
Demonstration of ModelarDB: Model-Based Management of
High-Frequency Time Series Across Edge, Cloud, and Client

Søren Kejser Jensen
Aalborg University, Denmark

skj@cs.aau.dk

Christian Schmidt Godiksen
Aalborg University, Denmark

csg@cs.aau.dk

Christian Thomsen
Aalborg University, Denmark

chr@cs.aau.dk

Torben Bach Pedersen
Aalborg University, Denmark

tbp@cs.aau.dk

ABSTRACT
Renewable Energy Sources (RESs) are monitored by many high-
quality sensors that produce vast amounts of high-frequency time
series data. This can be used to increase the renewable energy pro-
duction and longevity of the RESs, e.g., yawmisalignment detection
and predictive maintenance for wind turbines. It is currently not
possible for wind turbine manufacturers and owners to use this
data due to limits on bandwidth and storage that are infeasible to
increase. Thus, they store simple aggregates which remove valuable
outliers and fluctuations. As a remedy, we demonstrate the new
model-based Time Series Management System (TSMS) ModelarDB.
The participants can experience howModelarDB ingests time series
on the edge and compresses them as segments with metadata and
so-calledmodels. The models represent values within a user-defined
absolute or relative error bound (even 0 or 0%). Participants can
adjust many parameters and see how the segments are transferred
to the cloud using much less bandwidth and storage than other
popular solutions like Apache Parquet and Apache TsFile, e.g., up
to 90%–99% less than Apache Parquet. Participants can analyze the
time series on the edge, in the cloud, and on the client using SQL or
Python. On the client, ModelarDB runs in-process to integrate with,
e.g., Python. Thus, participants can see how ModelarDB efficiently
manages high-frequency time series across edge, cloud, and client.

PVLDB Reference Format:
Søren Kejser Jensen, Christian Schmidt Godiksen, Christian Thomsen,
and Torben Bach Pedersen. Demonstration of ModelarDB: Model-Based
Management of High-Frequency Time Series Across Edge, Cloud, and
Client. PVLDB, 18(12): 5247 - 5250, 2025.
doi:10.14778/3750601.3750643

1 INTRODUCTION
To efficiently manage Renewable Energy Sources (RESs) like wind
turbines, they are monitored by many high-quality sensors. Thus,
time series are ingested on the edge and transferred to the cloud for
long-term storage. Finally, sub-sequences are copied to clients by
data scientists for analysis as shown in Figure 1. We have learned
from wind turbine manufacturers and owners that the time series

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750643

1011…1111…

0110…

Edge Nodes, Low-end Commodity PCs
4 Cores, 4 GiB RAM, 250 GiB HDD

Limited 
Bandwidth

0.5 - 5.0 Mbit/s

Client

Cloud Nodes
Object Store

F
ile

s
R

e
su

lt S
e
ts

R
e
a
d

 /
 W

rite
 

Q
u

e
rie

s

Figure 1: Wind turbine sensor data is ingested on the edge,
transferred to the cloud over a connection with limited band-
width, and stored in the cloud at high cost for use by clients

are generally stored as Apache Parquet files in an object store and
that the analysis on the clients is generally done using Julia, Matlab,
Python, or R. However, while the sensors produce vast amounts
of high-frequency time series with valuable information as shown
in Figure 2a, it is currently infeasible to transfer and store the raw
time series in the cloud due to limited bandwidth and high storage
cost. Instead, only simple aggregates, e.g., 10-minute averages, are
stored which removes valuable outliers and fluctuations as shown
in Figure 2b. Time Series Management Systems (TSMSs) that can
manage time series across edge and cloud have been proposed [3, 4].
For example, Apache IoTDB can ingest time series on the edge and
transfer them to the cloud. However, it provides limited compres-
sion and thus uses more bandwidth and storage than is feasible
when managing high-frequency time series [1]. In addition, no
TSMS integrates edge, cloud, and client [3, 4] in order to optimize
the entire pipeline [5]. Thus, there is a need for a TSMS with inte-
grated ingestion, transfer, storage, and analysis of high-frequency
time series across edge, cloud, and client [5]. To remedy this, we
developed the new model-based TSMS ModelarDB [8]. It is a full
rewrite in Rust of a legacy JVM-based TSMSwith the same name [6].
ModelarDB represents time series as segments with metadata and
models such as simple polynomials. The models represent values

Time

V
al
u
e

(a) Raw
Time

V
al
u
e

(b) Aggregates
Time

V
al
u
e

(c) Models / Outliers

Figure 2: Representations of high-frequency time series

5247

https://doi.org/10.14778/3750601.3750643
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750643


within a user-defined absolute or relative error bound (even 0 or 0%)
and outliers are stored separately as shown in Figure 2c. This gives
excellent compression as time series generally consist of simple
reoccurring patterns that can be efficiently stored as model coeffi-
cients. For example, increasing values can be represented by one
slope and intercept regardless of the number of values. The meta-
data makes it possible to reconstruct the values’ exact timestamps.
In addition, aggregates can be computed directly from the segments.
Thus, using models reduces bandwidth, storage, and computing
use. At the logical level, ModelarDB represents time series and
non-time series data as relational tables that can be queried using
SQL. In the scenario shown in Figure 1, ModelarDB instances on
the edge ingest the time series and compress them as segments.
The segments are then transferred to an object store in the cloud so
they can be analyzed by ModelarDB instances running in the cloud
and on the clients. An instance on a client is a Rust library that
runs in-process to integrate with, e.g., Python. This allows data to
be shared without copying it. In addition, data scientists can use
the same API to express which data they need and how it should be
transformed regardless of where it is stored. Currently, clients can
use the API to query and write data to other ModelarDB instances,
remote object stores, local disk, or local memory. Segments can
also be copied or moved without decompressing them. Thus, data
scientists can focus on data mining and machine learning while
ModelarDB manages their data across edge, cloud, and client [5].

2 MODELARDB
Architecture:ModelarDB supports two types of relational tables:
Time Series Tables and Normal Tables. Table is used to mean both. A
Time Series Table can have a timestamp column of type TIMESTAMP,
one ormore error bounded value columns of type FIELD, and zero or
more metadata columns of type TAG. For example, the SQL in Lines
1–3 in Listing 1 creates a Time Series Table for time series about
wind. Data points can then be efficiently written using Apache
Arrow RecordBatches or less efficiently using SQL as shown in
Lines 5–7 in Listing 1. Time Series Tables compress time series as
segments and store them in Delta Lake. A Normal Table can have
any column types supported by Apache DataFusion and Delta Lake
as it stores data directly in Delta Lake. Thus, the two types of tables
only differ at the physical level and can, e.g., be queried together.

ModelarDB is purposely implemented using technologies that
provide good integration with existing tools as it is infeasible for
wind turbine manufacturers and owners to replace their entire in-
frastructure despite the benefits of ModelarDB. Apache Arrow is
used to store data in memory and to share data in-process with-
out making copies. Apache Arrow RecordBatches can also easily

1 CREATE TIME SERIES TABLE wind_turbine(
2 timestamp TIMESTAMP, wind_turbine TAG,
3 wind_speed FIELD, wind_direction FIELD(1.0%))
4

5 INSERT INTO wind_turbine VALUES (
6 '2025-09-01T12:00:00+00:00', 'JB007',
7 4.7987617, 12.195049)

Listing 1: Creating a Time Series Table and inserting data

Record Batches

Record BatchesSQL

URL of modelardbd
instance to query

modelardb or
modelardb_embeddedmodelardbdmodelardbmmodelardbd

Edge Side

Apache Parquet

Management Management

SQL

Object Store

Record Batches

Apache Parquet

Apache Parquet

Cloud Side Client Side

Figure 3: ModelarDB deployment on edge, cloud, and client

be converted to pandas with the to_pandas() method. Apache
DataFusion is used for executing SQL queries against tables. Fi-
nally, Delta Lake is used to store data on disk. A full deployment of
ModelarDB across edge, cloud, and client is shown in Figure 3. The
TSMS server modelardbdmanages tables and executes SQL queries,
the manager modelardbmmanages modelardbd instances, the Rust
library modelardb_embedded manages tables and executes SQL
queries in-process, and modelardb is a command-line client. As
modelardb_embedded is a library it must be loaded into a process
like CPython. Also, to make it simple to start deploying ModelarDB,
modelardbm is not required for individual instances of modelardbd.

Edge: When data points are written to a Time Series Table they
are batched and then compressed as shown in Figure 4.ModelarDB’s
model-based fitting method is designed to give a high compression
ratio as bandwidth is the bottleneck and to have no parameters
that users must configure except for the optional error bound. If
a FIELD column has no error bound, lossless compression is used.
ModelarDB currently implements extended versions of the model
types Poor Man’s Compression-MidRange (PMC-MR) [7] for fitting
constant functions and Swing Filter (SWING) [2] for fitting linear
functions to time series. Thus, sub-sequences that are constant
within the error bound are represented by only a single coefficient
no matter the number of data points, while sub-sequences that are
linear within the error bound are represented by two coefficients no
matter the number of data points. First, all model types fit as many
data points as possible until they exceed the error bound as shown
in Figure 4a. Then the model that uses the fewest bytes per value
is combined with metadata to create a segment and compression
continues from the data point that exceeded the selected model’s
error bound. If a segment represents so few data points that it does
not provide any compression as shown in Figure 4b, compression
is restarted from the following data point. Skipped data points are
compressed using an extended version of the XOR-based method

(a) Start at 1st point (b) Start at 6th point (c) Finished batch

Figure 4: Ingestion of high-frequency time series as batches.
Yellowmodels are considered, while blue models are selected

5248



0 100 200 300 400
Ingestion and Transfer Time in Minutes

Apache Parquet
Baseline, scp, 0%

ModelarDB 0%

ModelarDB 1%

ModelarDB 5%

ModelarDB 10%So
lu

tio
n 

an
d 

Er
ro

r B
ou

nd

0.70 GiB 4.82 43.86

1.10 GiB 4.85 66.52

1.90 GiB 4.85 112.07

3.10 GiB 4.89 187.78

7.60 GiB 0.00 467.32

Apache Parquet
Transfer

ModelarDB
Ingestion

ModelarDB
Transfer

Figure 5: Ingestion and transfer time for wind turbine data

used by Gorilla [10] as shown in Figure 4c. The segments are con-
tinuously transferred to the object store in the cloud. The effect of
compression on the transfer time over a realistic 2.5 Mbit/s con-
nection [1] for Apache Parquet and ModelarDB with four error
bounds can be seen in Figure 5. The bandwidth is clearly the bot-
tleneck. Each modelardbd instance on the edge only executes the
SQL queries it receives against the data it is storing on local disk.

Cloud: The object store in the cloud stores the data from all
modelardbd instances on the edge. For workload balancing, SQL
queries executed in the cloud are sent to modelardbmwhich returns
the modelardbd instance in the cloud that the client should send
the query to. By default, modelardbd instances in the cloud execute
SQL queries against the data stored in the object store. However,
clients can request that modelardbd instances in the cloud also
forward the SQL query to modelardbd instances on the edge with
an INCLUDE address[, address]* clause. The results are unioned
by the modelardbd instance in the cloud and streamed to the client.

Client: Clients can use the command-line client modelardb or
the Rust library modelardbd_embedded to query modelardbd in-
stances. modelardb provides a read–eval–print loop that allows
users to interactively execute SQL queries. modelardbd_embedded
is designed to be loaded into a language runtime. It includes com-
ponents from modelardbd and can manage tables in modelardbd
instances, remote object stores, local disk, or local memory. For
example, it can be loaded into CPython and then used through the
simple API in Listing 2. The API operates on tables and supports cre-
ating tables, writing to tables, querying tables using SQL, etc. The
API is designed to be low-level so users can easily create domain-
specific abstractions. It is also designed to integrate well with other
libraries, e.g., many methods accept SQL so users can write SQL by
hand or use a library like SQLAlchemy Core. The API also makes it
easy to copy or move data between tables efficiently. For example, a
data scientist can copy data from a table managed by a modelardbd
instance to a table managed by modelardb_embedded as shown in
Listing 3. With the data on local disk it can be efficiently analyzed.
Data is not copied or moved automatically to give data scientists full
control. In addition, as modelardbd_embedded can manage tables
in a remote object store, local disk, or local memory with its API, it
can be used for in-process analytics without modelardbd instances.

1 def open_memory() -> Operations
2 def open_local(data_folder_path) -> Operations
3 def open_s3(endpoint, ...) -> Operations
4 def open_azure(account_name, ...) -> Operations
5 def connect(address) -> Operations
6 class Operations:
7 def create(self, table_name, table_type)
8 def tables(self) -> list[str]
9 def schema(self, table_name) -> Schema
10 def write(self, table_name, uncompressed_batch)
11 def read(self, sql) -> RecordBatch
12 def copy(self, sql, target, target_table_name)
13 def read_time_series_table(...) -> RecordBatch
14 def copy_time_series_table(self, ...)
15 def move(self, source_table_name, target, ...)
16 def truncate(self, table_name)
17 def drop(self, table_name)

Listing 2: modelardb_embedded’s Python bindings to manage
tables in modelardbd instances, remote object stores, local
disk, or local memory. Parameters are shown as ... for space

1 import modelardb
2 from modelardb import operations
3 modelardbd = operations.connect(
4 modelardb.Server("grpc://10.0.0.37:9999"))
5 copy_sql = "SELECT * FROM wind_turbine \
6 WHERE wind_turbine = 'JB007'"
7 local = operations.open_local("~/Data")
8 modelardbd.copy(copy_sql, local, 'wind_turbine')
9 read_sql = "SELECT * FROM wind_turbine \
10 WHERE timestamp > '2025-09-01'"
11 pandas = local.read(read_sql).to_pandas()

Listing 3: Using modelardb_embedded to copy data from
modelardbd to disk and then read it into a pandas DataFrame

3 DEMONSTRATION
Graphical User Interface: At the demonstration, participants can
experience a full ModelarDB deployment with edge nodes, cloud
nodes, and a client using the interface in Figure 6. The interface is
designed to make it simple for participants to try different scenarios.
For example, the number of data points to ingest per second can
be set per table in the upper left corner. To keep the main window
simple, some changes are performed using other windows. After
making a change, participants can immediately see the effect. The
boxwith the red bar on the left shows howmuch uncompressed data
has been ingested per table, the box with the blue bar shows the size
of the data as segments in Time Series Tables with different error
bounds, and the box with the purple bar shows the size of the data
in the solution ModelarDB is compared to which is Apache Parquet
in Figure 6. Participants will be able to select from popular solutions
to compare against. All tables are also shown for solutions that only
use lossless compression as the number of data points to ingest can
be changed at the table level. The bar chart at the top shows how
the total compression ratio changes over time. The map shows the

5249



Figure 6: The ModelarDB demonstration interface with wind turbines in the English Channel whose data is analyzed in London

location of all edge nodes (wind turbine wings icon), cloud nodes
(cloud icon), and clients (person icon). Clicking on an icon allows
the participants to execute SQL queries on that node. Python code
can also be executed on the clients using modelardb_embedded.

Data Set: For the demonstration, a recent real-life wind turbine
data set will be used [9]. The data set was collected from a real-life
wind turbine using a sampling interval of 2 seconds and contains
data points for 10 days. It has time series about wind and nacelle
direction. During the demonstration, the data set is extended by
adding a continuously increasing offset to the original timestamps.

Demonstration Scenario: The demonstration allows partici-
pants to experience how ModelarDB can manage high-frequency
time series across edge, cloud, and client. The scenario consists of a
simulated production environment with a data scientist in London
(client) analyzing sensor data from 12 wind turbines in the Eng-
lish Channel (edge nodes) continuously transferring data to a data
center in London (cloud nodes). At the same time, an equivalent
setup is configured to use a popular solution like Apache Parquet
or Apache TsFile so participants can compare it with ModelarDB in
real-time. The solution to use is selected by participants. Everything
runs in Docker containers on a laptop, so the internet is not needed.

The participants first select the solution to compare ModelarDB
with and then set the error bounds of the Time Series Tables, the
number of data points to ingest per second, and the bandwidth of
the connections between the nodes. The number of data points to
ingest per second can be changed per table so participants can see
how little bandwidth and storage ModelarDB requires compared to
the other solutions when they ingest the same amount of data, and
how much more data ModelarDB can store with the same amount
of storage. Participants can also inspect howModelarDB stores data
at the physical level or execute SQL by clicking on an edge node,

cloud node, or client. For the client, Python can also be executed. To
make it simple for participants, configuration, query, and Python
code examples will also be provided throughout the interface.

ACKNOWLEDGMENTS
This research was supported by 6G-XCEL (Horizon Europe grant
101139194). We also thank all our partners from the RES industry.

REFERENCES
[1] Abduvoris Abduvakhobov, Søren Kejser Jensen, Torben Bach Pedersen, and

Christian Thomsen. 2024. Scalable Model-Based Management of Massive High
FrequencyWind Turbine Data withModelarDB. PVLDB 17, 13 (2024), 4723–4732.

[2] Hazem Elmeleegy, Ahmed K Elmagarmid, Emmanuel Cecchet, Walid G Aref, and
Willy Zwaenepoel. 2009. Online Piece-wise Linear Approximation of Numerical
Streams with Precision Guarantees. PVLDB 2, 1 (2009), 145–156.

[3] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. [n.d.].
Time Series Management Systems: A 2022 Survey. In Data Series Manage-
ment and Analytics (Forthcoming), Themis Palpanas and Kostas Zoumpatianos
(Eds.). ACM. Preprint is at: https://vbn.aau.dk/da/publications/time-series-
management-systems-a-2022-survey.

[4] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2017. Time
Series Management Systems: A Survey. TKDE 29, 11 (2017), 2581–2600.

[5] Søren Kejser Jensen and Christian Thomsen. 2023. Holistic Analytics of Sensor
Data from Renewable Energy Sources: A Vision Paper. In ADBIS (Short Papers).
Springer, 360–366.

[6] Søren Kejser Jensen, Christian Thomsen, Torben Bach Pedersen, Carlos Enrique
Muñiz-Cuza, and Abduvoris Abduvakhobov. 2024. Why Model-Based Lossy
Compression is Great for Wind Turbine Analytics. In ICDE. IEEE, 5667–5668.

[7] Iosif Lazaridis and Sharad Mehrotra. 2003. Capturing Sensor-Generated Time
Series with Quality Guarantees. In ICDE. IEEE, 429–440.

[8] ModelarDB 2025. https://github.com/ModelarData/ModelarDB-RS. Commit:
66a4abf7f10f7a790dd195f0d962fe44183100cf, Viewed: 2025-07-24.

[9] Carlos Enrique Muñiz-Cuza, Søren Kejser Jensen, Jonas Brusokas, Nguyen Ho,
and Torben Bach Pedersen. 2024. Evaluating the Impact of Error-Bounded
Lossy Compression on Time Series Forecasting. In EDBT. OpenProceedings.org,
650–663.

[10] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. PVLDB 8, 12 (2015), 1816–1827.

5250

https://vbn.aau.dk/da/publications/time-series-management-systems-a-2022-survey
https://vbn.aau.dk/da/publications/time-series-management-systems-a-2022-survey
https://github.com/ModelarData/ModelarDB-RS
https://github.com/ModelarData/ModelarDB-RS/tree/66a4abf7f10f7a790dd195f0d962fe44183100cf

	Abstract
	1 Introduction
	2 ModelarDB
	3 Demonstration
	Acknowledgments
	References

