
Styx in Action: Transactional Cloud Applications Made Easy

Kyriakos Psarakis
Delft University of Technology

k.psarakis@tudelft.nl

Oto Mraz
Delft University of Technology

o.m.mraz@tudelft.nl

George Christodoulou
Delft University of Technology

g.c.christodoulou@tudelft.nl

George Siachamis
Inria & Institut Polytechnique de Paris

georgios.siachamis@inria.fr

Marios Fragkoulis
Delft University of Technology

m.fragkoulis@tudelft.nl

Asterios Katsifodimos
Delft University of Technology

a.katsifodimos@tudelft.nl

ABSTRACT

Developing and deploying transactional cloud applications such

as banking and e-commerce systems is a daunting task for devel-

opers. The reason for this di�culty is twofold. First, developing

such applications shifts the developers’ focus from the application

logic to considerations of distributed transactions, fault-tolerance,

consistency, and scalability. Second, deploying such applications

involves multiple systems, such as databases, load balancers, or

containerized services, impeding e�cient resource management.

This demonstration presents Styx, a scalable application runtime

that allows developers to build scalable and transactional cloud

applications with minimal e�ort. It supports serializability and

exactly-once guarantees and focuses on the ease of development

and deployment, as well as Styx’s fault-tolerance mechanisms.

PVLDB Reference Format:

Kyriakos Psarakis, Oto Mraz, George Christodoulou, George Siachamis,

Marios Fragkoulis, and Asterios Katsifodimos. Styx in Action:

Transactional Cloud Applications Made Easy. PVLDB, 18(12): 5275 - 5278,

2025.

doi:10.14778/3750601.3750650

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/delftdata/styx.

1 INTRODUCTION

The Function-as-a-Service (FaaS) paradigm has gained signi�cant

popularity as it simpli�es the use of cloud resources with minimal

programmer e�ort. FaaS o�ers a serverless service model without

operational burden and a pay-as-you-go pricing model. FaaS is

based on the storage and execution disaggregation design prin-

ciple, where a stateless function layer executes application logic

while an external store handles the state, ensuring consistency and

persistence. However, this separation introduces challenges for ap-

plications that require strong transactional guarantees, including

banking systems and e-commerce platforms. Such systems require

coordination and communication between the stateless execution

layer and the stateful database to ensure data integrity and reliable

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750650

execution. Unfortunately, this architecture introduces overhead and

error handling, which pollutes the application logic.

These challenges can be exempli�ed with an online shopping

cart application. Multiple steps must be executed in sequence when

completing a checkout: verifying product availability, processing a

payment, and shipping the corresponding order. In a microservice-

like architecture, each service (e.g., Cart, Stock, and Payment) oper-

ates independently with its own API, database, and business logic,

communicating via API calls. Ensuring atomicity, such that stock

updates and payments succeed or fail together, and maintaining

state consistency across multiple work�ows, ensures that stock

counts accurately re�ect successful payments. This results in com-

plex application logic. Handling such complexities at the application

level can be error-prone and ine�cient, imposing programming

and operational overheads on developers.

A Stateful FaaS (SFaaS) service model can address the key chal-

lenges of cloud applications by eliminating the need for developers

to handle application state manually, ensuring resilience and seam-

less recovery from failures. Moreover, supporting transactionality

in SFaaS can guarantee end-to-end state consistency across multiple

functions. To this end, we argue that a suitable SFaaS runtime for

transactional applications should be built on the following three

principles: ğ) a high-level programming model, allowing developers

to avoid dealing with low-level primitives like locks, transaction

coordination and failure handling; ğğ) high performance with low-

latency and high-throughput execution; ğğğ) ensure exactly-once

state mutations, with serializable guarantees, even in the presence

of failures or retries.

Recently, we introduced Styx [5], a data�ow-based runtime de-

signed for transactional cloud applications built on the aforemen-

tioned principles. Styx ensures that each transaction’s state muta-

tions are re�ected in the system’s state exactly-once, even under

failures, retries, or other potential disruptions. Additionally, it sup-

ports arbitrary function orchestrations with end-to-end serializabil-

ity by leveraging a deterministic database protocol, eliminating the

need for expensive two-phase commits. Our approach is inspired

by two key observations [4]. First, modern streaming data�ow sys-

tems such as Apache Flink [1] guarantee exactly-once processing

by transparently handling failures. However, these systems cannot

execute general cloud applications and do not support transactional

function orchestrations. Second, e�cient transaction execution on

top of data�ow systems can be enabled through deterministic data-

base protocols, such as Calvin [8] or Aria [3], without the overhead

of two-phase commits. Styx bridges this gap by integrating a deter-

ministic transactional protocol that allows early commit replies to

clients, improving responsiveness while maintaining consistency.

5275

https://doi.org/10.14778/3750601.3750650
https://github.com/delftdata/styx
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750650
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Demonstration Scenarios. To illustrate the capabilities of Styx, in

our demonstration we focus on three scenarios. (1)We demonstrate

the developer experience by showing how application logic can

be free of transaction management and failure handling code. To

this end, we have integrated a compiler for transforming object-

oriented programs into data�ows optimized for our runtime [6].

(2) We highlight the system’s deployment and rescaling capabil-

ities, demonstrating how these processes can be performed with

minimal overhead. (3) We showcase how Styx seamlessly recovers

from worker failures without a�ecting application performance.

Additionally, the Styx UI provides live system metrics, o�ering

attendees real-time visibility into system operations.

2 THE STYX RUNTIME

Styx is a transactional distributed data�ow system that executes

work�ows of stateful functions with serializable guarantees. Styx’s

higher-level programming abstraction, State�ow [6], enables users

to code in a pure object-oriented style without state management or

fault tolerance logic. In this section, we describe the programming

model (Section 2.1), runtime design (Section 2.2), and fault tolerance

mechanism (Section 2.3).

2.1 Programming Model

The data�ow model decomposes programs into independent pro-

cessing units, organized as nodes in Directed Acyclic Graphs (DAGs)

that exchange data through message streams (edges). Data�ows

have been used as a programming model for analytical batch and

stream processing systems like Flink, where processing units are de-

noted as operators performing either stateful (e.g., joins, aggregates)

or stateless (e.g., map, �lter) operations. Nevertheless, integrating

the data�ow model with transactional cloud applications is chal-

lenging. Data�ow systems typically require developers to rewrite

cloud applications to �t the event-driven data�ow model.

Styx provides developers with two levels of abstraction: a high-

level actor-like programming interface based on State�ow [6] and

a lower-level data�ow API [5].

High-level Programming Model. Users can code transactional

cloud applications in Python object-oriented code. Entities are ob-

jects that contain unique key and class functions that mutate state.

Additionally, when a function call to another entity occurs, State-

�ow automatically creates an edge in the data�ow graph. The trans-

formation of continuation-passing style programming to entity

calls in a distributed data�ow graph is described in [6].

Low-level Programming Model. Styx follows the operator API

of data�ow systems like Apache Flink [1]. In Styx, a streaming

operator can hold multiple entities based on a partitioning scheme,

the functions that act upon the operator as a whole (allowing for

range queries), or the entities themselves (point queries). To com-

municate across operators, developers can call remote operator

functions using Styx’s API.

2.2 Runtime Design Overview

Styx [5] (Figure 1) employs a worker/coordinator architecture com-

bined with a messaging system, such as Apache Kafka, that propa-

gates input into Styx while being responsible for replaying uncom-

mitted messages after a failure. The coordinator’s responsibilities

Figure 1: Stateful-Function execution in Styx.

are to deploy a user-de�ned data�ow graph to the workers and

trigger the fault tolerance pipeline in case of failure. Furthermore,

it monitors the cluster’s health and collects metrics, as shown in

the current demonstration.

Each worker is responsible for a subset of the data�ow graph’s

operator state partitions, which are 1-to-1 aligned with the parti-

tions of the replayable input source. Client requests are ingested

and sequenced via a partitioned sequencer per worker. Afterward,

batches of transactions are executed as coroutines in a single CPU

per worker to increase e�ciency. Styx employs an epoch-based

deterministic transactional protocol to execute transactions in a

deterministic fashion. Each epoch is divided into four stages. In the

�rst stage, IDs (TIDs) are assigned to transactions. In the second

stage, transactions are executed to obtain each transaction’s read-

write set. In the third phase, transactions that do not participate in

unresolved con�icts caused by their state accesses are committed.

In the �nal phase, transactions that participate in con�icts are exe-

cuted with a lock-based mechanism. Transactions are executed in

parallel across workers, and nested function calls are transparently

scheduled for execution by local or remote operators. Since the

programming model of Styx allows for arbitrary function execu-

tion, its acknowledgment-sharing mechanism is required to identify

the transactions’ boundaries. Finally, Styx enables optimizations

through determinism, guaranteeing the same state mutations after

replay in the event of a failure. For instance, Styx gains the ability

to reply to a client even before a persistent snapshot is stored.

2.3 Fault Tolerance

Fault tolerance is a concern for both transactional applications

and data�ow systems. Existing SFaaS systems achieve �ne-grained

fault tolerance by leveraging logging. Current approaches log and

persist each function call, introducing signi�cant overhead during

execution. Data�ow systems enable coarse-grained fault tolerance

through checkpointing protocols [7], possibly combined with log-

ging mechanisms. These systems recover by restoring their state

from the latest valid checkpoint and replaying missed messages

5276

import logging
from decimal import Decimal
from http import HTTPStatus

from flask import Flask, jsonify
from databases.cassandra import CassandraDatabase
from databases.postgres import PostgresDatabase
import os

LOGGER = logging.getLogger()
LOGGER.setLevel('DEBUG')
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(
"%(asctime)s [%(levelname)s] %(name)s: %(message)s"))
LOGGER.addHandler(handler)
app = Flask("payment-service")

@app.route('/', methods=['GET'])
def root():
return jsonify({'message': 'check success'}), 200

@app.route('/payment/pay/<uuid:user_id>/<uuid:order_id>/<amount>', methods=['POST'])
def pay_order(user_id, order_id, amount):
amount = float(amount)
LOGGER.info("Trying to pay order %s", order_id)
try:
success = database.subtract_credit(user_id, Decimal(amount))
if success:
database.add_payment(order_id, True, Decimal(amount))
return jsonify({'message': 'Order paid'}), HTTPStatus.OK
else:
database.add_payment(order_id, False, Decimal(amount))
return jsonify({'message': 'Not enough credit'}), HTTPStatus.BAD_REQUEST
except RuntimeError:
return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

@app.route('/payment/cancel/<uuid:user_id>/<uuid:order_id>', methods=['POST'])
def cancel_payment(user_id, order_id):
LOGGER.info("Canceling payment for %s by %s", order_id, user_id)
try:
success_cancel, amount = database.cancel_payment(order_id)
if success_cancel:
success_add = database.add_credit(user_id, amount[0])
if success_add:
return jsonify({'message': 'Order cancelled'}), HTTPStatus.OK
else:
return jsonify({'message': 'User not found'}), HTTPStatus.NOT_FOUND
return jsonify({'message': 'Payment not found'}), HTTPStatus.NOT_FOUND
except RuntimeError:
return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

@app.route('/payment/status/<uuid:order_id>', methods=['GET'])
def get_status(order_id):
LOGGER.info("Getting status of payment for order %s", order_id)
try:
success, status = database.get_status(order_id)

if not success:
return jsonify({'message': 'Payment not found'}), HTTPStatus.NOT_FOUND
else:
return jsonify({'paid': status}), HTTPStatus.OK
except RuntimeError:
return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

@app.route('/payment/add_funds/<uuid:user_id>/<amount>', methods=['POST'])
def add_funds(user_id, amount):
amount = float(amount)
LOGGER.info("Adding %s to credit for user %s", amount, user_id)
try:
success = database.add_credit(user_id, Decimal(amount))
if success:
return jsonify({'done': True}), HTTPStatus.OK
else:
return jsonify({'done': False}), HTTPStatus.BAD_REQUEST
except RuntimeError:
return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

@app.route('/payment/create_user', methods=['POST'])
def create_user():
LOGGER.info("Creating new user")
try:
user_id = database.create_user()
return jsonify({'user_id': user_id}), HTTPStatus.OK
except RuntimeError:
return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

@app.route('/payment/find_user/<uuid:user_id>', methods=['GET'])
def find_user(user_id):
LOGGER.info("Trying to find user %s", user_id)
try:
success, credit = database.find_user(user_id)
if success:
return jsonify({'user_id': user_id, 'credit': float(credit)}), HTTPStatus.OK
else:
return jsonify({'message': 'User not found'}), HTTPStatus.NOT_FOUND
except RuntimeError:
return jsonify({'message': 'failure'}), HTTPStatus.INTERNAL_SERVER_ERROR

if __name__ == "__main__":
DB = os.environ["DB"]
database = CassandraDatabase() if DB == "cassandra" else PostgresDatabase()
app.run(host='0.0.0.0')

import simplejson
from cassandra.cqlengine.columns import Decimal
from flask import Flask, jsonify, request
from databases.cassandra import CassandraDatabase
from databases.postgres import PostgresDatabase
import logging
import os
from uuid import uuid4, UUID

LOGGER = logging.getLogger()
LOGGER.setLevel('DEBUG')
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(

"%(asctime)s [%(levelname)s] %(name)s: %(message)s"))
LOGGER.addHandler(handler)
app = Flask("stock-service")

@app.route('/', methods=['GET'])
def root():

return jsonify({'message': 'check success'}), 200

@app.route('/stock/item/create/<price>', methods=['POST'])
def create_item(price):

price = float(price)
itemid = uuid4()
LOGGER.info("Creating itemid %s", itemid)
try:

database.create_item(itemid, price)
return jsonify({'item_id': str(itemid)}), 201

except RuntimeError:
return jsonify({'message': 'failure'}), 500

@app.route('/stock/add/<uuid:itemid>/<int:number>', methods=['POST'])
def add_item(itemid: UUID, number: int):

LOGGER.info("Adding %s item %s", number, itemid)
try:

if database.add_item(itemid, number) != 404:
return jsonify({'message': 'success'}), 201

else:
return jsonify({'message': 'non-existent itemid'}), 404

except RuntimeError:
return jsonify({'message': 'failure'}), 500

@app.route('/stock/getall', methods=['GET'])
def get_all():

try:
result = database.get_all()
return jsonify({'message': result}), 201

except Exception as e:
return jsonify({'message': 'failure'}), 400

@app.route('/stock/find/<uuid:itemid>', methods=['GET'])
def find_item(itemid: UUID):

LOGGER.info("Finding information for itemid %s", itemid)
try:

item = database.get(itemid)
if item != None:

item['price'] = simplejson.dumps(item['price'])
return item, 200

else:
return jsonify({'message': 'non-existent itemid'}), 404

except RuntimeError:
return jsonify({'message': 'failure'}), 500

@app.route('/stock/subtract/multiple', methods=['POST'])
def subtract_multiple():

items = request.get_json()
code = database.subtract_multiple(items)
return jsonify({'message': 'success' if code == 201 else 'failure'}), code

@app.route('/stock/subtract/<uuid:itemid>/<int:number>', methods=['POST'])
def subtract_item(itemid: UUID, number: int):

LOGGER.info("Adding item %s to stock %s", number, itemid)
try:

response = database.subtract_item(itemid, number)
if response == 404:

return jsonify({'message': 'non-existent itemid'}), 404
elif response == 400:

return jsonify({'message': 'input number is larger than the stock!'}), 400
else:

return jsonify({'message': 'success'}), 201
except RuntimeError:

return jsonify({'message': 'failure'}), 500

if __name__ == "__main__":
DB = os.environ["DB"]
database = CassandraDatabase() if DB == "cassandra" else PostgresDatabase()
app.run(host='0.0.0.0')

from flask import Flask, jsonify
from databases.cassandra import CassandraDatabase
from databases.postgres import PostgresDatabase
import logging
from uuid import uuid4, UUID
import os
import requests

LOGGER = logging.getLogger()
LOGGER.setLevel('DEBUG')
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(

"%(asctime)s [%(levelname)s] %(name)s: %(message)s"))
LOGGER.addHandler(handler)
app = Flask("order-service")

@app.route('/', methods=['GET'])
def root():

return jsonify({'message': 'check success'}), 200

@app.route('/orders/create/<uuid:userid>', methods=['POST'])
def create_order(userid: UUID):

orderid = uuid4()
LOGGER.info("Creating orderid %s", orderid)
try:

database.put(orderid, userid)
return jsonify({'order_id': str(orderid)}), 201

except RuntimeError:
return jsonify({'message': 'failure'}), 500

@app.route('/orders/remove/<uuid:orderid>', methods=['DELETE'])
def remove_order(orderid: UUID):

LOGGER.info("Removing orderid %s", orderid)
try:

if database.delete(orderid) != 404:
return jsonify({'message': 'success'}), 200

else:
return jsonify({'message': 'non-existent orderid'}), 404

except RuntimeError:
return jsonify({'message': 'failure'}), 500

@app.route('/orders/addItem/<uuid:orderid>/<uuid:itemid>', methods=['POST'])
def add_item(orderid: UUID, itemid: UUID):

LOGGER.info("Adding item %s to orderid %s", itemid, orderid)
try:

if database.update(orderid, itemid) != 404:
return jsonify({'message': 'success'}), 201

else:
return jsonify({'message': 'non-existent orderid'}), 404

except RuntimeError:
return jsonify({'message': 'failure'}), 500

@app.route('/orders/removeItem/<uuid:orderid>/<uuid:itemid>', methods=['DELETE'])
def remove_item(orderid: UUID, itemid: UUID):

LOGGER.info("Removing item %s from orderid %s", itemid, orderid)
try:

if database.remove_item(orderid, itemid) != 404:
return jsonify({'message': 'success'}), 200

else:
return jsonify({'message': 'non-existent orderid/itemid'}), 404

except RuntimeError:
return jsonify({'message': 'failure'}), 500

@app.route('/orders/find/<uuid:orderid>', methods=['GET'])
def find_order(orderid: UUID):

LOGGER.info("Finding information for orderid %s", orderid)
try:

improves the performance in benchmarks
order = database.find_order(orderid)
if order == 404:

return jsonify({'message': 'non-existent orderid'}), 404
total_cost = 0
items = order['items'][0]
for item, amount in items.items():

stock_item = requests.get(f"{STOCK_SERVICE_URL}/stock/find/{item}")
total_cost += int(amount) * float(stock_item.json()['price'])

order['total_cost'] = total_cost
paid = requests.get(

f"{PAYMENT_SERVICE_URL}/payment/status/{orderid}")
if paid.status_code == 404:

order['paid'] = False
elif paid.status_code == 200:

order['paid'] = True
if order != 404:

return order, 200
except RuntimeError:

return jsonify({'message': 'failure'}), 500

@app.route('/orders/checkout/<uuid:orderid>', methods=['POST'])
def checkout(orderid: UUID):

LOGGER.info("Checking out orderid %s", orderid)
order_result, order_code = find_order(orderid)

if order_code == 404:
return jsonify({'message': 'non-existent orderid'}), 404

if order_code == 500:
return jsonify({'message': 'failure'}), 400

if order_code == 200 and not order_result['paid']:
make payment
payment = requests.post(

f"{PAYMENT_SERVICE_URL}/payment/pay/{order_result['user_id']}/{orderid}/{ord

(a) Microservice implementation using the saga pattern (Red: code to

ensure atomicity and fault tolerance, Green: business logic).

1 from styx import Operator, StatefulFunction

2 from shopping_cart.operators import stock, payment, cart

3 from shopping_cart.exceptions import NotEnoughCredit, NotEnoughStock

4

5 @stock.register

6 async def decrement_stock(ctx: StatefulFunction, amount: int):

7 item_stock = ctx.get()

8 item_stock −= amount

9 if item_stock < 0:

10 raise NotEnoughStock(f"Item: {ctx.key} does not have enough stock")

11 ctx.put(item_stock)

12

13 @payment.register

14 def pay(ctx: StatefulFunction, amount: int):

15 credit = ctx.get()

16 credit −= amount

17 if credit < 0:

18 raise NotEnoughCredit(f"User: {ctx.key} does not have enough credit")

19 ctx.put(credit)

20

21 @cart.register

22 def checkout(ctx: StatefulFunction):

23 items, user_id, total_price, paid = ctx.get()

24 for item_id, qty in items:

25 ctx.call_async(operator=stock,

26 function_name='decrement_stock',

27 key=item_id,

28 params=(qty,))

29 ctx.call_async(operator=payment,

30 function_name='pay',

31 key=user_id,

32 params=(total_price,))

33 paid = True

34 ctx.put((items, user_id, total_price, paid))

35 return "Checkout Successful"

(b) Checkout work�ow in Styx.

Figure 2: Comparison between the microservice paradigm (�g. 2a) and Styx (�g. 2b).

from the logs. With coordinated checkpointing [2], additional log-

ging may not be needed, as processing can resume from the correct

o�set.

Styx relies on the input source and determinism for message

replay based on recorded o�sets. This design ensures that the se-

quencer will recreate the same transaction sequence post-recovery,

enabling early replies (before the state commits to durable storage)

and exactly-once guarantees. Styx utilizes a blob store for durable

storage to persist incremental snapshots of worker states.

3 DEMONSTRATION OVERVIEW

We now describe how we showcase the key capabilities of Styx, as

discussed in Section 2, and how attendees can engage with it. To

this end, we present three scenarios: one demonstrating the bene�ts

for developers during application development and two highlight-

ing the performance advantages of Styx in practice. To visualize

these performance bene�ts, we have designed and implemented a

dashboard that monitors Styx.

3.1 Scenario 1: Application Development

Figure 2 showcases the di�erence in developing a simpli�ed shop-

ping cart application with three services (stock, payment, cart)

between a traditional microservice implementation and Styx. Styx

eliminates the boilerplate code needed to ensure ACID guarantees

in the microservice implementation and allows developers to focus

solely on the core application logic. Beyond accelerating develop-

ment, Styx enhances maintainability and reduces the likelihood of

bugs by providing serializable transactions as a service. This results

in cleaner, more reliable code, ultimately achieving long-term soft-

ware quality. Attendees can change parts of the application code

and submit applications to the Styx runtime.

3.2 Scenario 2: Deployment and Rescaling

Styx is designed for seamless deployment and rescaling. To facilitate

real-time monitoring, we have developed two dashboards. In the

depicted scenario, we execute the YCSB-T workload across four

Styx workers at 10.000 transactions per second (TPS) following a

uniform distribution within one million keys.

Part 1: System Overview. Attendees will be able to assess sys-

tem performance across all Styx workers. The System Overview

dashboard Figure 3 provides a high-level summary of key system

metrics:

• ResourceMetrics (A): Displays the average CPU andmem-

ory utilization, as well as ingress and egress network tra�c

across Styx workers.

• Performance Metrics (B): Visualizes transaction through-

put per second, average transaction latency, and abort rate.

Under normal conditions, epoch latency (Styx uses a de-

terministic epoch-based commit protocol) for the YCSB-T

workload remains below 250 ms (green-shaded region). At

the same time, the abort rate �uctuates based on the level of

contention from 0% (no contention) to 100% (all transactions

within an epoch contain the same key at least once).

5277

B

A

C

D

E

F

G1

G2

G3

Figure 3: Styx monitoring dashboards.

• Latency Breakdown (C): A pie chart categorizes trans-

action latency into distinct components. Typically, the pri-

mary contributors to latency are the �rst optimistic trans-

action execution (1st Run) with the call-graph discovery

(Chain Acks), the lock-based fallback commit mechanism

(Fallback), and others like cross-worker synchronization,

write-ahead-logging (WAL), con�ict resolution + commit,

and the asynchronous snapshots.

• Snapshot Latency (D): Time taken for a complete delta

snapshot throughout the deployment.

• Worker Health (E): The �nal panel tracks time since the

last heartbeat. If this value remains below 1000 ms (green-

shaded), it con�rms that all workers are healthy and opera-

tional.

• Recon�guration (G1-3): At "19:19:30", we downscale the

deployment from four partitions to three, and we observe

an increase in snapshot latency and ingress network (data

transferred across workers through S3), and �nally a de-

crease in TPS since we decreased the parallelism.

The demonstration attendees will be able to change the skew

factors of the supported workloads and perform updates to ob-

serve changes in the performance (latency, throughput) of Styx

applications in real time.

Part 2: Worker Speci�c.With a global view of the system’s health

in mind, attendees can drill down into the performance of individ-

ual workers using theWorker Speci�c dashboard. This dashboard

mirrors the system overview but focuses on a selected Styx worker.

A drop-down menu (F) allows attendees to choose a speci�c

worker, enabling direct comparison with the overall system metrics.

By analyzing the worker-speci�c metrics, attendees can quickly

pinpoint anomalies. If a single worker exhibits signi�cantly higher

transactional latency or reduced throughput compared to the others,

it may indicate an overloaded or unhealthy state.

3.3 Scenario 3: Fault Tolerance

The �nal scenario showcases Styx’s ability to handle failures e�-

ciently. During the demonstration, attendees can manually termi-

nate a Styx worker to observe how the system detects the failure

and triggers its recovery process.

Part 1: System Overview. The system overview dashboard pro-

vides a real-time visual indicator of worker failures. When a Styx

worker stops responding, the Time Since Last Heartbeat metric

(panel E) spikes, signaling the loss of communication. This event

is accompanied by a sharp increase in transactional latency and a

temporary dip in throughput until the system fully recovers. Once

the operators assigned to the dead worker are rescheduled to a new

or existing worker, Styx begins handling the delayed transactions,

and these metrics gradually return to their normal ranges.

Part 2: Worker Speci�c. Using the worker speci�c dashboard,

attendees can further investigate the failed worker’s behavior. The

impact of the failure is more pronounced here. Transaction latency

and throughput �uctuations become more drastic, and for a brief

period, the failed worker will stop reporting metrics entirely. Once

the recovery process is completed, these values stabilize, con�rming

that the system has successfully recovered. This scenario demon-

strates Styx’s resilience and self-healing mechanisms, ensuring

system reliability even in the event of failures.

ACKNOWLEDGMENTS

This publication is part of project number 19708 of the Vidi research

program, which is partly �nanced by the Dutch Research Council

(NWO).

REFERENCES
[1] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a Single
Engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015).

[2] K Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining
Global States of Distributed Systems. ACM Transactions on Computer Systems
(TOCS) 3, 1 (1985), 63–75.

[3] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practical
Deterministic OLTP Database. Proc. VLDB Endow. 13, 12 (July 2020), 2047–2060.

[4] Kyriakos Psarakis, George Christodoulou, Marios Fragkoulis, and Asterios Katsi-
fodimos. 2025. Transactional Cloud Applications Go with the (Data)Flow. In 15th
Annual Conference on Innovative Data Systems Research (CIDR’25). January 19-22,
2025, Amsterdam, The Netherlands.

[5] Kyriakos Psarakis, George Christodoulou, George Siachamis, Marios Fragkoulis,
and Asterios Katsifodimos. 2025. Styx: Transactional Stateful Functions on Stream-
ing Data�ows. Proc. ACM Manag. Data 3, 3 (SIGMOD), Article 226 (2025).

[6] Kyriakos Psarakis, Wouter Zorgdrager, Marios Fragkoulis, Guido Salvaneschi, and
Asterios Katsifodimos. 2024. Stateful Entities: Object-oriented Cloud Applications
as Distributed Data�ows. In Proc. 27th International Conference on Extending
Database Technology, EDBT 2024, Paestum, Italy. 15–21.

[7] George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Paris
Carbone, and Asterios Katsifodimos. 2024. CheckMate: Evaluating Checkpointing
Protocols for Streaming Data�ows. In ICDE 2024. 4030–4043.

[8] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In SIGMOD 2012 (SIGMOD ’12). Association for Computing
Machinery, New York, NY, USA, 1–12.

5278

	Abstract
	1 Introduction
	2 The Styx Runtime
	2.1 Programming Model
	2.2 Runtime Design Overview
	2.3 Fault Tolerance

	3 Demonstration Overview
	3.1 Scenario 1: Application Development
	3.2 Scenario 2: Deployment and Rescaling
	3.3 Scenario 3: Fault Tolerance

	Acknowledgments
	References

