Query running too slow? Rewrite it with Quorion!

Bingnan Chen
bchenba@ust.hk
Hong Kong University of Science and Technology
Hong Kong, Hong Kong

Qichen Wang
qichen.wang@epfl.ch
EPFL
Lausanne, Switzerland

ABSTRACT

We will demonstrate Quorion, a query rewriter with theoretical
guarantees and better practical performance. Quorion adopts some
of the recently developed query planning methods that provide
optimality guarantees, including Yannakakis™*, an optimized version
of the Yannakakis algorithm, generalized hypertree decompositions
(GHD), GYO reduction, and cost-based optimization. Quorion also
provides a platform for users to explore different query plans for
a given query through a web-based interface and compare their
performance with classical query plans. Quorion currently supports
DuckDB, MySQL, and PostgreSQL, and can be connected to any
user-provided database easily through a JDBC connector.

KEYWORDS

conjunctive query, query rewrite, compilation, visualization

PVLDB Reference Format:

Bingnan Chen, Binyang Dai, Qichen Wang, and Ke Yi. Query running too
slow? Rewrite it with Quorion! . PVLDB, 18(12): 5243 - 5246, 2025.
doi:10.14778/3750601.3750642

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hkustDB/Quorion.

1 INTRODUCTION

Queries involving selection, join, projection, and aggregation across
multiple tables, namely SPJA queries, play a significant role in An-
alytical Processing (AP). For instance, a user may want to query
the total amount (aggregation) spent and the spending in different
applications (projection) using the same identity across various
software (join) within a specific time period (selection). Efficiently
executing such SPJA queries is one of the fundamental issues in
database research. However, in many cases, the performance of
these queries is often unsatisfactory, especially when dealing with
large volumes of data and/or when the query involves complicated
joins. To address these challenges, many new query planning algo-
rithms have been proposed with good theoretical guarantees, but
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750642

5243

Binyang Dai
bdaiab@ust.hk
Hong Kong University of Science and Technology
Hong Kong, Hong Kong

Ke Yi
yike@ust.hk
Hong Kong University of Science and Technology
Hong Kong, Hong Kong

none of them has made their way to production database systems
due to the difficulty of implementation and, for some algorithms,
many radical changes to the query engine.

To leverage on the new query planning algorithms without
changing the codebase of existing SQL engines, we have devel-
oped Quorion, a query writer that implements the new algorithms
by rewriting a given query into multiple SQL statements, which
can then be passed to any SQL engine for execution.

Example 1.1. Consider a graph represented by a table with two
attributes: src and dst. The following query counts the number of
length-4 paths in this graph:

SELECT COUNT (%)

FROM Graph AS g1, Graph AS g2, Graph AS g3, Graph AS g4

WHERE g1.dst = g2.src AND g2.dst = g3.src AND g3.dst =
g4.src

For this query, all existing DBMSs would first compute the join,
and then count them. This query plan has a worst-case cost of
O(N?), where N is the number of tuples in the relation Graph. On
the other hand, it is known that this query can be actually evaluated
in O(N) time using the Yannakakis algorithm [4]. On this query,
the query plan generated by Quorion precisely implements (an
improved version of) this algorithm [3], in the form of 7 SQL state-
ments (please see Section 4 for details). The theoretical advantage
also translates into practice: When feeding this query (unmodified)
to DuckDB on a graph with 73, 233 edges, it takes DuckDB 97.234
seconds to finish. After the rewriting, the time drastically reduces
to 0.021 seconds. Similar improvements are also observed on other
DBMSs such as MySQL and PostgreSQL.

In addition to Yannakakist [3], the improved version of the
Yannakakis algorithm, Quorion has also implemented generalized
hypertree decompositions (GHD) [2], the GYO reduction algorithm
[5], as well as a cost-based optimizer. This allows Quorion to handle
a large class of SPJA queries, covering most of the commonly used
AP benchmarks, with noticeable improvements for a majority of
them.

Meanwhile, we also make Quorion easy to use: After users sub-
mit queries to the system through a visual interface, the system
will first adopt these state-of-the-art methods to generate the im-
proved query plans. Quorion then visualizes these query plans with
additional information, such as the estimated cost for better plan
selection. The system will then generate a set of rewritten SQL

https://orcid.org/0000-0001-7960-6328
https://orcid.org/0009-0000-5438-7288
https://orcid.org/0000-0002-0959-5536
https://orcid.org/0000-0002-2178-3716
https://doi.org/10.14778/3750601.3750642
https://github.com/hkustDB/Quorion
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750642
https://www.acm.org/publications/policies/artifact-review-and-badging-current

statements following the designated query plan and execute inside
any given SQL engine.

We hope to achieve the following goals through this demonstra-
tion:
e At the very least, Quorion provides another option for slow
queries. When users encounter such a case, they can try Quorion
with ease. Quorion is designed to be extensible. It currently
supports DuckDB, PostgreSQL, and MySQL, but can be extended
to any SQL engine using a JDBC connector.
Our demonstration allows users to visualize and choose between
different query plans, with cost statistics derived from our opti-
mizer. This serves pedagogy purposes, facilitating users in un-
derstanding the optimization process and recognizing the advan-
tages of the new query plans.
While these new query algorithms, especially those with good
theoretical guarantees, have been known for decades and tested
using custom implementations, they have seen little adoption
in practice. As Quorion provides an easy way for people to try
them out in the various DBMSs, we hope this would improve
the awareness and pave the way to their eventual adoption.

2 YANNAKAKIS* QUERY PLANNER

The traditional query plan is a DAG, where each leaf node rep-
resents an input relation, and internal nodes represent relational
algebra operations. The edges in the DAG denote the inputs and
outputs of these relational algebra operations. Yannakakis* is also
pure relational, in the sense that it can be formulated as a DAG
query plan consisting of standard relational operators. The tech-
nical details for Yannakakis® are available in [3]. Below are some
high-level insights regarding how Yannakakis* transforms from
the native query into a series of equivalent rewritten queries.

Core Mechanism. Yannakakis involves two rounds of semi-join
and one round of joins, while Yannakakist planner can further
improve the query plan to a round of bottom-up semi-joins, fol-
lowed by a round of top-down join. Given a join tree 7 with a
designated root node, Yannakakis* first computes the semi-joins
or join-aggregates between every node R and its parent node R,
using a post-order traversal of 7°. Once this first round is complete,
it then performs join aggregation between each node R and all of
its child nodes R¢, following a pre-order traversal of 7.

Compared to the Yannakakis algorithm, Yannakakis* reduces the
number of semi-join and join operations. In the optimal scenario,
when the query is relation-dominated [3], Yannakakis™ only re-
quires one round of join-aggregates, which significantly decreases
the overhead associated with the Yannakakis algorithm.

Aggregation Query Strategy. Moreover, for aggregation
queries, we push some join-aggregation operations down before the
semi-joins as much as possible. This is crucial because aggregations
can significantly reduce the data size, especially for queries with a
small output size M, while each join can eliminate a relation. An
aggregation query example is shown in Example 4.1.

Query Plan Optimization. Since the rooted join tree may not
be unique for a given query, our rewriter produces a set of query
plans instead of just one. All of these plans have the same asymp-
totic running time. Therefore, it is crucial to choose an optimal

5244

(or near-optimal) plan from this set using rules and data statistics.
To achieve this, we have designed a query optimizer specifically
tailored to our algorithm. We estimate the cost of various execution
plans by considering factors such as cardinalities, the number of
distinct values (NDV), and quantiles. Additionally, we have incor-
porated effective rule-based optimizations. For example, semi-join
and aggregation elimination help remove redundant operations in
cases involving primary key and foreign key (PK-FK) joins, which
significantly improves rewrite efficiency.

3 SYSTEM ARCHITECTURE

We have implemented a system with four major components: web-
based interface, parser & planner, optimizer (CBO & RBO), and
rewriter. The system architecture is shown in Figure 1. The front-
end interacts with the back-end, and the parser & planner commu-
nicates with the optimizer & rewriter via REST APIs. Below are the
details of each component:

Front-end , Supported
] Web-based Interface 1 DBMSs
: [Query & Schema] [SQL Rewrite] ! o
1 Submission & Submission 1 DuckDB
: (Plan Selection] (Execution Results) : ue
1 ! -
: [Parser & Planner] i R
L a
=== = e e e - - - - ——————————— \ My
E (CBO & RBO)

1
: [Rewriter] :
:Back_end 1 PostgreSQL

Figure 1: Quorion system architecture

Web-based interface. We have created a web-based user inter-
face that offers an interactive and visual experience. This interface
allows users to follow the phases required to use our system effec-
tively with ease and clarity. It accepts user input, including queries
and schema, for parsing and planning.

Parser & Query planner. In this component, we utilize the
parser and planner from [1]. Our system can support a wide range
of queries for parsing. With the exception of a small number of
nested queries that are not currently supported (such as more com-
plex ones where the nested part involves joins), our parser can
process all other queries. The parser transforms SQL queries into
logical plans, which are then converted into relational hypergraphs.
If the query is cyclic, the GHD algorithm is employed; if it is acyclic,
the GYO algorithm is used to generate candidate join trees. Once the
join trees are created, additional query information, such as aggre-
gations and projections, is added on top of them. The resulting plan
is then sent to the optimizer for cost and rule-based optimization.

CBO & RBO. The optimizer assesses the cost of different join
orders based on the structure of the join tree and various statistics,

such as cardinality and the number of distinct values (NDV) at
each node. These statistics are provided by the DBMS. For com-
plex queries that require extensive optimization times, our system
allows the option to skip the planning and optimization steps. In-
stead, it can use the join tree supplied by the DBMS for the next
rewrite phase. This approach helps to balance the trade-off between
optimization time and query execution time.

Rewriter. Upon receiving the join trees, our system uses the
Yannakakist algorithm (introduced in Section 2) to convert these
trees into a series of equivalent intermediate representations (IRs)
and then translate them into executable SQL queries. More details
of the algorithms can be found in [3]. Currently, we use temporary
views to store the intermediate results of our plan, a strategy that
aligns with our algorithm while adding minimal overhead. Finally,
the SQL queries, along with their associated costs, are sent back to
the front-end for display.

=

Database Connection

Connect to your preferred database system

DBMS Name
Connection URL
Username

Password

a8

@ Connect

Figure 2: Add a new DBMS through JDBC.

< Return

DBMS. Users can select the optimal join tree based on the pro-
vided cost. The front-end will then display the generated rewrit-
ten queries, allowing users to choose different DBMSs to execute
the queries. By default, we support three built-in types of DBMSs:
DuckDB, MySQL, and PostgreSQL. To add a new DBMS, users sim-
ply need to set up the JDBC connector with the corresponding
DBMS name, DBMS URL, username, and password, as shown in

5245

Figure 2. With the provided JDBC driver, users can submit queries
to any other DBMSs that support SQL.

4 DEMONSTRATION

During the demonstration, we will offer an interactive experi-
ence that helps the audience gain a better understanding of next-
generation query plans. Attendees will have the opportunity to
experiment with various queries, datasets, and DBMSs to observe
how these query plans outperform native ones. Specifically, we will
guide the audience through the following steps:

Phase 1. Query & Schema Submission. Quorion is pre-built
with Sub-Graph Pattern (SGPB) Benchmark, JOB Benchmark, TPC-
H Benchmark, and LSQB Benchmark [3], users can use it directly,
shown in Figure 3. If users want to use a custom schema or query,
they can select the custom module, which allows for personalized
input.

SNAP >l
LSQB > Q2
TPCH > Q3
JOB > Qa4
Custom > Q5

Figure 3: Query Selection

Phase 2. Plan Selection. After submitting queries and schemas,
Quorion presents several candidate join trees, each accompanied
by a series of statistical data to help users make appropriate choices.
The given information includes: (1) Join tree: Represent the execu-
tion order of the rewrite operations. A bottom-up and top-down
(optional) scan based on this tree will be conducted. (2) Plan Cost:
Represent our estimated execution cost of the entire plan. A higher
value indicates greater overhead, so it is preferable to choose a
lower-cost join tree. (3) Detailed statistics for each node in the join
tree: Table Size represents the cardinality of the relation correspond-
ing to this node, and Join Size represents the final join size after the
child nodes and this node have been joined. As shown in Figure 4,
since the plan cost of the right join tree exceeds that of the left join
tree (2.4238e+10 < 3.0566e+10), the left join tree is chosen.

Phase 3. SQL Rewrite & Submission. With the selected join
tree, Quorion performs the query rewrite and returns rewritten
SQL queries. A more detailed step-by-step example is presented
at Example 4.1. Next, users can submit and execute the native and
rewritten queries to the designated DBMS.

1

g2

7N

gl g3 g2

g4 gl

g3

/N

g4

LJ Plan Cost: 2.4238e+10 L7 Plan Cost: 3.0566e+10

Node Table Size Join Size Table Size Join Size

gl 508837 508837 508837 508837

g2 508837 262729468.81 508837 429086513

g3 508837 429086513 508837 262729468.81

g4 508837 508837 508837 508837

Figure 4: Candidate Plan Selection.

Example 4.1. We elucidate the detailed process for generating
the rewritten queries using Example 1.1. For this example, we opt
for the join tree shown in Figure 5 to describe the procedure. This
join tree has several valid reduction orders, and we selected one of
them for the following steps.

Step 1. Reduce Node g4 to Node g3. We project g4 onto the src
attribute and count the number of tuples as annot. The resulting
temporary view is then joined with node g3, as shown in Figure 5.

CREATE OR REPLACE TEMP VIEW aggViewl AS SELECT src AS v6,
COUNT(*) as annot FROM Graph AS g4 GROUP BY src;
CREATE OR REPLACE TEMP VIEW aggJoinl AS SELECT src AS v4,
annot FROM Graph AS g3, aggViewl WHERE

g3.dst=aggViewl.v6;

Step 2. Reduce Node g1 to Node g2. We project gl onto the
dst attribute and count the number of tuples, storing the result as
annot. The temporary view created from this projection is then
joined with node g2. This process is illustrated in Figure 5.

CREATE OR REPLACE TEMP VIEW aggView2 AS SELECT dst AS v2,
COUNT(*) AS annot FROM Graph AS gl GROUP BY dst;
CREATE OR REPLACE TEMP VIEW aggJoin2 AS SELECT dst AS v4,
annot FROM Graph AS g2, aggView2 WHERE

g2.src=aggView2.v2;

Step 3. Reduce Node g3 to Node g2. Following the same ap-
proach, we project and aggregate the query result from Step 1,
updating the annotation values. The result is then joined with g2.

CREATE OR REPLACE TEMP VIEW aggView3 AS SELECT v4,
SUM(annot) AS annot FROM aggJoin1l GROUP BY v4;

CREATE OR REPLACE TEMP VIEW aggJoin3 AS SELECT
aggJoin2.annot * aggView3.annot AS annot FROM
aggJoin2 JOIN aggView3 USING(v4);

Step 4. Compute the Final Result. We aggregate all annot values
to obtain the final result.

SELECT SUM(annot) FROM aggJoin3;

5246

g2
PN

82 ngz
gl l,\fg|3 N I//\ N I\ | N g2
\ o gl g3 g3
g
[Sep] [sip

Figure 5: Rewrite steps for Example 1.1.

In summary, for aggregation queries, the rewritten queries break
down every binary join into two steps. First, initial aggregation
operations are conducted based on the join condition to gather
important statistics. Second, the join is performed using the statis-
tics obtained from the first step. By following these steps, we can
push the aggregation function down as far as possible, which helps
minimize the inflation of intermediate results.

Phase 4. Execution Results. Quorion will also gather the run-
time for both the original query and the rewritten queries from the
target DBMS. The results will be visualized in the web-interface in
the form of a bar chart, as shown in Figure 6.

Your Progress
MMMMMMMMMMMMMMM e soct o e

Experiment Results
Query Execution Time Comparison

Running Time (ms)

Duckos ysaL PostgresaL

95% 99% PostgreSQL

Figure 6: Execution results for SNAP-QO0.

REFERENCES

[1] Binyang Dai, Qichen Wang, and Ke Yi. 2023. SparkSQL+: Next-generation Query
Planning over Spark. In Companion of the 2023 International Conference on Man-
agement of Data (Seattle, WA, USA) (SIGMOD °23). Association for Computing Ma-
chinery, New York, NY, USA, 115-118. https://doi.org/10.1145/3555041.3589715
Georg Gottlob, Martin Grohe, nysret Musliu, Marko Samer, and Francesco Scar-
cello. 2005. Hypertree Decompositions: Structure, Algorithms, and Applica-
tions. In Proceedings of the 31st International Conference on Graph-Theoretic
Concepts in Computer Science. Springer-Verlag, Berlin, Heidelberg, 1-15. https:
//doi.org/10.1007/11604686_1

Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin. 2025.
Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees.
Proc. ACM Manag. Data 3, 3 (SIGMOD), Article 235 (may 2025), 28 pages. https:
//doi.org/10.1145/3725423

Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Proceed-
ings of the Seventh International Conference on Very Large Data Bases - Volume 7
(Cannes, France) (VLDB °81). VLDB Endowment, 82-94.

Clement Tak Yu and Meral Z Ozsoyoglu. 1979. An algorithm for tree-query mem-
bership of a distributed query. In COMPSAC 79. Proceedings. Computer Software
and The IEEE Computer Society’s Third International Applications Conference, 1979.
IEEE, 306-312. https://doi.org/10.1109/CMPSAC.1979.762509

https://doi.org/10.1145/3555041.3589715
https://doi.org/10.1007/11604686_1
https://doi.org/10.1007/11604686_1
https://doi.org/10.1145/3725423
https://doi.org/10.1145/3725423
https://doi.org/10.1109/CMPSAC.1979.762509

	Abstract
	1 Introduction
	2 Yannakakis+ Query Planner
	3 System Architecture
	4 Demonstration
	References

