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ABSTRACT
Functional dependency (FD) discovery is fundamental in data pro-
filing. Inevitably, existing approaches can return fake FDs that hold
only coincidentally. Moreover, these approaches fall short of identi-
fying ghost FDs that would be observable in a clean dataset, but that
remain undetected because of outliers in the data. We introduce
an interactive method for dependency discovery that augments an
Armstrong relation with additional tuples. We rely on artificially
generated negative examples that emulate real-world tuples to help
expose fake FDs. In addition, we rely on domain experts to confirm
that positive examples indeed reflect the characteristics of the origi-
nal dataset. Our tool prototype FDepHunter thus provides a novel
human-in-the-loop workflow where the set of discovered FDs can
be iteratively refined.
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1 INTRODUCTION
Functional dependencies (FDs) are a foundational concept in data
management, with applications in schema matching, dataset simi-
larity, outlier detection, and extraction of both integrity constraints
and business rules. Several approaches to facilitate FD discovery
have been proposed [8, 10, 11], which differ primarily in perfor-
mance and suitability for specific datasets.

Which FDs are discovered depends on the quality of the input
data. In particular, FDs can be classified into three types [3]: (1) gen-
uine FDs, which remain valid across all realistic dataset instances
and capture inherent dependencies; (2) fake FDs, which hold only
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within the given dataset but fail when additional valid tuples are
introduced; fake FDs tend to occur in datasets with large numerical
domains, such as medical or transport data, where most values
are effectively unique – for example, the US flights dataset1 con-
tains over 900,000 FDs [9], many of which are probably fake; and
(3) ghost FDs, which remain undetected due to outliers or anomalies
but which would hold in a clean dataset.

A fully representative dataset would help in identifying gen-
uine FDs. To better approximate dataset completeness, we intro-
duce two complementary concepts: negative and positive examples.
The former are artificially constructed to simulate realistic but
absent data, allowing the removal of fake FDs. This approach is
motivated by Gold’s Theorem [6], which highlights the need for
negative evidence, such as unseen valid tuples, to infer generaliz-
able properties from incomplete data. The latter reflect tuples of
the original dataset and are used to reveal ghost FDs obscured by
outliers. FDepHunter, the tool presented in this paper, enables users
to interactively confirm or reject negative and positive examples.

Most FD discovery approaches return a minimal FD set, i.e., a
basis from which other (non-minimal) FDs follow via Armstrong’s
axioms. When the dataset is extended (e.g., with negative exam-
ples), the minimal set may change, and newly added FDs must
be validated to ensure their genuineness. Beyond incompleteness,
this introduces the challenge of validating such FDs. We propose a
human-in-the-loop workflow to discover genuine FDs and lay the
groundwork for follow-up research, e.g., on handling this at scale.

Contributions of this paper include the following:
• We present FDepHunter, a data profiling tool designed to

support domain experts. The tool provides a novel inter-
active workflow to detect fake FDs and to facilitate the
discovery of ghost FDs.

• FDepHunter incrementally constructs an Armstrong rela-
tion [1], augmented with so-called negative and positive ex-
amples, to approximate the properties of a complete dataset.

• Users iteratively refine the set of FDs: they identify gen-
uine FDs, expose fake FDs through negative examples, and
uncover ghost FDs via positive examples.

• Negative and positive examples are generated to target
multiple fake or ghost FDs simultaneously. This allows to
efficiently refine multiple dependencies in a single step.

1https://www.transtats.bts.gov, accessed July 2025
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2 CORE CONCEPTS
In this section, we introduce and illustrate the core concepts.

For a relational schema 𝑅 and sets of attributes 𝑋,𝑌 ⊆ 𝑅, a FD
𝑋 → 𝑌 holds if, whenever two tuples agree on𝑋 they also agree on
𝑌 ; c.f. Abiteboul et al. [1] for further details. We call 𝑋 the left-hand
side (LHS) and 𝑌 the right-hand side (RHS) of the FD. A FD 𝑋 → 𝑌

is minimal if there is no strict superset 𝑋 ′ ⊆ 𝑅 of 𝑋 for which
𝑋 ′ → 𝑌 holds.

We classify FDs by their RHS, grouping FDs determining the
same attribute into distinct classes. The set of these classes is de-
noted by C. Within each class 𝑐 ∈ C, we identifymaximal sets [8] of
attributes on the LHS that do not form a FD for the corresponding
RHS. Formally, a set 𝑋 ⊆ 𝑅 is a maximal set for the class of 𝐴 if
𝑋 → 𝐴 does not hold, but 𝑋 ′ → 𝐴 holds for every strict superset
𝑋 ′ ⊆ 𝑅 of 𝑋 . The set of all maximal sets for a class 𝑐 is denoted
by M𝑐 . The elements of M𝑐 and the FDs can be illustrated using a
lattice, where each node represents a subset of attributes and edges
indicate the addition or removal of an attribute.

An Armstrong relation satisfies exactly a given set of FDs and
no others [1]. We artificially construct an Armstrong relation, be-
ginning with a base tuple 𝑡0, where all attributes are assigned a
default value. For each maximal set𝑀 ∈ ⋃︁

𝑐∈C M𝑐 , a unique tuple
𝑡𝑀 is added to the relation. In each tuple 𝑡𝑀 , attributes belonging to
the corresponding maximal set𝑀 retain the default value, whereas
attributes not in𝑀 are assigned distinct real-world values. By sub-
stituting abstract identifiers with actual data values, the Armstrong
relation mirrors the characteristics of input datasets.

Within the Armstrong relation, rows are categorized as either
positive or negative examples. Both are constructed by modifying
a base tuple 𝑡0 using real-world values so that the values of LHS
attributes match 𝑡0 while the values of RHS attributes differ. Positive
examples collectively uphold exactly the FDs in the input dataset.
In contrast, negative examples are artificially generated so that they
violate FDs that may hold coincidentally and are likely fake.

Example 2.1. Fig. 1 shows a sample from the real-world IMDB title
dataset2. Fig. 2 shows an Armstrong relation created from the sample. The
positive examples (marked with red squares) form an Armstrong relation
that satisfies twelve minimal FDs (e.g., 𝐶𝐷 → 𝐴, 𝐶𝐸 → 𝐴, 𝐶 → 𝐵). By
adding the negative example (yellow), the Armstrong relation violates the
FD 𝐶 → 𝐵. Finally, Fig. 3 presents a lattice diagram for the class of 𝐴
(denoted by 𝑐𝐴), where elements of M𝑐𝐴 are shown in solid red, their
subsets as outlined red nodes, minimal FDs in solid blue, and derived FDs
as outlined blue nodes. This visualization provides an intuitive map of the
combinations of attributes that determine the RHS within each FD class.

3 WORKFLOW
We now present the workflow of FDepHunter, illustrated in Fig. 4.

Initial Data Profiling. As part of the initial phase focusing on the
extraction of FDs and maximal sets M𝑐 for each class 𝑐 ∈ C, we
apply a method that fits the properties of the input data. This work
employs an approach inspired by Dep-Miner [8]. For each class
𝑐 ∈ C, the method initially generates the maximal setsM𝑐 and sub-
sequently reconstructs the FDs. Alternatively, approaches such as
HyFD [11] can be employed to extract FDs first, ensuring that even

2https://developer.imdb.com/non-commercial-datasets/, accessed July 2025
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Figure 4: A high-level overview of the FDepHunter workflow.

for large data volumes the system is reactive and prompt, allowing
for fluent interaction. Maximal sets are then reconstructed by prun-
ing attributes from minimal LHSs until only maximal subsets that
do not form an FD remain.

Iterative Editing of Maximal Sets. In the second phase, the goal
is to identify fake FDs and to uncover ghost FDs, by employing
heuristics [3] or by incrementally consulting users; we focus on the
incremental approach. Fake FDs are examined by iterating from
smaller to larger LHSs (as illustrated in Fig. 5), assuming pessimisti-
cally that the extracted dependencies (shown in blue) are fake.
Consequently, an affected M𝑐 is expanded to include a new ele-
ment𝑀 corresponding to the targeted FD (depicted in yellow), and
all 𝑀′ ⊂ 𝑀 , 𝑀′ ∈ M𝑐 , are removed to preserve maximality. This
adjustment updates the Armstrong relation to contain one addi-
tional row for each newly added element𝑀 ∈ ⋃︁

𝑐∈𝐶 M𝑐 , forming a
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negative example evaluated by the user. If accepted, the targeted FD
is deemed fake; if rejected, it implies that at least one corresponding
FD could be genuine, so the matching LHS is removed from affected
M𝑐 . If confirmed that all FDs with that LHS are genuine, pruning
of LHS stops; otherwise, the algorithm identifies genuine FDs, and
continues the search for supersets of LHS that fail to invalidate
genuine FDs. If any genuine FD is identified, the𝑀 corresponding
to its LHS is removed from all affectedM𝑐 , and previously removed
𝑀′ are restored. After all negative examples are processed, the algo-
rithm proceeds to the next iteration, increasing the size of the LHS
by one, and terminates when every extracted FD has been classified.
With this strategy users do not need to validate the full transitive
closure of FDs derived via Armstrong’s axioms, but only those with
LHSs that are a strict superset of a previously evaluated one.

For ghost dependencies, the process focuses on the original (red)
elements𝑀 in eachM𝑐 , proceeding in reverse (from those contain-
ing the largest number of columns to smaller ones). Here too, the
user receives pairs of rows – specifically, the first row and one with
a red square – to determine whether the latter truly represents a
maximal set. If the user accepts the pair, the currently evaluated
element 𝑀 remains valid in each relevant M𝑐 ; if rejected, the al-
gorithm presumes an undiscovered FD exists, marks the targeted

element as an FD, and continues to target all its immediate prede-
cessors (i.e., subsets of attributes of size one less), verifying them
in subsequent iterations. The algorithm terminates once no𝑀 (or
its subsets) remains to be checked.

Both steps ultimately yield a collection of genuine FDs by incre-
mentally eliminating fake FDs and uncovering ghost FDs. While
the worst-case number of examples a user must review is 2𝑛 (lat-
tice size), in our experience this remains manageable in practice,
especially for small datasets with many genuine FDs.

Example 3.1. Fig. 5 illustrates the iterative workflow for identifying
genuine FDs from the dataset in Fig. 1. The initial phase outputs maximal
sets and FDs depicted as a lattice alongside the corresponding Armstrong
relation. Each iteration eliminates FDs, from the smallest to the largest LHS.
Negative examples targeting 𝐿𝐻𝑆 = 𝐴 and 𝐿𝐻𝑆 = 𝐵𝐶𝐷 are rejected as 𝐴
is an identifier and 𝐵𝐶𝐷 → 𝐸 is genuine (e.g., two series episodes may
share genre 𝐸 but have distinct identifiers 𝐴). Finally, the user accepts the
remaining maximal sets, ensuring no ghost FDs are in the dataset.

Architecture and Implementation. FDepHunter is implemented as
a client-server application. On the server side, it relies on Java 21
and the Spring Boot framework to provide a REST interface. The
client employs the React library to provide a GUI that displays the
current status of the entire workflow.
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Figure 6: Armstrong relation and workflow status.

4 RELATEDWORK
Several studies have evaluated the quality of discovered FDs using
scoring functions. Chu et al. [5] introduce succinctness and coverage
to assess the interestingness of denial constraints, a generalization
of FDs. Chiang and Miller [4] propose similar ranking functions for
conditional FDs. Andritsos et al. [2] rank FDs by their information
content, while Wei and Link [13] use data redundancy as a heuristic
to identify genuine FDs. Berti-Équille et al. [3] study the impact of
missing values on the discovery of genuine, ghost, and fake FDs
under various NULL semantics and propose probabilistic scoring.

A separate line of research uses Armstrong relations to identify
meaningful FDs [12]. This is highly related to our notion of posi-
tive examples. Langeveldt and Link [7] evaluate the usefulness of
Armstrong relations for identifying meaningful FDs. They conclude
that Armstrong relations are helpful in identifying meaningful FDs
that are incorrectly perceived as meaningless, but not vice versa.

Our approach differs from existing work by iteratively refining
Armstrong relations through user feedback, and also incorporating
artificial negative examples to help eliminate fake FDs.

5 DEMONSTRATION OUTLINE
In our interactive tool demo, users systematically identify gen-
uine, fake, and ghost FDs through the following steps: (1) Users
begin by selecting from a curated collection of real-world datasets,
which differ in size, attribute count, and exhibit varying numbers of
fake FDs and outliers (e.g., IMDb datasets, or Metanome profiling
datasets [9]). Alternatively, users can provide their own dataset.
(2) Users iteratively refine maximal sets in ascending size by review-
ing and validating examples. Each iteration generates an Armstrong
relation in which negative examples target fake FDs (see Fig. 6).
Negative examples appear sequentially (see Fig. 7), and are either
accepted, removing a fake FD, or rejected with justification, as users
act as domain experts. (3) In the final stage, users assess remaining
positive examples and reject outliers to reveal ghost FDs.

6 CONCLUSION AND OUTLOOK
FDepHunter introduces an interactive workflow to eliminate fake
FDs using real-world-like negative examples and to uncover ghost
FDs, hidden by outliers, by validating positive examples.

Future work will focus on enhancing the scalability and effec-
tiveness of FDepHunter. Specifically, we plan to develop advanced

Figure 7: Evaluation of negative example.

strategies for constructing negative examples with maximal impact
by leveraging heuristics to assess the genuineness of FDs. Addi-
tionally, we aim to conduct user studies with domain experts to
systematically evaluate the tool’s usability and its effectiveness in
practical applications. A key objective will be to assess the cogni-
tive load perceived by domain experts when evaluating negative
and positive examples and investigate whether showing additional
context or metadata is perceived as helpful.
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