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ABSTRACT
We demonstrate ExGIS, a parallel inference query engine to sup-
port explainable Graph Neural Network (GNNs) inference analysis
in large graphs. (1) For a class of GNNsM𝐿 with at most 𝐿 layers,
and a graph𝑀 , ExGIS performs an o!ine, once-for-all compression
of 𝑀 to a small graph 𝑀𝑀 , such that for any inference query 𝑁 that
requests the output of any GNN𝑂 → M𝐿 on any node 𝑃 in 𝑀 , 𝑀𝑀
can be directly queried to yield correct output without decompres-
sion. (2) Given a workload𝑄 of inference queries that requests the
output of GNNs fromM over 𝑀 , ExGIS perform fast online GNN
inference and interpretation in parallel. It dynamically partitions
𝑄 to balance workloads, and (a) executes inference that only con-
sults compressed graph𝑀𝑀 without decompression, and (b) directly
yields concise, explanatory subgraphs from𝑀𝑀 that can clarify the
query output with high "delity, all in parallel. Moreover, ExGIS
integrates visual, interactive interfaces for query performance anal-
ysis, and a Large Language Models (LLMs)- enabled interpreter
to support user-friendly, natural language explanation of query
outputs. We demonstrate the compression rate and scalability of
ExGIS, and its application in interpretable anomaly detection over
bitcoin transaction networks and academic networks.

PVLDB Reference Format:
Yangxin Fan, Haolai Che, Mingjian Lu, and Yinghui Wu. Graph
Compression for Interpretable Graph Neural Network Inference At Scale.
PVLDB, 18(12): 5239 - 5242, 2025.
doi:10.14778/3750601.3750641

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/nicej1899/ExGIS-Demo.

1 INTRODUCTION
Graph Neural Networks (GNNs) have shown promising perfor-
mance in various analytical tasks. Despite their promising perfor-
mances, GNNs incur expensive inference cost when𝑀 is large [7].
The emerging need for large-scale, reliable data search, analysis and
benchmarking require not only fast but also explainable inferences
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Figure 1: GNN-based anomaly detection in a bitcoin transaction
network𝑁 . (1) ExGIS conducts an “once-for-all” compression to gen-
erate and distribute a compressed graph 𝑁𝐿 (top right) for online
parallel inference query workload. (2) ExGIS processes fast online
inference that detects “illicit” IPs by only consulting 𝑁𝐿 , without
decompression. (3) For a user designated account 𝑂𝑀 (in green box),
its online, parallel explainer assembles three factual explanations
that are well grounded by real-world strategies [5, 6].

ofGNNswhere graphs play critical roles. For example, money laun-
derers who exploit Bitcoin blockchain transactions employ various
techniques to conceal illicit cryptocurrency activities and evade
detection by law enforcement agencies and AI-based monitoring
systems [5, 6]. While GNNs have been applied to detect suspicious
accounts and activities, it is critical to makeGNN inference scalable
and interpretable to track them in fast growing transactions.

Example 1: Figure 1 illustrates a bitcoin transaction network 𝑀 ,
where a node is an account IP addresses with attributes such as the
number and amount of transactions. An edge (𝑃1, 𝑃2) means IP ad-
dress 𝑃1 committed a transaction to address 𝑃2. Illicit accounts may
utilize transaction patterns such as Peel Chain (transfering illicit
assets along lengthy, numerous paths [5]) or Spindle ( multiple small
cryptocurrency transactions [6]) to obscure illegal transactions.

Law enforcement agencies aim to uncover money laundry ac-
tivities, making it essential to detect illicit accounts and generate
explanations in large transaction networks. For 𝑃𝑃 as designated
output nodes, we observe that the node 𝑃4 and 𝑃5 play a same “role”
with same input features, and are “indistinguishable” for any infer-
ence query that involves aGNNwith at most two layers and applies
a same node update function (a GNN classM2) [1]. We can thus
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Figure 2: ExGIS Work!ow: Overview
safely “merge” 𝑃4 and 𝑃5 and compress 𝑀 to a smaller counterpart
𝑀𝑀 , and only perform inference over 𝑀𝑀 to infer 𝑃𝑃 ’s label.

A GNN inference process can be performed over a fragmented
compressed graph 𝑀𝑀 , in parallel, to detected “illicit” accounts. Bet-
ter still, a GNN explainer can readily generate explanatory sub-
graphs as factual explanations [2] of the output of 𝑃𝑃 , also in parallel
over fragments of 𝑀𝑀 , to assemble a set of diversi"ed and compre-
hensive explanations𝑀𝑄1 ,𝑀𝑄2 ,𝑀𝑄3 to clarify “Why” 𝑃𝑃 is illicit, each
grounded by a money laundry pattern, respectively. !

ExGIS. We demonstrate ExGIS, a parallel GNN inference and ex-
planation engine to support large-scale and interpretable GNN
inference. It has several unique features.
Inference-friendly compression. ExGIS adopts an inference-friendly
graph compression scheme (IFGC) [1] to perform a “once-for-all”
compression that compresses a large graph 𝑀 into a smaller coun-
terpart 𝑀𝑀 with a memoization structure T that stores statistical
neighborhood information of compressed nodes and edges. The
compression scheme is provably guaranteed to preserve the output
for any inference query for a GNN class that requests any GNN
with layer 𝐿 and a node update function of the same form [1], via an
e#cient inference process directly over 𝑀𝑀 without decompression.
This new feature is not addressed by prior GNN inference tools.
Interpretable GNN inference: At scale, and in “One-click”. ExGIS ef-
fectively parallelizes a streamline of “inference-explanation”
pipeline, which incorporates GNN inference and con"gurable ex-
planation into an integrated online querying solution. Users only
need to specify a graph, a set of designated test nodes 𝑅𝑅 , and a
GNN class, In one-click, it automatically creates, schedules, and
distributes GNN inference and explanation “joblets” to assmeble
the inference output along with explanations.

We demonstrate that ExGIS scale well and incurs a parallel cost
that is only determined by the size of the compressed graph 𝑀𝑀
and the number of processors, regardless of how large 𝑀 is. While
existing tools separate GNN inference and explanation as two in-
dependent task, ExGIS has made a "rst step parallelizing a holistic
“inference-and-explanation” work$ow with scalability guarantee.
User-friendly Interface. ExGIS provides an interactive, visual inter-
faces to allow users to inspect compressed graphs, inference results
and explanatory subgraphs to understand GNN behavior. It also
provides a natural language (NL) interface, empowered by Large
Language Model agents (LLMs) to directly output NL interpreta-
tion of the interested output. The visual and textual interpretation
provides a comprehensive understanding for GNN behavior in clar-
ifying not only “What” (the labels are) but also “Why”.

We invite users to experience the novel capability of ExGIS, as a
con"gurable and scalable tool for explainable GNN inference, with
all the above three new features integrated into a same system. No
prior graph data systems can address these features simultaneously.

2 SYSTEM OVERVIEW

Work!ow. ExGIS works with a coordinator and a set of proces-
sors. It performs two major steps (see Fig. 2): an o!ine, “once-for-
all” graph compression, and an online parallelized “Inference-and-
Explain” pipeline upon the receiving or inference query workload.
O!ine Compression. For an input graph𝑀 and a class of GNNmod-
els M𝐿 (see “Structural-preserving Compression”), the coordinator
constructs a compression graph 𝑀𝑀 and a corresponding memoiza-
tion table T (which collects useful auxiliary data) “once-for-all”, to
be consulted by any inference query (𝑂𝐿, 𝑃) that requests output
𝑂𝐿 (𝑃,𝑀) of any GNN𝑂𝐿 in GNN class M𝐿 , for any node 𝑃 in 𝑀 .
Online Parallel “Inference-and-Explain”. For each inference query
(𝑂𝐿, 𝑃𝑆 ) from a query workload (𝑂𝐿,𝑅𝑅 ), where 𝑅𝑅 is a set of
nodes to be queried in𝑀 , an online “Inference-and-Explain” mod-
ule consults the compressed graph 𝑀𝑀 and relevant fragments of
memoization table to conduct online parallel inference and expla-
nation for each node 𝑃𝑆 → 𝑅𝑅 , at each processor 𝑆 𝑇 where 𝑃𝑆 resides.
𝑆 𝑇 then registers inference output and the explanation graph to the
coordinator in parallel to be eventually assembled and returned.

Inference-friendly Compression [1]. A GNN class M𝐿 refers to
any set of GNNs with layers up to 𝐿 and adopt a node update func-
tion of the same form. Given a GNNmodel classM𝐿 and a graph𝑀 ,
ExGIS induces a compressed graph𝑀𝑀 by merges the nodes that are
computationally “indistinguishable” based on structural and embed-
ding equivalence (determined by a similarity threshold 𝑇 of node
attribute values). Meanwhile, ExGIS dynamically derives a mem-
oization table T to “remember” neighborhood statistics (such as
node degrees, edge attentions) of merged nodes as “scaling factors”
that are needed to restore node embeddings from 𝑀𝑀 .

ExGIS employs structural-preserving compression [1]. A com-
pression scheme speci"es a pair (C,P). Compressor C computes𝑀𝑀
as the quotient graph of an equivalence relation 𝑈𝑈 over𝑀 , which is
the non-empty, maximum equivalence relation that captures node
pairs (𝑃, 𝑃 ↑) that are indistinguishable for inference queries for M𝐿 .
P is an inference function that restores𝑂𝐿 (𝑃,𝑀) by directly scaling
up𝑂𝐿 ( [𝑃],𝑀𝑀 ) in 𝑀𝑀 (where the node [𝑃] is the equivalence class
of 𝑃), with a matching scaling factor cached in T . This ensures fast
inference over 𝑀𝑀 without decompression.
Structural equivalence. Given a graph 𝑀=(𝑉 ,𝑊), a structural equiv-
alence relation, denoted as 𝑈𝑈 , is a non-empty binary relation such
that for any node pair (𝑃, 𝑃 ↑) in 𝑀 , (𝑃, 𝑃 ↑) → 𝑈𝑈 , if and only if:

↓ 𝑉 0
𝑂 = 𝑉 0

𝑂↑ , i.e., 𝑃 and 𝑃
↑ have the same input features;

↓ for any neighbor 𝑋 of 𝑃 (𝑋 → 𝑌 (𝑃)), there exists a neighbor
𝑋↑ of 𝑃 ↑ (𝑋↑ in 𝑌 (𝑃 ↑)), such that (𝑋,𝑋↑) → 𝑈𝑈 ; and

↓ for any neighbor 𝑋↑↑ of 𝑃 ↑ in 𝑌 (𝑃 ↑), there exists a neighbor
𝑋↑↑↑ of 𝑃 in 𝑌 (𝑃), such that (𝑋↑↑,𝑋↑↑↑) → 𝑈𝑈 .

Example 2: Consider 𝑀 and 𝑀𝑀 in Fig. 1 and a GNN class
with at most 2 graph convolutional layers that adopts a node
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Figure 3: Parallel Inference and Explainer with a running example:
𝑉𝑁 → GCN2;𝑊𝑂 = {𝑋1,𝑌1}; T1, T2: partitioned subsets of T for 𝑋1 and
𝑌1;𝑁𝑃1 ,𝑁𝑃2 : explanation graphs for 𝑋1 and 𝑌1

update function that computes 𝑃 ’s embedding at 𝑍-th layer
as 𝑎 (ω𝑍 ()︄𝑎→N(𝑂)

1↔
𝑏𝑐𝑑𝑄𝑏𝑐𝑑𝑅

𝑏𝑍↗1𝑎 )) . As 𝑃4 and 𝑃5 are merged

into a node 𝑋5 = [𝑃4] in 𝑀𝑀 , during inference, one just need
to “recover” their original embeddings with a scaling factors
corresponding to their original in-degrees at inference time.
For example, for 𝑃4, its embedding is directly rescaled as
𝑎 (ω𝑍 ()︄[𝑎 ]→N([𝑂4 ] )

1↔
degu5

T (v4, u5)𝑏𝑍↗1𝑎5 )), in constant time. !

GNN Explainers. ExGIS has a built-in library of post-hoc GNN
explainers, which computes factual or counterfactual explanatory
subgraphs for an output to be explained (e.g., [2]). A factual explana-
tory subgraph for a node 𝑃𝑆 refers to a subgraph 𝑀𝑄 ↘ 𝑀 such that
the GNN model𝑂𝐿 still preserves the same prediction for 𝑃𝑆 , i.e.,
𝑂𝐿 (𝑃𝑆 ,𝑀𝑄 ) = 𝑂𝐿 (𝑃𝑆 ,𝑀). A counterfactual explanatory subgraph
identi"es a subgraph 𝑀 ↑

𝑄 ↘ 𝑀 such that the removal of 𝑀 ↑
𝑄 leads to

the alteration of the prediction, i.e., 𝑂𝐿 (𝑃𝑆 ,𝑀 \ 𝑀 ↑
𝑄 ) ω 𝑂𝐿 (𝑃𝑆 ,𝑀).

These explanation subgraphs help identify the critical graph struc-
tures responsible for model predictions. For example, the three
subgraphs 𝑀𝑄1 ,𝑀𝑄2 ,𝑀𝑄3 in Fig. 1 are all factual explanation for the
output of node 𝑃𝑃 . Specially,𝑀𝑄1 is grounded by a peel chain pattern
𝑆1, and𝑀𝑄2 and𝑀𝑄3 witness spindle pattern 𝑆2. These explanations
not only highlight in$uential illicit accounts to GNN’s decision
making, but also reveals their interactions for further inspection.

3 PARALLELIZE “INFERENCE-AND-EXPLAIN”
The demonstration will go through three major modules and algo-
rithms that parallelize the online “inference-and-explain” pipeline,
as illustrated in Fig. 3: (1) Coordinator. Given the con"guration
tuple (𝑂𝐿,𝑅𝑅 ) provided by the user, coordinator conduct the fol-
lowing steps: (1) retrieves the corresponding 𝑀 and T from the
compressor; (2) generates parallel joblets < T𝑆 ,𝑀𝑀1 ,𝑂

𝐿 > and sends
them to processor 𝑆𝑆 for all 𝑃𝑆 → 𝑅𝑅 . (2) Compressor. Given a
graph 𝑀 and a class of GNNs M𝐿 , the compressor produces the
compressed graph𝑀𝑀 and the memoization structure T . It performs
o!ine “once-for-all” graph compression by leveraging a built-in li-
brary of compression methods, including our structural-preserving
compression as well as the state-of-the-art graph compression ap-
proaches [3, 4]. (3) Parallel Inference and Explainer. Given the
joblet < T𝑆 ,𝑀𝑀1 ,𝑂

𝐿 >, the module executes the following proce-
dure in parallel (1) computes the inference result𝑂𝐿 (𝑃𝑆 ,𝑀𝑀𝑆 ); and

Figure 4: ExGIS Architecture
(2) utilizes < T𝑆 ,𝑀𝑀𝑆 ,𝑂

𝐿 (𝑃𝑆 ,𝑀𝑀𝑆 ) > to generate explanation graph
𝑀𝑄𝑆 , providing an interpretation of the inference for 𝑃𝑆 .

Coordinator. The coordinator optimizes query workload with
three components. (1) Partitioner: Upon receiving an inference
query (𝑂𝐿,𝑅𝑅 ), it initializes a set of processors P. At each 𝑆𝑆 → P,
it partitions 𝑅𝑅 , the memoization table T to T𝑆 and T𝑆 , and induces
𝑀𝑀𝑆 accordingly to 𝑃𝑆 → 𝑅𝑅 . (2) Load Balancer: it assigns joblets to
processors by distributing query workload among the processors, it
minimizes the total time cost of inference and explanation on the en-
tire set of 𝑅𝑅 . (3) Job Scheduler: reschedules joblets < 𝑐𝑆 ,𝑀𝑀𝑆 ,𝑂

𝐿 >
based on estimated workload and current processor status, and allo-
cate computational resources to dynamically rebalance the parallel
“Inference-and-explain” computation.
Pipelining. At each processor 𝑆𝑆 , given joblet < T𝑆 ,𝑀𝑀𝑆 ,𝑂

𝐿 >, (1) it
performs the inference for assigned 𝑃𝑆 → 𝑅𝑅 in parallel to generate
output𝑂𝐿 (𝑃𝑆 ,𝑀𝑀𝑆 ). It next generates an explanatory task as a joblet
< T𝑆 ,𝑀𝑀𝑆 ,𝑂

𝐿 (𝑃𝑆 ,𝑀𝑀𝑆 ) > and sends back to coordinator; (2) Upon
receiving an assigned explanatory joblet < T𝑆 ,𝑀𝑀𝑆 ,𝑂

𝐿 (𝑃𝑆 ,𝑀𝑀𝑆 ) >, it
generates an explanation graph 𝑀𝑄𝑆 in parallel. The explainer con-
structs 𝑀𝑄𝑆 following the algorithm in [2] by default. The inference
and explanation joblets follow a pipelined parallelism among all pro-
cesses, to ensure that users receive explained output incrementally,
rather than waiting or all inference queries to be evaluated.
Parallel Time Cost. The o!ine compression cost is 𝑑 ( |𝑀𝐿 |) where
𝑀𝐿 is the subgraph induced by 𝐿-hop neighbors of 𝑅𝑅 . The parallel
cost per inference query is 𝑑 ( 𝐿 |𝑁𝐿 |𝑒 2

𝑓 ) where 𝐿 is the number of
layers and 𝑒 is number of features per node in𝑀𝑀 , and 𝑓 the number
of processors. The parallel explanation cost is 𝑑 ( |𝑀𝐿 | |𝑊𝑂 |

𝑓 ). The
overall cost is independent with the original graph size 𝑀 (see [1]).

System Architecture. The multi-tier ExGIS architecture is de-
ployed on well established data systems, as illustrated in Fig. 4. (1)
TheWeb GUI consists of (1) portals to collect metadata of con"gura-
tion and receiving inference query workload; (2) LLM interfaces for
NL interpretations; and (3) a visualizer to support visual analysis
of compressed graphs, explanation graphs, and inference-time per-
formance evaluation. (2) The Coordinator hosts the job scheduler
to i) manage the allocations of computational resources; and ii)
coordinate message exchanging among the compression module,
explainer, GUI, and storage manager. (3) The ExGIS Core contains
critical computational modules: o!ine Compression and online
parallel Inference and Explainer, supported by built-in libraries e.g.,
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Figure 5: ExGIS: (a) Visual Interfaces; (b) Evaluation: Accuracy over 𝑀𝑀 (top); Scalability vs. Workload size (down)

PyTorch Geometric, BisPy, NetworkX and LLMs including Llama
3.3 and GPT-4o. (4) The Storage Layer hosts all graphs as NetworkX
objects, GNNs, and metadata as JSON objects.

4 DEMONSTRATION SCENARIO

Datasets. We demonstrate ExGIS with Elliptic Bitcoin transactions
network (203,769 nodes, 234,355 edges), and Cora citation network
(2,708 nodes, 5,429 edges). We report complete tests with two graph
compression baseline methods across six diverse datasets [1].

“Inference&Explain” inOne-Click.We start with awalkthrough
of ExGIS. Users begin by selecting datasets, con"guring datasets,
compression parameters (compression scheme and parameters),
mainstream GNN classes (e.g., GCN, GAT, or GraphSAGE) with
layer number, test nodes, and number of processors. With a sin-
gle click on“Run Compression & Inference,” the system automates
o!ine compression to cold start, streamlines the workload optimiza-
tion for parallel execution. Users can then request ad-hoc inference
queries by simply choosing nodes in the compressed graph panel,
and readily browse and inspect the visual output and explanations.

Accuracy & Scalability Analysis. Our demonstration highlights
ExGIS’s performance metrics. The Statistics Analysis tab shows
that for Bitcoin transaction networks, ExGIS achieves compression
ratios of 92.4% for nodes and 91.3% for edges while maintaining
100% inference accuracy with a 2-layer GCN. The time statistics
reveal excellent e#ciency: compression (0.039s), inference (0.003s),
and explanation generation (0.007s). As shown in Fig. 5, ExGISmain-
tains competitive accuracy compared to baselines across datasets
while o%ering superior scalability - execution time remains nearly
constant for SPGC as queries increase, unlike the linear growth
observed with original graphs. Due to limited space, we report more
scalability tests and analysis in [1].

Interpretable Network Anomaly Detection. We invite users to
experience user cases of ExGIS in two applications.
Illicit IP Account Detection. Using Elliptic Bitcoin transaction net-
work, users can specify inference queries over designated IP account
and visually inspect most in$uential illicit and licit accounts and
transactions to GNN output, observe the impact of di%erent distri-
bution of labels to the decision making of GNNs, and be informed
by natural language alerts on suspicious activities.
Topic Analysis in Citation Networks. Our second scenario uses the
Cora academic citation network. Users can conveniently choose
papers of interests and testGNNs of choices to infer potential topics.
The explanation reveals in$uential citations that may in$uence
GNN inference for the particular topic via a subnetwork of citations,
hence in turn suggesting useful literature and collaboration.
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