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ABSTRACT
Data centers produce a significant and increasing amount of CO2
emissions. In the past, these have been predominantly due to en-
ergy generation for powering data centers. With the transition to
energy sources with lower carbon production, the embodied carbon
(i.e., CO2 and other greenhouse gas emissions during production,
transport, and end-of-life) plays an increasing role when planning
server lifecycles. While replacing an old server with newer hard-
ware will typically reduce the power consumption of individual
tasks, due to better efficiency of modern CPUs, offsetting the em-
bodied carbon of new hardware can take months to tens of years,
depending on the grid carbon intensity. In this demo, we invite at-
tendees to interactively analyze the ecological lifecycles of modern
database servers for different workloads and grid carbon intensities.
Attendees can compare servers with different CPU architectures
and estimate ecological deployment cycles for database servers.
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1 INTRODUCTION
The demand for computing resources has risen significantly over
the last two decades. This increase in demand results in substantial
energy consumption from both the manufacturing and operation
of hardware, leading to negative environmental impacts globally.

For many years, the CPU’s power density stayed roughly con-
stant as transistors got smaller, enabling faster and more power-
efficient CPUs [4]. Replacing hardware translated to better per-
formance with little to no power efficiency degradation. Since the
mid-2000s, increasing the CPU frequency required more power

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750604

usage due to voltage leaking, leading to thermal limits. CPU man-
ufacturers have increased the core counts to keep up with the in-
creasing performance requirements [7]. Modern CPUs incur higher
manufacturing and operational carbon footprint costs.

While upgrading to newer hardware often improves performance
and energy efficiency per operation, it incurs significant upfront
environmental costs [2]. Manufacturing modern CPUs, DRAM, and
SSDs involves complex industrial processes, rawmaterial extraction,
and high energy consumption, which add to the embodied carbon.

Recent work shows that emissions associated with the manufac-
turing process can be more than 20 times higher than those related
to operating the same hardware over its lifetime [9]. Thus, even a
highly efficient new server can take years to break even from an
ecological point of view, i.e., offset its embodied emissions through
savings in operational emissions. This is especially important for
database workloads, which are not a focus for optimizations in
modern hardware development. As a result, energy efficiency im-
provements are less than for standard CPU benchmark workloads.
Replacing servers for these use cases can result in a longer break-
even period, especially in regions with low carbon electricity [2].

In this paper, we introduce TCO2, a tool designed to provide
insights into the ecological lifecycle of a server configuration, in-
cluding components such as CPU, DRAM, and storage. It evaluates
these configurations against CPU and database benchmarks, taking
into account server utilization and grid carbon intensity. The pri-
mary goal of TCO2 is to assist in making informed decisions about
when to upgrade hardware while prioritizing ecological efficiency.

We present two use cases of TCO2. (1) We calculate the total
carbon footprint of a single server, based on its utilization and the
local grid carbon intensity (GCI). (2) We analyze the improvements
in ecological efficiency across hardware generations by comparing
the servers’ performance improvement for database workloads.

2 CARBON FOOTPRINT MODEL
In this demo, we determine the point in time when replacing a cur-
rent server with a new server becomes environmentally beneficial,
which we refer to as the ecological break-even point (𝑡be).

2.1 Model Summary
To find 𝑡be, we follow our previous work’s model [2]. A server’s
carbon footprint (SCF) consist of its emissions for manufacturing
(ECF) and for operating it (OCF) until the end of its life (EOL):

SCF = ECF +
𝑡EOL∑︂
𝑡=0

OCF𝑡
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The ecological break-even point 𝑡be is determined by finding the
timestamp 𝑡 for which the cumulative operational carbon footprint
of the current server (c) equals the sum of the new server’s (n)
embodied carbon and its cumulative operational carbon footprint:

𝑡be∑︂
𝑡=0

Oc
CF𝑡 = EnCF +

𝑡be∑︂
𝑡=0

On
CF𝑡

Since embodied carbon data from manufacturing is typically not
publicly available or incomplete, we follow the framework proposed
by Gupta et al. [8]. To estimate the server’s manufacturing carbon
footprint (ECF) we consider the carbon footprint of its main com-
ponents: CPU (ECFCPU), DRAM (ECFDRAM), and SSD (ECFSSD):

ECF = ECFCPU + ECFDRAM + ECFSSD

To estimate the operational carbon footprint (OCF), we sum the
emissions from operating the server’s CPUs, DRAM, and SSDs:

OCF = OCFCPU +OCFDRAM +OCFSSD

2.2 Power Usage and Utilization
To estimate a CPU’s operational carbon emissions (OCFCPU) per
year, we take the CPU’s maximum yearly power draw (kWhmax/y),
scale it down by a normalized power consumption (NPC) factor,
reflecting the average load, and multiply the result by the grid
carbon intensity (GCI) to convert power draw to carbon emissions.

OCFCPU = kWhmax/y × NPC × GCI

We estimate the maximum yearly power draw (kWhmax/y) by the
CPU’s thermal design power (TDP), which is the power consump-
tion under maximum theoretical load [3]. We base our normalized
power consumption (NPC) on the relationship between power, en-
ergy efficiency, and utilization observed by Barroso and Hölze [1].
We define a linear function based on the utilization, the CPU’s idle
power draw (P0), and Pslope, which represents howmuch the power
draw increases given a 1% increase in the average yearly utilization,

NPC = P0 + Pslope × utilization

For this demo, we assume P0 = 50%, Pslope = 0.5%, and rely on
Electricity Maps [6] for GCI numbers. Figure 1 shows the sensitivity
of the NPC to the choice of values for P0. The ideal scenario occurs
when P0 = 0; the CPU does not draw any power when there is no
work. In contrast, when P0 = 100, the CPU draws TDP when idle.

Previous research has demonstrated that power usage for CPU-
intensive workloads exhibits an exponential growth pattern as
utilization increases [10]. In contrast, since database workloads
are typically not CPU-intensive, a linear model is appropriate for
representing the relationship between power usage and utilization.

We make the simplifying assumption in our model, that a new
server will have the same utilization as a previous server and the
same normalized power consumption.

3 TCO2: TOTAL CO2 COST OF OWNERSHIP
In this paper, we introduce TCO2, a tool for quantifying the to-
tal CO2 cost of ownership of database servers. We present TCO2
as a web interface designed to evaluate the ecological impact of
upgrading the servers through their lifecycle [2]. Currently, the
tool supports the comparisons of 12 common server CPUs while

Figure 1: Linear model for NPC with different parameter
values for the idling power draw, P0

allowing users to adjust other components such as DRAM, SSD,
and HDD capacity along with the server workload type, utilization
percentage, and electricity grid location.

3.1 Overview of the User Interface
Figure 2 shows the interface, which consists of four main sections:

1 Server Configurations – Users can configure CPU, DRAM,
SSD, and HDD of an existing server to compare it with an other
setup and assess its CO2 emissions relative to its own emissions.

2 Benchmark Settings – This section enables users to modify
the type of workload, the percentage of server utilization, and the
intensity of carbon of the grid based on the location of the server.

3 Break-Even Analysis – The break-even time is visualized on
a line chart, allowing users to assess the accumulated CO2 emissions
across different configurations.

4 Detailed Breakdown – Additional key data points, such as
break-even time, grid carbon intensity, embodied carbon of new
hardware, total carbon footprint until break-even, workload perfor-
mance indicator, and breakdowns of the embodied and operational
carbon footprint are provided to give further insights into each
comparison. These data points, along with the line chart, are dy-
namically updated to reflect any changes made to the parameters.

3.2 Summary of Adjustable Settings
Recognizing that database workloads vary significantly, the tool
provides four types of workloads to analyze CPU performance:

SPECrate – Measures multi-threaded performance, simulating
compute-intensive workloads [11].

SPECspeed – Evaluates single-threaded performance for gen-
eral purpose tasks such as data compression and text process-
ing [12].We use publicly availablemeasurements for both, SPECrate
and SPECspeed [11, 12].

Sorting – A common yet computationally challenging task that
is difficult to fully parallelize. A vector of four billion random integer
values (uint32_t, 16 GB) is generated, then the time to sort the
entire vector is measured (using libstdc++’s parallel std::sort).

TPC-H – Assesses analytical database performance by running
TPC-H workloads with a scale factor of 10 and 25 read-only query
streams on the open-source in-memory database system Hyrise [5].
We collect measurements for Sorting and TPC-H experimentally [2].

Further settings allow users to adjust howwell a server is utilized
and where it is located:
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Figure 2: The user interface of TCO2.

Server Utilization – Defined as the ratio of queries per second
to the maximum possible queries per second [2]. According to
the findings of Barroso and Hölzle [1], who monitored thousands
of Google servers over six months, servers typically operate at
between 10% and 50% of their maximum theoretical capacity rather
than being idle or running at peak levels [1].

Grid Carbon Intensity (GCI) – Plays a crucial role in predict-
ing the ecological impact of upgrading components. The carbon
intensity of a country’s power grid measures the CO2 emissions
per kilowatt-hour of electricity produced. Countries have orders of
magnitude different GCIs, e.g., Sweden (22 gCO2/kWh) and Poland
(787 gCO2/kWh) [6].

Lastly, scaling options are available to more accurately simulate
the changes in server utilization, emissions, or resources:

Utilization Scaling – Scales down utilization on the stronger
hardware proportionally to its performance gain to maintain equiv-
alent throughput.

Emissions Scaling – Scales up emissions on the weaker hard-
ware to reflect an N-for-1 server replacement.

Resource Scaling – Scales RAM, SSD, and HDD capacities in
proportion to the performance ratio.

3.3 Impact of Model Options
A key indicator of ecological efficiency improvements is the break-
even time — the period after which newer hardware provides envi-
ronmental benefits when accounting for its embodied carbon and
operational costs of preceding hardware [2].

The efficiency of upgrading a server depends on its carbon foot-
print and the workload performance compared to alternatives. Gen-
erally, newer CPUs outperform older ones, processing tasks more
quickly and reducing energy consumption. This leads to a smaller
operational carbon footprint (OCFCPU), and over time, energy sav-
ings can offset the embodied carbon produced during manufactur-
ing, making the upgrade ecologically viable.

Our model assumes that the performance ratio between cur-
rent and new CPUs reflects the efficiency gains from the upgrade.
We use performance measures such as queries per second and as-
sign performance indicators to each CPU based on workload types
(SPECrate, SPECspeed, Sorting, and TPC-H) to compute this ratio:

Ratio =
New performance indicator

Current performance indicator

Historically, new CPUs had significantly higher efficiency than pre-
vious generations and short break-even times. Recent CPUs often
scale performance with additional chip space and higher power
consumption, which results in longer break-even times. If new hard-
ware utilizes more power relative to the increase in performance, it
is less efficient and, therefore, there is never a break-even point.

Server utilization and grid location heavily impact the time frame
of efficient server upgrades. Increased server utilization reduces
the break-even time, as more compute is used per watt, improving
efficiency. In our model, the GCI is a constant multiplier on the
operational emissions of the servers [2]. This results in shorter
break-even points in countries with high carbon emissions as op-
posed to countries with less carbon-intensive energy sources.

5225



Changes to the DRAM, SSD, and HDD capacities have an impact
on the embodied and operational carbon.

4 DEMONSTRATION
TCO2 is an open-source client-side JavaScript web application
hosted on GitHub1. It loads all required data directly and computes
the break-even points and carbon footprint on the client side.

Our demonstration consists of two stages. First, we quantify
the embodied carbon of a single server and show the time in op-
eration necessary to offset it. We show the change in the results
across different carbon intensity zones and the impact of server
utilization. In the second stage, we compare the efficiency across
hardware generations. We analyze the performance improvements
across different workloads and quantify their impact on the servers’
carbon footprint (see Figure 2). In both stages, the attendees can
evaluate the hardware by configuring the CPU, memory (DRAM),
and storage (SSD & HDD) capacity.

Offsetting the embodied carbon of new hardware. In this
stage, we evaluate the embodied carbon footprint of a single server
with a 2019 Intel Xeon Platinum 8259CL CPU, 256 GB of RAM, and
1TB of SSD and HDD storage. We demonstrate the change of its car-
bon footprint based on the GCI in three European countries with dif-
ferent carbon intensities: a low GCI zone (Sweden–22 gCO2/kWh),
a medium GCI zone (UK–192 gCO2/kWh), and a high GCI zone
(Poland–787 gCO2/kWh). The break-even point extends by 4× from
Poland to the UK and by an additional 9× when moving the GCI
zone from the UK to Sweden.

Attendees can observe the duration difference of offsetting the
embodied carbon under varying server utilization (30%, 60%, 90%).
We observe that the higher the utilization, the lower the duration
until the embodied carbon has been offset. We observe a reduction
in the break-even duration from 12% to 15% with each utilization
increase from 30% to 60% and 90% across the three GCI zones.

Analyzing the efficiency across hardware generations. Each
new CPU generation comes with performance and efficiency im-
provements advertised by the vendors. The advertised improve-
ments are often high enough to justify the purchase of the next
hardware generation. We evaluate the improvements in the context
of several workloads, memory (DRAM) and storage (SSD & HDD)
upgrades, the carbon intensity of the data center where the new
server will operate, and the expected utilization.

The performance numbers of every new generation of CPUs
have been improving for additive workloads such as SPEC CPU
2017 Speed [12] and SPEC CPU 2017 Rate [11]. We observe that the
improvement factor between hardware generations decreases for
sorting and database workloads (TPC-H). We demonstrate this on
the 2017 Intel Xeon Platinum 8180 and 2023 Intel Xeon Platinum
8480CL. In a medium GCI zone (UK), we observe that the break-
even point takes significantly longer for the database (up to 3×)
and sorting (up to 7.2×) workloads.

Upgrading the memory and storage of a new server configura-
tion has a significant impact on its carbon footprint. Increasing
the DRAM capacity from 256 GB to 512 GB contributes to a 2.25×
increase in the duration of offsetting the embodied carbon. We ob-
serve an additional 25% increase when doubling the HDD capacity.

1TCO2 web interface available at https://hpides.github.io/TCO2/.

5 CONCLUSION
In this paper, we present TCO2, an interactive open-source tool for
calculating and analyzing the carbon footprint of database servers.
We focus on determining the ecological efficiency of replacing
existing servers with new hardware based on their embodied and
operational carbon footprint. We incorporate the impact of the
workload, local GCI, and the individual hardware components in
our model to calculate the overall carbon footprint of a server. TCO2
is open source and publicly available.

In future work, we will extend the model to cover more hardware
components and calculate operational and embodied carbon of full
server deployments as well as additional data center infrastructure.
Furthermore, we plan to incorporate changes in utilization for re-
placing a less powerful server with a larger server or consolidating
deployments with placing applications running on multiple servers
on fewer more powerful servers. Another important aspect for fu-
ture work is measuring and optimizing software-related emissions
from development, maintenance, and data transmission.
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