DVoTE: Constraining Committee Voting with Database

Dependencies
Roi Yona Jonathan Breitman Benny Kimelfeld
Technion Technion Technion & Relational Al

Haifa, Israel
roi.yona@campus.technion.ac.il

ABSTRACT

Approval-Based Committee (ABC) voting refers to the task of se-
lecting a committee of a desired size, given voter preferences that
state the specific candidates that each voter approves of. A voting
rule aggregates the voter preferences into a winning committee. As
a special case, an ABC scoring rule determines a score that each
voter contributes to the committee based on her approvals. Vari-
ous ways have been proposed to impose constraints on the elected
committee. The demonstration presents DVOTE— a tool that imple-
ments a recent framework for extending score-based ABC voting
with constraints on the context surrounding the candidates, given
as a relational database. DVOTE provides a convenient interface
to set up a voting instance and build contextual constraints in the
form of Tuple-Generating Dependencies (TGDs) and Denial Con-
straints (DCs). The computation of the winning committee is done
by backend components that encapsulate the contextual database
and translate the entire task of constrained election into Mixed Inte-
ger Programming. In the demonstration, attendees will experience
ABC voting with DVOTE in different domains and contexts.

PVLDB Reference Format:

Roi Yona, Jonathan Breitman, and Benny Kimelfeld. DVoTE: Constraining
Committee Voting with Database Dependencies. PVLDB, 18(12): 5235 -
5238, 2025.

doi:10.14778/3750601.3750640

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Roi-Yona/abcc.git.

1 INTRODUCTION

In Approval-Based Committee (ABC) voting, a voter preference is
provided as a set of candidates approved by the voter, and voter
approvals are aggregated into a choice of a winning committee [8].
The manner of aggregation is called an ABC voting rule. This work
focuses on a well-studied class of ABC voting rules, namely the
ABC scoring rules: every voter contributes a score to each candidate
set, based on two numbers: the number of approved candidates in
the set, and the total number of candidates that the voter approves
of; a winning committee (of the desired size) is one with the highest

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750640

Companion video available at https://www.youtube.com/watch?v=pgQBm8xRQuU.

Haifa, Israel
jonathanbre@campus.technion.ac.il

5235

Haifa, Israel
bennyk@cs.technion.ac.il

accumulated score [9]. Yet, it is commonly the case that the elected
committee should also satisfy criteria beyond having the highest
voter support. For example, it may need to feature a set of skills so
that it can properly function, avoid conflicts among members, pro-
vide sufficient representation of issues, avoid over-representation
of issues, and so on. Hence, a significant body of work studied ABC
voting (and multi-winner elections in general) in the presence of
constraints. Various formalisms have been proposed for such con-
straints, like cardinality constraints over occurrences of labels of
the candidates [5], graphs of conflicts among candidates [11], and
proportionality axioms with respect to voter representation [1].

Committee constraints are derived from contextual knowledge
about the candidates, such as different types of relationships be-
tween candidates and associated entities, or among the candidates
themselves. Inspired by previous frameworks that connect compu-
tational social choice and databases [6, 7], we recently proposed
and investigated a framework for constraint languages over ABC
voting in the presence of contextual information [12]. Specifically,
the context is a relational database conforming to a relational con-
text schema. We identify contextual constraints as database depen-
dencies over the context schema extended with a virtual relation
(namely, Com) that represents the committee. Given an ABC scoring
rule, a winning committee is a set of candidates with a maximum
score such that all database dependencies hold in the extended
database. Hence, the framework allows us to deploy the rich lit-
erature of database dependencies toward expressive and intuitive
languages for constraining ABC voting.

The demonstration presents DVOTE—a tool that encapsulates
our framework in an end-to-end application for ABC voting in the
presence of user-provided constraints over an arbitrary context
database of choice [12]. We focus on two types of database depen-
dencies: Tuple-Generating Dependencies (TGDs) [3] and Denial
Constraints (DCs) [4]. The former can express, for example, rep-
resentations of groups (conditional on the representation of other
groups), while the latter can express conflicts among candidates.
While the selection of a winning committee (or even just determin-
ing whether any legal committee exists) is NP-hard, we showed
its feasibility via Mixed Integer Programming (MIP) that applies
to arbitrary ABC scoring rules, TGDs and DCs. We also developed
techniques for optimizing the MIP. See the full paper [12] for the
empirical study that shows the effectiveness of the implementation.

DVorTE provides a convenient interface to choose the ABC set-
tings (e.g., the committee size and ABC scoring rule), easily build
TGDs and DCs over the extended context schema, execute the actual
election, and reiterate the process until a satisfactory committee
is established. The backend includes the context database, our al-
gorithms for building the MIP from the database and constraints,

https://doi.org/10.14778/3750601.3750640
https://github.com/Roi-Yona/abcc.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750640
https://www.youtube.com/watch?v=pgQBm8xRQuU
https://www.acm.org/publications/policies/artifact-review-and-badging-current

and the MIP solver. The demonstration scenarios involve several
election domains (e.g., political elections, movies, and hotels) along
with their context databases. The attendees of the demonstration
interact with DVOTE by invoking elections, viewing the results,
phrasing different types of constraints, and observing their impact
on the outcome of the modified election setup.

2 ABC VOTING WITH CONTEXTUAL
CONSTRAINTS

We first describe shortly the framework of ABC voting with contex-
tual constraints. See the full paper [12] for more details, theoretical
complexity analysis, implementation description, and experiments.

ABC Voting. In Approval-Based Committee (ABC) voting, we have
asetC ={c1,...,cm} of candidates, a set V = {01, ...,v,} of voters,
an approval profile A that maps every voter v; to a set A(v;) € C
of candidates, and a desired committee size k. An ABC voting rule
determines which k-subsets of C (i.e., sets of k candidates) are the
winning committees. As a special case, an ABC scoring rule [9] is
defined by a function f(x, y) that determines the score contributed
to a committee B by a voter v who approves a total of y candidates
where x of them are in B. The winning committees by f are the
k-subsets B that maximize

scoref(B) = Z FBNA()], |A(v)]) .
veV

The class of ABC scoring rules generalizes the class of Thiele
rules where f(x,y) is a non-decreasing function w(x) that depends
only on the number of approved candidates. Examples include Ap-
proval Voting (AV) where w(x) = x, Proportional Approval Voting
(PAV) where w(x) = 3.7, 1/i,and Chamberlin-Courant (CC) where
w(x) = min(x, 1) It has been established that finding a winning
committee is computationally hard for all Thiele rules, except for
AV where the problem is straightforward [2, 10].

Databases and dependencies. A relational schema S consists of a
finite collection of relation symbols R, each associated with an arity
k. A database D over the schema S associates a finite relation R
of k-tuples to each k-ary relation symbol R. A constraint over S
is a formula in some logical formalism (e.g., first-order logic) with
relation symbols in S. If T is a set of constraints, then D |= T denotes
that D satisfies every constraint in I'. An atomic formula has the
form R(ty, ...,) or 710712, where R is a k-ary relation symbol, each
7; is either a constant or a variable, and is a predefined comparison
operator (e.g., =, <, > and so on). We call R(ry, ..., 1) a relational
atom and 71012 a comparison atom.
A denial constraint (DC) is an expression of the form

VE[=(p(%) A Y(X))]

where X is a sequence of variables, ¢ (X) is a conjunction of relational
atoms, and /(X) is a conjunction of comparison atoms [4].

A tuple-generating dependency (TGD) has the form Vx[¢(X) —
Fy[¢ (%, 9)]], where X and 7 are disjoint sequences of variables and
¢(¥) and (X, §) are conjunctions of relational atoms [3]. TGDs gen-
eralize common constraints like inclusion constraints; for example,
in the database of Figure 1, the TGD

Vx, y[Author(x,y) — 3z[Pub(y, z)]

5236

Approvals: v3: Ann, Eva
v1: Ann, Dave v4: Cale
vg: Ann, Bob, Dave ©v5: Bob, Dave
Topic Supervise Author Pub
name | | advisor advised | | author pub || pub topic
AL Ann Bob Ann p1 p1 ML
ML Bob Fred Ann p2 p2 PL
0S Cale Eva Bob p1 p3 0s
PL Dave Fred Bob p3 p4 Al
Cale p4 p5 0s
Dave p5

Figure 1: ABC voting with external context.

requires every publication in the Author relation to occur in the
Pub relation. Note that ¢(X) can be an empty conjunction, hence a
tautology (meaning that 37[(X, 7)] should hold unconditionally),
and we denote such ¢(X) by true.

ABC voting with contextual constraints. We now recall the for-
mal framework of ABC voting with contextual database and con-
straints [12]. Consider an approval profile A over a set C of can-
didates. We have information about the candidates in a database
D over a schema S. We view D as providing external context on
the candidates. We wish to express constraints on the desired com-
mittee so that we restrict the class of eligible committees to those
satisfying the constraints. We view the constraints as database
dependencies on an extended schema Sy, which is S augmented
with a unary relation symbol Com that represents a hypothetical
committee. By a contextual constraint we refer to a database de-
pendency over Sy. Given a database D and a set B of candidates,
we write D[B] to denote the database over S, that consists of D
and of the relation B interpreting the relation symbol Com. Thus,
RPIB] .= RD for every relation symbol R of S, and ComPIB] .= B.
An instance of our setting has the form (V,C, Ak, f,S,D,T)
where (V,C, Ak, f) is an ordinary ABC setting with the objective
of finding a committee of size k under the ABC scoring rule f; D
is a database over the schema S; and T is a set of constraints over
the schema S;. A legal committee is a k-subset B of C such that
DI[B] T. A winning legal committee is a legal committee B such
that score (B) is the maximum among all legal committees B'.

Examples. In the following examples, we use k = 3 as the committee
size and f = AV as the scoring rule. The approval profile of Figure 1
(top) has V = {01, ...,05} and C = {Ann,Bob, Cale, Dave, Eva}. As-
sume that we seek a Program Committee (PC) for a conference. The
relations in the figure give information about candidate publica-
tions and advisory relationships. The following DC states that the
PC cannot include both a person and the advisor of that person.

Ve, ca[—(Supervise(cy, cz) A Com(c1) A Com(c2))].
For this DC, the committee {Ann, Bob, Dave} is illegal, since Ann is
the advisor of Bob. Note that every set of three candidates (among
the five) is a legal committee, as long as it does not include both

Ann and Bob or both Cale and Eva. Here, B = {Ann,Dave, Eva} is
a winning committee with scoreay(B) =2+2+2+0+1=7. As

TGDs, DCs Dependency

» ABC settings

materializer

* Contextual constraints } Context DB
DVOTE! :° Materialized
i i = dependencies
m Frontend | Committee info =
Winning committee I —

- MIP Solver
Solution

MIP builder

Program

ABC settings

Figure 2: DVOTE implementation architecture. See Figure 3 for the UI of the frontend component.

another example, consider the following TGD:
Vit [Topic(t) — Jc, p[Author(c, p) A Pub(p, t) A COM(C)]]

This TGD states that the committee has at least one member with
a publication on each topic. One can also include a specific TGD
stating that at least one committee member should have both ML and
PL publications (say, since the blend is central to the conference):

true — Jc, p, p’ [Author(c, p) A Author(c, p’)A
Pub(p,ML) A Pub(p’,PL) A Com(c)]

There is now one winning committee, {Ann, Cale, Dave}, since the
three members cover all topics, and Ann has both ML and PL publi-
cations (namely p1 and p2), and it maximizes the score among all
legal committees. As a last example, the rule

Ve, ¢ [Supervise(q, c2) A Com(cy) A CoMm(cy) —
dp[Author(cy, p) A Pub(p, ML)]]

states that we allow for supervision between committee members
only if the advisor has an ML publication.

3 SYSTEM IMPLEMENTATION

DVoTE is a tool that encapsulates our framework for constrained
ABC voting with a context database. It enables the user to choose
the ABC settings, formulate contextual constraints (TGDs and DCs),
find a winning committee, and analyze the winning committee. The
main system components and design are depicted in Figure 2. The
system deploys two external components: the database and the
solver. The database contains the ABC information (candidate set
C, voter set V, and approval profile A), as well as the relations of
the context database D. The system is implemented in Python3 and
we use SQLite3 as the database engine. For MIP solving, we use
Google OR-Tools that wraps Gurobi 12.0.0.

Frontend. The frontend (shown in Figure 3) is implemented with
Streamlit. It enables the user to choose different databases and ABC
settings (1)) such as committee size k and the scoring rule f. In the
advanced settings, she can define the candidate set C and voter set
V ((@). She can then easily formulate any combination I' of TGD
and DC constraints, as defined in Section 2, using a graphical and
interactive layout of the constraints ((2) and (3)).

The graphical interface drastically facilitates the formulation
of constraints compared to, say, writing SQL code to identify the
conflicts in DCs or writing Datalog rules to represent the TGDs. We

5237

expect the user to know the schema of the context database and, as
background, the general first-order structure of DCs and TGDs (as
guided by DVoTE). With these, the user can phrase the constraints
using selections from lists (e.g., relation/attribute names) and very
few, if any, keyboard characters.

Once all is set, the user can invoke the voting algorithm to find
a winning committee ((5)). When the backend is done processing,
the results of the solver are sent back to the user interface, which
parses it and queries the database D for further information about
the members of the winning committee. It then presents the user
with the resulting committee and further execution details ((6)).

Backend components. Within the backend, the dependency ma-
terializer gets as input the set I' of contextual constraints, parses
it, generates SQL queries, and executes them in the database. The
results of these queries are components that can be turned into
individual MIP constraints. (For example, a single DC, stating that
no two committee members belong to the same party, material-
izes into pairs of candidates from the same party.) Using the ABC
settings from the frontend and the output produced by the depen-
dency materializer, the MIP builder constructs the MIP objective and
constraints to be sent to the external MIP solver, while deploying
optimizations to minimize the MIP. The full details of the optimized
construction of the MIP, as well as runtime experiments, can be
found in the framework paper [12, Section 5].

4 DEMONSTRATION

In the demonstration, we guide the audience in interaction with
DVOTE, presenting a walk-through of how to find a winning com-
mittee on different databases, under different scoring rules and con-
textual constraints. Specifically, we show how to add increasingly
complex combinations of contextual constraints to the committee
selection. We view the results of each setting, detect deficiencies
in the resulting committees, and add corresponding contextual
constraints (i.e. database dependencies) to resolve them.

We use several databases from different domains, including po-
litical elections,! hotels,2 and movies,® which we also use here for
illustration. These databases are described in detail in the archive
paper [12, Section 6.1]. Each database is associated with a com-
mittee election task such as a movie theater that selects a set of

! preflib.github.io/PrefLib-Jekyll/dataset/00008, accessed July 12, 2025
2preflib.github.io/PrefLib- Jekyll/dataset/00040, accessed July 12, 2025
3www.kaggle.com/datasets/rounakbanik/the-movies-dataset, accessed July 12, 2025

preflib.github.io/PrefLib-Jekyll/dataset/00008
preflib.github.io/PrefLib-Jekyll/dataset/00040
www.kaggle.com/datasets/rounakbanik/the-movies-dataset

@

Database Committee Size Voting Rule Add/Remove TGD constraints Add/Remove DC constraints
@ the_movies_database.db v 4 -+ Chamberlin-Courant v a -+ 0 +
Add/Remove relational atoms on the left hand side Add/Remove relational atoms on the right hand side
1 - o+ 2 - o+
@ ForAll: (selected_genres v selected_genre)
Exists: (Com v Y) (movie_genre v movie selected_genre)

Advanced Settings

@ ®

Find a winning committee

DVOTE Results

Winning Committee Summary:

Experiment Summary

DB Name M : the_movies_database

candidate_id title genres original_language runtime release_date Voting Rule - : Chamberlin-Courant
. . Voters Group Size & : 10000
0 17 The Dark ['Horror!, 'Thriller!, '"Mystery'] English short 2006-01-26
Candidate Group Size 22:100
1 105 Back tothe Future [‘Adventure’,'Comedy', 'Science Fiction', 'Family'] ~ English long. 1985-07-03 Committee Size ¥ :4
Total Extraction and Construction Time {: 7.11 seconds
2 110 ThreeColors:Red ['Drama’,'Mystery’,'Romance'] French long 1994-05-27 Total MIP Solving Time (: 0.83 seconds
3 111 Scarface ['Action’, 'Crime', 'Drama’, 'Thriller'] English long 1983-12-08 Total Execution Time (: 7.94 seconds

Figure 3: DVOTE user interface.

movies for a weekend screening, a company pursuing special price
contracts for its employee travels, and a city electing a council.

No Constraints. We begin with simple committee elections to
familiarize ourselves with ABC voting. Specifically, we use DVOTE
to find winning committees with varying sizes and ABC scoring
rules (such as AV, CC, and PAV). For the different ABC settings,
we inspect the unconstrained winning committee and the execu-
tion time. (Recall that unconstrained ABC is already NP-hard for
common rules, with the exception of AV (2, 10].)

Basic Constraints. After observing the unconstrained winning
committees, we add simple DCs and TGDs to constrain the consid-
ered committees to satisfy different needs. For example, the movie
committee misses a movie with an important popular genre such as
Comedy, or lacks diversity in language, so we resolve these using
TGDs. In the hotel committee, there are two hotels with the same
location and price range, so we add a DC to avoid it. In the political
election, we add a TGD to demand representation for all wards in
the elected council. This scenario demonstrates the usefulness and
ease of constraining committee elections in DVOTE.

Advanced Constraints. Next, we delve into the different use cases
and illustrate complex combinations of contextual constraints to
capture more subtle organizational needs. As an example, “for every
selected high-priced hotel, there is also a cheap alternative at the
same location” (using a TGD that has the relation symbol Com in
both the premise and conclusion of the logical implication). For the
council election, we enforce that there are no three members from
the same party (hence, avoiding over-representation of a party).
This scenario demonstrates the expressiveness of DVOTE and its
ability to capture highly specialized needs.

ACKNOWLEDGMENTS

The authors are extremely grateful to Phokion Kolaitis for fruit-
ful and insightful discussions on the model and implementation
underlying the demonstration.

REFERENCES

[1] Haris Aziz, Markus Brill, Vincent Conitzer, Edith Elkind, Rupert Freeman, and
Toby Walsh. 2015. Justified Representation in Approval-Based Committee Voting.
In AAAL AAAI Press, 784-790.

Haris Aziz, Serge Gaspers, Joachim Gudmundsson, Simon Mackenzie, Nicholas
Mattei, and Toby Walsh. 2015. Computational Aspects of Multi-Winner Approval
Voting. In AAMAS. ACM, 107-115.

Catriel Beeri and Moshe Y. Vardi. 1984. A Proof Procedure for Data Dependencies.
9. ACM 31, 4 (1984), 718-741.

Leopoldo E. Bertossi and Jan Chomicki. 2003. Query Answering in Inconsistent
Databases. In Logics for Emerging Applications of Databases. Springer, 43-83.
Robert Bredereck, Piotr Faliszewski, Ayumi Igarashi, Martin Lackner, and Piotr
Skowron. 2018. Multiwinner Elections With Diversity Constraints. In AAAL
AAAI Press, 933-940.

Benny Kimelfeld, Phokion G. Kolaitis, and Julia Stoyanovich. 2018. Computa-
tional Social Choice Meets Databases. In IJCAL ijcai.org, 317-323.

Benny Kimelfeld, Phokion G. Kolaitis, and Muhammad Tibi. 2019. Query Evalu-
ation in Election Databases. In PODS. ACM, 32-46.

Martin Lackner and Piotr Skowron. 2018. Approval-Based Multi-Winner Rules
and Strategic Voting. In IJCAL ijcai.org, 340-346.

Martin Lackner and Piotr Skowron. 2021. Consistent approval-based multi-
winner rules. J. Econ. Theory 192 (2021), 105173. https://doi.org/10.1016/].JET.
2020.105173

Piotr Skowron, Piotr Faliszewski, and Jérome Lang. 2016. Finding a collective
set of items: From proportional multirepresentation to group recommendation.
Artif. Intell. 241 (2016), 191-216. https://doi.org/10.1016/J.ARTINT.2016.09.003
Yongjie Yang and Jianxin Wang. 2018. Multiwinner Voting with Restricted
Admissible Sets: Complexity and Strategyproofness. In IJCAL ijcai.org, 576-582.
Roi Yona and Benny Kimelfeld. 2025. Using Database Dependencies to
Constrain Approval-Based Committee Voting in the Presence of Context.
arXiv:2501.16574 [cs.DB] https://arxiv.org/abs/2501.16574

[2]

5238

https://doi.org/10.1016/J.JET.2020.105173
https://doi.org/10.1016/J.JET.2020.105173
https://doi.org/10.1016/J.ARTINT.2016.09.003
https://arxiv.org/abs/2501.16574
https://arxiv.org/abs/2501.16574

	Abstract
	1 Introduction
	2 ABC Voting with Contextual Constraints
	3 System Implementation
	4 Demonstration
	Acknowledgments
	References

