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ABSTRACT 
Automating index design has been an active area of research for 
decades due to the significant impact that indexes have on query 
performance and database efficiency. Existing approaches range 
from brute-force search to cost-based optimizations and, more 
recently, machine learning techniques. However, many suffer from 
high computational costs, reliance on inaccurate cost models, or the 
need for deep integration with database internals.   

  We introduce SQL:Trek, a time-efficient tool for automated index 
design that operates entirely as an external utility. SQL:Trek 
leverages query compiler cost models to identify effective indexes 
while mitigating false positives through execution on a lightweight 
simulation database. This approach enables fast, iterative index 
selection without modifying database internals, making it broadly 
applicable across relational databases, including most MySQLâ and 
PostgreSQLâ derivative databases. 

  Our evaluation demonstrates that SQL:Trek delivers significant 
query performance improvements while keeping index selection 
computationally efficient, with most workloads analyzed in under 
five minutes. Unlike many cost-based what-if analysis methods, 
SQL:Trek significantly improved performance of many production 
workloads while avoiding the majority of detrimental index 
recommendations caused by optimizer misestimates.  These results 
highlight SQL:Trek as a practical, scalable solution for automated 
index tuning in modern database environments.   
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1 INTRODUCTION 
Efficient query performance is fundamental to modern database 
systems, especially in large-scale enterprise and cloud-based 
environments where scalability and responsiveness are critical. 

Index selection plays a pivotal role in query optimization, 
significantly impacting execution times and overall system 
efficiency. The presence or absence of a key index can alter query 
performance by orders of magnitude. However, manual index 
tuning requires deep expertise in database technology, workload 
characteristics, and resource constraints, making it both intricate 
and resource-intensive. As databases scale and complexity 
increases, automated index design has become an essential strategy 
for enhancing performance while reducing administrative burden. 

  Indexes, as auxiliary data structures, accelerate query execution by 
enabling efficient data retrieval. Yet, identifying an optimal index 
set is challenging due to trade-offs among query performance, 
maintenance costs, and storage overhead. Effective index selection 
hinges on workload characteristics—such as query frequency, join 
patterns, and filtering conditions—since suboptimal configurations 
can degrade performance, inflating latency and resource use. 
Notably, well-designed indexes can yield order of magnitude query 
latency improvements. 

  The problem of automated index design is inherently complex, 
driven by a vast search space and computational intricacy. For T 
tables, each with N indexable columns, the number of possible 
multi-column index designs is given by: !!!"#$ !!(!'""!#)                                                                            (1) 

  For instance, with N = 10 and T = 12, this yields approximately 1084 
possibilities—surpassing the estimated number of atoms in the 
observable universe (~1080). Practical heuristics, such as restricting 
candidates to query-referenced columns or prioritizing selectivity, 
mitigate this explosion, yet the core challenge remains NP-hard. 
Determining an optimal index subset that minimizes execution time 
while balancing storage and update costs requires combinatorial 
evaluation, cost estimation, and performance simulation. Moreover, 
dynamic workloads necessitate adaptive strategies to refine index 
recommendations continuously. 

  Traditional index selection relies on heuristics and query optimizer 
insights, while recent advances employ machine learning and 
reinforcement learning to predict index utility and scale decision-
making. Cloud-based databases introduce additional complexities, 
including multi-tenancy, resource limits, and heterogeneous 
workloads, amplifying the need for robust automation. At Airbnbâ 
we manage hundreds of databases and tens of thousands of queries, 
rendering manual design impractical. Indexes also incur storage and 
runtime overhead, necessitating a system-wide approach rather 
than query-specific optimization. 

  Addressing these challenges demands innovative algorithms, 
scalable optimization, and adaptive learning models. Our work at 
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Airbnb with multiple relational database engines underscores 
specific requirements: a cross-engine solution, which in turn 
requires minimal internal database modifications; resilience to cost-
model inaccuracies; and rapid, low-cost execution. With databases 
where index creation on large tables spans days, trial-based 
evaluation becomes infeasible, further emphasizing the need for 
efficient automation. 

 

1.2  Our contributions 
SQL:Trek makes several contributions to the area of automated 
index design.   

   First, practically, we created the solution entirely outside of the 
database engine, as a viable utility for the majority of MySQL [23] 
and PostgreSQL [26] derived databases. This covers a huge swath of 
database products in the market today such as MySQL, PostgreSQL, 
Amazon Auroraâ [1], TiDBâ [25], AlloyDBâ [13], CockroachDBâ 
[7], MariaDBâ [20], EnterpriseDBâ [11] etc. Although we haven’t 
tested SQL:Trek on all of these systems, we have tested it on 
MySQL, Amazon Aurora, PostgreSQL and TiDB with good success.  

  Second, SQL:Trek is designed to minimize the false positives that 
result in indexes being recommended that are of minimal or 
negative consequence to the workload. While SQL:Trek does not 
provide a guarantee of no false positives, in our testing we have 
found the presence of false positives to be extremely low. This is a 
large improvement over the what-if analysis approaches that 
leverage SQL cost models to select indexes. To be explicit, SQL:Trek 
aims to dramatically reduce the recommendation of indexes with 
negative value, not simply detect and remove them after they are 
deployed into production.    

  Third, SQLTrek offers time-efficient processing, enabling analysis 
of large, production-class databases and generation of solutions—
including the necessary CREATE INDEX DDL—typically in under 
20 minutes for OLTP workloads. While this is certainly slower than 
the cost-model-only what-if approaches that use virtual indexes 
(indexes without data), it is adequate for our operational needs 
because it is fast enough that the workload analysis can be executed 
daily, or even a few times per day per database cluster if needed. 
This is also a large improvement over approaches that evaluate 
candidate indexes on a full-scale copy of the database. Such 
strategies are impractical for evaluating a large set of potential 
candidate indexes, especially when the source database is tens of 
terabytes per node. Creating a single index on a 10+ TB database 
can take several hours on current systems, making it infeasible to 
evaluate dozens of new indexes across hundreds of databases. While 
many index recommenders are time-efficient—often more so than 
SQL:Trek—they typically cannot achieve this efficiency while also 
maintaining a low false-positive rate.   

2 BACKGROUND ON AUTOMATED INDEX 
DESIGN 

We summarize highlights from several influential papers that have 
shaped industry approaches to automated index recommendation. 

  Index selection is a critical aspect of physical database design, 
significantly impacting query performance. Over the years, 
researchers have developed various methodologies for automated 

index selection, ranging from early heuristic approaches to modern 
AI-driven techniques. 

  Finkelstein et al. [12] present one of the earliest formalizations of 
physical database design, emphasizing heuristic and cost-based 
approaches to index selection. They highlight the trade-offs between 
query performance and storage constraints, laying the foundation 
for subsequent research in automated index design. 

  Chaudhuri and Narasayya [5] introduce a cost-driven index 
selection tool for Microsoft SQL Serverâ, leveraging a query 
optimizer to estimate the benefits of potential indexes. Their work 
establishes a systematic method for index recommendation, 
integrating workload analysis to guide index selection.   

  Valentin et al. [29] propose DB2 Advisor, an index 
recommendation system that leverages the DB2â query optimizer 
both for designing the candidate indexes as well as determining 
their potential benefit to the workload. Notably, the query compiler 
itself is used to detect columns of interest and generate candidate 
virtual indexes for consideration. In this architecture the SQL 
compiler is expanded to both design the virtual indexes and evaluate 
them. DB2 Advisor leverages optimizer feedback to iteratively 
refine index choices. This work demonstrates the effectiveness of 
integrating index selection into database query optimization 
processes. The approach builds on the strategies in [5, 12] using 
what-if analysis with the SQL cost model but extends this by having 
the SQL compiler generate the what-if candidates for evaluation.  

  A key insight of these early papers was to recognize that the SQL 
compiler is the deciding factor in whether an index will be utilized 
for any SQL query. Ultimately, if an index is not selected by the SQL 
compiler, then it is useless. Consequently, the SQL cost model is an 
invaluable tool in modeling the value of a potential index.  

  Lightstone and Bhattacharjee [18] extend automated index 
selection to multidimensional clustering tables. Their approach 
considers complex data distributions and query patterns, optimizing 
clustering strategies alongside index structures. This research is 
particularly relevant for high-dimensional analytical workloads. 
Notably, this work includes the use of data sampling in the process 
of automated physical design. While the paper thematically builds 
on the work of Valentine et al [29], leveraging the SQL compiler to 
generate candidate designs and the cost model to assess what-if 
scenarios—it further extends these ideas by introducing data 
sampling to reasonably estimate the cardinality of cells resulting 
from clustering multiple attributes simultaneously.  This 
dynamically produces cardinality insights across columns that are 
not normally available in the system catalogs.   

  Chaudhuri and Narasayya [6] describe the Database Engine 
Tuning Advisor (DTA) used in SQL Server as of 2020. Their 
algorithm has several notable attributes, in particular a merge phase 
that allows indexes initially tuned for specific queries to be merged 
(subsumed) in order to produce a final recommendation for the 
database that provides a global optimum rather than a collection of 
local optimizations per query. This is achieved by pair-wise 
comparisons of indexes with the same leading keys, and retaining 
the index with the higher individual benefit if it is a superset of the 
keys of its pair.  

  Das et al. [8] shift the focus to large-scale cloud environments, 
proposing an automated index selection framework for Microsoft 
Azure SQL Database. Their system scales to millions of databases, 
utilizing machine learning and reinforcement learning techniques 
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to continuously adapt index recommendations based on evolving 
workloads. This paper reports the inaccuracy of the what-if 
modeling based on SQL cost model estimates, drawing on known 
literature regarding the inaccuracy and pitfalls of SQL compiler cost 
models  [10, 16, 19], as well as reporting their own finding on the 
false positives in automated index design that depends on these 
estimates. Das et al. report a false positive rate of 11%, meaning that 
up to 11% of new indexes recommended by the autoindexing 
technology caused query regression. Their approach detects such 
false positives and actively removes them from the system.    

  The idea of leveraging the SQL compiler cost model for physical 
design was extended to other database design automation problems 
such as data clustering, table partitioning, and materialized views  
[3, 4, 18, 31], demonstrating its wide applicability. 

  Yadav et al. [30] present AIM, a practical automated index 
management framework for SQL databases at Meta (Facebook).  
Their approach emphasizes practicality and real-world deployment 
challenges, ensuring index recommendations remain optimal over 
time. Unlike the previous approaches that were based on what-if 
modeling of candidate indexes that are evaluated by the SQL 
compiler cost model, Yada et al create clones of the databases under 
study, and physically evaluate candidate indexes in the cloned 
environment. This has the advantage that the index selection is not 
primarily dependent on the SQL compiler’s cost model, but actually 
evaluated for their impact under load.  The probability of false 
positives is dramatically reduced as a result.   However, the 
implementation is costly since it requires a clone of the entire 
database under study.  

  The recursive strategy used in the paper by Schlosser et al [27] 
efficiently tackles multi-attribute index selection by breaking it into 
smaller subproblems, avoiding the infeasible task of evaluating all 
index combinations. It starts with all candidate indexes, recursively 
selecting subsets while assessing the cost reduction of adding each 
index, considering only beneficial ones. Unlike greedy methods, it 
accounts for index dependencies, avoiding early pruning of useful 
options. Intelligent pruning and heuristics eliminate unpromising 
combinations, enhancing scalability for workloads with many tables 
and attributes. This enables fast convergence to a high-quality index 
set without brute-force overhead. 

  Several papers have explored applying AI/machine learning 
methods to the problem of automated index design [17, 22, 32]. 
These have focused mostly on reinforcement learning and genetic 
algorithms. While effective in their results, they require large 
numbers of training measurements (tens of thousands, or more) that 
make them currently impractical for industrial use at Airbnb.  

  Ding et al. [10] grapples specifically with the problem of SQL 
compiler optimizer misestimates leading to damaging index 
recommendations. They create an ML classifier that takes as input 
two query execution plans for the same query and predicts which 
will run longer. The classifier is used to compare the original plan 
without the newly recommended indexes and the one that includes 
them. This serves as a second model (in addition to the SQL 
compiler costing) for whether the recommended indexes will 
regress some queries. While it greatly helps to reduce the probability 
of recommending indexes that regress any single query, it has the 
consequence of rejecting index recommendations that regress one 
or more queries but have a strong net positive value on the workload 
by improving other queries.  

  These papers collectively illustrate the evolution of automated 
index selection, transitioning from rule-based heuristics to machine 
learning-driven systems capable of handling large-scale, dynamic 
workloads. Future advancements in this domain are expected to 
further enhance efficiency through AI-driven optimizations [32] 
and cloud-native database architectures. 

3 DESIGN  
We present the design objectives, guiding principles, and practical 
design constraints of SQL:Trek, as well as both the high-level 
architecture and detailed design specifications. 

 

3.1 Objectives 

Index Selection Optimization Problem 

The problem of finding an optimal set of indexes C* to minimize the 
execution time of a workload W can be formulated as follows: 

Given: 

1) A workload ∑ = {#$, #*, … , #+} 
2) (𝑊(#,=)) is the execution time of a query qi when using 

index configuration C. 

3) (𝑊(∑,=) = !,#. 𝑊(#,=)) is the total execution time 
of the workload under configuration C. 

4) Cinit is the initial set of pre-existing indexes 
5) C’ is the set of new candidate indexes 
6) Csub is a subset of the candidate indexes.  
7) C* is the final recommended index configuration 
8) s is the storage required for an individual index 

recommendation. 
9) Smax is the storage constraint for a new index 

configuration.  

We define an optimization goal to find the optimal index 
configuration C* such that: 

	               
subject to: 

 

Complexity and Constraints 

This problem is NP-hard, meaning that finding the exact optimal 
solution requires exhaustive evaluation of all possible index 
configurations. Our goal is to minimize the total execution time of 
the workload while ensuring that the storage cost of the selected 
indexes does not exceed the given storage budget. We also aim to 
avoid selecting indexes that provide little to no benefit, or cause 
workloads to regress.  

(2) 
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Execution Time Constraint: Since index recommendations are 
needed periodically (but not continuously), the average analysis 
time Ta must be kept under a reasonable limit. At Airbnb, where we 
manage hundreds of SQL databases, we require: 𝑊/ { 60𝑞,…}(𝑇𝐶)𝑞𝑞
  This ensures timely recommendations without excessive 
computational overhead. Practically, this means that the index 
recommender is fast enough that if desired it can be run daily for 
each database cluster in our fleet with minimal infrastructure 
overhead.  

 

3.2  SQL:Trek design principles 
1) Performance of the index recommender process. Index 

design should be periodically reevaluated to adapt to 
evolving query patterns, as well as changes in data 
volume and distribution. Frequent reassessment, such as 
multiple times daily, is typically unnecessary, as index 
configurations rarely require such rapid adjustments. A 
re-evaluation process completed within 60 minutes is 
adequate for our needs at Airbnb, enabling the analysis of 
dozens of databases per day on a single evaluation server. 

2) SQL compiler costing of candidate indexes.  Since the 
SQL compiler will select from existing indexes at query 
compile time during production operation of the database, 
only indexes that are chosen by the compiler are valuable 
to a database. It is a necessary design point that the SQL 
compiler must select the indexes for recommendation.   

3) Minimize false positives. Modern database cost models 
are often inaccurate, leading to false positive index 
recommendations and potential deployment of poor 
designs. We address this by evaluating candidate indexes 
on representative data samples rather than relying solely 
on cost estimates. The sample must be sufficient to 
provide confidence in two key aspects: whether an index 
is useful, and its relative utility compared to other 
candidates. While data sampling introduces distortions in 
data size and distribution that make samples imperfectly 
representative of production databases, our approach is 
based on two core hypotheses: first, that optimizer 
estimates combined with actual runtime measurements 
on sampled data can provide stronger signals of index 
efficacy than cost estimates alone for most OLTP queries; 
second, that these measurements can help identify many 
indexes that would negatively impact the production 
database. 

4) No database internal changes. The entire design 
process, from start to finish, must be possible without the 
need to modify database internals. This is necessary, as 
we have no access to database internals for some of the 
databases we use at Airbnb.  

5) Simulation quality. We make use of a simulation 
database that clones a sample of data. Using a sample is 
fraught with problems, changing the cardinality of data, 
the IO, the relative size of tables that will be joined (even 
though the sample rate is the same for all tables, we 

impose a min and max sample which changes the 
effective sample for many tables.). If the goal was to 
achieve an exact emulation of the system, then any 
sample would be problematic. Our approach is to create a 
“good enough” emulation that the recommended indexes 
will be high quality when applied to the production 
environment. We do not require perfection for this; in 
fact, we are deliberately accepting a compromised 
approach.  

6) Covering indexes as an anti-pattern. A covering index 
is a secondary index that includes all the columns of a 
table that are referenced by a specific query. It has the 
benefit that the query can be fully answered by 
examining data in the index alone, and a lookup into the 
table data is not needed.  While covering indexes provide 
maximum performance potential for a particular query, 
they are often specialized to the query, and therefore 
provide lower utility to the overall workload. Second, 
because they include all reference columns for the query 
against a table, they tend (on average) to be wide, and 
therefore require more storage and are maintenance 
intensive. For the initial implementation of SQL:Trek 
described here, we consider covering indexes with 
reference columns as an anti-pattern. This is purely a 
simplifying assumption, as there are common cases where 
such indexes are excellent choices. Reference columns 
therefore are explicitly not included in our index designs 
in this initial version, though we may relax this in the 
future.   To illustrate this concern, consider a sales table 
with five columns {sale_id, product_id, 
customer_id, sale_date, amount}. The 
following query accesses all five with additional 
predicates on just product_id. It would be tempting 
to create a covering index that includes all of these 
columns, with product_id as the leading key part. 
However, doing so would double the size of the table 
storage with this one index, and double the write cost due 
to index maintenance. An index defined on just the 
predicate column likely provides most of the performance 
benefit at a fraction of the storage and maintenance 
overhead. 

SELECT sale_id, product_id, 
customer_id, sale_date, amount  
FROM sales 
WHERE product_id = 42;      

 

3.3  Practical design constraints 
Airbnb makes extensive use of MySQL-derived databases [23]. 
These systems commonly constrain the number of secondary 
indexes per table to 64.  As a result, not only is the recommendation 
of new indexes constrained to a maximum of 64 (less the number of 
pre-existing indexes) per table, but at no point in the design 
exploration can more than 64 indexes be defined on a single table at 
one time—even for what-if analysis by the query compiler. This is 
sufficient for performing an exhaustive search of column 
combinations for up to 6 indexable columns per table. 

  While it may be possible to modify the MySQL open source to 
relax this constraint, doing so is not practical for the cloud services 
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we utilize, and would violate our design objective of avoiding 
changes to database internals.  Therefore, our solution operates 
within this constraint and we have been able to achieve good results 
despite this limitation.  

  PostgreSQL based systems do not have this constraint, and when 
running SQL:Trek in these environments we relax the upper bound 
on candidates per table to 256, which is sufficient for performing an 
exhaustive search of column combinations for up to 8 indexable 
columns per table. We still prefer a constraint in order to limit the 
search space since it strongly affects the execution time.  

 

3.4  High-level design 
Much like the solutions used in Chaudhuri [5], Valentin [29] and 
Lightstone [18], SQL:Trek creates a large number of candidate 
indexes for “what-if” exploration by the query compiler and relies 
on the SQL compiler’s costing to detect which of these indexes are 
optimal. However, unlike these approaches, SQL:Trek creates these 
candidates indexes on a simulation database, not in a virtual catalog. 
SQL:Trek creates a pool of new candidate indexes for consideration 
C’ known as the Candidate Pool.  After the costing process has 
selected a subset of new indexes and unreferenced indexes are 
removed from the simulation, the query workload is executed on 
the simulation database to estimate the relative benefit of these 
indexes. Indexes observed to have minimal or negative impact when 
queries are run on the simulation are removed from the Candidate 
Pool. The query workload is rerun in the simulation environment 
until a stable solution is derived where all of the recommended new 
indexes provide clear value, resulting in the Winners Pool C* that is 
the union of the initial pre-existing indexes Cinit and the surviving 
remaining indexes from C’.  Figure 1 illustrates the main elements 
of this architecture. 

  The simulation database is populated with a sample of the source 
databases, up to a maximum data size. For our implementation we 
have used a 5% sample, with a minimum of 20K rows per table, and 
a maximum of 1M rows per table as the constraints.  The principle 
behind these choices is that we want the simulation to have enough 
data to reasonably model the benefit of new secondary indexes, but 
not be so large that the simulation will take a long time to populate. 
The choice of sampling parameters generally results in a simulation 
database that is modestly sized, allowing for dozens of candidate 
indexes to be created in seconds.  

  What-if analysis is the process of presenting candidate indexes to 
the SQL compiler and allowing the compilation process to assess the 
potential benefit of these indexes. We perform this what-if analysis 
by creating candidate indexes on the simulation database and using 
EXPLAIN to detect whether the cost model chooses any of the 
candidate indexes. Unlike prior art that uses virtual indexes to 
perform this what-if analysis, where the indexes exist in definition 
only and are not populated, our approach uses materialized indexes.  
Having real indexes has two critical advantages. First, it allows us 
to use the database management system without code modification, 
since most commercially available database systems do not 
currently support creating virtual indexes. PostgreSQL is a notable 
exception, and we could special-case SQL:Trek for PostgreSQL to 
use virtual indexes in this step—an optimization we have not yet 
implemented. Second, after indexes are selected by the cost model, 
we are able to evaluate their impact by actually executing queries 
with the new indexes on the simulation database. Because the 

candidate indexes are created on a small simulation database which 
is created on a separate server, the index creation process is fast, and 
does not interfere with production workloads at all. The storage 
space required, even for dozens of indexes, is small since the entire 
simulation database is by design created from a small sample.  

  Notably, we make use of EXPLAIN to detect whether a candidate 
index is selected by the query optimizer, but we do not make use of 
any compiler costing data beyond this. SQL:Trek is informed by 
EXPLAIN whether an index is optimal for a query, but the relative 
merit of indexes is modeled entirely based on the query 
improvement observed when running queries on the simulation 
database.        

 
Figure 1: SQL:Trek at a glance. 

 

3.5   Design details 
The proposed method provides an automated approach for index 
selection in SQL databases based on workload analysis. The user 
supplies the database name, credentials, and a set of SQL queries for 
assessment. The queries can be provided either by an input text file, 
or optionally (on MySQL) retrieved from the database’s query 
history. Additionally, the user may specify a storage constraint for 
the total space allocated to indexes as a percentage of the table size. 
If no constraint is provided, the system defaults to allowing 
unlimited indexes.  
      
The index design follows eleven steps.  
      
Step 1: SQL Workload Analysis 
      
The system parses the SQL workload to identify which columns are 
used in operations such as: 

1) Equality comparisons and IN-list conditions 
2) Order by 
3) Joins 
4) Distinct 
5) Inequality, between and like  
6) Grouping and aggregation 

  Since direct access to database internals is not assumed, an open-
source MySQL and PostgreSQL compatible SQL parser is used. After 
evaluating JSQLParser [15] and Apache Calcite SQL [2], we chose 
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Calcite for its robustness and extensibility. We found multiple query 
patterns that were simpler to handle with Calcite, including 
subqueries, expressions with brackets, etc.  
 

Step 2: Cloning the Database Schema 
A temporary simulation database is created by cloning the schema, 
including all table definitions that are referenced in the SQL 
workload. Existing secondary index definitions are also replicated. 
Constraints, including foreign keys, uniqueness, cascade, etc., are 
also cloned. At this stage, data is not cloned – the tables and indexes 
are empty. 

 

Step 3: Candidate Index Design 
Starting with the database configuration C, which includes an initial 
set of indexes designed by human experts, SQL:Trek designs a larger 
domain of additional indexes C’, known as the Candidate Pool 
(described in more detail in section 3.6). For each table referenced in 
the workload the system generates a candidate index design based 
on column usage patterns. Higher priority is given to columns 
involved in highly selective operations (equality predicates), 
followed by those used in less selective operations. The index 
designs in the Candidate Pool are shown in Figure 1 by the icons {

, , }. 

 

Step 4: Data Sampling 
To reduce computational overhead, a sample of the data is extracted 
from the source database. The sampling strategy involves selecting 
5% of the data, with a minimum sample of 20,000 rows and a cap of 
1 million rows per table. This range was chosen in order to keep the 
simulation database size modest, regardless of the size of the source 
database.  This is dense enough to surface the relative CPU and IO 
effects of new indexes and provide some insight on how they may 
benefit the production system. 5% is the default, and the sampling 
rate is configurable.  

  The use of real data has the consequence that data distribution and 
range will generally follow that of data in the source database both 
for the column data as well as the correlation of data between 
columns and between tables. Sampling data from base tables can 
alter the underlying data distributions and introduce inaccuracies in 
SQL optimizer cost estimates and the physical response of the 
simulation. This, in turn, reduces the fidelity with which the 
simulation populated with a sample reflects the behavior of the 
complete database. Nonetheless, certain performance trends 
generally persist—for example, highly selective index lookups tend 
to be more efficient than full table scans, and implicit ordering via 
indexes is typically faster than explicit sorting. While the resulting 
costing and performance estimates may be imperfect, the use of real 
(albeit partial) data often offers a better method for detecting 
negative indexes than cost model alone with comprehensive stats, 
as our experimental results illustrate. 

      

Step 5: Establishing a Performance Baseline 
The SQL workload is executed against the simulation database to 
measure baseline query performance before any indexing 
modifications.  

      

Step 6: Creating Candidate Indexes 
Candidate indexes in C’ generated in Step 2 are physically created 
on the simulation database.  

      

Step 7: Index Evaluation with EXPLAIN 
Rather than executing queries, the system compiles the workload 
using the EXPLAIN statement to determine which candidate 
indexes the SQL optimizer considers beneficial.  The use of 
EXPLAIN injects the cost model into the selection process. A large 
number of candidates may be include in C’, from which the SQL 
compiler will assess the benefits of these candidates to individual 
queries.  Ideally this step would be performed entirely with virtual 
indexes (indexes that exist in the catalog space, but are not 
materialized), but since that is not widely available in MySQL, we 
use actual indexes on the simulation database. The key purpose of 
this step is to leverage the SQL compiler’s cost model to identify 
which indexes in C’ are useful to the workload based entirely on 
SQL compiler costing.  Note, at this point we are only concerned 
with a decision on whether each index is useful or not, and we do 
not use the cost model to assess “how much” benefit each index may 
provide.  

      

Step 8: Filtering Unused Candidate Indexes 
Indexes that are not selected by EXPLAIN for any queries in the 
workload are physically dropped from the simulation. This typically 
prunes the majority of candidates from consideration (more than 
80%). These are the index candidates shown in Figure 1 with the 
icon .  

 

Step 9: Performance Evaluation with New Indexes in Simulation 
The remaining candidate indexes were each selected for use by 
EXPLAIN for at least one query in the workload. The SQL workload 
is re-executed in the simulation database to measure performance 
changes per query with the new indexes. The purpose of this step is 
to quantify the relative benefit with higher confidence than the cost 
model alone would allow.  

  The speedup or regression of each SQL query is attributed to each 
new index referenced by the query. The total benefit (which may be 
negative) for an index is the sum of all gains and losses from all 
queries that reference it.  

  Running a physical measurement, even on a sample, allows us to 
identify and subsequently remove indexes with minimal or negative 
impact. Execution of these queries in the simulation has a large 
advantage over cost modeling alone, since the cost model is based 
on table statistics, which generally exclude correlation modeling 
between columns and across tables. Similarly, the cost model can 
estimate physical resource usage (CPU, IO latency, etc.) while the 
simulation run provides an actual observation.       

      

Step 10: Iterative Index Refinement 
Indexes that provide minimal or negative performance 
improvements are removed, and the workload is reevaluated since 
the removal of some indexes may significantly impact the value and 
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usage of the remaining indexes. These indexes are shown in Figure 
1 as . The process is repeated until only beneficial indexes 
remain. We use the following criteria for this detection:  

1) Recommended indexes should provide at least 10% 
performance benefit in the simulation environment to at 
least one query.  

2) Recommended indexes should have a net positive impact 
on the entire workload.  

 

Step 11: Optimized Index Selection for Storage Constraints 
Using the Knapsack Approach 
If a storage constraint is defined, the system applies a knapsack-
based optimization to select the most valuable indexes while staying 
within the allowed storage limit. Each candidate index is evaluated 
based on: 

1) Benefit: Improvement in query performance (measured in 
workload execution time saved). 

2) Cost: Storage space required for the index. 

  The selection process follows the 0/1 knapsack model, where the 
goal is to maximize total performance gain without exceeding the 
available storage budget. The system prioritizes indexes that 
provide the highest performance-per-byte ratio, defined as: :!0#1! ≤0600𝑞                                                                          (3) 

Subject to  !0#1! )060 { 	                            60 𝑚 {0,1}, 𝑞 𝑖… 𝑚 =2 𝑞
Where: 

• C’ is the set of candidate indexes remaining in the 
Candidate Pool at the start of the knapsack algorithm. 

• pi is the performance gain of index i. 
• si is the storage cost of index i. 
• S is the total available storage budget. 
• xi is a binary decision variable (1 if the index is selected, 0 

otherwise). 

The system prioritizes indexes based on their performance-per-byte 
ratio: 

                                                                                          
       
  Using a greedy approximation, the system determines the optimal 
set of indexes to retain, ensuring the best possible query 
performance within the given storage constraints. After removing 
indexes from C’ that cause workload regression or have minimal 
value, and then applying the knapsack algorithm to select the 
highest value remaining candidate indexes, the final 
recommendation C* is produced, known as the Winners Pool.  

  This approach provides a systematic, automated method for 
optimizing database indexing based on workload characteristics and 

storage constraints. By leveraging query optimizer feedback and 
iteratively refining index selection, the system ensures performance 
gains without unnecessary index bloat. 

 

3.6  Index candidate design 
The processing of designing new indexes for the Candidate Pool 
begins with parsing each query in the workload using the Calcite 
parser. Calcite builds an abstract syntax tree (AST) that represents 
the hierarchical structure of the SQL query. The AST can then be 
searched to produce the list of columns in each table referenced by 
the query, and what indexable purpose they were used for, such as 
equality, in-list, inequality, between, group by, order by, distinct, 
join, etc. Due to the strict limitations on MySQL that constrain 
secondary indexes to a maximum of 64 per table, we use an 
approach for exploring the space that caps the number of candidate 
indexes. Since the number of combinations of columns explodes 
exponentially, it was necessary to apply heuristics to ensure good 
coverage of the search space without exceeding this narrow limit.  
We use an approach similar to Valentin’s SAEFIS model [29] that 
organizes columns of interest (columns that may be beneficial to 
index) into categories such as equality, inequality and range, order 
by, distinct, etc.  Candidates are designed by selecting all strict 
subsets of these categories in priority sequence, i.e. all single column 
combinations, followed by all two column combinations, etc. until 
the constraint is reached.  The categories are defined as follows:  

1) EQ: columns used in equality predicates, and in-lists 
2) ORDER: columns used in order by 
3) JOIN: columns used in joins 
4) DISTINCT: columns used in distinct and count distinct 
5) RANGE: columns used in inequalities, range (between), 

and like 
6) GROUP: columns used in group by 

  If a column appears in multiple categories, it is retained 
exclusively in the first category and removed from the others in 
order to limit the search space.  

  To illustrate the process, consider a table with columns c1 
through c5 that appear as columns of interest within a workload as 
follows:  

1) EQ: c2, c4 
2) ORDER: c5 
3) JOIN: c1 
4) DISTINCT: none 
5) RANGE: c2, c3 
6) GROUP: c4 

  Columns in the EQ category are sorted into decreasing order of 
cardinality, which is determined by sampling. The columns are then 
serialized into a list, without duplication. This starts with the EQ 
category and proceeds in sequence to GROUP. This results in the 
following list for our example:  
 
{c2, c4, c5, c1, c3}  
 
  Note that c2 and c4 appear in multiple categories but they are 
placed in the list once without duplication.  Next, all strict subsets 
of the list are created, defining possible indexes, starting with single 

(4) 
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column indexes, and proceeding to two and then three columns, etc. 
This produces the following 30 candidate indexes for our example:  

 

  All of these indexes are considered during the evaluation, up to the 
limit of the secondary indexes constraint (64 for MySQL and 256 for 
PostgreSQL).  

  Our solution currently excludes reference columns from the select 
list when designing indexes, focusing only on columns used in 
predicates, grouping, and sorting. While covering indexes that 
include all query columns can provide secondary benefits, the most 
significant performance gains come from indexing filtering and 
sorting columns. This approach substantially reduces the search 
space and enables efficient batch creation of candidate index 
definitions for optimizer evaluation. We may relax this in future 
versions of SQL:Trek.  

 

3.7  Denoising index evaluation 
After selecting initial candidates using what-if analysis that 
leverages that SQL compiler’s cost model, we evaluate the relative 
benefit of indexes by executing them on a simulation environment. 
Unlike the cost model, which is purely mathematical, the simulation 
environment is a real functional system subject to run-to-run 
variance. We found the variance to be significant especially for 
short-running queries where fractions of a second may represent a 
high percentage of the total query runtime. This is important for our 
environment at Airbnb, where many of the SQL workloads in our 
online service path are OLTP workloads. To improve the stability of 
the evaluation, we ran all short running queries (<=2s) 9 times and 
long running queries (>2s) 5 times, using the median response time 
as representative.  Second, we rounded all query execution times to 
the nearest 1/20th of a millisecond.  

 

3.8  Additional features 
We implemented the following options on the utility that have been 
helpful: 

1) Simulation reuse. Since populating the simulation 
database is the single most time-consuming step in the 
process (see section 4.3), we created an option to reuse the 
simulation database from prior runs, which allows 
experiments to be run on multiple query sets in a fraction 
of the time.  

2) Sampling rate. The sampling rate, as well as a max 
sample size constraint, can be defined as input 
parameters.  

3) Storage constraint. The storage constraint for indexes 
can be defined on input as a % of data size.  

4) Query frequency. The frequency of query execution is 
optionally modeled, so that the benefit of an index is 
scaled by the number of times its associated query runs. 
For example, an index that speeds up query #1 by 0.5ms 
and is executed 10 times in the workload is considered 
equally valuable as an index that accelerates query #2 by 
5ms but is executed only once.  

5) Workload analysis. SQL:Trek also provides a workload 
analysis mode that reports on the characteristics of the 
database under study, including size, top tables, DDL 
features such as number and size of tables and indexes. It 
further details the size and cardinality of the largest 
tables, as well as the use of specific features such as 
autoincrement columns, enums, BLOBs, UDFs, and 
triggers. SQL query patterns are reported such as the 
frequency of GROUP BY, joins, distinct, scalar functions, 
UNION, etc. and many other attributes. This has been 
useful in helping us understand the usage patterns of 
workloads across the company, as well as in detecting 
anti-patterns in our SQL workloads.  For example, from 
this feature we were able to detect several cases where 
applications were pushing complex business logic or very 
large joins into SQL that are anti-patterns for our OLTP 
applications at Airbnb.   

4   EXPERIMENTAL RESULTS      
Here we present our results on 120 databases, each comprising 
several queries and organized into three suites, as summarized in 
Table 1. Each database represents a distinct workload. 

   Databases in the Product Serving group are used by the Airbnb 
site directly. They are in the code path of the online user experience.  
These are the most sensitive and highly tuned databases in the 
company.  Because of Airbnb’s business as a consumer-consumer 
workflow, many queries in these workloads are simple point 
lookups and range queries. The rate of complex SQL expressions 
involving grouping, joins, distinct, case, etc. is much lower than the 
other workload categories. Less than 1/3 of workloads in this 
category have a single query with any of join, group by or distinct.            

  Databases in the Internal Use category are production databases at 
Airbnb outside the product workflow. These databases are not 
accessed by the online user experience. On average these workloads 
have more complex SQL, with a higher rate of complex language 
elements. Half of the workloads in this category have queries with 
join, group by or distinct.       

  Finally, the SQL:Trek Test DB is a test suite of 18 queries hand-
crafted on top of a TPCC schema [28]. These queries are designed 
to cover a broad range of the query patterns across the company. 
This represents a more varied query set than any individual 
production query workload typically expresses.  Queries in this set 
range from simple point lookups and in-lists, to more complex 
queries with joins, unions, grouping, subqueries, scalar functions, 
date-time math, etc.     
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Table 1: Three categories of test workloads. 

Category Number of databases Number of 
queries 

Product 
Serving DBs 

47 1728 

Internal Use 
DBs 

72 958 

SQL:Trek 
Test DB 

1 18 

      

4.1  Initial testing with the SQL:Trek Test DB 
Initial testing and refinement of SQL:Trek was performed using 
BenchBase [9] with standard TPCC queries. We then replaced the 
TPCC queries with increasingly complex queries over time to 
ensure the index recommendation analysis could handle additional 
SQL language complexity, including in-lists, inequality predicates, 
range predicates (i.e. between), like, joins, unions, subselects, scalar 
functions, grouping and aggregation, distinct and ordering. The 
system under test included a 10GB TPCC database created using the 
BenchBase tooling, and Macbook Pro with 64GB RAM and M1 CPU.   

  Figure 2 shows the query performance improvement in the 
simulation environment. However, because the simulation is based 
on a sample of data, the benefits are generally higher when applied 
to the production environment. When we compared the estimated 
benefits of new indexes that SQL:Trek produces, which are based on 
evaluations run against the simulation database, against the same 
indexes and queries run against the full source database, we found 
the benefit were generally equivalent or greater on the full database 
environment. We found no cases of bad indexes being 
recommended. SQL:Trek pruned 11% of indexes that were identified 
in the what-if phase of the processing, meaning that indexes that 
appeared beneficial to the  SQL cost model were found during the 
evaluation on the simulation database to be either not beneficial or 
to cause a workload regression. This is similar to the false-positive 
rate reported by Das [8].     

  After reporting the performance improvement seen in the 
simulation, SQL:Trek lists the CREATE INDEX DDL for the 
recommended indexes. For the example in Figure 2, this included 8 
new indexes.   

   The performance of the queries on the full database, before and 
after applying the recommended indexes, is shown in Table 2. The 
absolute improvement of some queries is many times higher than 
what was achieved in the simulation run, usually because a scan 
became a point lookup; the former costs much more on the full 
database, while the latter is near constant time.  The total execution 
time for all queries when applying the new index design improved 
by a factor of 6.6x. As expected, the recommendations from 
SQL:Trek did not provide accurate predictions of performance 
improvement, but were very successful in predicting which indexes 
would be highly beneficial.  

 
Figure 2: Results from a SQL:Trek test run. 

 

 

Table 2: Individual query improvement for the SQL:Trek Test 
DB. 

Query Baseline 
(ms) 

With new indexes 
(ms) 

Speedup 

1 0.05 0.05 1.0x 
2 1343.80 0.10 13438.0x 
3 2411.65 27.75 86.9x 
4 497.25 7.55 65.9x 
5 0.20 0.05 4.0x 
6 0.15 0.05 3.0x 
7 0.50 0.45 1.1x 
8 1044.60 0.55 1899.3x 
9 1309.75 0.05 26195.0x 

10 0.40 0.25 1.6x 
11 0.40 0.25 1.6x 
12 1130.30 1125.55 1.0x 
13 516.40 88.30 5.8x 
14 1494.00 0.20 7470.0x 
15 1.00 0.15 6.7x 
16 5775.35 0.10 57753.5x 
17 41.40 40.90 1.0x 
18 1265.30 1256.60 1.0x 

 

4.2  Workload benefit on production workloads 
We evaluated SQL:Trek with data from 119 production databases, 
all MySQL 8.0 runtimes. The systems under test are summarized in 
Table 3.  

  For each workload under study, we report the improvement in 
execution time as the ratio of the sum of all query execution times 
before new indexes to the sum of all query execution times after 
new indexes were added. Each unique query in the workload is 
counted once for this assessment. For example, if the sum of all 
query execution times before adding new indexes was 3s, and the 
sum after adding new indexes was 1.5s, the improvement is shown 
as 2x.  
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Table 3: Systems under test. 

System Configuration 

Product Serving DBs DB Count: 47 
Sizes:  
      10 x 0-100GB 
      7 x100-1000GB 
      17x1,000-10,000GB 
      13 x >10,000GB 
Database runtime:  
      MySQL 8.0 

Internal Use DBs DB Count: 72 
Sizes:  
      51 x 0-100GB 
      16 x 100-1000GB 
      3 x 1000-10000GB 
      2 x >10,000GB 
Database runtime:  
      MySQL 8.0 

Simulation databases Hardware:  
      AWS db.r6i.xlarge - 
      db.r6i.16xlarge  
      2-64 vCPUs  
      16-512GB RAM.  
Database runtime:  
      MySQL 8.0 

  

  Results for databases in the Product Serving group are shown in 
Figure 3. As expected, these databases are among the best tuned in 
the company. Of the 47 databases studied, SQL:Trek identified 6 
databases that benefited from additional indexing. One of these 
improved by more than 50,000x. The average workload 
improvement, over 8,000x, is skewed by the single large result. The 
median gain was 16.4x. Notably, in workload 2, which is comprised 
of 238 queries, a single query had a severe regression due to a 
compiler execution plan difference between the simulation 
environment and the full production data set.   

  Results for databases in the Internal Use group are shown in Figure 
4. Of the 72 workloads under study, 28 benefited from new indexes. 
The average workload improvement was 54.6x and a median gain 
of 1.6x. Here as well, a single query in one workload experienced a 
large regression. In this case there was no execution plan change; 
the plan selected by the optimizer on both the simulation and the 
full production data was identical but performed poorly on the 
latter.  

  Even in workloads with overall performance near unity, there 
were several instances of individual queries improving 
dramatically—by two and three orders of magnitude. However, the 
total workload time was dominated by a few long-running queries.  
In such cases, the recommended indexes may still be particularly 
valuable to the application.  

 

4.3  Execution time of the index recommender 
Our goal for the index recommender was to generally complete the 
entire process of recommending indexes for a workload in less than 
60 minutes. This is fast enough that it would allow us to run the 
evaluation for hundreds of databases several times per week on a 

single evaluation server. Across the 119 production databases we 
studied (47 Product Serving and 72 Internal Use), SQL:Trek was able 
to complete the analysis with an average completion time of 16.1 
minutes. A summary of the execution times for each design step, for 
a workload near the average duration time, is shown in Table 4. 

 

 
Figure 3: Product Serving DBs - Improved query execution 
time by workload. 

 

 
Figure 4: Internal Use DBs - Improved query execution time by 
workload. 

 

  The execution time for SQL:Trek is usually dominated by two 
steps, “Data sampling” and “Creating candidate indexes”. The 
duration of each phase of the processing varies based on the number 
of tables under study, the data volume and the number and 
complexity of queries in the workload. Because the simulation 
database is based on a sample and is size constrained, candidate 
index creation was generally quite fast. Similarly, query evaluation 
was usually fast, with most executing in less than 1ms and a small 
number running for  1—6s.  This efficiency is driven in large part by 
the small size of the simulation database.     
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Table 4: Time spent in the SQL:Trek index recommender by 
step 

Step Execution 
time (s) 

SQL workload analysis          0.3 
Cloning the database schema  0.7 
Candidate index design    0.2 
Data sampling         448.5 
Establish performance baseline 7.0 
Creating candidate indexes         461.1 
Index eval w. EXPLAIN 1.1 
Filtering ineffective indexes 7.8 
Performance eval in simulation     1.4 
Iterative index refinement    4.7 
Optimize index selection for storage constraints   0.3 

      
 

 
Figure 5: Execution time for the index recommender. 
 

  The distribution time of 119 index recommender runs at Airbnb, 
drawn from both the Product Serving and Internal Use groups 
sorted by execution time is shown in Figure 5. Across these 119 
production databases, we see a median run time duration of 3 min, 
an average duration of just 16.1 min, and a maximum run time of 
186.2 min. Both the median and average are well below the 60 min 
target, with 7.6% of databases exceeding it.    

 

4.4  Rate of false positive recommendations 
A key design objective for SQL:Trek was to minimize the rate of 
recommending indexes that have net-negative impact on a 
workload. We examined the rate of detecting and removing 
ineffective indexes on both the Internal Use and SQL:Trek Test 
workloads that were recommended by the SQL compiler.  In the 
Internal Use workload, 48% of indexes selected by the database SQL 
optimizer (step 7 of the design) were found to be ineffective or 
negative, and SQL:Trek dropped these from consideration (step 10 
of the design). On SQL:Trek Test the number was 11%. After 
applying the final index recommendations, we found the rate of 
query regression on Internal Use workloads that had index 
recommendations was just 0.1%, and on the SQL:Trek Test it was 

0%. The percentage of negative indexes being recommended was 
3.6% and 0% respectively. These are early tests, but strong indicators 
that executing queries on the simulation was effective at identifying 
indexes that appear useful from costing, but are not  

4.5  Sampling rate sensitivity analysis 
We examined the impact of varying sampling rates on 32 databases 
from the Internal Use DB category that were candidates for new 
index recommendations. This included all 28 databases with index 
recommendations in section 4.2, as well as four additional 
workloads. These workloads comprised approximately 700 queries. 
We tested sampling rates of 1%, 5%, 10%, 20%, and 40%, scaling both 
the sampling rate and the per-table row cap proportionately. To 
minimize noise in our measurements, we applied strict regression 
criteria: queries were classified as regressed only when both the 
absolute regression exceeded 0.2ms and the relative regression 
exceeded 10%. Index recommendations were classified as negative 
when they provided net-negative benefit to the overall workload 
and caused at least one query to meet our regression criteria.  

  As sample size increased, the execution time of the recommender 
increased roughly linearly. This is expected, since the time is largely 
dominated by populating the simulation database with the data 
sample and candidate index creation—both of which are 
proportional to data size.  

  The set of recommended indexes varied modestly across the tests 
with a coefficient of variation of 6.47% in the number of 
recommended indexes. Overall workload improvement trended 
higher at higher sampling rates, from 45x up to 58x as expected (see 
Figure 6). Median workload improvement was largely stable, 
remaining steady between 1.3x-1.5x for all sampling rates.  

 

Figure 6: Impact of sampling rate. 

 

  The total number of false positives in the final recommendation, 
i.e. negative indexes that SQL:Trek eventually recommended 
because they demonstrated benefit in the simulation, but which in 
fact were damaging when applied to the full data, remained steady 
for all sample sizes. Specifically, the same negative indexes were 
recommended at each sampling rate, representing a false positive 
recommendation rate between 3.2% and 3.8%.    

  The rate at which the SQL compiler selected negative (damaging 
the workload) and/or ineffective (not significantly helpful) indexes 
remained quite significant, as measured in the simulation. The 
average for these across sampling rates was 47.2% with a coefficient 
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of variation of 6.06%. There was no clear trend for how this varied 
with sample rate.  

5   FUTURE WORK 
This paper presents our initial work on SQL:Trek, a utility for 
automated index design and workload analysis. The system is 
actively being developed at Airbnb, and we identify several key 
areas for future improvement: 

1) Virtual statistics. Many database engines provide the 
ability to override the table statistics generated by 
ANALYZE. Where this is available it would be highly 
beneficial to override the statistics in the simulation with 
the statistics that exist in the source database.  This would 
further reduce the risk of false positive index 
recommendations.  

2) Query Weighting – Incorporate query execution 
frequency analysis to better capture workload 
characteristics and prioritize index recommendations 
accordingly. 

3) Scalability of What-If Analysis – Extend multi-pass 
evaluation techniques to support more than 64 candidate 
indexes per table, overcoming current system limitations 
on MySQL. 

4) Selective Inclusion of Reference Columns – Our initial 
approach excludes reference columns based on the 
principle that covering indexes often lead to excessive 
specialization. However, in specific cases, selectively 
including reference columns could be beneficial, provided 
they generalize well and do not lead to overfitting indexes 
to a narrow query pattern. 

5) Identification and Removal of Unused Indexes – 
Develop mechanisms to detect indexes that are no longer 
utilized by the workload and recommend their removal. 
These may include legacy indexes created for outdated 
queries or indexes that remain unused due to current 
query optimizer cost estimations. 

6) Impact Assessment on Write Performance – Model the 
effects of newly recommended indexes on INSERT, 
UPDATE, and DELETE operations to balance query 
performance with write overhead. 

7) Simulation Sampling Rate Optimization – Our initial 
investigation utilized a 5% sampling rate, with minimum 
and maximum row constraints set at 20K and 1M rows, 
respectively. These parameters have proven effective for 
the current database configurations under study. 
However, future efforts will focus on determining the 
minimal sample size that can be employed without 
degrading the quality of the recommendation output. 
Preliminary observations indicate that reducing the 
sampling rate significantly accelerates recommendation 
computation time, exhibiting a near-linear correlation. 
Further exploration of this relationship will aim to 
optimize performance while maintaining 
recommendation accuracy. 

  These enhancements will refine SQL:Trek’s recommendations, 
making it more effective in real-world database environments. 

6  CONCLUSIONS 
In this paper, we presented SQL:Trek, an index recommendation 
tool for relational databases that combines what-if analysis using 
the SQL compiler's cost model with query execution on sampled 
datasets. SQL:Trek typically delivers high-quality index 
recommendations in under 20 minutes while minimizing false 
positives. This approach offers substantial advantages over prior 
methods by achieving rapid analysis without requiring 
modifications to the underlying database system. 

  Implemented as an external tool, SQL:Trek is compatible with 
MySQL- and PostgreSQL-based databases and can be extended to 
other platforms including Oracle [24], DB2 [14], and SQL Server 
[21]. Our evaluation across 120 databases demonstrated significant 
performance improvements, with query workload execution times 
improved by substantial factors in multiple cases. These results 
demonstrate SQL:Trek's effectiveness as a practical utility for 
database index optimization. 
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