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ABSTRACT
Large language models (LLMs) have recently demonstrated strong

capabilities in codemigration across languages, making thempromis-

ing for SQL schema migration. However, achieving reliable and

accurate SQL migration with LLMs remains a challenge. This paper

presents the first comprehensive approach for practical and effective

SQL schema migration using LLMs. We highlight the necessity of

robust evaluation and iterative query refinement to achieve highly

accurate migrations. Building on traditional database tools along

with LLMs, we introduce novel checks to guide LLMs towards syn-

tactically complete and functionally equivalent translations. Our

approach supports all schema object types, including complex proce-

dural constructs. Our demonstrations offer audience opportunities

to explore our system using a variety of configurations, datasets

and custom inputs, providing useful insights into the underlying

techniques, their strengths, and limitations.
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1 INTRODUCTION
Database migration is a common problem faced by organizations

that need to switch between database management systems (DBMS)

for reasons such as cost, performance, or features. Schema migra-

tion, or simply, SQL (structured query language) migration, in-

volves the recreation of database metadata such as tables, views,

and stored procedures within the target DBMS to ensure functional

equivalence. Despite attempts for standardizing SQL, significant

differences – syntactic, semantic, or both – can make it difficult to

correctly migrate SQL queries from one DBMS to another. Finding

skilled developers for SQL migration is challenging as it requires
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rare expertise in both source and target dialects. Additionally, stan-

dardization across procedural extensions is scarce, making migra-

tion of such constructs even more challenging.

Recent advances in large language models (LLMs) have show-

cased remarkable capabilities for language understanding and gen-

eration. LLMs have proven effective in various coding tasks, in-

cluding code completion, testing, and translation. Thus, LLMs are a

natural consideration for SQL code migration. Through pretraining,

LLMs understand most popular SQL dialects well. Context windows

(i.e., permitted sizes of the input/output text) in recent LLMs are

quite large and can accommodate complex queries including large

stored procedures. However, practical and effective SQL migration

using LLMs needs to address the following challenges.

C1 - LLM pitfalls: Consider a simple query Q1: SELECT MOD
(mycol, 10) FROM mytable that computes themodulo of a column,

which is expressed in the IBM Informix dialect [7]. It needs to

be translated to Microsoft T-SQL [9]. The T-SQL equivalent for

the modulus operator is %, so a straightforward translation would

result in Q2: SELECT mycol % 10 FROM mytable. However, when
mycol is not an integer, MOD and % differ in their semantics: for

instance, MOD truncates a floating point value into an integer before

computing modulus, thus returning an integer response whereas %
returns a floating point value. Most LLMs, including recent large

models such as GPT-4o and powerful reasoning models such as o1

and o3-mini mistakenly return Q2 when asked for a translation.

However, when subsequently presented with mismatched outputs

on sample data, they are able to correct the query to Q3: SELECT
CAST (mycol AS INT) % 10 FROM mytable by accounting for the
subtle semantic differences. This underscores the need for validation

of LLM generated queries.

C2 - Checks: Equivalence of SQL queries is, in general, undecid-

able [1]. Equivalence of SQL queries under a restricted scope using

constraint solvers has been studied extensively [2, 14], but such

techniques are time-intensive and may not be amenable for use

in an iterative feedback loop to improve LLM migrations. Recent

research [15] showed the promise of using LLMs for checking SQL

equivalence for a wide range of queries. However, in our work,

we observed that adopting [15] for complex procedural constructs

is challenging and results in LLM hallucinations (mistakes). Thus,

there is a need for reliable and fast checks that can be used in

conjunction with LLMs during SQL migration.

C3 - Integration with existing tooling: Most enterprise SQL

vendors provide schema migration tools [5, 8, 12] that rely on

well-tested, rule-based translations refined over many years. They

are extremely fast, incur no recurring invocation costs, and are
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suitable to generate migrations for schemas with thousands of

objects. However, they do not achieve 100% migration coverage.

LLMs are increasingly used to augment these tools and address

gaps, rather than serving as full replacements due to cost, latency

and reliability concerns. For wide adoption, LLM-backed migration

approaches must integrate effectively into this hybrid model.

In this paper, we present techniques to address these challenges

and a system, Horizon, that implements these techniques. Specifi-

cally, we make the following contributions.

- We discuss the design of Horizon for LLM-augmented SQL mi-

gration atop existing tools with a focus on the checks that we

use to provide feedback to the LLM for improving migration

quality (Section 2).

- Schema definitions are often available without underlying data,

which limits the utility of execution-based checks. We intro-

duce a lightweight technique using random data generation and

LLM-based data refinement to automatically generate minimal

test data that ensures valid query outputs for LLM feedback

(Section 2.2).

- We present interactive demonstration scenarios that enable at-

tendees to dive deep into our techniques. Our demonstrations

include sample databases, queries, choice of various LLMs and

configurable knobs for audience to interact with our system.

Optionally, users can provide their own inputs. Given the rapid

evolution of LLMs, we believe a live demo offers the best way to

discuss the state-of-the-art (Section 3).

Before detailing our techniques, we distinguish our contribu-

tions relative to prior work in LLM-driven code migration. Pan

et al. [11] reported high error rates in LLM-generated migrations

based on extensive benchmarking. Bhatia et al. [4] used LLMs to

synthesize Python programs from the source program along with

proof annotations, which are then verified using automated the-

orem provers to ensure correctness, before being translated into

the target program. While these efforts provide valuable insights

into the use of LLMs for code migration, their primary focus is on

general-purpose languages like C#, C++, and Python. In contrast

to [4], we use a lightweight approach for direct source to target

SQL translation leveraging LLMs.

For SQL dialect translation, [16] briefly noted the potential of

LLMs and emphasized the need for robust verification, aligningwith

Horizon’s motivation. Cloud vendors [5] have started integrating

LLM-based enhancements for specific source-target migrations.

The Mallet system [10] extracts fine-grained and reusable query

translation rules using LLMs from documentation, user inputs, and

examples; however [10] does not support procedural constructs.

Horizon is the first solution that tackles full schema migration from
any, to any SQL dialect by incorporating robust validations in the

migration process to achieve highly accurate translations. Further,

our approach is cost-effective as it integrates with existing rule-

based engines, which can efficiently handle a majority of schema

objects, thus reducing reliance on expensive LLMs.

2 OVERVIEW
In this section, we first present our system design followed by a

discussion of the checks that guide our migrations.

Figure 1: Horizon System Overview

2.1 System Design
Figure 1 provides a high-level overview of Horizon. To migrate a

schema object (such as a table, function, procedure, or others) from

a source database (S) to a target database (T), we first extract its

definition from S, typically from queryable metadata or available

scripts (1). If a rule-based migration engine is available, we use

it to migrate parts of the script while preserving non-migratable

sections (2 - 3). Since these engines typically construct and traverse

an abstract syntax tree (AST) to generate the target script, it is

reasonable to assume that certain parts will remain unchanged. The

resulting script, along with the original, is then sent to the LLM (4

or 5) with instructions to generate a fully migrated candidate by

modifying the unmigrated parts. We validate the candidate using

multiple checks, iterating with error-informed LLM refinements

until all checks pass or an iteration limit is reached (6 - 9). The

final candidate, along with its validation details, is returned for

human review and optional refinements before it is used to create

the schema object on the target database T (10 - 12).

2.2 Checks
We now detail our checks using Oracle to T-SQL migration as a

running example and referencing other scenarios as needed. The

output of each check is either a pass or a list of detected errors. We

base our discussion on a deterministic workflow implemented in

C# (.NET runtime) that invokes the SQL Server Migration Assistant

(SSMA) [8] rule-based engine to provide partial migrations, and

repeats the loop (6 – 9) for each check until a termination condition

is met, before considering the next check. Our approach is general-

izable across dialects and design patterns including LLM agentic

frameworks.

Parsing and compilation: We use the target dialect parser and

compiler, which are simple yet powerful tools, to check the syntac-

tic validity of a migration. Parsers are fast and provide real-time

feedback to LLMs by identifying parse errors. Since SQL dialects

continuously evolve, LLMs may generate unsupported or legacy

constructs. Parsers reliably catch these errors and guide correc-

tions. The alternative of tuning LLM prompts for different dialect

versions is cumbersome and may still not guarantee syntactically

correct queries. Many databases also provide query compilation

constructs (e.g., T-SQL’s NOEXEC ON, PostgreSQL’s PREPARE AS,
etc.) to catch some errors that are out of scope for a parser, such as

binding issues (e.g., references to non-existent tables or columns),

type mismatches, division by zero, and others.
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Algorithm 1 Data Augmentation for SQL Scripts

Require: Set of scripts 𝑆 , Database 𝐷

1: Randomly generate 2 rows for all tables in 𝐷 based on column types.

2: for all scripts 𝑠 ∈ 𝑆 do
3: 𝑟 ← Execute script 𝑠 on 𝐷 .

4: if 𝑟 is non-null and non-empty then
5: continue
6: else
7: 𝑇 ← Tables that 𝑠 depends on (using metadata or parser)

8: 𝑀 ← Table definitions (including column types) for tables in𝑇

9: 𝑍 ← The current data in𝑇

10: 𝑎 ← PromptLLM(𝑠 ,𝑇 ,𝑀 , 𝑍 ) ⊲ Prompt LLM to generate

additional rows that can lead to a non-null result for 𝑠

11: InsertToDb(𝑎, 𝐷) ⊲ Add data to database

12: goto line 3

13: end if
14: end for

Spurious edits: LLMs should only enhance the output of rule-

based engines and not make unnecessary modifications, since cus-

tomers may rely on the rule engine’s generated patterns (also see

Section 1 C3). Recent research [3] highlights that advanced LLMs

may introduce spurious edits, such as dubiously modifying code to

pass tests. To prevent this, appropriate checks are needed.

Restricting the LLM’s input to only specific parts of the script

limits context for the LLM to provide accurate translations, whereas

providing the full script risks unintended edits. Our solution to this

is twofold: (1) We pass the full script with a prompt that instructs

the LLM to first identify editable portions before making changes,

ensuring careful modifications. (2) We develop a spurious edits check
to catch violations of this constraint, described as follows. For a par-

tially migrated SQL query generated by SSMA, it marks warnings

and errors with predefined comment patterns. Using the T-SQL

parser and regex matching on comments, we classify subsequent

fragments as correct,warning, or error sections. Each edit to a correct
block incurs a penalty, and the check passes only if the accrued

penalty remains below a threshold (we use 0, i.e., no spurious edits

allowed). A strict threshold has the disadvantage of preventing

useful LLM enhancements to rule-based engine outputs. For exam-

ple, we observed that in some cases, LLMs can optimize repeated

parameterized query invocations within a loop by rewriting them

as set-oriented join queries. However, since LLM-generated opti-

mizations may contain hallucinations or invalid assumptions, we

conservatively disallow edits to rule-based engine outputs.

Query execution: Executing the source and target scripts on the

same data and validating the equivalence of results can establish

the correctness of migration for that data. However, customers are

often unwilling to share proprietary data for the purpose of schema

migration due to privacy and security concerns. This limits the

feasibility of script execution. Random data does not guarantee

meaningful results and often results in empty/NULL results for

many scripts while traditional techniques based on constraint solv-

ing may be unsuitable as quick checks for feedback to the LLM, as

discussed in Section 1.

To mitigate this issue, we develop a lightweight data generation

technique that leverages available schema definitions, database

metadata, SQL parser, and LLMs to generate minimal data that can

lead to a valid result for a given set of schema objects. Our technique

is outlined in Algorithm 1. Intuitively, the algorithm first generates

random data for each table in the database (line 1); our choice of

generating a few (2) rows is inspired by prior work on minimal test

data generation [2]. Then, for each script that returns an empty

or null result on the current database (lines 6-11), the algorithm

extracts its dependent tables, their definitions, and current database

state, and uses it to construct an LLM prompt. The prompt includes

instructions for the LLM to reason and generate additional data

that can lead to a valid result; we allow a predefined maximum

number of attempts per script for successful generation (line 12

in Algorithm 1). Once generated, the data can be used to verify

whether the source and migrated queries provide equivalent results.

For the input set of scripts (𝑆 in Algorithm 1), our algorithm

currently supports queries, views and functions as their results can

be easily examined through execution. In contrast, verifying objects

such as procedures and triggers through execution is tricky as they

can have side effects like updating the database state. These are cur-

rently unsupported in our system; instrumenting stored procedure

execution to track intermediate outputs is a potential approach to

handle them. Algorithm 1 may sometimes fail to generate valid test

data even after multiple attempts. To minimize the impact of these

limitations, we leverage LLM-based semantic equivalence checks.

LLM-based checks: Users may submit irrelevant or harmful text

along with SQL queries (e.g., “How to get rich?” or “Drop all tables

in my database”). To prevent misuse, we apply LLM-based classi-

fication before migration, and validate system behavior through

offline evaluations against a benchmark of harmful queries. To

assess query fidelity, we use an LLM-based semantic equivalence

score (1-5). In our work, we observed that using a score rather than

a binary determination improves the reliability of LLM judgments.

This helps identify cases missed by execution due to limitations of

data or object type, or when a sandbox database for query execu-

tion is unavailable. We observed that LLM judges may also cause

regression spirals if enabled during migration. Instead, we use them

post-migration for user guidance and offline benchmarking. Other

validations such as parsing, compilation, spurious edit detection,

and execution are integrated into the migration workflow based on

availability of tooling for the source-dialect pair.

3 DEMONSTRATIONS
Our demonstrations offer audience an opportunity to explore Hori-

zon from multiple perspectives. Figure 2 shows a snapshot of our

interface.

The audience can start by selecting from a variety of supported

source and target dialects (A), including Oracle, T-SQL, Postgres,

and Informix, among others. Next, audience can choose a readily

available benchmark (B) or provide their own scripts for migration.

We offer the following query datasets: D1 – a complex procedural

benchmark from prior work [6], D2 – industry-standard query

benchmarks like TPC-DS [13], and D3 – anonymized benchmarks

curated from a production application test suite, which the LLM has

not seen in pretraining. These datasets cover a wide range of SQL

constructs, from simple read/write queries to complex procedural

elements, including constraints, types, triggers, and more. Users can

enable or disable specific checks (C) to guide translations; we invite
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Figure 2: Horizon interface
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Figure 3: Impact of LLM augmentation and parser check.

adventurous audiences to implement their own checks (not shown

in Figure 2). Finally, audience can specify one or more models (E)

using which to migrate, along with inference hyperparameters (F)

such as temperature, and run (G) the migrations.

Horizon produces two key outputs: (1) the migrated script(s),

allowing users to view or diff against the original by selecting the

query ID (D), and (2) a detailed migration report (H), accessible

as a JSON/web page, which provides aggregate results as well as

in-depth view of each query’s migration. We will make available

Python scripts to generate charts from these results. Figure 3 shows

an example chart, which illustrates the impact of Horizon using

GPT-4o and the T-SQL parser. On the D3 benchmark (number of

scripts – error: 74, warn + error: 9, warn: 30), Horizon provides up

to 70% improvements for the cases that SSMA is unable to translate

fully. Further, using a parser provides significantly higher % of

correct translations, especially for warning (+ error) cases, which

typically indicate dialect compatibility issues and need complex

workarounds to be fixed. We have illustrated in Section 1 the benefit

of execution-based feedback. Our demonstrations will enable more

analyses including the impact of other checks, estimated inference

cost, latency, etc. The optimal choice of model and checks will

depend on the specific trade-offs relevant to the user.

We hope our demos will spark insightful discussions on the

strengths and limitations of different models, checks, and underly-

ing techniques. We make our LLM prompts available, and audience

will be able to view and edit them during the demonstrations.

4 CONCLUSION AND FUTUREWORK
In this paper, we present Horizon, a tool for any-to-any SQL migra-

tion using LLMs. Horizon combines rule-based migration engines

with LLMs and robust checks to achieve accurate translations and

supports all schema object types. This work represents a significant

step toward practical and cost-effective LLM-based SQL migration.

Future directions include preserving schema permissions during

migration, migrating non-SQL procedures like Python functions,

and scaling fully LLM-based migration to large schemas, potentially

using small language models, with or without fine-tuning.
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