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ABSTRACT

Row pattern matching in terms of the MATCH_RECOGNIZE clause is a
powerful and relatively recent feature in SQL that allows users to
define regular patterns over ordered rows in a table. As of today,
few database systems offer support for match recognize, making
it unaccessible to a wide range of users. We demonstrate the im-
plementation of a transpiler that translates match recognize into a
plain SQL query executable by any database system that supports
window functions and recursive common table expressions—no
changes to the underlying database systems are required.

We evaluate the performance of this approach on the running
example to show that the transpiler generates code competitive
with contemporary database systems that implement row pattern
matching natively. The on-site demonstration is based on DuckDB.
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1 DEMOCRATIZING MATCH_RECOGNIZE

MATCH_RECOGNIZE is a SQL clause that was first added to the SQL
Standard in 2016 [6]. It provides an expressive tool for row pattern
matching, i.e., finding sequences of ordered rows that follow a user-
defined regular pattern. Possible usage involves pattern detection
for applications in security and finance or, generally, the analysis
of time series data [9, 13].

Examples of database systems implementing row pattern match-
ing include Oracle [7], Snowflake [12], Trino [2], Azure Stream
Analytics [1], and Apache Flink [3]. They all provide at least a sub-
stantial subset of match recognize’s specification but may not follow
the SQL Standard in detail. Almost ten years after the introduction
of match recognize, the majority of database systems entirely lack
an implementation, however.

This is where the present work comes in. We argue that row
pattern matching definitely is useful and should be part of contem-
porary SQL dialects. An integration into the database kernel reaches
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deep and may be non-trivial. We thus demonstrate a transpiler!
that translates MATCH_RECOGNIZE into plain SQL code:

e We compile the match recognize-based table expression into a
pipeline of (recursive) common table expressions (CTEs). The
first CTE uses the given table as input. With every step of the
pipeline the data undergoes transformation until the last CTE
mimics the content of the full table expression.

The generated code purely relies on recursive CTEs and window
functions: any DBMS that supports these established SQL con-

structs will thus also be able to evaluate match recognize queries.

The on-site demonstration offers a web interface with an input
editor for match recognize queries. Transpilation to regular SQL
is live and happens on every keystroke. Our setup relies on Duck-
DB [11] as the target DBMS. A DuckDB web shell can be opened
to immediately execute the compiled SQL code on sample data. We
chose DuckDB as it has rich support of recursive CTEs and win-
dow functions, and as of now does not implement match recognize
natively. Trino’s recursive CTE feature is experimental only.

Row Pattern Matching in SQL. Row pattern matching is a pow-
erful SQL feature to detect patterns in ordered tables. A compre-
hensive explanation of the syntax can be found in [10]. For a brief
sketch of the most important features, see the running example in
Figure 1. The MATCH_RECOGNIZE subclauses allow the user to define
@ ordering and partitioning of the input data, @ tags (here: A, B,
and C) that are attached to those rows that fulfill the given condi-
tions, and @ the pattern to be matched. The pattern is defined as a
regular expression over row tags. Finally, the MEASURES subclause @
performs computations over the rows that constitute a match.

1a source-to-source-compiler with a human-readable language as a target language

SELECT mr.station, mr.match_no, mr.tstamp, mr.diesel,
mr.e5, mr.tag, mr.duration, mr.diff
gas_prices MATCH_RECOGNIZE (

PARTITION BY station

1

2

3 FROM

4

5 ORDER BY
6

7

8

J)

tstamp
MEASURES MATCH_NUMBER(Q) AS match_no,
CLASSIFIERQ) AS tag,
LAST(D.tstamp) - FIRST(D.tstamp) AS duration, 4
9 abs(AVG(C.diesel) - A.diesel) AS diff
10 ALL ROWS PER MATCH
11 AFTER MATCH SKIP TO LAST B
12 PATTERNC A (B+ C*?)+ A ) (3]
13 SUBSET D (B, O
14 DEFINE A AS A.diesel A.e5,
15 B AS B.diesel - B.e5 Y
16 AND B.diesel > A.diesel AND B.e5 < A.e5,
17 C AS C.diesel > C.e5

18 ) AS mr
19 ORDER BY mr.station, mr.match_no, mr.tstamp;

Figure 1: A match recognize query collecting information
about atypical diesel fuel prices that exceed gasoline prices.
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Figure 2: The time series ( and ) show the price

development of gasoline and diesel fuel. The match starts
with the second data point and ends with the penultimate
one. On the x axis, the row tags are given. The dashed gray
line denotes the value of A.diesel within this match and the
dotted line the average diesel value of C-tagged rows.

The example in Figure 1 demonstrates how to find segments in
a time series containing atypical gasoline prices that drop below
the price of diesel fuel. A match found by the regular row pattern A
(B+ C*7?)+ Ais shown in Figure 2.

Some conditions (A, C) are easily determined while others (B)
can only be evaluated during the matching process as they depend
on values of previously matched rows. This ability to inspect the
vicinity of rows renders match recognize versatile but may affect
matching performance. Optimization techniques for row pattern
matching are addressed in [8, 14].

Apart from the matching itself, match recognize can perform
computations (
In Figure 1 (Line 8), the example query calculates the duration
of the price anomaly through a subtraction of timestamps (rows
tagged either with B or C constitute a match—the definition
in Line 13 enables us to refer both tags using the common tag D).

We are barely scratching the surface of syntax
here—a full implementation of the construct is a rather complex
undertaking.

2 FROM MATCH_RECOGNIZE TO WITH RECURSIVE

Our compilation approach relies on recursive CTEs that were
introduced with SQL:1999. We use a data transformation pipeline
of various CTEs to emulate the behavior of match recognize. In the
core matching process, a recursive CTE is used to drive a finite

automaton (),
preprocessing (),
bfs AS(C...),

matches (),
after_match (),
collect (),
postprocessing C..n)

Figure 3: CTE-based transpilation scheme.

) over specific rows contained in a match.

Figure 4: The finite state automaton for the pattern A (B+
C*?)+ A.The transitions of the automaton are the conditions
that result in a row tag: A, B, and C. Additionally, each transi-
tion is weighted with a penalty: 0, 1, and 2.

state automaton that iteratively draws rows from the input table.
Pre- and post-processing steps build on SQL window functions and
ensure that matches are filtered according to the specification of the

subclauses. Figure 3 shows the structure of the
CTE pipeline. In what follows we describe each step of the pipeline
in more detail.

Automaton. A finite state automaton forms the core of the row
pattern matcher. Every transition in the automaton denotes a
row matching the condition that corresponds to the tag of its
transition. Figure 4 shows the automaton for the pattern A (B+
C*?)+ A of the running example.
Since condition B is a stricter version of condition C, every row
matching condition B also matches condition C. This introduces
many matching possibilities, e.g., states by and c3 have B and C
on the outgoing edges. To ensure a deterministic result, match
recognize’s evaluation rules prefer matching greedy over lazy
quantifiers (e.g., * dominates *?), and alternatives in their de-
clared order (e.g., a dominates c in a|c).
We developed an algorithm that constructs a non-determinis-
tic finite state automaton (NFA) that implements this evaluation
logic. We do so by annotating transitions with penalties making
the NFA a weighted graph-automaton hybrid. Penalties must
not repeat within all outgoing edges of one state. Thus, the first
match reaching terminal state ¢ by always taking the transition
of the lowest penalty possible adheres to the matching logic. This
constitutes the depth-first search result.
The construction algorithm was inspired by Glushkov’s construc-
tion [4]. The automaton in Figure 4 shows that matching a greedy
B+ results in the lowest penalties. The penalties for lazy C*? are
higher than simply continuing the pattern by returning to B or
moving on to the last A.

Preprocessing using window functions. The first CTE applies

0 (@) to the input table to make

row ordering as well as partitioning explicit in columns rid
and station. Table {=z§333 below shows this data transfor-
mation for our example. Columns rid and station are essential
in every subsequent step of the pipeline. Any references to rows
with relative offsets ( / ) are replaced by references to the
window function results that are calculated here.

Matching—Breadth first search comes naturally with SQL.
Maintaining state in a recursive CTE is cumbersome and comes
along with performance issues which makes it impractical to
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leverage a depth-first search [5]. We thus use a breadth-first search
to find all possible matches using the automaton. The search is
implemented by iteratively joining the preprocessed input table
with itself and the automaton. During the matching process each
row belonging to a match receives its tag. Such late assignment
of tags during the matching process allows for conditions (like B,
see Figure 1, Line 15-16) that depend on rows that have been
tagged earlier (with A). Since penalties appear just once for each
state, the path of a match is unambiguously defined by its sequence
of penalties.

Incomplete matches are discontinued automatically as the join
condition with the automaton does not result in more rows. All
measures of the clause are computed in this
step by adding at least one column per measure item. The result
is a table like above that holds all rows of full and in-
complete matches with their corresponding measures, start and
row index, and automaton path taken.

While this approach may result in computational overhead since
we possibly compute many matches that are not part of the final
result, it still results in better performance than maintaining a
state for a depth-first search in SQL. We intend to further explore
improved performance options by using alternatives to vanilla
recursive CTEs [5].

Retrieving the depth-first matches. We collect rows that reach

the final state of the NFA which returns one row per match for
every complete match.

The breadth-first search produces all possible matches, i.e., the
search also produces different matches for the running example
(see Figure 2) where C-tagged rows should have been tagged as B.
For example, the match ABBCA has the alternative tagging solution
ABCCA. These matches have higher penalties at the sequence posi-
tion that represents that tagging decision. In order to retrieve the
depth-first matches among all matches, we arg_min with respect
to the sequence of penalties. This entails the depth-first search
result ABBCA we desire.

Table shows the result of this pipeline step.

BB matches

After finding a match. In this step of the pipeline, we additionally

filter the matches according to the clause. It deter-
mines if and how much matches may overlap. There are four differ-
ent skip options. The retrieval of the depth-first match implements
per default. The default skip option in row

pattern matching is . The other alternatives
comprise jumping to a certain row tag using /
tag. When skipping to the first/last occurrence of a row

tag, we gather the row index of said row during the matching

process and carry it through the pipeline. This is displayed in
the examplary tables and with the skip
column. When overlapping matches are not allowed, the match’s
last row index +1 is used instead of the skip value. A simple loop
over all matches suffices to implement these filters.

Collecting all rows per match. The previous two CTEs produce

one row per match as their output. In case the specification states

, the rows that belong to each match have
to be retrieved from . This pipeline step outputs all rows
for every match with their measures, the values of the original
input table and the meta data (i.e., start, rid, path) needed to
collect all rows per match. The examplary result table is shown
» G

BB collect

measu... * station measu...

Postprocessing. The last CTE is responsible for postprocessing—
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usually these are simple projections. The columns holding meta
data are removed such that the table mimics the output table
of the clause. This pipeline step also leaves
room for implementing the semantics. The result of the
output is Table , containing the columns of the input
table as well as the computed measures. Since this is exactly the
table format defined by the match recognize specification, the
surrounding query (Figure 1, Lines 1-2+19) can be run against
the postprocessing CTE to process the results of row pattern
matching. The overall query results will match those obtained on
a system that features native support for match recognize.

Performance. We evaluated the original query (Figure 1) on Trino
(version 433) and the compiled output code on DuckDB (version
1.1.3). The data set comprises ~71M rows of data about the price
development at German gas stations in 2020%. The original query
runs 426 seconds on Trino whereas the compiled code runs 40
seconds on DuckDB (median of five measured runs). While this is
not a comprehensive evaluation, a speedup of more than ten is very
promising.

Limitations. This demo focuses on the translation of row pattern
matching found in Trino and Oracle to recursive CTEs in DuckDB.
Adaptations to the SQL code generated by the transpiler will be re-
quired to emit SQL dialects understood by other relational backends.
Certain aspects of row pattern matching have been excluded (e.g.,
empty matches) while others are still under development ( se-
mantics, ). The length of matches that can be found
is limited by the number of bits of DuckDB’s largest integer data

type.
3 LIVE ON-SITE DEMONSTRATION

Implementation notes. The transpiler is written in Python and
uses a parser generator (ant1r4) to parse the match recognize-based
input code into an abstract syntax tree (AST). We largely follow the

2 Tankerkonig data set available at https://creativecommons.tankerkoenig.de/.


https://creativecommons.tankerkoenig.de/

wox

EXPLORER "¢
cobt 2

B Savefload + Add new...v saL - 2| @  Compiler option

Match-Recognize Transpiler ~

1 DROP TABLE IF

A~ +Addnew. -
1 WITH RECURSIVE
2 ordering AS MATERIALIZED (

SELECT t.®, ROW_NUMBER() OVER winl ::

FROU  gas_y s
WINDOW winl AS (PARTITION BY t.station
ORDER BY  t.tstamp)

s e

diesel smallint

)

8 pattern (“from’, "to", transition, pen,

INSERT INTO gas_prices VALUES.

1, 0, false),

seLect

FROM  t MATCH_RECOGNIZE (
PARTITION BY station
3 ORDER BY  tstamp
MEASURES MATCH_NUMBER()
CLASSIFIER
LAST(D. tstanp) - FIRST(D.tstamp
abs(AVG(C.diesel) - A.diesel)

As match_no,

as tag,

2s auration,
a5 dife

B,
bfs AS MATERIALIZED (
ROWS PER MATCH

40 AFTER MATCH SKIP 10 LAST B

.diesel, o.e5,

PATTERN( A (B+ C*2)+ A ) ®.
CASE p.transition WHEN 1 THEW ‘A

42 sumser D - (B, C)

i3 DEPINE A AS A.diesel <= A.eS,

B AS B.diesel - B.eS

i B.diesel » A.diesel A0 B.eS < A.eS,
© a5 C.diesel - C.es

) s mr

ORDER BY mr.station, mr.match_no, mr.tstamp;

0

ca Pt 2) > 0 THEN o.row_id END AS skip_to

FROM ordering AS o, pattern AS p
WHERE p."from’ - 0

ubigin

0 TEEN 0
0 THEN o.diesel END AS a_diesel,

0 THEN o.e5  END AS a.

25 row_id

Fin) AS MATERIALIZED (

SELECT p.fin AS finished, o.station, o.row_id AS start, o.row_id, p.to AS cur,
ugeint AS path, 1 AS length,

WHEN 2 THEN 'B' WHEN 3 THEN 'C' END AS tag,
) = 0 THEN o.tstamp END - CASE WHEN (p.trans
0 D o.diesel

o.diesel 15

A0 o.diesel
0 = 0 THEN o.tstamp END AS last_d_tstamp,

0 - 0 THEN o.tstamp END AS first d_tstamp,
1 ELSE 0

More information ~

AS WATERTALIZED ('
%, ROWNUMBER() OVER
ORDER BY
0", transition, pen, fin) AS MATERTALIZED (
, false),
THEN o.diesel END/C !
THEN o.diesel END AS av
LL THEN 1 ELSE 0 END AS av

ELSE 0 END AS last_d_tstamp

END AS first d_tstamp off,

),
bfs AS MATERIALIZED
SELECT p.f

A5 finished, o.station, o.row_id AS start, o
: uhugeint AS path, 1 AS length,

w_id, p.to AS cur,

es, :
N 3 THEN C' END AS
N o.tstanp END - CASE WHEN
sel IS NOT NULL T
IS NOT NULL THEN
el IS N
T

Figure 5: The web-based interface of the match recognize-based Compiler Explorer. The input query may be edited while the
output is updated live on every keystroke. A built-in DuckDB shell executes DDL statements and the transpiled SQL code.

row pattern matching syntax supported by Oracle and Trino. The
extracted regular pattern is translated into the weighted NFA. The
automaton’s transition table is part of the generated SQL code. The
transpiler converts the match recognize AST into the CTE pipeline
sketched in Figure 3. The SQL code generation phase builds on
the pglast library which we have tweaked to support a number
of constructs specific to DuckDB’s SQL dialect. Demo audience
members with an interest in the implementation details—e.g., the
non-standard NFA construction algorithm—are invited to a guided
tour through core sections of the code.

Demonstration Setup. The on-site demonstration offers a web-
based interface which enables live translation of match recognize
code into plain SQL code. This web interface is based on the Com-
piler Explorer (normally hosted at godbolt.org). It re-runs the
transpiler in the background while the user edits their query. Fig-
ure 5 shows a screenshot of our variant of Compiler Explorer. The
interface comprises three main components:

e An editor allows the user to author SQL code. Additionally, the
user has the opportunity to fill in example data as DDL statements
that the match recognize-based input query will be able to read.
We will bring a number of interesting sample scenarios (data
and associated row pattern matching queries) of various levels of
complexity, but the audience is encouraged to propose their own
row pattern variants or tweak the various MATCH_RECOGNIZE
clauses.

An output window displays the pretty-printed result of the tran-
spilation. This SQL code is fit to be copied and pasted into a
recent version of DuckDB (v1.1.1 or newer). (An additional win-
dow may be opened to visualize the weighted automaton that
represents the regular pattern.)

To enable quick turnaround, the demonstrator features its own
WASM-based instance of a DuckDB shell that can execute the
supplied DDL statements and generated SQL code. We will also
bring a Trino instance for comparison.
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