

SQL:Trek Automated Index Design at Airbnb

Sam Lightstone
 Airbnb

Toronto, Canada
 sam.lightstone@airbnb.com

Ping Wang
Airbnb

San Francisco, USA
 ping.wang@airbnb.com

ABSTRACT
Automating index design has been an active area of research for
decades due to the significant impact that indexes have on query
performance and database efficiency. Existing approaches range
from brute-force search to cost-based optimizations and, more
recently, machine learning techniques. However, many suffer from
high computational costs, reliance on inaccurate cost models, or the
need for deep integration with database internals.

 We introduce SQL:Trek, a time-efficient tool for automated index
design that operates entirely as an external utility. SQL:Trek
leverages query compiler cost models to identify effective indexes
while mitigating false positives through execution on a lightweight
simulation database. This approach enables fast, iterative index
selection without modifying database internals, making it broadly
applicable across relational databases, including most MySQLâ and
PostgreSQLâ derivative databases.

 Our evaluation demonstrates that SQL:Trek delivers significant
query performance improvements while keeping index selection
computationally efficient, with most workloads analyzed in under
five minutes. Unlike many cost-based what-if analysis methods,
SQL:Trek significantly improved performance of many production
workloads while avoiding the majority of detrimental index
recommendations caused by optimizer misestimates. These results
highlight SQL:Trek as a practical, scalable solution for automated
index tuning in modern database environments.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750638

PVLDB Reference Format:

Sam Lightstone, Ping Wang. SQL:Trek Automated Index Design at Airbnb.
PVLDB, 18(12): 5210-5222, 2025.
doi:10.14778/3750601.3750638

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
http://vldb.org/pvldb/format_vol18.html.

1 INTRODUCTION
Efficient query performance is fundamental to modern database
systems, especially in large-scale enterprise and cloud-based
environments where scalability and responsiveness are critical.

Index selection plays a pivotal role in query optimization,
significantly impacting execution times and overall system
efficiency. The presence or absence of a key index can alter query
performance by orders of magnitude. However, manual index
tuning requires deep expertise in database technology, workload
characteristics, and resource constraints, making it both intricate
and resource-intensive. As databases scale and complexity
increases, automated index design has become an essential strategy
for enhancing performance while reducing administrative burden.

 Indexes, as auxiliary data structures, accelerate query execution by
enabling efficient data retrieval. Yet, identifying an optimal index
set is challenging due to trade-offs among query performance,
maintenance costs, and storage overhead. Effective index selection
hinges on workload characteristics—such as query frequency, join
patterns, and filtering conditions—since suboptimal configurations
can degrade performance, inflating latency and resource use.
Notably, well-designed indexes can yield order of magnitude query
latency improvements.

 The problem of automated index design is inherently complex,
driven by a vast search space and computational intricacy. For T
tables, each with N indexable columns, the number of possible
multi-column index designs is given by: !!!"#$!!(!'""!#) (1)

 For instance, with N = 10 and T = 12, this yields approximately 1084
possibilities—surpassing the estimated number of atoms in the
observable universe (~1080). Practical heuristics, such as restricting
candidates to query-referenced columns or prioritizing selectivity,
mitigate this explosion, yet the core challenge remains NP-hard.
Determining an optimal index subset that minimizes execution time
while balancing storage and update costs requires combinatorial
evaluation, cost estimation, and performance simulation. Moreover,
dynamic workloads necessitate adaptive strategies to refine index
recommendations continuously.

 Traditional index selection relies on heuristics and query optimizer
insights, while recent advances employ machine learning and
reinforcement learning to predict index utility and scale decision-
making. Cloud-based databases introduce additional complexities,
including multi-tenancy, resource limits, and heterogeneous
workloads, amplifying the need for robust automation. At Airbnbâ
we manage hundreds of databases and tens of thousands of queries,
rendering manual design impractical. Indexes also incur storage and
runtime overhead, necessitating a system-wide approach rather
than query-specific optimization.

 Addressing these challenges demands innovative algorithms,
scalable optimization, and adaptive learning models. Our work at

5210

http://sam.lightstone@airbnb.com
mailto:ping.wang@airbnb.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://vldb.org/pvldb/format_vol18.html
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Airbnb with multiple relational database engines underscores
specific requirements: a cross-engine solution, which in turn
requires minimal internal database modifications; resilience to cost-
model inaccuracies; and rapid, low-cost execution. With databases
where index creation on large tables spans days, trial-based
evaluation becomes infeasible, further emphasizing the need for
efficient automation.

1.2 Our contributions
SQL:Trek makes several contributions to the area of automated
index design.

 First, practically, we created the solution entirely outside of the
database engine, as a viable utility for the majority of MySQL [23]
and PostgreSQL [26] derived databases. This covers a huge swath of
database products in the market today such as MySQL, PostgreSQL,
Amazon Auroraâ [1], TiDBâ [25], AlloyDBâ [13], CockroachDBâ
[7], MariaDBâ [20], EnterpriseDBâ [11] etc. Although we haven’t
tested SQL:Trek on all of these systems, we have tested it on
MySQL, Amazon Aurora, PostgreSQL and TiDB with good success.

 Second, SQL:Trek is designed to minimize the false positives that
result in indexes being recommended that are of minimal or
negative consequence to the workload. While SQL:Trek does not
provide a guarantee of no false positives, in our testing we have
found the presence of false positives to be extremely low. This is a
large improvement over the what-if analysis approaches that
leverage SQL cost models to select indexes. To be explicit, SQL:Trek
aims to dramatically reduce the recommendation of indexes with
negative value, not simply detect and remove them after they are
deployed into production.

 Third, SQLTrek offers time-efficient processing, enabling analysis
of large, production-class databases and generation of solutions—
including the necessary CREATE INDEX DDL—typically in under
20 minutes for OLTP workloads. While this is certainly slower than
the cost-model-only what-if approaches that use virtual indexes
(indexes without data), it is adequate for our operational needs
because it is fast enough that the workload analysis can be executed
daily, or even a few times per day per database cluster if needed.
This is also a large improvement over approaches that evaluate
candidate indexes on a full-scale copy of the database. Such
strategies are impractical for evaluating a large set of potential
candidate indexes, especially when the source database is tens of
terabytes per node. Creating a single index on a 10+ TB database
can take several hours on current systems, making it infeasible to
evaluate dozens of new indexes across hundreds of databases. While
many index recommenders are time-efficient—often more so than
SQL:Trek—they typically cannot achieve this efficiency while also
maintaining a low false-positive rate.

2 BACKGROUND ON AUTOMATED INDEX
DESIGN

We summarize highlights from several influential papers that have
shaped industry approaches to automated index recommendation.

 Index selection is a critical aspect of physical database design,
significantly impacting query performance. Over the years,
researchers have developed various methodologies for automated

index selection, ranging from early heuristic approaches to modern
AI-driven techniques.

 Finkelstein et al. [12] present one of the earliest formalizations of
physical database design, emphasizing heuristic and cost-based
approaches to index selection. They highlight the trade-offs between
query performance and storage constraints, laying the foundation
for subsequent research in automated index design.

 Chaudhuri and Narasayya [5] introduce a cost-driven index
selection tool for Microsoft SQL Serverâ, leveraging a query
optimizer to estimate the benefits of potential indexes. Their work
establishes a systematic method for index recommendation,
integrating workload analysis to guide index selection.

 Valentin et al. [29] propose DB2 Advisor, an index
recommendation system that leverages the DB2â query optimizer
both for designing the candidate indexes as well as determining
their potential benefit to the workload. Notably, the query compiler
itself is used to detect columns of interest and generate candidate
virtual indexes for consideration. In this architecture the SQL
compiler is expanded to both design the virtual indexes and evaluate
them. DB2 Advisor leverages optimizer feedback to iteratively
refine index choices. This work demonstrates the effectiveness of
integrating index selection into database query optimization
processes. The approach builds on the strategies in [5, 12] using
what-if analysis with the SQL cost model but extends this by having
the SQL compiler generate the what-if candidates for evaluation.

 A key insight of these early papers was to recognize that the SQL
compiler is the deciding factor in whether an index will be utilized
for any SQL query. Ultimately, if an index is not selected by the SQL
compiler, then it is useless. Consequently, the SQL cost model is an
invaluable tool in modeling the value of a potential index.

 Lightstone and Bhattacharjee [18] extend automated index
selection to multidimensional clustering tables. Their approach
considers complex data distributions and query patterns, optimizing
clustering strategies alongside index structures. This research is
particularly relevant for high-dimensional analytical workloads.
Notably, this work includes the use of data sampling in the process
of automated physical design. While the paper thematically builds
on the work of Valentine et al [29], leveraging the SQL compiler to
generate candidate designs and the cost model to assess what-if
scenarios—it further extends these ideas by introducing data
sampling to reasonably estimate the cardinality of cells resulting
from clustering multiple attributes simultaneously. This
dynamically produces cardinality insights across columns that are
not normally available in the system catalogs.

 Chaudhuri and Narasayya [6] describe the Database Engine
Tuning Advisor (DTA) used in SQL Server as of 2020. Their
algorithm has several notable attributes, in particular a merge phase
that allows indexes initially tuned for specific queries to be merged
(subsumed) in order to produce a final recommendation for the
database that provides a global optimum rather than a collection of
local optimizations per query. This is achieved by pair-wise
comparisons of indexes with the same leading keys, and retaining
the index with the higher individual benefit if it is a superset of the
keys of its pair.

 Das et al. [8] shift the focus to large-scale cloud environments,
proposing an automated index selection framework for Microsoft
Azure SQL Database. Their system scales to millions of databases,
utilizing machine learning and reinforcement learning techniques

5211

to continuously adapt index recommendations based on evolving
workloads. This paper reports the inaccuracy of the what-if
modeling based on SQL cost model estimates, drawing on known
literature regarding the inaccuracy and pitfalls of SQL compiler cost
models [10, 16, 19], as well as reporting their own finding on the
false positives in automated index design that depends on these
estimates. Das et al. report a false positive rate of 11%, meaning that
up to 11% of new indexes recommended by the autoindexing
technology caused query regression. Their approach detects such
false positives and actively removes them from the system.

 The idea of leveraging the SQL compiler cost model for physical
design was extended to other database design automation problems
such as data clustering, table partitioning, and materialized views
[3, 4, 18, 31], demonstrating its wide applicability.

 Yadav et al. [30] present AIM, a practical automated index
management framework for SQL databases at Meta (Facebook).
Their approach emphasizes practicality and real-world deployment
challenges, ensuring index recommendations remain optimal over
time. Unlike the previous approaches that were based on what-if
modeling of candidate indexes that are evaluated by the SQL
compiler cost model, Yada et al create clones of the databases under
study, and physically evaluate candidate indexes in the cloned
environment. This has the advantage that the index selection is not
primarily dependent on the SQL compiler’s cost model, but actually
evaluated for their impact under load. The probability of false
positives is dramatically reduced as a result. However, the
implementation is costly since it requires a clone of the entire
database under study.

 The recursive strategy used in the paper by Schlosser et al [27]
efficiently tackles multi-attribute index selection by breaking it into
smaller subproblems, avoiding the infeasible task of evaluating all
index combinations. It starts with all candidate indexes, recursively
selecting subsets while assessing the cost reduction of adding each
index, considering only beneficial ones. Unlike greedy methods, it
accounts for index dependencies, avoiding early pruning of useful
options. Intelligent pruning and heuristics eliminate unpromising
combinations, enhancing scalability for workloads with many tables
and attributes. This enables fast convergence to a high-quality index
set without brute-force overhead.

 Several papers have explored applying AI/machine learning
methods to the problem of automated index design [17, 22, 32].
These have focused mostly on reinforcement learning and genetic
algorithms. While effective in their results, they require large
numbers of training measurements (tens of thousands, or more) that
make them currently impractical for industrial use at Airbnb.

 Ding et al. [10] grapples specifically with the problem of SQL
compiler optimizer misestimates leading to damaging index
recommendations. They create an ML classifier that takes as input
two query execution plans for the same query and predicts which
will run longer. The classifier is used to compare the original plan
without the newly recommended indexes and the one that includes
them. This serves as a second model (in addition to the SQL
compiler costing) for whether the recommended indexes will
regress some queries. While it greatly helps to reduce the probability
of recommending indexes that regress any single query, it has the
consequence of rejecting index recommendations that regress one
or more queries but have a strong net positive value on the workload
by improving other queries.

 These papers collectively illustrate the evolution of automated
index selection, transitioning from rule-based heuristics to machine
learning-driven systems capable of handling large-scale, dynamic
workloads. Future advancements in this domain are expected to
further enhance efficiency through AI-driven optimizations [32]
and cloud-native database architectures.

3 DESIGN
We present the design objectives, guiding principles, and practical
design constraints of SQL:Trek, as well as both the high-level
architecture and detailed design specifications.

3.1 Objectives

Index Selection Optimization Problem

The problem of finding an optimal set of indexes C* to minimize the
execution time of a workload W can be formulated as follows:

Given:

1) A workload ∑ = {#$, #*, … , #+}
2) (𝑊(#,=)) is the execution time of a query qi when using

index configuration C.

3) (𝑊(∑,=) = !,#. 𝑊(#,=)) is the total execution time
of the workload under configuration C.

4) Cinit is the initial set of pre-existing indexes
5) C’ is the set of new candidate indexes
6) Csub is a subset of the candidate indexes.
7) C* is the final recommended index configuration
8) s is the storage required for an individual index

recommendation.
9) Smax is the storage constraint for a new index

configuration.

We define an optimization goal to find the optimal index
configuration C* such that:

	
subject to:

Complexity and Constraints

This problem is NP-hard, meaning that finding the exact optimal
solution requires exhaustive evaluation of all possible index
configurations. Our goal is to minimize the total execution time of
the workload while ensuring that the storage cost of the selected
indexes does not exceed the given storage budget. We also aim to
avoid selecting indexes that provide little to no benefit, or cause
workloads to regress.

(2)

5212

Execution Time Constraint: Since index recommendations are
needed periodically (but not continuously), the average analysis
time Ta must be kept under a reasonable limit. At Airbnb, where we
manage hundreds of SQL databases, we require: 𝑊/ { 60𝑞,…}(𝑇𝐶)𝑞𝑞
 This ensures timely recommendations without excessive
computational overhead. Practically, this means that the index
recommender is fast enough that if desired it can be run daily for
each database cluster in our fleet with minimal infrastructure
overhead.

3.2 SQL:Trek design principles
1) Performance of the index recommender process. Index

design should be periodically reevaluated to adapt to
evolving query patterns, as well as changes in data
volume and distribution. Frequent reassessment, such as
multiple times daily, is typically unnecessary, as index
configurations rarely require such rapid adjustments. A
re-evaluation process completed within 60 minutes is
adequate for our needs at Airbnb, enabling the analysis of
dozens of databases per day on a single evaluation server.

2) SQL compiler costing of candidate indexes. Since the
SQL compiler will select from existing indexes at query
compile time during production operation of the database,
only indexes that are chosen by the compiler are valuable
to a database. It is a necessary design point that the SQL
compiler must select the indexes for recommendation.

3) Minimize false positives. Modern database cost models
are often inaccurate, leading to false positive index
recommendations and potential deployment of poor
designs. We address this by evaluating candidate indexes
on representative data samples rather than relying solely
on cost estimates. The sample must be sufficient to
provide confidence in two key aspects: whether an index
is useful, and its relative utility compared to other
candidates. While data sampling introduces distortions in
data size and distribution that make samples imperfectly
representative of production databases, our approach is
based on two core hypotheses: first, that optimizer
estimates combined with actual runtime measurements
on sampled data can provide stronger signals of index
efficacy than cost estimates alone for most OLTP queries;
second, that these measurements can help identify many
indexes that would negatively impact the production
database.

4) No database internal changes. The entire design
process, from start to finish, must be possible without the
need to modify database internals. This is necessary, as
we have no access to database internals for some of the
databases we use at Airbnb.

5) Simulation quality. We make use of a simulation
database that clones a sample of data. Using a sample is
fraught with problems, changing the cardinality of data,
the IO, the relative size of tables that will be joined (even
though the sample rate is the same for all tables, we

impose a min and max sample which changes the
effective sample for many tables.). If the goal was to
achieve an exact emulation of the system, then any
sample would be problematic. Our approach is to create a
“good enough” emulation that the recommended indexes
will be high quality when applied to the production
environment. We do not require perfection for this; in
fact, we are deliberately accepting a compromised
approach.

6) Covering indexes as an anti-pattern. A covering index
is a secondary index that includes all the columns of a
table that are referenced by a specific query. It has the
benefit that the query can be fully answered by
examining data in the index alone, and a lookup into the
table data is not needed. While covering indexes provide
maximum performance potential for a particular query,
they are often specialized to the query, and therefore
provide lower utility to the overall workload. Second,
because they include all reference columns for the query
against a table, they tend (on average) to be wide, and
therefore require more storage and are maintenance
intensive. For the initial implementation of SQL:Trek
described here, we consider covering indexes with
reference columns as an anti-pattern. This is purely a
simplifying assumption, as there are common cases where
such indexes are excellent choices. Reference columns
therefore are explicitly not included in our index designs
in this initial version, though we may relax this in the
future. To illustrate this concern, consider a sales table
with five columns {sale_id, product_id,
customer_id, sale_date, amount}. The
following query accesses all five with additional
predicates on just product_id. It would be tempting
to create a covering index that includes all of these
columns, with product_id as the leading key part.
However, doing so would double the size of the table
storage with this one index, and double the write cost due
to index maintenance. An index defined on just the
predicate column likely provides most of the performance
benefit at a fraction of the storage and maintenance
overhead.

SELECT sale_id, product_id,
customer_id, sale_date, amount
FROM sales
WHERE product_id = 42;

3.3 Practical design constraints
Airbnb makes extensive use of MySQL-derived databases [23].
These systems commonly constrain the number of secondary
indexes per table to 64. As a result, not only is the recommendation
of new indexes constrained to a maximum of 64 (less the number of
pre-existing indexes) per table, but at no point in the design
exploration can more than 64 indexes be defined on a single table at
one time—even for what-if analysis by the query compiler. This is
sufficient for performing an exhaustive search of column
combinations for up to 6 indexable columns per table.

 While it may be possible to modify the MySQL open source to
relax this constraint, doing so is not practical for the cloud services

5213

we utilize, and would violate our design objective of avoiding
changes to database internals. Therefore, our solution operates
within this constraint and we have been able to achieve good results
despite this limitation.

 PostgreSQL based systems do not have this constraint, and when
running SQL:Trek in these environments we relax the upper bound
on candidates per table to 256, which is sufficient for performing an
exhaustive search of column combinations for up to 8 indexable
columns per table. We still prefer a constraint in order to limit the
search space since it strongly affects the execution time.

3.4 High-level design
Much like the solutions used in Chaudhuri [5], Valentin [29] and
Lightstone [18], SQL:Trek creates a large number of candidate
indexes for “what-if” exploration by the query compiler and relies
on the SQL compiler’s costing to detect which of these indexes are
optimal. However, unlike these approaches, SQL:Trek creates these
candidates indexes on a simulation database, not in a virtual catalog.
SQL:Trek creates a pool of new candidate indexes for consideration
C’ known as the Candidate Pool. After the costing process has
selected a subset of new indexes and unreferenced indexes are
removed from the simulation, the query workload is executed on
the simulation database to estimate the relative benefit of these
indexes. Indexes observed to have minimal or negative impact when
queries are run on the simulation are removed from the Candidate
Pool. The query workload is rerun in the simulation environment
until a stable solution is derived where all of the recommended new
indexes provide clear value, resulting in the Winners Pool C* that is
the union of the initial pre-existing indexes Cinit and the surviving
remaining indexes from C’. Figure 1 illustrates the main elements
of this architecture.

 The simulation database is populated with a sample of the source
databases, up to a maximum data size. For our implementation we
have used a 5% sample, with a minimum of 20K rows per table, and
a maximum of 1M rows per table as the constraints. The principle
behind these choices is that we want the simulation to have enough
data to reasonably model the benefit of new secondary indexes, but
not be so large that the simulation will take a long time to populate.
The choice of sampling parameters generally results in a simulation
database that is modestly sized, allowing for dozens of candidate
indexes to be created in seconds.

 What-if analysis is the process of presenting candidate indexes to
the SQL compiler and allowing the compilation process to assess the
potential benefit of these indexes. We perform this what-if analysis
by creating candidate indexes on the simulation database and using
EXPLAIN to detect whether the cost model chooses any of the
candidate indexes. Unlike prior art that uses virtual indexes to
perform this what-if analysis, where the indexes exist in definition
only and are not populated, our approach uses materialized indexes.
Having real indexes has two critical advantages. First, it allows us
to use the database management system without code modification,
since most commercially available database systems do not
currently support creating virtual indexes. PostgreSQL is a notable
exception, and we could special-case SQL:Trek for PostgreSQL to
use virtual indexes in this step—an optimization we have not yet
implemented. Second, after indexes are selected by the cost model,
we are able to evaluate their impact by actually executing queries
with the new indexes on the simulation database. Because the

candidate indexes are created on a small simulation database which
is created on a separate server, the index creation process is fast, and
does not interfere with production workloads at all. The storage
space required, even for dozens of indexes, is small since the entire
simulation database is by design created from a small sample.

 Notably, we make use of EXPLAIN to detect whether a candidate
index is selected by the query optimizer, but we do not make use of
any compiler costing data beyond this. SQL:Trek is informed by
EXPLAIN whether an index is optimal for a query, but the relative
merit of indexes is modeled entirely based on the query
improvement observed when running queries on the simulation
database.

Figure 1: SQL:Trek at a glance.

3.5 Design details
The proposed method provides an automated approach for index
selection in SQL databases based on workload analysis. The user
supplies the database name, credentials, and a set of SQL queries for
assessment. The queries can be provided either by an input text file,
or optionally (on MySQL) retrieved from the database’s query
history. Additionally, the user may specify a storage constraint for
the total space allocated to indexes as a percentage of the table size.
If no constraint is provided, the system defaults to allowing
unlimited indexes.

The index design follows eleven steps.

Step 1: SQL Workload Analysis

The system parses the SQL workload to identify which columns are
used in operations such as:

1) Equality comparisons and IN-list conditions
2) Order by
3) Joins
4) Distinct
5) Inequality, between and like
6) Grouping and aggregation

 Since direct access to database internals is not assumed, an open-
source MySQL and PostgreSQL compatible SQL parser is used. After
evaluating JSQLParser [15] and Apache Calcite SQL [2], we chose

5214

Calcite for its robustness and extensibility. We found multiple query
patterns that were simpler to handle with Calcite, including
subqueries, expressions with brackets, etc.

Step 2: Cloning the Database Schema
A temporary simulation database is created by cloning the schema,
including all table definitions that are referenced in the SQL
workload. Existing secondary index definitions are also replicated.
Constraints, including foreign keys, uniqueness, cascade, etc., are
also cloned. At this stage, data is not cloned – the tables and indexes
are empty.

Step 3: Candidate Index Design
Starting with the database configuration C, which includes an initial
set of indexes designed by human experts, SQL:Trek designs a larger
domain of additional indexes C’, known as the Candidate Pool
(described in more detail in section 3.6). For each table referenced in
the workload the system generates a candidate index design based
on column usage patterns. Higher priority is given to columns
involved in highly selective operations (equality predicates),
followed by those used in less selective operations. The index
designs in the Candidate Pool are shown in Figure 1 by the icons {

, , }.

Step 4: Data Sampling
To reduce computational overhead, a sample of the data is extracted
from the source database. The sampling strategy involves selecting
5% of the data, with a minimum sample of 20,000 rows and a cap of
1 million rows per table. This range was chosen in order to keep the
simulation database size modest, regardless of the size of the source
database. This is dense enough to surface the relative CPU and IO
effects of new indexes and provide some insight on how they may
benefit the production system. 5% is the default, and the sampling
rate is configurable.

 The use of real data has the consequence that data distribution and
range will generally follow that of data in the source database both
for the column data as well as the correlation of data between
columns and between tables. Sampling data from base tables can
alter the underlying data distributions and introduce inaccuracies in
SQL optimizer cost estimates and the physical response of the
simulation. This, in turn, reduces the fidelity with which the
simulation populated with a sample reflects the behavior of the
complete database. Nonetheless, certain performance trends
generally persist—for example, highly selective index lookups tend
to be more efficient than full table scans, and implicit ordering via
indexes is typically faster than explicit sorting. While the resulting
costing and performance estimates may be imperfect, the use of real
(albeit partial) data often offers a better method for detecting
negative indexes than cost model alone with comprehensive stats,
as our experimental results illustrate.

Step 5: Establishing a Performance Baseline
The SQL workload is executed against the simulation database to
measure baseline query performance before any indexing
modifications.

Step 6: Creating Candidate Indexes
Candidate indexes in C’ generated in Step 2 are physically created
on the simulation database.

Step 7: Index Evaluation with EXPLAIN
Rather than executing queries, the system compiles the workload
using the EXPLAIN statement to determine which candidate
indexes the SQL optimizer considers beneficial. The use of
EXPLAIN injects the cost model into the selection process. A large
number of candidates may be include in C’, from which the SQL
compiler will assess the benefits of these candidates to individual
queries. Ideally this step would be performed entirely with virtual
indexes (indexes that exist in the catalog space, but are not
materialized), but since that is not widely available in MySQL, we
use actual indexes on the simulation database. The key purpose of
this step is to leverage the SQL compiler’s cost model to identify
which indexes in C’ are useful to the workload based entirely on
SQL compiler costing. Note, at this point we are only concerned
with a decision on whether each index is useful or not, and we do
not use the cost model to assess “how much” benefit each index may
provide.

Step 8: Filtering Unused Candidate Indexes
Indexes that are not selected by EXPLAIN for any queries in the
workload are physically dropped from the simulation. This typically
prunes the majority of candidates from consideration (more than
80%). These are the index candidates shown in Figure 1 with the
icon .

Step 9: Performance Evaluation with New Indexes in Simulation
The remaining candidate indexes were each selected for use by
EXPLAIN for at least one query in the workload. The SQL workload
is re-executed in the simulation database to measure performance
changes per query with the new indexes. The purpose of this step is
to quantify the relative benefit with higher confidence than the cost
model alone would allow.

 The speedup or regression of each SQL query is attributed to each
new index referenced by the query. The total benefit (which may be
negative) for an index is the sum of all gains and losses from all
queries that reference it.

 Running a physical measurement, even on a sample, allows us to
identify and subsequently remove indexes with minimal or negative
impact. Execution of these queries in the simulation has a large
advantage over cost modeling alone, since the cost model is based
on table statistics, which generally exclude correlation modeling
between columns and across tables. Similarly, the cost model can
estimate physical resource usage (CPU, IO latency, etc.) while the
simulation run provides an actual observation.

Step 10: Iterative Index Refinement
Indexes that provide minimal or negative performance
improvements are removed, and the workload is reevaluated since
the removal of some indexes may significantly impact the value and

5215

usage of the remaining indexes. These indexes are shown in Figure
1 as . The process is repeated until only beneficial indexes
remain. We use the following criteria for this detection:

1) Recommended indexes should provide at least 10%
performance benefit in the simulation environment to at
least one query.

2) Recommended indexes should have a net positive impact
on the entire workload.

Step 11: Optimized Index Selection for Storage Constraints
Using the Knapsack Approach
If a storage constraint is defined, the system applies a knapsack-
based optimization to select the most valuable indexes while staying
within the allowed storage limit. Each candidate index is evaluated
based on:

1) Benefit: Improvement in query performance (measured in
workload execution time saved).

2) Cost: Storage space required for the index.

 The selection process follows the 0/1 knapsack model, where the
goal is to maximize total performance gain without exceeding the
available storage budget. The system prioritizes indexes that
provide the highest performance-per-byte ratio, defined as: :!0#1! ≤0600𝑞 (3)

Subject to !0#1!)060 { 	 60 𝑚 {0,1}, 𝑞 𝑖… 𝑚 =2 𝑞
Where:

• C’ is the set of candidate indexes remaining in the
Candidate Pool at the start of the knapsack algorithm.

• pi is the performance gain of index i.
• si is the storage cost of index i.
• S is the total available storage budget.
• xi is a binary decision variable (1 if the index is selected, 0

otherwise).

The system prioritizes indexes based on their performance-per-byte
ratio:

 Using a greedy approximation, the system determines the optimal
set of indexes to retain, ensuring the best possible query
performance within the given storage constraints. After removing
indexes from C’ that cause workload regression or have minimal
value, and then applying the knapsack algorithm to select the
highest value remaining candidate indexes, the final
recommendation C* is produced, known as the Winners Pool.

 This approach provides a systematic, automated method for
optimizing database indexing based on workload characteristics and

storage constraints. By leveraging query optimizer feedback and
iteratively refining index selection, the system ensures performance
gains without unnecessary index bloat.

3.6 Index candidate design
The processing of designing new indexes for the Candidate Pool
begins with parsing each query in the workload using the Calcite
parser. Calcite builds an abstract syntax tree (AST) that represents
the hierarchical structure of the SQL query. The AST can then be
searched to produce the list of columns in each table referenced by
the query, and what indexable purpose they were used for, such as
equality, in-list, inequality, between, group by, order by, distinct,
join, etc. Due to the strict limitations on MySQL that constrain
secondary indexes to a maximum of 64 per table, we use an
approach for exploring the space that caps the number of candidate
indexes. Since the number of combinations of columns explodes
exponentially, it was necessary to apply heuristics to ensure good
coverage of the search space without exceeding this narrow limit.
We use an approach similar to Valentin’s SAEFIS model [29] that
organizes columns of interest (columns that may be beneficial to
index) into categories such as equality, inequality and range, order
by, distinct, etc. Candidates are designed by selecting all strict
subsets of these categories in priority sequence, i.e. all single column
combinations, followed by all two column combinations, etc. until
the constraint is reached. The categories are defined as follows:

1) EQ: columns used in equality predicates, and in-lists
2) ORDER: columns used in order by
3) JOIN: columns used in joins
4) DISTINCT: columns used in distinct and count distinct
5) RANGE: columns used in inequalities, range (between),

and like
6) GROUP: columns used in group by

 If a column appears in multiple categories, it is retained
exclusively in the first category and removed from the others in
order to limit the search space.

 To illustrate the process, consider a table with columns c1
through c5 that appear as columns of interest within a workload as
follows:

1) EQ: c2, c4
2) ORDER: c5
3) JOIN: c1
4) DISTINCT: none
5) RANGE: c2, c3
6) GROUP: c4

 Columns in the EQ category are sorted into decreasing order of
cardinality, which is determined by sampling. The columns are then
serialized into a list, without duplication. This starts with the EQ
category and proceeds in sequence to GROUP. This results in the
following list for our example:

{c2, c4, c5, c1, c3}

 Note that c2 and c4 appear in multiple categories but they are
placed in the list once without duplication. Next, all strict subsets
of the list are created, defining possible indexes, starting with single

(4)

5216

column indexes, and proceeding to two and then three columns, etc.
This produces the following 30 candidate indexes for our example:

 All of these indexes are considered during the evaluation, up to the
limit of the secondary indexes constraint (64 for MySQL and 256 for
PostgreSQL).

 Our solution currently excludes reference columns from the select
list when designing indexes, focusing only on columns used in
predicates, grouping, and sorting. While covering indexes that
include all query columns can provide secondary benefits, the most
significant performance gains come from indexing filtering and
sorting columns. This approach substantially reduces the search
space and enables efficient batch creation of candidate index
definitions for optimizer evaluation. We may relax this in future
versions of SQL:Trek.

3.7 Denoising index evaluation
After selecting initial candidates using what-if analysis that
leverages that SQL compiler’s cost model, we evaluate the relative
benefit of indexes by executing them on a simulation environment.
Unlike the cost model, which is purely mathematical, the simulation
environment is a real functional system subject to run-to-run
variance. We found the variance to be significant especially for
short-running queries where fractions of a second may represent a
high percentage of the total query runtime. This is important for our
environment at Airbnb, where many of the SQL workloads in our
online service path are OLTP workloads. To improve the stability of
the evaluation, we ran all short running queries (<=2s) 9 times and
long running queries (>2s) 5 times, using the median response time
as representative. Second, we rounded all query execution times to
the nearest 1/20th of a millisecond.

3.8 Additional features
We implemented the following options on the utility that have been
helpful:

1) Simulation reuse. Since populating the simulation
database is the single most time-consuming step in the
process (see section 4.3), we created an option to reuse the
simulation database from prior runs, which allows
experiments to be run on multiple query sets in a fraction
of the time.

2) Sampling rate. The sampling rate, as well as a max
sample size constraint, can be defined as input
parameters.

3) Storage constraint. The storage constraint for indexes
can be defined on input as a % of data size.

4) Query frequency. The frequency of query execution is
optionally modeled, so that the benefit of an index is
scaled by the number of times its associated query runs.
For example, an index that speeds up query #1 by 0.5ms
and is executed 10 times in the workload is considered
equally valuable as an index that accelerates query #2 by
5ms but is executed only once.

5) Workload analysis. SQL:Trek also provides a workload
analysis mode that reports on the characteristics of the
database under study, including size, top tables, DDL
features such as number and size of tables and indexes. It
further details the size and cardinality of the largest
tables, as well as the use of specific features such as
autoincrement columns, enums, BLOBs, UDFs, and
triggers. SQL query patterns are reported such as the
frequency of GROUP BY, joins, distinct, scalar functions,
UNION, etc. and many other attributes. This has been
useful in helping us understand the usage patterns of
workloads across the company, as well as in detecting
anti-patterns in our SQL workloads. For example, from
this feature we were able to detect several cases where
applications were pushing complex business logic or very
large joins into SQL that are anti-patterns for our OLTP
applications at Airbnb.

4 EXPERIMENTAL RESULTS
Here we present our results on 120 databases, each comprising
several queries and organized into three suites, as summarized in
Table 1. Each database represents a distinct workload.

 Databases in the Product Serving group are used by the Airbnb
site directly. They are in the code path of the online user experience.
These are the most sensitive and highly tuned databases in the
company. Because of Airbnb’s business as a consumer-consumer
workflow, many queries in these workloads are simple point
lookups and range queries. The rate of complex SQL expressions
involving grouping, joins, distinct, case, etc. is much lower than the
other workload categories. Less than 1/3 of workloads in this
category have a single query with any of join, group by or distinct.

 Databases in the Internal Use category are production databases at
Airbnb outside the product workflow. These databases are not
accessed by the online user experience. On average these workloads
have more complex SQL, with a higher rate of complex language
elements. Half of the workloads in this category have queries with
join, group by or distinct.

 Finally, the SQL:Trek Test DB is a test suite of 18 queries hand-
crafted on top of a TPCC schema [28]. These queries are designed
to cover a broad range of the query patterns across the company.
This represents a more varied query set than any individual
production query workload typically expresses. Queries in this set
range from simple point lookups and in-lists, to more complex
queries with joins, unions, grouping, subqueries, scalar functions,
date-time math, etc.

5217

Table 1: Three categories of test workloads.

Category Number of databases Number of
queries

Product
Serving DBs

47 1728

Internal Use
DBs

72 958

SQL:Trek
Test DB

1 18

4.1 Initial testing with the SQL:Trek Test DB
Initial testing and refinement of SQL:Trek was performed using
BenchBase [9] with standard TPCC queries. We then replaced the
TPCC queries with increasingly complex queries over time to
ensure the index recommendation analysis could handle additional
SQL language complexity, including in-lists, inequality predicates,
range predicates (i.e. between), like, joins, unions, subselects, scalar
functions, grouping and aggregation, distinct and ordering. The
system under test included a 10GB TPCC database created using the
BenchBase tooling, and Macbook Pro with 64GB RAM and M1 CPU.

 Figure 2 shows the query performance improvement in the
simulation environment. However, because the simulation is based
on a sample of data, the benefits are generally higher when applied
to the production environment. When we compared the estimated
benefits of new indexes that SQL:Trek produces, which are based on
evaluations run against the simulation database, against the same
indexes and queries run against the full source database, we found
the benefit were generally equivalent or greater on the full database
environment. We found no cases of bad indexes being
recommended. SQL:Trek pruned 11% of indexes that were identified
in the what-if phase of the processing, meaning that indexes that
appeared beneficial to the SQL cost model were found during the
evaluation on the simulation database to be either not beneficial or
to cause a workload regression. This is similar to the false-positive
rate reported by Das [8].

 After reporting the performance improvement seen in the
simulation, SQL:Trek lists the CREATE INDEX DDL for the
recommended indexes. For the example in Figure 2, this included 8
new indexes.

 The performance of the queries on the full database, before and
after applying the recommended indexes, is shown in Table 2. The
absolute improvement of some queries is many times higher than
what was achieved in the simulation run, usually because a scan
became a point lookup; the former costs much more on the full
database, while the latter is near constant time. The total execution
time for all queries when applying the new index design improved
by a factor of 6.6x. As expected, the recommendations from
SQL:Trek did not provide accurate predictions of performance
improvement, but were very successful in predicting which indexes
would be highly beneficial.

Figure 2: Results from a SQL:Trek test run.

Table 2: Individual query improvement for the SQL:Trek Test
DB.

Query Baseline
(ms)

With new indexes
(ms)

Speedup

1 0.05 0.05 1.0x
2 1343.80 0.10 13438.0x
3 2411.65 27.75 86.9x
4 497.25 7.55 65.9x
5 0.20 0.05 4.0x
6 0.15 0.05 3.0x
7 0.50 0.45 1.1x
8 1044.60 0.55 1899.3x
9 1309.75 0.05 26195.0x

10 0.40 0.25 1.6x
11 0.40 0.25 1.6x
12 1130.30 1125.55 1.0x
13 516.40 88.30 5.8x
14 1494.00 0.20 7470.0x
15 1.00 0.15 6.7x
16 5775.35 0.10 57753.5x
17 41.40 40.90 1.0x
18 1265.30 1256.60 1.0x

4.2 Workload benefit on production workloads
We evaluated SQL:Trek with data from 119 production databases,
all MySQL 8.0 runtimes. The systems under test are summarized in
Table 3.

 For each workload under study, we report the improvement in
execution time as the ratio of the sum of all query execution times
before new indexes to the sum of all query execution times after
new indexes were added. Each unique query in the workload is
counted once for this assessment. For example, if the sum of all
query execution times before adding new indexes was 3s, and the
sum after adding new indexes was 1.5s, the improvement is shown
as 2x.

5218

Table 3: Systems under test.

System Configuration

Product Serving DBs DB Count: 47
Sizes:
 10 x 0-100GB
 7 x100-1000GB
 17x1,000-10,000GB
 13 x >10,000GB
Database runtime:
 MySQL 8.0

Internal Use DBs DB Count: 72
Sizes:
 51 x 0-100GB
 16 x 100-1000GB
 3 x 1000-10000GB
 2 x >10,000GB
Database runtime:
 MySQL 8.0

Simulation databases Hardware:
 AWS db.r6i.xlarge -
 db.r6i.16xlarge
 2-64 vCPUs
 16-512GB RAM.
Database runtime:
 MySQL 8.0

 Results for databases in the Product Serving group are shown in
Figure 3. As expected, these databases are among the best tuned in
the company. Of the 47 databases studied, SQL:Trek identified 6
databases that benefited from additional indexing. One of these
improved by more than 50,000x. The average workload
improvement, over 8,000x, is skewed by the single large result. The
median gain was 16.4x. Notably, in workload 2, which is comprised
of 238 queries, a single query had a severe regression due to a
compiler execution plan difference between the simulation
environment and the full production data set.

 Results for databases in the Internal Use group are shown in Figure
4. Of the 72 workloads under study, 28 benefited from new indexes.
The average workload improvement was 54.6x and a median gain
of 1.6x. Here as well, a single query in one workload experienced a
large regression. In this case there was no execution plan change;
the plan selected by the optimizer on both the simulation and the
full production data was identical but performed poorly on the
latter.

 Even in workloads with overall performance near unity, there
were several instances of individual queries improving
dramatically—by two and three orders of magnitude. However, the
total workload time was dominated by a few long-running queries.
In such cases, the recommended indexes may still be particularly
valuable to the application.

4.3 Execution time of the index recommender
Our goal for the index recommender was to generally complete the
entire process of recommending indexes for a workload in less than
60 minutes. This is fast enough that it would allow us to run the
evaluation for hundreds of databases several times per week on a

single evaluation server. Across the 119 production databases we
studied (47 Product Serving and 72 Internal Use), SQL:Trek was able
to complete the analysis with an average completion time of 16.1
minutes. A summary of the execution times for each design step, for
a workload near the average duration time, is shown in Table 4.

Figure 3: Product Serving DBs - Improved query execution
time by workload.

Figure 4: Internal Use DBs - Improved query execution time by
workload.

 The execution time for SQL:Trek is usually dominated by two
steps, “Data sampling” and “Creating candidate indexes”. The
duration of each phase of the processing varies based on the number
of tables under study, the data volume and the number and
complexity of queries in the workload. Because the simulation
database is based on a sample and is size constrained, candidate
index creation was generally quite fast. Similarly, query evaluation
was usually fast, with most executing in less than 1ms and a small
number running for 1—6s. This efficiency is driven in large part by
the small size of the simulation database.

5219

Table 4: Time spent in the SQL:Trek index recommender by
step

Step Execution
time (s)

SQL workload analysis 0.3
Cloning the database schema 0.7
Candidate index design 0.2
Data sampling 448.5
Establish performance baseline 7.0
Creating candidate indexes 461.1
Index eval w. EXPLAIN 1.1
Filtering ineffective indexes 7.8
Performance eval in simulation 1.4
Iterative index refinement 4.7
Optimize index selection for storage constraints 0.3

Figure 5: Execution time for the index recommender.

 The distribution time of 119 index recommender runs at Airbnb,
drawn from both the Product Serving and Internal Use groups
sorted by execution time is shown in Figure 5. Across these 119
production databases, we see a median run time duration of 3 min,
an average duration of just 16.1 min, and a maximum run time of
186.2 min. Both the median and average are well below the 60 min
target, with 7.6% of databases exceeding it.

4.4 Rate of false positive recommendations
A key design objective for SQL:Trek was to minimize the rate of
recommending indexes that have net-negative impact on a
workload. We examined the rate of detecting and removing
ineffective indexes on both the Internal Use and SQL:Trek Test
workloads that were recommended by the SQL compiler. In the
Internal Use workload, 48% of indexes selected by the database SQL
optimizer (step 7 of the design) were found to be ineffective or
negative, and SQL:Trek dropped these from consideration (step 10
of the design). On SQL:Trek Test the number was 11%. After
applying the final index recommendations, we found the rate of
query regression on Internal Use workloads that had index
recommendations was just 0.1%, and on the SQL:Trek Test it was

0%. The percentage of negative indexes being recommended was
3.6% and 0% respectively. These are early tests, but strong indicators
that executing queries on the simulation was effective at identifying
indexes that appear useful from costing, but are not

4.5 Sampling rate sensitivity analysis
We examined the impact of varying sampling rates on 32 databases
from the Internal Use DB category that were candidates for new
index recommendations. This included all 28 databases with index
recommendations in section 4.2, as well as four additional
workloads. These workloads comprised approximately 700 queries.
We tested sampling rates of 1%, 5%, 10%, 20%, and 40%, scaling both
the sampling rate and the per-table row cap proportionately. To
minimize noise in our measurements, we applied strict regression
criteria: queries were classified as regressed only when both the
absolute regression exceeded 0.2ms and the relative regression
exceeded 10%. Index recommendations were classified as negative
when they provided net-negative benefit to the overall workload
and caused at least one query to meet our regression criteria.

 As sample size increased, the execution time of the recommender
increased roughly linearly. This is expected, since the time is largely
dominated by populating the simulation database with the data
sample and candidate index creation—both of which are
proportional to data size.

 The set of recommended indexes varied modestly across the tests
with a coefficient of variation of 6.47% in the number of
recommended indexes. Overall workload improvement trended
higher at higher sampling rates, from 45x up to 58x as expected (see
Figure 6). Median workload improvement was largely stable,
remaining steady between 1.3x-1.5x for all sampling rates.

Figure 6: Impact of sampling rate.

 The total number of false positives in the final recommendation,
i.e. negative indexes that SQL:Trek eventually recommended
because they demonstrated benefit in the simulation, but which in
fact were damaging when applied to the full data, remained steady
for all sample sizes. Specifically, the same negative indexes were
recommended at each sampling rate, representing a false positive
recommendation rate between 3.2% and 3.8%.

 The rate at which the SQL compiler selected negative (damaging
the workload) and/or ineffective (not significantly helpful) indexes
remained quite significant, as measured in the simulation. The
average for these across sampling rates was 47.2% with a coefficient

5220

of variation of 6.06%. There was no clear trend for how this varied
with sample rate.

5 FUTURE WORK
This paper presents our initial work on SQL:Trek, a utility for
automated index design and workload analysis. The system is
actively being developed at Airbnb, and we identify several key
areas for future improvement:

1) Virtual statistics. Many database engines provide the
ability to override the table statistics generated by
ANALYZE. Where this is available it would be highly
beneficial to override the statistics in the simulation with
the statistics that exist in the source database. This would
further reduce the risk of false positive index
recommendations.

2) Query Weighting – Incorporate query execution
frequency analysis to better capture workload
characteristics and prioritize index recommendations
accordingly.

3) Scalability of What-If Analysis – Extend multi-pass
evaluation techniques to support more than 64 candidate
indexes per table, overcoming current system limitations
on MySQL.

4) Selective Inclusion of Reference Columns – Our initial
approach excludes reference columns based on the
principle that covering indexes often lead to excessive
specialization. However, in specific cases, selectively
including reference columns could be beneficial, provided
they generalize well and do not lead to overfitting indexes
to a narrow query pattern.

5) Identification and Removal of Unused Indexes –
Develop mechanisms to detect indexes that are no longer
utilized by the workload and recommend their removal.
These may include legacy indexes created for outdated
queries or indexes that remain unused due to current
query optimizer cost estimations.

6) Impact Assessment on Write Performance – Model the
effects of newly recommended indexes on INSERT,
UPDATE, and DELETE operations to balance query
performance with write overhead.

7) Simulation Sampling Rate Optimization – Our initial
investigation utilized a 5% sampling rate, with minimum
and maximum row constraints set at 20K and 1M rows,
respectively. These parameters have proven effective for
the current database configurations under study.
However, future efforts will focus on determining the
minimal sample size that can be employed without
degrading the quality of the recommendation output.
Preliminary observations indicate that reducing the
sampling rate significantly accelerates recommendation
computation time, exhibiting a near-linear correlation.
Further exploration of this relationship will aim to
optimize performance while maintaining
recommendation accuracy.

 These enhancements will refine SQL:Trek’s recommendations,
making it more effective in real-world database environments.

6 CONCLUSIONS
In this paper, we presented SQL:Trek, an index recommendation
tool for relational databases that combines what-if analysis using
the SQL compiler's cost model with query execution on sampled
datasets. SQL:Trek typically delivers high-quality index
recommendations in under 20 minutes while minimizing false
positives. This approach offers substantial advantages over prior
methods by achieving rapid analysis without requiring
modifications to the underlying database system.

 Implemented as an external tool, SQL:Trek is compatible with
MySQL- and PostgreSQL-based databases and can be extended to
other platforms including Oracle [24], DB2 [14], and SQL Server
[21]. Our evaluation across 120 databases demonstrated significant
performance improvements, with query workload execution times
improved by substantial factors in multiple cases. These results
demonstrate SQL:Trek's effectiveness as a practical utility for
database index optimization.

ACKNOWLEDGMENTS
This work would not be possible without the support of several
colleagues including Dave Nagle, Abhishek Parmar, Zheng Liu, and
Erluo Li. All trademarks are the properties of their respective
owners. Any use of these are for identification purposes only and
do not imply sponsorship or endorsement.

REFERENCES

[1] Amazon Web Services. (n.d.). Amazon Aurora MySQL reference. Retrieved
March 14, 2025, from
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-
mysql-reference.html

[2] Apache Software Foundation. 2023. Apache Calcite: A Dynamic Data
Management Framework. Apache Calcite Official Website. Available online:
https://calcite.apache.org/

[3] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad P. Marathe, Vivek
R. Narasayya, and Manoj Syamala. 2004. Database Tuning Advisor for Microsoft
SQL Server 2005. In Proceedings of the Thirtieth International Conference on
Very Large Data Bases (VLDB 2004), Toronto, Canada, August 31 – September
3, 2004. Morgan Kaufmann, 1110–1121. https://doi.org/10.1016/B978-012088469-
8.50097-8

[4] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated
selection of materialized views and indexes in SQL databases. In Proceedings of
the 26th International Conference on Very Large Data Bases (VLDB 2000), Cairo,
Egypt, September 10–14, 2000. VLDB Endowment, 496–505.
http://www.vldb.org/conf/2000/P496.pdf

[5] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An efficient cost-driven index
selection tool for Microsoft SQL Server. In Proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB '97), Athens, Greece, August 25–
29, 1997. Morgan Kaufmann, 146–155.

[6] Surajit Chaudhuri and Vivek Narasayya. 2020. Database Tuning Advisor for
Microsoft SQL Server, Microsoft Research https://www.microsoft.com/en-
us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-
microsoft-sql-server/.

[7] Cockroach Labs. 2024. CockroachDB: The Distributed SQL Database.
https://www.cockroachlabs.com/

[8] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic, Vivek
R. Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit
Chaudhuri. 2019. Automatically Indexing Millions of Databases in Microsoft
Azure SQL Database. In Proceedings of the 2019 International Conference on
Management of Data (SIGMOD '19), Amsterdam, The Netherlands, June 30–July
5, 2019, 666–679. ACM. https://doi.org/10.1145/3299869.3314035

5221

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-reference.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-reference.html
https://calcite.apache.org/
https://doi.org/10.1016/B978-012088469-8.50097-8
https://doi.org/10.1016/B978-012088469-8.50097-8
http://www.vldb.org/conf/2000/P496.pdf
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server/
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server/
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server/
https://doi.org/10.1145/3299869.3314035

[9] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking
Relational Databases. Proceedings of the VLDB Endowment 7, 4 (2013), 277–288.
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://doi.org/10.14778/2732240.2732246

[10] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In Proceedings of the 2019 International Conference on
Management of Data (SIGMOD 2019), Amsterdam, The Netherlands, June 30 –
July 5, 2019, 1241–1258. https://doi.org/10.1145/3299869.3324957

[11] EnterpriseDB Corporation. 2024. EDB Postgres Advanced Server.
https://www.enterprisedb.com/

[12] Sheldon J. Finkelstein, Mario Schkolnick, and Paolo Tiberio. 1988. Physical
Database Design for Relational Databases. ACM Trans. Database Syst. 13, 1
(1988), 91–128. https://doi.org/10.1145/42201.42205

[13] Google Cloud. 2024. AlloyDB for PostgreSQL: Fully managed PostgreSQL-
compatible database service. https://cloud.google.com/alloydb

[14] IBM Corporation. 2024. IBM Db2 for Linux, UNIX and Windows.
https://www.ibm.com/products/db2

[15] JSQLParser. JSqlParser: A SQL statement parser. 2023. Retrieved May 26, 2025,
from https://github.com/JSQLParser/JSqlParser

[16] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really?
Proceedings of the VLDB Endowment 9, 3 (2015), 204–215.
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
https://doi.org/10.14778/2850583.2850594

[17] Gabriel Paludo Licks and Felipe Meneguzzi. 2020. Automated Database Indexing
using Model-free Reinforcement Learning. CoRR, abs/2007.14244.
https://arxiv.org/abs/2007.14244

[18] Sam Lightstone and Bishwaranjan Bhattacharjee. 2004. Automated design of
multidimensional clustering tables for relational databases. In Proceedings of the
Thirtieth International Conference on Very Large Data Bases (VLDB 2004),
Toronto, Canada, August 31 – September 3, 2004. Morgan Kaufmann, 1170–1181.
https://doi.org/10.1016/B978-012088469-8.50102-9

[19] Guy Lohman. 2014. Is Query Optimization a “Solved” Problem?
http://wp.sigmod.org/?p=1075

[20] MariaDB Corporation. 2024. MariaDB Server: The Open Source Relational
Database. https://mariadb.org/

[21] Microsoft Corporation. 2024. Microsoft SQL Server.
https://www.microsoft.com/en-us/sql-server/

[22] Priscilla Neuhaus, Julia Couto, Jonatas Wehrmann, Duncan Dubugras Alcoba
Ruiz, and Felipe Meneguzzi. 2019. GADIS: A Genetic Algorithm for Database
Index Selection. In Proceedings of the 31st International Conference on Software
Engineering and Knowledge Engineering (SEKE 2019), Lisbon, Portugal, July 10–
12, 2019, 39–54. https://doi.org/10.18293/SEKE2019-135

[23] Oracle Corporation, MySQL 8.0 Reference Manual, MySQL 8.0.36, Jan. 2025.
[Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/

[24] Oracle Corporation, Oracle® Database Documentation, [Online]. Available:
https://docs.oracle.com/en/database/oracle/oracle-database/

[25] PingCAP. 2024. TiDB: An open-source, cloud-native, distributed, MySQL-
Compatible database for elastic scale and real-time analytics.
https://www.pingcap.com/tidb/

[26] The PostgreSQL Global Development Group. 2024. PostgreSQL: The World's
Most Advanced Open Source Relational Database. https://www.postgresql.org/

[27] Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable
Multi-attribute Index Selection Using Recursive Strategies. In Proceedings of the
35th IEEE International Conference on Data Engineering (ICDE 2019), Macao,
China, April 8–11, 2019, 1238–1249. IEEE.
https://doi.org/10.1109/ICDE.2019.00113

[28] Transaction Processing Performance Council (TPC), TPC Benchmark C Standard
Specification, TPC, San Francisco, CA, USA, Available: http://www.tpc.org/tpcc/

[29] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan
Skelley. 2000. DB2 Advisor: An optimizer smart enough to recommend its own
indexes. In Proceedings of the 16th International Conference on Data
Engineering (ICDE 2000), San Diego, CA, USA, February 28 – March 3, 2000.
IEEE Computer Society, 101–110. https://doi.org/10.1109/ICDE.2000.839397

[30] Ritwik Yadav, Satyanarayana R. Valluri, and Mohamed Zaït. 2023. AIM: A
practical approach to automated index management for SQL databases. In
Proceedings of the 39th IEEE International Conference on Data Engineering
(ICDE 2023), Anaheim, CA, USA, April 3–7, 2023, 3349–3362. IEEE.
https://doi.org/10.1109/ICDE55515.2023.00257

[31] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam J. Storm,
Christian Garcia-Arellano, and Scott Fadden. 2004. DB2 Design Advisor:
Integrated automatic physical database design. In Proceedings of the Thirtieth
International Conference on Very Large Data Bases (VLDB 2004), Toronto,
Canada, August 31 – September 3, 2004. VLDB Endowment, 1087–1097.
http://www.vldb.org/conf/2004/IND4P1.PDF. https://doi.org/10.1016/B978-
012088469-8.50095-4

[32] Benyuan Zou, Jinguo You, Quankun Wang, Xinxian Wen, and Lianyin Jia. 2022.
Survey on Learnable Databases: A Machine Learning Perspective. Big Data
Research 27 (2022), 100304. https://doi.org/10.1016/j.bdr.2021.100304

5222

http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/42201.42205
https://cloud.google.com/alloydb
https://www.ibm.com/products/db2
https://github.com/JSQLParser/
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
https://arxiv.org/abs/2007.14244
https://doi.org/10.1016/B978-012088469-8.50102-9
http://wp.sigmod.org/?p=1075
https://mariadb.org/
https://www.microsoft.com/en-us/sql-server/
https://doi.org/10.18293/SEKE2019-135
https://dev.mysql.com/doc/refman/8.0/en/
https://docs.oracle.com/en/database/oracle/oracle-database/
https://www.pingcap.com/tidb/
https://doi.org/10.1109/ICDE.2019.00113
http://www.tpc.org/tpcc/
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1109/ICDE55515.2023.00257
http://www.vldb.org/conf/2004/IND4P1.PDF
https://doi.org/10.1016/B978-012088469-8.50095-4
https://doi.org/10.1016/B978-012088469-8.50095-4
https://doi.org/10.1016/j.bdr.2021.100304

