A Demonstration of QueryArtisan: Real-Time Data Lake Analysis
via Dynamically Generated Data Manipulation Code

Wenhao Liu Xiu Tang” Sai Wu
Zhejiang University Zhejiang University Zhejiang University
wenhao.liu@zju.edu.cn tangxiu@zju.edu.cn wusai@zju.edu.cn
Chang Yao Gongsheng Yuan Gang Chen
Zhejiang University Zhejiang University Zhejiang University
changy@zju.edu.cn ygs@zju.edu.cn cg@zju.edu.cn
ABSTRACT Users / QueryArtisan Modules
[6 — i
Querying and analyzing data in data lakes requires substantial man- @ D) 1 Quer Procesing 2@ttt (L3 D Ayt
ual intervention, including numerous data preprocessing steps, and Data Lake @ _.8 ® o /IQ‘\
often demands complex domain expertise. However, the advent of o Sl e-B-B

Large Language Models (LLMs) has introduced a promising solution
to these challenges by providing a unified framework for interpret-
ing the heterogeneous datasets within data lakes. In this paper, we
demonstrate QueryArtisan, a novel LLM-powered analytical system
tailored for data lakes. It enables users to issue complex queries
in natural language without the need for domain-specific exper-
tise. The system automatically executes user-submitted queries and
performs data processing and analysis based on the query results.
QueryArtisan extends beyond traditional ETL (Extract, Transform,
Load) processes by generating just-in-time code customized for
dataset-specific tasks. A suite of heterogeneous operators is de-
veloped to process data across various modalities. In addition, a
cost-based query optimization mechanism is integrated to improve
the efficiency of the generated code. Furthermore, QueryArtisan can
dynamically instantiate multiple agents in response to user-defined
analytical requirements to perform further in-depth analysis of the
retrieved data.

PVLDB Reference Format:

Wenhao Liu, Xiu Tang, Sai Wu, Chang Yao, Gongsheng Yuan, and Gang
Chen. A Demonstration of QueryArtisan: Real-Time Data Lake Analysis
via Dynamically Generated Data Manipulation Code . PVLDB, 18(12): 5263
- 5266, 2025.

doi:10.14778/3750601.3750647

PVLDB Artifact Availability:
The source code and data have been made available at https://github.com/
skyrise-1/QueryArtisan_demo.

1 INTRODUCTION

A data lake serves as a comprehensive storage hub, specifically
designed to accommodate, manage, and safeguard vast quantities

“Xiu Tang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750647

5263

Unified Query Intelligent Requirement

.y

Natural Language ‘

Be) 2r['f

Interfaces Optimization Analysis
‘ Operator Mapping ‘ Cost-based ‘ Adaptive Multi-agent
Scheme Optis tion C i
-
Complexity in Data Transformation Labor-intensive in
Schema Mapping Dilemma Data Analysis

L Challenges of Traditional Data Lakes

Figure 1: Comparison of data analysis limitations in tradi-
tional data lake systems and the QueryArtisan system.

of data, regardless of its structure [3, 4]. Whether the data is metic-
ulously organized, semi-structured, or entirely unstructured, a data
lake is capable of preserving it in its original formats [3]. Moreover,
it supports the processing of a wide variety of data types without
size constraints.

However, providing data lake services requires complex engineer-
ing efforts. In conventional data lake systems, two distinct method-
ologies for processing are typically employed. In both strategies, the
definition of a unified mediated schema and the establishment of
mapping relationships between each source schema and the central
schema are crucial.

In the query-driven approach, queries targeting the mediated
schema are translated into equivalent queries for each source dataset,
utilizing these mapping relationships [7]. These queries are sub-
sequently processed individually by the source systems. The data
lake’s role involves amalgamating the results into a cohesive output.

Conversely, within the data-driven model, all incoming data is
transformed to conform to the mediated schema and is subsequently
loaded into a centralized host system in the data lake [1]. In this
model, the host system assumes responsibility for processing all
queries, thus offering a centralized solution for data handling.

Existing data lake tools typically do not provide built-in support
for analyzing the data retrieved through queries. As a result, once
users obtain the queried data, they must resort to external tools
to perform further analysis. This disconnect disrupts workflows,
increases complexity, and adds to the user’s burden of managing
both queries and separate analytical code, making the analysis
process more fragmented, labor-intensive, and costly.

As shown in Figure 1, the implementation of a data lake system
presents three primary challenges:

https://doi.org/10.14778/3750601.3750647
https://github.com/skyrise-l/QueryArtisan_demo
https://github.com/skyrise-l/QueryArtisan_demo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750647
https://www.acm.org/publications/policies/artifact-review-and-badging-current

e Complexity in Schema Mapping. Establishing schema
mappings, even with semi-automatic tools, remains com-
plex and resource-intensive, involving considerable manual
intervention and overhead.

Data Transformation Dilemma. The data-driven ap-
proach demands intensive data transformation and loading
efforts, while the query-driven approach complicates query
rewriting and result aggregation, compromising accuracy
and manageability.

Labor-intensive Data Analysis. Existing data lake sys-
tems lack integrated analytical capabilities, requiring users
to manually bridge the gap between data retrieval and sub-
sequent analysis.

To address these challenges, we introduce QueryArtisan, a real-
time data lake analysis system built upon our prior work [5]. The
system integrates all our proposed techniques to enable accurate
and efficient real-time analytics over data lakes. As shown in Figure
1, QueryArtisan comprises three modules:

e Query Processing Module: Utilizes Natural Language
Interfaces to interpret user queries and employs heteroge-
neous operators to translate these queries into executable
sub-tasks, effectively resolving the complexity of schema
mapping,.

Query Optimization Module: Applies a unified, cost-
based query optimization approach to holistically optimize
the generated Query Processing Graph. By globally optimiz-
ing query execution plans, this module effectively reduces
and even eliminates complex data transformation processes,
thus addressing the Data Transformation Dilemma.

Data Analysis Module: Adopts adaptive multi-agent col-
laboration to automatically integrate analytical tasks with
query execution, bridging the gap between data retrieval
and analysis, and simplifying labor-intensive workflows.

Based on QueryArtisan, users can execute complex real-time
analytics on data lakes using natural language queries, significantly
reducing both human resource requirements and dependency on
expert knowledge.

2 SYSTEM OVERVIEW

In this section, we provide an overview of QueryArtisan’s architec-
ture. Figure 2 illustrates the three key components of QueryArtisan:

o User-Friendly Interface: QueryArtisan provides three
intuitive interfaces for users: Query Chat, Query Process,
and Final Report. These interfaces enhance transparency by
presenting intermediate processes from analysis modules.
QueryArtisan Modules: This component forms the core
of the QueryArtisan system and consists of three primary
sub-modules: Operator-based Query Graph Generation,
Query Optimization and Code Correction, and Multi-agent-
based In-depth Analysis.

Data Lake: This module is responsible for data storage and
organizational management within the system. It comprises
an offline operator database for query graph construction,
heterogeneous data sources and schema definitions, and a
distributed processing framework for code execution.

5264

Wenhao Liu, Xiu Tang, Sai Wu, Chang Yao, Gongsheng Yuan, and Gang Chen

QueryArtisan Modules

3. Interpret 9. Refinement
Interactive Process Controller

Operator-based
Query Graph
G ti

User Interface , g,

Query Optimization
and Code Correction

Multi-agent-based
In-depth Analysis

Multi-agent
Collaborative
ting

Query Process /5. Optimization 6. Analysls

Query
Pre-processing

=

8. Display

{ Final Report Operator Mapping ‘ Automatic Code

Correction

1. Contextual] 4. Mapping | 7. Exeaute |

Data Lake

Heterogencous
Data Source

Offline Operator
Database

Distributed Processing

Heterogencous
Framework

Data Scheme

Figure 2: The architecture of QueryArtisan system.

Operator-based query graph generation. Given a query, Quer-
yArtisan first retrieves relevant metadata and data samples from
the data lake. Leveraging this contextual information, the LLM re-
formulates the original query into an enriched query. Subsequently,
the LLM decomposes the enriched query into a set of subtasks,
consisting of sub-query tasks and sub-analysis tasks.

To effectively interpret each sub-query task, we introduce a set
of abstract data-processing operators, where each operator repre-
sents a fundamental data operation and is annotated by detailed
semantics to enhance interpretability and applicability. We then
instruct the LLM to utilize these operators to capture the data
processing relationships for each sub-query task, constructing a
processing graph consisting of operators and their dependencies.
By executing the operators in the processing graph according to
their dependencies, we effectively achieve the desired task.

Query optimization and code correction. Given the process-
ing graph, there remains significant potential to optimize the ini-
tially generated code. We introduce two key adjustments, known
as shuffle and collapse. The shuffle approach entails altering the
order of operators within the processing graph. For example, Quer-
yArtisan seeks to optimize query plans by strategically positioning
filter operators later in the execution sequence. In contrast, the
collapse approach consolidates multiple operators and generates
code for them simultaneously, thereby facilitating the merging of
operators such as multiple filter stages. Furthermore, to evaluate
how significantly these two adjustments reduce processing costs
and increase efficiency, QueryArtisan employs the cost model-based
plan optimization, similar to those used in traditional database sys-
tems. This component transforms the query analysis graph into a
performance-optimized execution plan.

Subsequently, QueryArtisan generates executable code from the
optimized graph. Recognizing that LLM-based code generation may
introduce inaccuracies, QueryArtisan validates each operator’s code
according to correction rules, using a dedicated auditing agent to
detect and repair such issues. If irreparable errors are encountered,
the system initiates an error-handling mechanism involving back-
tracking to a stable prior state and retrying the execution.

Multi-agent-based in-depth analysis For sub-analysis tasks,
QueryArtisan utilizes multi-agent collaboration to handle each task.
Initially, a task interpreter agent is employed to parse the task
requirements and to ensure that prerequisite queries are completed
before proceeding. The system then dynamically generates domain-
specific agent prompts based on the task context, enhancing overall
scalability and applicability. These prompts are used to invoke

A Demonstration of QueryArtisan: Real-Time Data Lake Analysis via Dynamically Generated Data Manipulation Code

an execution agent that performs the task, while a supervision
agent oversees the entire process to ensure correctness. Finally, the
visualization results from the analysis trigger an Analysis Agent for
producing a comprehensive report that integrates insights within
the query context.

3 IMPLEMENTATION DETAILS

Query pre-processing. During pre-processing, we leverage an
LLM to integrate three key components (meta-data, samples, and
NL query) into an enriched query. Specifically, we perform unbiased
sampling on the target dataset to collect representative meta-data
and key samples. The meta-data includes “Dataset info”, cover-
ing general details such as format, size, and descriptions, as well
as “Schema info” and “Data info”, obtained through sampling and
scanning the dataset. Additionally, essential features like primary-
foreign key relationships and histograms are derived using conven-
tional algorithms [2, 8].

Due to prompt length constraints of the LLM, we prioritize se-
lecting representative samples by randomly sampling the largest
fact tables and retrieving related tuples from dimension tables via
primary-foreign key relationships. Intentionally introducing tuples
with noise, such as null or invalid values, is also part of our strategy.

Finally, the meta-data and selected samples provide contextual
information for refining and rewriting the original NL query. The
LLM then generates a concise and accurate enriched query, incor-
porating essential extracted details.

Offline operator database. To diminish reliance on the LLM
and minimize unnecessary calls, an offline operator database has
been developed. Specifically, a collection of typical NL queries has
been gathered from the WikiSQL [9] and Spider [6] datasets.

We have observed that many data analytic queries incorporate
similar sub-tasks, culminating in a unified processing graph. Con-
sequently, to reduce dynamic requests to the LLM, an offline key-
value database has been developed. This database contains pairs
representing typical queries derived from the WikiSQL and Spider
datasets. To promote generalizability and eliminate dataset-specific
biases, detailed tables, columns, and variable names within these
queries have been substituted with generic placeholders.

Cost-based optimization. Queries can be represented by mul-
tiple equivalent implementations, with execution efficiency closely
tied to factors such as data distribution, size, and selectivity. To
address this, QueryArtisan develops a cost model to evaluate the ex-
pected costs associated with different query plan implementations,
based on the characteristics of both the data and the query. The total
cost of a query plan is derived by summing the operational costs of
individual operators and the costs incurred when transferring data
between successive operators. This cost model enables QueryArti-
san to optimize query plans, focusing on reducing execution costs
while maintaining accuracy and consistency in the results.

All possible pairs of operators are systematically evaluated through
recursive testing, with the potential advantages of altering their
sequence considered based on the cost model. Ultimately, a plan
is arrived at which, though not necessarily optimal, effectively
mitigates significant.

Automatic code correction. QueryArtisan employs a special-
ized algorithm to detect and correct errors in code generated by

5265

large language models (LLMs). For a given query analysis graph,
the algorithm validates the mapping of each operator in the code
using predefined detection schemes. When errors, such as missing
read operations or incorrect references to table or column names,
are identified, predefined correction rules are applied. If the error
cannot be fixed, the system invokes a correction agent or reverts to
a previous step to reanalyze the task or regenerate the code.

Multi-agent task interpretation, execution, and supervi-
sion. For sub-analysis tasks, QueryArtisan assigns a Task Inter-
preter Agent to each task, which is responsible for interpreting
task-specific requirements, identifying the necessary prerequisite
queries, and defining relevant constraints based on user inputs and
system configurations, including algorithms, visualization tools,
model parameters and other elements. Once these steps are com-
pleted and all prerequisite queries have been verified, the system
generates a task-specific prompt using the gathered information.
The prompt then triggers the Analysis Executor Agent to generate
the corresponding analysis code. The entire process is overseen by
the Process Supervisor Agent, which monitors for errors, reports
them to the relevant agents for correction. Once verification is
complete, it executes the code to obtain the final output.

Distributed processing framework. QueryArtisan employs a
distributed framework that decomposes queries and analyses into
fine-grained subtasks executed in parallel across multiple nodes,
markedly boosting throughput and slashing response times for the
large-scale, complex workloads common in data-lake environments.
By continuously tracking node health, efficiently aggregating re-
sults, and scaling on demand, it delivers reliable, real-time insights
from data lakes.

4 DEMONSTRATION SCENARIOS

Figure 3 presents a screenshot of the web-based visualization inter-
face of QueryArtisan, enabling users to interact with queries and
observe the data analysis process through the following steps:

Step 1 (Query Chat): Figure 3(a) shows the query interaction
interface of the system. The Intelligent Personalized Settings panel
enables users to customize various system parameters, including
selecting the LLM model type and specifying algorithms for specific
tasks. Users can either input their specific requirements to let the
system automatically generate the appropriate configuration or
manually modify and refine the system-recommended settings to
better align with their analytical objectives.

In the Operator Control Panel, users can manage standard and
custom operators used in queries. Standard operators are essential
for ensuring the proper execution of queries. These operators can
be modified but cannot be deleted. Custom operators can be added
by specifying their functions and providing corresponding code
examples. The LLM attempts to incorporate these custom operators
into subsequent data analysis tasks. For operators that are not
needed temporarily, users can set them to an inactive state.

Once the configuration is complete, users can design queries
based on the data source information displayed in the Data Lake
panel. Users also have the option to switch between data sources via
the top-right corner. They can click on any node in the displayed
graph to query detailed information about that data node. Addi-
tionally, users can manage the selected data source in the Manage
Data panel.

O Query Process il Final Report

&

© System Configuration and Query Interaction IS SEY 2 Query Pr d Anal

Data Lake aeecn

Intelligent Personalized Settings

45 Query Chat

r recommended settings:

Queryrtsan:

-
Manage Data
Operator Control Panel =
rio I e oo
B 3 &3 =3 T
- - - we e e e
we T e
sy e e we e
weter e
e, =y L genre table TEXT False.
ey
(a) Query Chat
ool Qauerychat | O QueryProcess | bt Finl Report

1 System Configuration and Query Interaction. ~ >>>>> |12 Ll T 5ssss 3 Visualization and Fina Report

Task Decompose

Query Graph and Optimization

Final Graph

Raw Graph

Generated Code

Before Optimization vs After Optimization

(b) Query Process

Q Query Chat G Query Process lak Final Report

&

Data Lineage Source Data

e Visualized results

e

Terminal output

(c) Final Report

Figure 3: A screenshot of QueryArtisan with an example data
analysis task on the data lake.

The Query Chat panel enables users to initiate interactive query
and analysis sessions, with the system maintaining a history of
previous queries to support continuation from earlier results. Users
can also request additional information related to the queries, such
as receiving suggestions for query optimization. The Batch Query
button provides an interface where users can input a large number
of queries simultaneously. After execution, the system generates a
comprehensive report that users can download. The Query Reuse
button enables users to efficiently search for and reuse historical
queries, further enhancing productivity and reducing repetitive
workload.

Step 2 (Query Process): As shown in Figure 3(b), the second
interface presents detailed intermediate results generated during
the query analysis process. The Task Decompose panel illustrates
how the system automatically decomposes the user’s query and

5266

Wenhao Liu, Xiu Tang, Sai Wu, Chang Yao, Gongsheng Yuan, and Gang Chen

analytical tasks into sub-tasks. The Generated Code panel displays
the final executable code corresponding to the analyzed query.

The Query Graph and Optimization panel visualizes the inter-
mediate optimization stages of the query. Within this panel, the
Original Graph shows the initial query graph before optimization,
while the Final Graph represents the optimized query graph. Addi-
tionally, the Logical Plan provides a natural language explanation
of the query’s logical execution plan. The Before Optimization vs.
After Optimization part compares key metrics before and after op-
timization, highlighting improvements in query execution time,
CPU utilization, and other critical system resources. This part also
details specific optimization points, offering users deeper insights
into the effectiveness of optimization strategies.

Step 3 (Final Report): As shown in Figure 3(c), the third inter-
face displays the final results of the query. Notably, the Command
Chat panel allows users to execute optimization commands for the
current query, such as requesting execution time statistics, mod-
ifying the data analysis algorithm or visualization method. The
Query Result panel shows the final query results. Users can select
any column to view its corresponding Data Lineage, which is visu-
alized in the Data Lineage panel. Furthermore, clicking the starting
point of the data source within the Data Lineage panel displays
the corresponding source content in the Source Data panel, thereby
facilitating in-depth analysis and traceability.

The LLM Report panel displays a comprehensive summary of
the entire query and analysis process, including an analysis of
the visualized results in the Visualized Results panel. The Terminal
Output panel shows the system’s code execution output, including
intermediate results, providing support for debugging.

ACKNOWLEDGMENT

This paper is supported by the National Regional Innovation and De-
velopment Joint Fund (No. U24A20254) and Zhejiang Provincial Nat-
ural Science Foundation of China under Grant (No.LQN25F020009).
The authors are supported by Hangzhou High-Tech Zone (Binjiang)
Institute of Blockchain and Data Security.

REFERENCES

[1] Raul Castro Fernandez and Samuel Madden. 2019. Termite: a system for tunneling
through heterogeneous data. In aiDM@SIGMOD. ACM, 7:1-7:8.

Felix Halim, Panagiotis Karras, and Roland H. C. Yap. 2009. Fast and effective
histogram construction. In CIKM. ACM, 1167-1176.

Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C. Aro-
cena. 2019. Data Lake Management: Challenges and Opportunities. Proc. VLDB
Endow. 12, 12 (2019), 1986-1989.

Natasha F. Noy. 2020. When the Web is your Data Lake: Creating a Search Engine
for Datasets on the Web. In SIGMOD. ACM, 801.

Xiu Tang, Wenhao Liu, Sai Wu, Chang Yao, Gongsheng Yuan, Shanshan Ying,
and Gang Chen. 2024. QueryArtisan: Generating Data Manipulation Codes for
Ad-hoc Analysis in Data Lakes. Proc. VLDB Endow. 18, 2 (2024), 108-116.

Tao Yu, Rui Zhang, Kai Yang, and et al. 2018. Spider: A Large-Scale Human-Labeled
Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task.
In EMNLP. 3911-3921.

Qin Yuan, Ye Yuan, Zhenyu Wen, He Wang, and Shiyuan Tang. 2023. An effective
framework for enhancing query answering in a heterogeneous data lake. In SIGIR.
770-780.

Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M. Procopiuc, and
Divesh Srivastava. 2010. On Multi-Column Foreign Key Discovery. Proc. VLDB
Endow. 3, 1 (2010), 805-814. https://doi.org/10.14778/1920841.1920944

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating
structured queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017).

=

https://doi.org/10.14778/1920841.1920944

	Abstract
	1 Introduction
	2 System Overview
	3 Implementation Details
	4 Demonstration Scenarios
	References

