMONSTRATION SCENARIO
At our demo, attendees can interactively try out how JUSTINE can
support a user in adding data to a database interactively. Further-
more, it offers a mode to watch how the schema evolves when a
bigger workload of insert queries is performed sequentially. The
demo is implemented as a web application. We make this web inter-
face, the underlying insertion logic, the fine-tuned models, and the
datasets publicly available at https://link.tuda.systems/JUSTINE.

3.1 Interactive Inserting
A user starts by either selecting an existing database or choosing
to work on an empty one. They are then greeted by a page that
allows them to input (single or multiple) queries or to upload a file
with SQL-like2 insert queries. Once they submit a query, JUSTINE
will check whether the query can be directly executed (in case all
information is present and matches the existing database schema).
In that case, it will directly execute it. Otherwise, it will use the
fine-tuned LLMs to propose a suitable table as well as column
matchings. The result will be presented to the user, who will be
asked to review it. That review view contains the query, the top
three table mappings, and a preview of the insert in the currently
selected table. Color codings visualize alternative mappings with
lower probability. The user might now either directly confirm it
(leading to the system persisting the insert in the database) or can
choose another table as target. Furthermore, they might manually
adjust the column matching by dragging values to other cells. Once
they submit the mapping, JUSTINE performs necessary schema
updates, executes the adjusted insert query, and updates the data
view the user sees. The user can now continue with the next query.
JUSTINEwill use the recent manually corrected queries as examples
for further prompts to the mapping models.
2They are not always syntactically correct SQL queries since the table or column
information may be missing.

5285

https://link.tuda.systems/JUSTINE


Figure 2: Screenshots of our demo application: Attendees can modify properties of a workflow (e.g., the percentage of inserts
without table or columnnames) and thenwatch how the schema evolveswhen these inserts are executed step by step. Afterwards,
they can inspect details in a replay mode.

3.2 Batch Mode: Watch Schema evolving
Alternatively, a user can select an existing workload to watch how
the database schema evolves over time. Here, they can vary param-
eters like the number of queries without table or column names,
or that synonyms should be used for them. By default, JUSTINE
will perform all operations without a predefined schema, but it is
possible to start with a database that has the correct schema but
is empty, too, to see how well the system can map to that schema
depending on the degree of modification of the insert queries. In
that case, users can steer whether JUSTINE is allowed to create new
tables and columns or whether they should stick to the existing
schema. After they select these parameters, the system will adjust
the workload accordingly and perform the queries sequentially,
showing the database’s structure and data after every query (see
Figure 2). Finally, users can watch a replay of such a batch insert or
inspect the database status after a specific insert.

4 CONCLUSION & FUTUREWORK
In this demo paper, we presented JUSTINE, our approach for han-
dling incomplete insert queries, mapping them to a given database
schema, and updating that schema if necessary. Our approach is
integrated into an interactive web application. We publish the code
and all relevant data as open source.

In the future, we want to extend that system to infer the schema
not only from the incoming data but also based on the information
needs of those querying it. While our current approach is a first step
towards self-organizing schemas and is thus limited to adding new
columns and tables, this additional information could be used to also
restructure the existing schema (e.g., splitting or merging tables,
and renaming them or their attributes) for further optimization.

ACKNOWLEDGMENTS
This research and development project is partially funded by the
German Federal Ministry of Education and Research (BMBF) within
the “The Future of Value Creation – Research on Production, Ser-
vices and Work” program (funding number 02L19C150). It has ben-
efited from early-stage funding by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy – EXC-3057; funding will begin in 2026. The
authors are responsible for the content of this publication.

REFERENCES
[1] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023.

QLoRA: Efficient Finetuning of Quantized LLMs. arXiv preprint arXiv:2305.14314
(2023).

[2] Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang,
Bowen Qin, Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma,
Guoliang Li, Kevin C. C. Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2023.
Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale
Database Grounded Text-to-SQLs. https://doi.org/10.48550/arXiv.2305.03111
arXiv:2305.03111 [cs]

[3] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample.
2023. LLaMA: Open and Efficient Foundation Language Models. https://doi.org/
10.48550/arXiv.2302.13971 arXiv:2302.13971 [cs]

[4] Liane Vogel and Carsten Binnig. 2023. WikiDBs: A Corpus of Relational Databases
From Wikidata. In Joint Proceedings of Workshops at the 49th International Con-
ference on Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28
- September 1, 2023 (CEUR Workshop Proceedings), Vol. 3462. CEUR-WS.org.
https://ceur-ws.org/Vol-3462/TADA3.pdf

[5] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev.
2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-
Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing (Brussels, Belgium,
2018). Association for Computational Linguistics, 3911–3921.

5286

https://doi.org/10.48550/arXiv.2305.03111
https://arxiv.org/abs/2305.03111
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2302.13971
https://ceur-ws.org/Vol-3462/TADA3.pdf

	Abstract
	1 Introduction
	2 System Design of JUSTINE
	3 Demonstration Scenario
	3.1 Interactive Inserting
	3.2 Batch Mode: Watch Schema evolving

	4 Conclusion & Future Work
	Acknowledgments
	References

