
Delta Sharing: An Open Protocol for Cross-Platform Data Sharing

Krishna Puttaswamy
Abhijit Chakankar

Tao Tao
Zaheera Valani
Ramesh Chandra
William Chau
Mengxi Chen

Databricks
San Francisco, CA, USA

Akram Chetibi
Tianyi Huang
Jonathan Keller
Celia Kung
Andy Liu

Charlene Lyu
Databricks

San Francisco, CA, USA
�rstname.lastname@databricks.com

Samarth Shetty
Xiaotong Sun
Steve Weis
Lin Zhou
Ryan Zhu

Reynold Xin
Matei Zaharia

Databricks
San Francisco, CA, USA

ABSTRACT

Organizations across industries increasingly rely on sharing data

to drive collaboration, innovation, and business performance. How-

ever, securely and e�ciently sharing live data across diverse plat-

forms and adhering to varying governance requirements remains

a signi�cant challenge. Traditional approaches, such as FTP and

proprietary in-data-warehouse solutions, often fail to meet the de-

mands of interoperability, cost, scalability, and low overhead. This

paper introduces Delta Sharing, an open protocol we developed in

collaboration with industry partners, to overcome these limitations.

Delta Sharing leverages open formats like Delta Lake and Apache

Parquet alongside simple HTTP APIs to enable seamless, secure,

and live data sharing across heterogeneous systems. Since its launch

in 2021, Delta Sharing has been adopted by over 4000 enterprises

and supported by hundreds of major software and data vendors. We

discuss the key challenges in developing Delta Sharing and how our

design addresses them. We also present, to our knowledge, the �rst

large-scale study of production data sharing workloads o�ering

insights into this emerging data platform capability.

PVLDB Reference Format:

Krishna Puttaswamy, Abhijit Chakankar, Tao Tao, Zaheera Valani, Ramesh

Chandra, William Chau, Mengxi Chen, Akram Chetibi, Tianyi Huang,

Jonathan Keller, Celia Kung, Andy Liu, Charlene Lyu, Samarth Shetty,

Xiaotong Sun, Steve Weis, Lin Zhou, Ryan Zhu, Reynold Xin, and Matei

Zaharia. Delta Sharing: An Open Protocol for Cross-Platform Data Sharing.

PVLDB, 18(12): 5197 - 5209, 2025.

doi:10.14778/3750601.3750637

1 INTRODUCTION

Sharing data with partners, suppliers, and customers is an increas-

ingly common need for organizations in all industries to improve

their business performance. For example, a retailer sharing data

with their suppliers to improve supply chain e�ciency, media com-

panies sharing data with their partners to improve advertising.

Apart from sharing data across organizations, sharing data within

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750637

an organization, across business units acting as di�erent governance

domains, is a critical necessity. However, securely, e�ciently, and

scalably sharing and managing data is a signi�cant challenge today.

Di�erent organizations and divisions may be using di�erent data

platforms and clouds, may be enforcing di�erent governance rules,

and may be consuming data with a diverse set of tools, all of which

makes data sharing hard.

There are two main approaches our customers have used for

sharing, but they have faced severe limitations in them. Deliver-

ing �les via FTP is the �rst approach, and has been a standard in

some industries for decades. Many of our customers abandoned it

because it was cumbersome for both providers and recipients [19].

Providers had to invest considerable development resources to

maintain ETL pipelines to create the data for each recipient, build

systems to manage the recipients, and scale the servers as data

and number of recipients grew. Recipients, on the other hand, had

to invest resources to ingest data regularly and integrate it with

their data platforms. The second approach is using proprietary

in-data-warehouse sharing features available in platforms such

as Snow�ake [34], BigQuery [9], Redshift [32], and Azure Data

Share [8]. They allow zero-copy sharing between di�erent cus-

tomers of the same data warehouse. In our customer conversations,

poor interoperability stood out as a major limitation of these plat-

forms [19, 24–27]. Data providers wish to deliver data to as many

clients as possible, regardless of the clients’ chosen computing plat-

forms, and even within one enterprise, there are typically many

data platforms in use (e.g., due to di�erent choices in departments,

corporate mergers, etc.). Furthermore, most data warehouses store

data in proprietary formats, and thus do not give direct data access

to external tools. This means that data consumers using other tools

need to pay extra, and incur performance costs to query the data

through the warehouse software.

An ideal solution would meet the following requirements:

• Open and cross-platform. Data sharing should work

across diverse clouds and data platforms. It should not

require clients to change their work�ows or migrate to

new tools or platforms. And it should minimize the risk of

vendor lock-in.

• Secure. The system should provide enterprise-grade secu-

rity. Shared data should be as easy to secure and govern as

the rest of the data in an organization.

5197



• Share live data. Live data should be shared from the source

without making copies to avoid replication costs and to

ensure shared data is up-to-date.

• Performant.The end to end performance of running queries

on shared assets should be comparable to doing similar op-

erations on regular data warehouse assets, even on large

datasets in the terabyte and petabyte range.

Delta Sharing is an open protocol we developed to address these

requirements that now powers sharing features at Databricks and

hundreds of other software vendors and data providers. Our ap-

proach builds on standard open formats (Delta Lake [4, 15] and

Apache Parquet [30]) and works by sharing short-lived access to

the underlying live cloud objects – such as Amazon S3 [1], Azure

ADLS [6], Google GCS [21], etc. Parquet is a popular open table

format. It is the underlying �le format for other richer formats like

Delta [15], Apache Iceberg [23] and Apache Hudi [22]. We created

simple HTTP APIs that vend these access tokens to read cloud ob-

jects for just the data that a client requested (and has access to). The

tokens returned from the APIs are HTTP URLs – reading shared

data is just like reading any other �le. So just by using a Parquet

reader and HTTP APIs, clients can integrate sharing capability into

the tools of their choice and achieve cross-platform data sharing.

Given that the HTTP URLs are for cloud objects, the client can read

them in parallel from the cloud and achieve high performance.

1.1 Challenges

To keep the core protocol simple, so integration is easy, and make

it to work at scale required addressing several design challenges.

Universal sharing. Users expect to perform all read operations

on shared table that they can perform on Delta Lake tables, such

as partitions, time travel, change feeds (CDF), streaming, etc. In

Delta Lake, these features work on top of the Delta Log, which the

protocol hides in order to be cross-platform. So we propose a way

to rebuild the warehouse features on simple APIs in Section 4.1. In

addition, we generalized the protocol to support sharing of non-

tabular assets in the warehouse – volumes, ML models, etc.

Fine-grained sharing (FGAC). Sharing di�erent subsets of a

table with di�erent recipients – via views, row-level access policies,

or column masks – are high-leverage features that drastically re-

duce the number of copies of data and policies the providers have

to manage. Traditional data warehouses apply FGAC at query time

as they are often executed on trusted query engines running within

the same domain and are granted access to the full data of the un-

derlying table. This isn’t the case in Delta Sharing, where engines

can be executing cross-domain, which makes enforcing FGAC chal-

lenging. Section 4.2 describes how we address this challenge with a

general notion of a cross-domain trusted engine, and with physical

data materialization where engines aren’t trusted.

Governing shared assets. Enterprises often have a catalog,

such as Unity Catalog [10], to govern their data. Both providers

and recipients prefer to govern shared assets in the same catalog.

For example, recipient organization’s users want to con�gure gov-

ernance policies on the shared assets (e.g., sales team has access to

a shared table but analyst team does not) or discover shared assets

with search. However, because they may be in di�erent domains,

managing shared data in the recipient catalog requires continuously

reconciling shared asset metadata from providers as it changes

(when tables are added/removed to/from a share) across domains. In

addition, governance policies for sharing should be designed to be

compatible with FGAC policies (for e.g., how an organization-wide

ABAC policy applies to a shared asset). We describe our approach

to address these challenges in Section 4.3.

Secure sharing. Large enterprises demand stronger security

measures, including seamless integration with identity providers

(IDPs) of providers and recipients, short-lived tokens bound to IDPs

(no long-lived bearer tokens), etc. before they can share data. De-

signing hooks in the system for defense in depth, while keeping the

core protocol simple, is a challenge that we explore in Section 4.4.

Managing cloud costs and billing. With live sharing, manag-

ing egress cost is challenging because the cost depends on where

the provider storage is and the network path taken by a client query,

which are not pre-determined, and replicating data does not always

address the egress costs. Finally, because sharing inherently allows

one organization (recipient) to access data of another organization

(provider), billing the right cost to the right party is a new challenge.

We describe our solutions to these challenges in Section 4.5.

Performance. In Delta Sharing, the sharing server sends meta-

data about �les to the clients and the clients read the �les directly

from cloud storage. To send the right metadata, the sharing server

needs to process the Delta Log (typically done by a query engine)

in a service, which can be expensive, especially on large tables

with millions of �les. The sharing server has several optimizations

to reduce the number of �le metadata it sends to the clients. Fur-

thermore, when a provider shares a large number of tables with

many recipients, reconciliation tra�c can be signi�cant, which

requires careful design. Section 4.6 describes how we address these

challenges.

1.2 Workload Study

The sharing protocol has been in production for about four years

and is now used by more than 4000 organizations across Databricks

and other computing platforms. We are serving tens of millions of

queries per month. And the Delta Sharing service in Databricks

is powering several other Databricks products such as Market-

place [28], Clean Rooms [11], and System Tables [36]. From all this

experience, we have learned a number of interesting lessons.

• Internal sharing is prevalent. 40% of data sharing is

within an organization across business units.

• Cardinality of sharing can be high. Most of the data

shared with external customers have < 10 organizations; but

some providers are sharing data with 100s of organizations.

• Sharing clients tend to be diverse. Over half of the

providers on Databricks are sharing data with recipients

outside Databricks, who are consuming data using 15+ dif-

ferent connectors, showing that an open approach brings

diverse customers into the sharing ecosystem.

• Cross-cloud and cross-region sharing is signi�cant.

About 40% of all sharing is between providers and recip-

ients within Databricks; about 9% of that is cross-cloud

and remaining tra�c split evenly between same-region and

cross-region within a cloud.

5198



• SaaS data sharing is an emerging use case. SaaS providers

are starting to share SaaS analytics data with all their cus-

tomers by directly embedding data product into SaaS. Such

sharing tends to have very high cardinality.

The key contributions of this paper are threefold. 1) We describe

the key sharing use cases based on our view of sharing patterns by

4000+ organizations. We identify some novel use cases such as SaaS

Data Sharing with unique patterns. 2) We present the design and

implementation of Delta Sharing, the key challenges in developing

it and how our design addressed them. And �nally, 3) we present

the �rst large-scale study of production sharing workload and a

number of learnings from them.

2 USE CASES

We have observed �ve categories of data sharing use cases.

2.1 Internal Sharing

Many organizations consist of subsidiaries, zones, or divisions that

are isolated and potentially use di�erent data platforms. These di-

visions are di�erent legal entities with di�erent governance and

compliance requirements. However, they still want to avoid data

silos and share data with each other, e�ectively forming an intra-

organization data mesh. Universal sharing of data and governance

are critical for providers. Consuming data in diverse ways – Spark

or Pandas or Excel, and in potentially di�erent programming lan-

guages is critical for recipients.

2.2 Point-to-Point Sharing

Organizations may want to share data with external partners, ven-

dors, customers, or suppliers for collaboration purposes, for exam-

ple. Retailers often share product sales data with partners in di�er-

ent clouds or ad networks for marketing purposes, and share similar

data with their suppliers to help them manage supply chains better.

We have worked with retailers who want to share data with a large

number of suppliers/vendors (in 1000s). In these cross-organization

sharing cases, participants want to maintain separate governance

control of data; data providers need �ne-grained sharing – share

a particular slice of live data with a particular supplier – and still

manage shared data with low cost and overhead.

2.3 Commercial Data Sharing

Data vendors monetize their data and want to distribute data easily

(low management overhead), with low cost, and at scale. Reaching

customers broadly and e�ciently is critical for them. They often

tend to have hundreds to thousands of customers, and they want to

share live data so updates are available to their customers instantly.

In addition, they prefer an open platform to achieve broad customer

reach. The recipients of such data want �exibility in consuming data

in whatever platforms and tools they already have. Kythera Labs,

AccuWeather, S&P Global, Epsilon are some examples of such data

vendors in di�erent industries using Delta Sharing to power their

business. Hundreds of consumers of data from such vendors are

also using Delta Sharing as recipients. The main di�erence between

cross-organization sharing and commercial-vendor sharing is that

the data is typically not customized for individual recipients in

the latter case, and they often tend to publish their data on data

marketplaces (such as Databricks Marketplace [28]).

2.4 SaaS (Software as a Service) Data Sharing

This is an emerging category, where a SaaS data provider wants

to share �rst-party data through their applications with their own

customers to enable them to analyze it. Databricks itself is an exam-

ple of this, where we integrate Delta Sharing capabilities directly

into our SaaS applications to share usage and observability data

with customers via "system tables," a set of tables visible directly in

their data catalog. Aveva and Amperity [2] are other examples of

this pattern. The primary focus of a SaaS here is enabling their cus-

tomers to use data from the SaaS application in their own analytics,

which naturally requires supporting as many compute platforms as

possible and bene�ts from using an open Delta Sharing protocol.

2.5 Privacy-safe Collaboration

Privacy-safe collaboration, such as through Clean Rooms [11], en-

ables multiple parties to contribute data into a trusted environment

where privacy-safe computations are performed. The results are

then shared with the collaborators without revealing private data

from any collaborator. This approach is essential for collaboration

between organizations that do not want to share raw data with each

other to meet regulatory, compliance, or other requirements. Such

applications of privacy-safe collaboration are growing, and Delta

Sharing provides a strong foundation for building such solutions.

In fact, we built Databricks Clean Rooms [11] on Delta Sharing.

3 DELTA SHARING OVERVIEW

In this section, we will provide an overview of Delta Sharing. A

high level architecture diagram is shown in Figure 1.

3.1 Essential Components

The main components of the system are:

• Delta Sharing Protocol. Delta sharing is a simple REST

protocol that supports sharing live data in a Delta Lake

between Providers and Recipients.

• Data Provider. The Data Provider is the principal who

owns the data and is sharing.

• Data Recipient. Data Recipient is the principal receiving

the data. The recipient is associated with a way to authenti-

cate (bearer token or OAuth token) to access shared assets.

Provider and recipient principals may represent an organi-

zation, a person, or a group. As a result, many users may

be consuming data in the recipient organization, and when

their queries come to the provider they would all be treated

as the same recipient.

• Delta Sharing Server. The server that implements the

server side of the sharing protocol. It is also responsible

for enforcing governance, tracking usage, etc. of the shared

assets.

• Delta Sharing Connector. A client that implements the

sharing protocol.

• Tables in Delta Lake. Tables (and table-like assets such as

views, materialized views, streaming tables, etc.) in Delta

Lake are stored in formats such as Delta [15], Uniform [37],

5199



Figure 1: Delta Sharing under the hood.

Iceberg [23], etc., which essentially is a collection of Parquet

�les stored on cloud object stores such as AWS S3, Azure

ADLS, Google GCS.

• Short-lived access tokens. The sharing protocol builds

on top of cloud storage and allows sharing of �les from

providers to recipients by sending short-lived access tokens

to the recipients. Using which the recipients can access the

underlying cloud data object for a certain duration without

any additional authentication steps.

Figure 2: Delta Sharing Object Model showing Share as a unit

of isolation for sharing assets from a provider to a recipient.

3.2 Object Model

The protocol is built around three core concepts below. These con-

cepts are depicted in Figure 2 with an example.

Table: Tabular asset (table, view, etc.) is a collection of Parquet

�les in the cloud object store. The �les of the Delta table are physi-

cally organized together in a folder or under a pre�x in cloud object

stores. Providers can specify table aliases when sharing individual

tables, allowing recipients to access them under di�erent names.

Non-tabular assets such as volumes and ML models are leaf-level

assets similar to a table. They tend to be a collection of �les, too,

although not necessarily in Parquet format. Most of the description

in the paper is for tabular assets, but we describe how the ideas

extend to non-tabular assets in Section 4.1.

Schema: helps organize tables into human-readable groups. It

is a logical group of tables. The tables in a schema need not all be

grouped together physically – they can continue to live in their orig-

inal locations, potentially under unrelated cloud storage pre�xes.

Similar to individual tables, when a schema is shared, providers can

share them under a di�erent alias. When an entire schema is shared,

all assets in the schema – current and future – will be shared.

Share: is a logical collection of schemas. Share is the unit of

sharing. Share provides a read-only security boundary for the assets

within and limits the exposure of data via sharing to only what

is explicitly added to the share. A share can be shared with one or

more recipients. A recipient with access to a share can access all

the assets within the share, and newly added assets to a share will

automatically be accessible to them.

3.3 Delta Format Background

Let us review the key points of how data is organized in a Delta

table, so it is easy to understand how the sharing protocol works

on top of Delta. A Delta table at its core is a directory (or an object

key pre�x) on a cloud object store that contains data objects with

table content and a subdirectory containing the log of transactions

performed on the table. The table contents are stored in Apache

Parquet format objects. If the table is partitioned on a column, then

the contents of the partitions are organized in sub-directories. Each

table content object has a unique name.

The transaction log is stored in a sub-directory called _delta_log.

It contains a series of JSON �les named using sequentially increas-

ing numerical IDs. Each log JSON �le contains actions that were

performed in one transaction on the table. Actions include opera-

tions like add or remove �les. Each transaction increments the table

version and hence performing the actions in a JSON �le takes the

table from previous version to the version of the JSON �le. There

are other actions that we do not dive into for the purpose of this

paper. For e�ciency, the log folder may contain checkpoints that

summarize all the operations in the JSON log �les up to a certain

point, which are in Parquet format.

On top of this format, the Delta format includes read and write

protocols for clients to read data or write data to Delta tables. These

protocols provide serializable transactions on the Delta tables even

if the underlying object store only provides eventual consistency

guarantees. The key to this is the log JSON �le. Each transaction

5200



writes one �le atomically, and a client reading this �le has all the

information about operations performed in this version of the table.

3.4 Delta Sharing Protocol and Server

Delta Sharing protocol builds on Delta, andworks by vending access

tokens to speci�c set of �les depending on the query request sent by

the client. The sharing protocol does not rewrite or copy the Delta

�les for sharing, instead it vends tokens to speci�c �les the client

needs, to achieve high performance. The sharing protocol [16], is a

collection of REST APIs. The sharing server implements the APIs.

These APIs are designed carefully to be simple, e�cient, and enable

clients to leverage the power of cloud storage without the server

becoming a bottleneck.

The protocol is depicted in Figure 1. It works as follows:

(1) The recipient’s client authenticates to the sharing server

(via a bearer token or other methods) and asks to query a

table (query API [16]). The client can optionally provide

hints to the server to �lter the data (e.g. “country=US”) to

just a subset. Spark Connector built on the protocol, for

example, will push such �lters via predicate pushdown. If a

table’s full history is shared, the client can send additional

options such as the startingVersion/endingVersion or the

startingTimestamp/endingTimestamp for further �ltering

the �les sent back to the client to speci�c versions of the

table.

(2) The server veri�es whether the client is allowed to access

the data; and then determines which subset of �les to send

back based on the options provided. This will be the subset

of the data objects for the table on the cloud storage that

actually make up the table.

(3) Then the server provides access to the data objects corre-

sponding to the subset of �les identi�ed. To provide access,

the server generates short-lived access tokens in the form

of pre-signed URLs. These URLs allow the client to read

the Parquet �les directly from the cloud provider without

coming back to the server (up to a certain con�gurable

duration encoded in the URL).

(4) The client can then take the list of access tokens and read

�les in parallel at massive bandwidth, without streaming

through the sharing server (and hence becoming a bottle-

neck). The pre-signed URL feature, supported by all the

major cloud providers, makes it fast, cheap and reliable to

share very large datasets with any number of clients.

4 SYSTEM DESIGN

In this section, we describe how our design addresses the challenges

outlined in Section 1.

4.1 Universal sharing

This section describes how we supported all features on shared

tables, and then extended sharing to non-table assets as well.

4.1.1 Short-Lived Access Tokens. Pre-signed URL is a mechanism

we chose to provide short-lived access to Parquet �les in cloud

object stores. Pre-signed URL feature is supported by major cloud

providers to grant temporary and secure access to objects without

requiring users to have direct credentials to the cloud. So clients can

interact (upload or download �les) with cloud storage directly with-

out providing them with privileged, long-term cloud credentials.

Because URLs are short-lived by design, the provider does not need

mechanisms to track and expire issued URLs, simplifying access

management for temporary clients. AWS S3’s [31] pre-signed URLs

and GCP’s signed URLs [20] allow time-limited access to private

objects by including authentication details in the URL query string.

The URL can be con�gured with speci�c permissions and expira-

tion times. Azure o�ers pre-signed URLs through Shared Access

Signatures (SAS) [7] for Blob Storage, allowing users to perform

speci�c actions like reading or writing data within a de�ned time

duration. Even though writes are possible, we limit URLs to be

read-only in Delta Sharing.

A few things required care in our implementation on top of pre-

signed URLs. First, the expiration time should be chosen carefully

to balance usability and security – we chose default time of 1 hour

to expire the URLs and we built mechanisms for the clients to renew

it for a limited number of times to support long-running queries.

Second, cloud platforms support monitoring and logging usage of

these URLs out-of-the-box, which the provider should enable to

detect abuse/misuse of these URLs.

4.1.2 Supporting various table features. The main advantage of

pre-signed URL based approach is that the client gets the relevant

�les to read and does not need logic to process the Delta Log, and

in general be agnostic to how the �les are organized in the Delta

Table. This simple interface is good enough to support the core

features of Delta table as described next.

Time Travel. Delta Lake [4, 15] automatically versions data

stored in the tables. This allows for time travel capabilities, which

allows clients to access data for any version of the table. This is

supported in the Delta Sharing protocol when a table is shared

with entire history. Clients can use the table version API to discover

the latest version of a table. They can lookup earlier versions by

specifying the timestamp parameter in the API. Clients can also

query data from a speci�c version of the table using the query table

API by specifying either the version or the timestamp parameter.

The open source Delta Sharing Spark and Python connectors have

built-in support for time travel queries.

Change Data Feed (CDF). CDF allows Delta Lake to track row-

level changes between versions of a Delta table. When enabled,

Delta Lake records “change events” for all the changes in a table.

This includes row data, along with metadata indicating whether

the row was inserted, updated or deleted. CDF can be used to

incrementally and e�ciently process changed data.

Delta Sharing protocol supports CDF. Clients can use the table

changes API [16] to query CDF by specifying parameters such as

startingVersion/endingVersion or startingTimestamp/endingTimestamp.

Clients can fetch changes in a batch mode, or implement CDF struc-

tured streaming. The open source Delta Sharing Spark connector

supports both batch and structured streaming for CDF. The open

source Delta Sharing Python connector has built-in support for

batch CDF.

Structured Streaming. Delta Lake is deeply integrated with

Spark Structured Streaming which allows incremental data reads

as changes are committed to the Delta table. Delta Sharing protocol

5201



supports Structured Streaming, too. Clients can use the query table

API to get data �les committed between two versions using the start-

ingVersion/endingVersion or startingTimestamp/endingTimestamp

parameters. They can get data �les committed from a given version

by specifying only the startingTimestamp or startingVersion. Typi-

cally, a Structured Streaming job will start from an initial version

and then periodically fetch data �les that are committed to newer

versions of the source tables. The job maintains checkpoints of ver-

sions consumed to smoothly recover from failures. The open source

Delta Sharing Spark connector has built-in support for Structured

Streaming.

4.1.3 Folder Token based sharing. While the �le-based approach

(based on pre-signed URLs) is simple and easy to build integrations

for diverse clients, it has limitations for cases where there are a

large number of �les (more on this in Section 4.6) or when the asset

is organized such that a single �le does not fully contain all the

necessary information (like the .JSON �le in Delta table) thereby

requiring a client to have access to the asset’s root folder.

Volume, for example, has features like listing �les in a folder, such

list operations are either ine�cient on the table APIs or require

protocol changes. As more, particularly non-tabular, assets are

supported in the warehouse we want to be able to share them

automatically with a generic approach. Folder-token based sharing

is a form of short-lived access we designed to support such use

cases. This approach provides temporary tokens with read-only

permissions to an asset’s root folder in cloud storage. Using this

credential, the client can perform asset-speci�c operations on the

shared asset just like it would do on the original asset – for example,

the client can list speci�c sub-folders in a volume, or load an ML

model for serving, etc. The main downside of this approach is that

it requires the client to be aware of the asset type and perform

appropriate operations, which is acceptable when the clients have

that asset-speci�c logic already; for example in D2D sharing the

recipient’s Databricks runtime (DBR) can read shared asset from

Databricks provider just like a regular asset.

We are working on bringing this generic approach to the open

source implementation of the protocol and connectors.

4.2 Fine-grained sharing (FGAC)

Some sharing use cases require giving access to a subset of table’s

data based on the recipient accessing it. For example, a provider

may have a multi-tenant table, and they want to restrict rows and

columns shared with speci�c tenants. These �ne-grained access

controls are typically expressed as views with current_recipient [12],

row level security(RLS), column masks (CM), role-based access

control (RBAC) and attribute-based access control (ABAC). So the

sharing server should ensure that the data shared via the protocol

APIs is compliant with FGAC.

The simplest form of FGAC can be supported by physically

partitioning the base table and sharing speci�c physical partitions

of it with speci�c recipients. For example, a SaaS provider can

create a multi-tenant table partitioned on a column ’tenant_id’

which represents the tenant’s unique id. Since these partitions are

physically separated from each other, they can be securely shared

with their respective tenants without any storage or performance

overhead. However, this approach does not generalize.

To properly support views and more advanced forms of FGAC

such as RBAC and ABAC, we �rst determine if the query is coming

from a ’trusted’ engine and depending on that decision, we either

give access to the base table or to a materialized copy of the data. If

the recipient query engine is ’trusted’, i.e., isolated from the user

where the user cannot bypass its security enforcement mechanisms,

the sharing server sends FGAC related �lters and masks to the

trusted query engine and grants temporary access to the underlying

base tables. The trusted engine, by de�nition, guarantees that the

FGAC related �lters and masks are always applied to the user query.

If the query engine is untrusted, then the FGAC compliant subset is

materialized on a trusted compute on the provider side, and access

is granted on the materialized subset to the query engine.

Each sharing server needs to determine which engines it trusts.

A trusted relationship between the sharing server and the query

engine is typically only possible if the entity that owns the sharing

server also owns the query engine. For example, if both the data

provider and the data recipient are on Databricks, the Databricks

sharing server and the Databricks runtime (DBR) query engine

negotiate and establish this trust on every user query. If the query

originates from a non-Databricks query engine, it is always consid-

ered untrusted.

4.3 Governing shared assets

In this section, we use our experience integrating Delta Sharing

with Unity Catalog (UC) in Databricks as an example to describe

solutions to governance challenges around Delta Sharing. Data in

UC is organized in three-level hierarchical namespace as shown

in Figure 2 (catalog contains schemas, which contains tables and

other leaf-level assets). When a share is mounted on the recipient

side, we mount it as a catalog (the top level container namespace

in UC). All catalog metadata are hosted in a single database called

the Metastore.

Provider Side Share Governance. Organizations have sen-

sitive data in their catalog; accidentally sharing data outside an

organization can lead to serious security incidents. As a result, the

ability to share data should be guarded behind su�ciently high

privileges. In Databricks UC, only users with CREATE_SHARE priv-

ilege can create shares. Each share has an owner; and we enforce

the principle that the share owner must have SELECT privileges

on shared assets to be able to share it with a recipient. If the owner

loses SELECT permissions on a shared asset, then that shared asset

becomes inaccessible to the recipient, to prevent escalation of privi-

lege attacks where someone may gain access to an asset via sharing

that they cannot directly access. This check is enforced both when

an asset is added to a share as well as at query time.

FGAC brings other interesting challenges when sharing as a

provider. For example, if there is an organization-wide ABAC policy

to mask PII, can the owner only share after applying this policy?

What if a principal responsible for disaster recovery wants to share

the raw data before applying the policy with another zone/region

to replicate it? We resolve such con�ict by giving ABAC policy

owners an option to exclude some principles from ABAC rules.

Such principals can acquire CREATE_SHARE privileges and share

raw data before the policy is applied.

5202



Recipient management. As a provider, even the ability to cre-

ating recipient objects (that encapsulate the principal that receives

the share) should be guarded. In Databricks UC, only users with

CREATE_RECIPIENT privilege can create recipients; and users with

SET_SHARE_PERMISSION can grant share access to a recipient.

Recipient Side Share Governance. In Databricks Unity Cat-

alog, an incoming Share can be viewed as a remote catalog that

can be “mounted” locally as a “shared catalog.” After mounting, the

shared catalog looks just like any other catalog to the user, and

they can access the assets within like a regular catalog. But behind

the scene it makes remote calls to the sharing server instead of

accessing data locally.

Similar to the concerns on the provider side, consumers of data,

especially in large enterprises, may want users with special priv-

ileges to perform this action, and govern access to these shared

assets. In Databricks UC, only users with USE_PROVIDER, and CRE-

ATE_CATALOG can perform this mount. The owner who mounted

the catalog can govern this data and provide access to speci�c prin-

cipals within the recipient organization, just like any other catalog

in the metastore.

Finally, Metastore administrators have the ability to turn on (or

o�) Delta Sharing at metastore level, and control which principals

get which of the privileges described above.

4.4 Secure sharing

Delta Sharing comeswith several security capabilities. Data providers

are able to grant or revoke access to recipients at any time, and are

able to grant access to only the slice of data the recipient needs

(FGAC). The Delta Sharing server, by default, has features to track

and audit access to the data by recipients. When a recipient is cre-

ated on a provider, they get a link to download a recipient pro�le

with a long-lived bearer token. We enhanced this to control the ex-

piration time of the token on the provider side. However, these were

not enough for larger enterprises who needed defense in depth. As

a result, we added several other capabilities.

4.4.1 IP Restrictions. We added the ability for providers to assign IP

access lists that restrict recipient access to speci�c IPv4 addresses

ranges. These restrictions apply to REST API access, activation

URLs, and credential �le downloads, ensuring that only trusted net-

work locations can interact with shared resources. Administrators

can con�gure these lists using the Databricks Unity Catalog. This

approach improves security by combining network-level restric-

tions with token-based authentication, making unauthorized access

signi�cantly harder.

4.4.2 OAuth-based Authentication. Security-sensitive organizations

prefer to use short-term tokens with more �ne grained controls.

To support such customers, we added support for OpenID Connect

(OIDC) based authentication for Delta Sharing as another option.

This enhances security by allowing recipients to authenticate using

OIDC or OAuth tokens from their trusted Identity Providers (IdPs).

When a provider creates a recipient for external users, they specify

an identity federation policy that dictates which external recipient’s

IdP and which users/principals/groups from that IdP can access the

shared data. In this approach, the recipients authenticate against

their own IdP, eliminating the need for shared secrets between

provider’s Delta Sharing server and the recipient, and then use

the issued OAuth tokens to access data on the provider. As long

as the token policies are met by the token (which the provider’s

server checks using standard OAuth protocol), the provider can

grant access to data.

4.5 Managing cloud costs and billing

Managing cloud costs is already complex, and sharing makes it

more complex by adding new factors. The cost of querying a shared

table is primarily a function of resource type (compute and storage

type), cloud provider (providers have di�erent cost), where access

happens (access from di�erent region/cloud lead to di�erent egress

costs). The last factor is novel to sharing.

4.5.1 Egress Cost Management. Live sharing is the default in Delta

Sharing because it enables real-time data access with a single copy

on the provider (low storage cost) and is simple to setup and main-

tain. However, it can potentially incur high and unpredictable egress

costs on the provider. On cloud providers, the egress cost varies

based on the region from which data is egressing as well as on

the amount of data egressing, which in turn depends on the num-

ber of recipients and frequency of access by users in the recipient

organization. So popular providers tend to incur higher egress costs.

However, di�erent scenarios bene�t from alternative replication

options. Recipient-side replication, one option, places the onus

on the recipient to maintain their data copies, resulting in egress

costs as a function of the number of recipients (much smaller than

number of queries). Another option is for providers to replicate data

across di�erent regions and redirect requests to provider’s local-

region copy of data. This results in egress costs from replicating to

di�erent regions, but results in no cost when recipients query local

copies of data. These choices depend on the number of recipients,

frequency of access by a recipient, who is more capable or willing

to handle the associated replication costs, and operational overhead.

This replication itself can be made e�cient by leveraging Change

Data Feed (CDF) to manage incremental updates, or by employing

materialized views to auto-refresh shared tables – which reduce the

amount of data transferred to updated the copies as well as keeps

the tables in sync with low latency.

To further optimize and manage costs, Delta Sharing is inte-

grated with Cloud�are R2 [13], which o�ers zero egress fees; thus

it is most appropriate for data providers with many recipients or

frequent queries. A minor downside of this approach is the cost of

transferring data from their source cloud provider to R2, which is

negligible compared to the cost savings.

4.5.2 Billing. Another challenge that is unique to Delta Sharing is

appropriately billing the cost of cloud resources to the right par-

ticipant. For FGAC (view sharing, RLS/CM, etc.) we may have to

materialize the result on provider side in response to a query. Simi-

larly, as discussed, there is egress cost on the provider in response to

queries. But the recipient may be from a di�erent organization; they

may have a di�erent account on Databricks, or they may be an open

recipient with no account on Databricks. Accurately billing the cost

of resources consumed on the provider is critical for providers.

The providers can then use the incurred cost to either charge the

5203



right recipient account or for open recipients allocate some budget

strategically and limit resources consumed appropriately.

4.6 Performance

There are a few aspects to performance. One is the query perfor-

mance – recipient user’s perceived end-to-end time for running

the query. The second is the performance of metadata reconcilia-

tion, which is necessary for the recipient user to see most updated

metadata from the provider.

4.6.1 E�icient query processing. For the clients to achieve good

end-to-end performance, Delta Sharing server should minimize

the number of pre-signed URLs sent to the clients and the time it

takes to do so. To do that, we allow predicate pushdown from the

clients, have a number of service optimizations, and �nally leverage

folder-token based sharing where possible.

Predicate Pushdown.When a Delta Sharing client queries a

table, it can pushdown predicates in their request. This improves ef-

�ciency both on the server (fewer �les to sign) and on the client side

(fewer �les to read). These predicates represent �ltering conditions

in a structured JSON format, enabling complex logical operations

such as ‘and‘, ‘or‘, and comparisons like ‘greaterThanOrEqual‘ or

‘lessThanOrEqual‘. Each Delta table maintains metadata in its trans-

action log, which includes �le-level statistics such as the minimum

and maximum values for each column. These statistics enable Delta

Sharing to determine whether a �le contains data relevant to the

a query’s predicates. For example, if a query �lters rows where

‘age < 20‘, the server can skip �les where the ‘min_age‘ is greater

than or equal to 20, as those �les cannot contain matching rows.

In addition to this metadata, we can also use the partition column

values for �ltering. The server evaluates this request against the

table’s metadata and partition columns, and uses Delta Lake’s opti-

mizations such as data skipping and indexing, to retrieve only the

�les that satisfy the predicates. As a result, it reduces the number

of �les, and hence the amount of data the client has to read from

cloud storage.

Service Optimizations. A petabyte scale table may contain

millions of data �les and a large Delta Log. Generally query en-

gines process the Delta Log, but that should be done in the Delta

Sharing server to support cross-platform clients in Delta Sharing,

and requests on large tables can be expensive (and non-uniform).

We have a number of optimizations in the service to cope with this

challenge. Autoscaling the service compute, caching state read from

DB and storage, isolating the thread pools for unpacking Delta Log

(I/O intensive) from the pre-signing (cpu intensive) thread pools

are some such optimizations.

Folder-token based sharing. This mode of sharing is signi�-

cantly more performant than pre-signed URLs because it eliminates

the cost of pre-signing �les within a folder, which dramatically im-

proves the query startup time for tables with many �les. However,

this requires connectors to implement more APIs and build better

integration with Delta Lake (like interpret the Delta Log for some

operations) and hence is hard to build into many clients. Query

engines that already have this capability can tell the server to use

this mode instead of using pre-signed URLs.

4.6.2 Optimizing Reconciliation. Reconciliation – the problem of

keeping metadata up-to-date in the recipient catalog with the

provider metadata – can generate a lot of tra�c. Imagine a commer-

cial data vendor sharing data with N recipient organization each

with U users on average. This introduces metadata requests from N

* U sources. A simple way to reconcile is to "pull" metadata every

time a user visits the shared catalog in the catalog UX. This will

make the tra�c a function of how often the N * U users visit the cat-

alog page, which can be very high. Furthermore, each request can

be expensive as a vendor may be sharing 1000s of assets per share.

We started with this approach in Databricks. But we have now tran-

sitioned to "push" mode where the provider pushes change events

when there are changes to metadata and the recipients consume it

to update their metadata.

5 IMPLEMENTATION

Delta Sharing protocol, reference server, and several client connec-

tor implementations have been open-sourced [17] on GitHub since

April 2021. We have over 15 open source client implementations in-

cluding Spark, Pandas, Python, Go, R, Rust, Node.js clients, among

others. Several open/proprietary clients are implemented by compa-

nies such as Microsoft PowerBI, Tableau, Exponam, etc. The open

source project is actively used and is receiving code contributions

for many organizations beyond Databricks.

5.1 Connector Implementation

Delta Sharing protocol uses restful APIs for metadata discovery

and pre-signed URLs for accessing data stored in Parquet format.

This combination makes connector development simple. A typical

connector implementation consists of the following main steps.

• Connectors get a pro�le �le to get access to shared assets. A

pro�le �le is sent to the recipient when a recipient is given

access to a share.

• The client can use ListShare/GetShare APIs to discover

shares that are available for access.

• They can then use APIs such as ListSchema/ListTables to

discover shared assets in a share.

• They can use the query table API to fetch pre-signed URLs

for the Parquet data �les. And then use an open source

Parquet reader to read data from the �les. Connectors can

expose time travel and streaming related parameters to

their users.

• They can use the table change API to fetch pre-signed URLs

for Parquet change �les. Connectors can expose CDF batch

and streaming related parameters to their users.

• Another strategy for connectors is to leverage the Delta

Kernel [14] library to process the data �les. This will al-

low connectors to automatically get advanced Delta Lake

features such as Deletion Vectors and Column Mapping. It

decouples the connector implementation from Delta Lake

features and supports better interoperability with Delta

Lake.

Python Connector. The Delta Sharing Python connector is a

Python library that implements the Delta Sharing Protocol to read

tables from a Delta Sharing Server. You can load shared tables as a

Pandas DataFrame, or as an Apache Spark DataFrame if running

5204



in PySpark with the Apache Spark Connector installed. The initial

version of the connector followed the standard connector imple-

mentation described above. Once the Delta Kernel Rust library was

open sourced, parts of the connector were re-written to leverage

it. It now supports all advanced Delta Lake features supported by

Delta Kernel [14], including Deletion Vectors and Column Mapping.

Spark Connector. The Spark connector uses the same set of

APIs described above. It plugs them into the Spark query engine

via Spark DataSource [35]. The connector uses the query table

API’s batch and stream processing capabilities. For batch, the client

queries the list of �les for the current version of the table and imple-

ments the DataSource primitives necessary to get a DataFrame for

the shared table. For Structured Streaming, the connector queries

new �les using the startingTimestamp and startingVersion param-

eters to incrementally fetch new �les and then implements the

primitives needed to support a Streaming Source.

6 PRODUCTS AND COMPANIES SUPPORTING
DELTA SHARING ECOSYSTEM

Beyond Databricks, a number of other companies are building on

top of Delta Sharing in the broader ecosystem. In this section, we

highlight a few of them.

6.1 Sharing Servers

The open source project on Github provides a reference Delta Shar-

ing server [18] implementation in Scala. This is typically used as

a starting point by other organizations to build their own servers.

Several vendors such as Oracle [29], SAP [33], Amperity [3], and

Aveva [5] have implemented their own Delta Sharing server. They

typically add additional customizations on top, particularly for in-

tegration with internal data governance systems, integration with

authentication systems, and persistent state to manage shares and

recipients. These vendors act as data providers as well as data re-

cipients, which has enriched the open Delta Sharing ecosystem and

encouraged interoperability. In fact, support for OAuth authenti-

cation mechanisms was built to meet the security requirements

of one of these vendors as they were building on top of the OSS

sharing server to serve their customers.

6.2 Connectors

Companies such as Microsoft, Tableau, Exponam have added new

connectors to the ecosystem. In fact, as we will show later, PowerBI

and Microsoft PowerQuery are among the top connectors used

by open recipients. Beyond these, the open source community

continues to add new connectors.

7 PERFORMANCE EVALUATION

In this section, we dive into some important performance bench-

marks of the protocol. To show the performance of queries on

shared data, we created tables of di�erent sizes with synthetic sales

data. Speci�cally, we created three tables with 10, 100 and 1000

Parquet �les with each �le having 2 million records. These tables

were shared via the Delta Sharing protocol, and were queried via

the SQL Warehouse.

Table 1 shows the performance of running the exact same set

of query on shared table vs directly on the source table in the SQL

Table 1: Comparison of query performance directly on source

data table vs query on shared data table.

Table size Source (secs) Shared table (secs)

Table with 10 �les 2.73 3.58

Table with 100 �les 14.69 16.63

Table with 1K �les 53 62

Table 2: Performance on shared tables with and without pred-

icate push down (PPD).

Table With PPD (secs) Without PPD (secs)

Table with 10 �les 2.99 3.58

Table with 100 �les 7.28 16.63

Table with 1K �les 7.76 62

Warehouse. This query was on the entire table’s data without any

predicate pushdown. The extra overhead in the query time of shared

data varies from 13 to 30% relative to querying on source data. The

overhead reduces as the table size increases from 10 to 100 �les and

then stays nearly constant afterwards.

Table 2 shows the result of running a query with and without

predicate push down on the SQL Warehouse. The predicate pushed

down was the limit the query to process sales from a single region.

With predicate push down, the performance of queries remains

nearly constant (after an initial increase going from 10 to 100 �les).

8 WORKLOAD STUDY ON THE DATABRICKS
PLATFORM

We have been operating the Delta Sharing service in production

at Databricks for close to 4 years on all major cloud providers. It

allows customers to share data (as provider) on four di�erent clouds:

Amazon AWS, Microsoft Azure, Google GCP, and CloudFlare R2,

or consume data (as recipient) anywhere on the Internet, including

within the Databricks platform. In this section, we present a study

of the sharing workload on how the platform is used by thousands

of organizations. For the content in this section, we have removed

data where Databricks is providing data as a SaaS provider and

purely focus on how external customers are using this platform.

8.1 Cross-domain sharing adoption over time

In the month of October 2024, over 4000 companies are sharing

data with other companies through 5000+ shares. The growth in

the number of active (with usage in the last 30 days) sharing cus-

tomers as either a provider or a recipient is shown Figure 3. Figure 4

shows the growth in providers on the platform. These graphs both

exclude data related to Databricks as a provider. There were 12,000+

customers on the Databricks platform at the time; A customer is

de�ned as an organization whose usage of Databricks is costing

them at least 1000 USD in the last 30 days. We see from the graphs

that companies are embracing cross-domain sharing at a rapid pace.

5205



Figure 3: Number of active Delta Sharing customers

(providers and recipients) on the Databricks platform. This

graph excludes data related to any sharing by Databricks as

a provider to only measure usage by external customers.

Figure 4: Number of active Delta Sharing providers sharing

data with external recipients on the Databricks platform.

8.2 Sharing across domains, regions, and clouds

In terms of cross-platform sharing, D2O sharing where the provider

is on Databricks but recipient is outside Databricks, is the majority.

~55% of shared data access was from D2O. D2O recipients outside

the Databricks platform use a number of di�erent connectors – Pan-

das, PowerBI, Microsoft PowerQuery, Apache Spark, etc., without

any one tool standing out. Indicating that sharing across organiza-

tions is a necessity for modern businesses and an open approach

brings more participants into the sharing ecosystem. O2D (where

the provider is outside Databricks and recipient is on Databricks)

accounts for less than 1% of the tra�c.

After excluding the D2O and O2D tra�c, the remaining ~44% of

tra�c is D2D (provider and recipient both on Databricks), 9% of the

access is across clouds and the remaining 35% tra�c is all within the

same cloud. This 35% tra�c is split evenly between access within

the same region and access from another region in the same cloud.

This shows providers and recipients are often on di�erent regions or

clouds and prefer to share in situ without migrating their platforms.

8.3 Cardinality of sharing by providers

Figure 5: Distribution of % of providers with certain number

of recipients. Internal refers to providers sharing data with

recipients who are internal to the organization.

When we dive into the # of recipients a provider shares data

with, several interesting points stand out. The graph in Figure 5

shows % of providers with a certain number of recipients out of all

the active shares in Oct 2024.

• Internal sharing, where several subsidiaries or divisions

within the organization share data with each other consti-

tuted the majority (approx. 40%) of the shares.

• Sharing with one outside recipient, was the next big bucket

with close to 30% of the shares.

• Sharing with a small group of recipients, between 2 to 10

recipients, was close to 26% of the shares.

• Sharing with a dozens or even hundreds of recipients was

close to 3%. There were several hub vendors sharing data

with more than 500 other companies. Some popular hubs on

the Databricks Marketplace include Acxiom, HealthVerity,

LiveRamp, S&P Global, John Snow Labs, among others.

This shows that Delta Sharing is capable of supporting a wide

variety of providers – those sharing data with just one recipient to

large hubs sharing data with a 100s or 1000s of recipients.

8.4 Queried table size distribution

Out of the tables queried in the month of Oct 2024, we present the

distribution of data read by those queries when there was no �lter

pushed down in Table 3. In general, we see smaller shared tables

queried much more frequently compared to larger tables. Over 95%

of the queries on shared table were of size less than 10GB. But there

are a small % of queries for shared tables of size over 1TB. This

shows that even though smaller data is more frequently queried,

some providers do need to share tables 10s of TBs in size. The Delta

Sharing platform is capable of scaling to sharing large tables.

8.5 Heterogeneity of clients using the platform

Figure 6 shows the usage of di�erent connectors in terms of %

of recipients using them in the year 2024 until October against

Databricks server. Spark connector running within Databricks,

5206



Table 3: Distribution of table sizes read by queries on shared

tables. Most queries are for smaller tables. But we do see large

shared tables queried.

Table Size Category % of Overall Queries

<1GB 83.485000

<10GB 12.450000

<1TB 3.900000

<10TB 0.10

>10TB 0.14

which accounts for 60% of usage by all recipients, is excluded from

this graph to focus on usage from outside Databricks. Tableau is

missing in the graphs due to instrumentation issues.

The open source connectors are used by about 40% of the re-

cipients consuming data from the Databricks server. Out of these

recipients, each of PowerBI, PowerQuery and Pandas Open source

connectors are used by a little over 25% of the recipients. The rest

of the connectors in aggregate are used by about 21% of the recipi-

ents. We see 18 non-Databricks clients making calls to our server.

Clients even in languages often not used for data analysis – Go and

Ruby – are consuming data from sharing server. This shows that

our decision to keep the protocol simple to make it easy for diverse

connectors to consume from the sharing server is helping the client

ecosystem thrive.

Figure 6: Distribution of recipients using di�erent types of

client connectors to connect to the Databricks sharing server.

8.6 Types of shared assets queried

Figure 7 shows the distribution of queries to di�erent shared assets

using token-based sharing within the Databricks platform in Jan-

uary 2025. Queries to shared tables dominate usage, but there is

growing demand to share other assets, even non-tabular assets such

as volumes and functions. We also see that �ne-grained sharing

via views (which is a relatively new feature we added in 2024) is

gaining rapid adoption.

Figure 7: % of queries by di�erent asset types. Queries on

tables dominate, queries on other assets are gaining usage.

Figure 8: % of queries by type. Batch and Streaming queries

are quite common while CDF queries are a small fraction.

8.7 Types of queries on shared data

Figure 8 shows the distribution of di�erent types of queries on

shared assets in January 2025. Customers are using various ware-

house features on shared tables. Batch queries are close to 70% of all

queries. However, a signi�cant number of customers are running

Streaming queries, close to 25% of all queries, on shared data. CDF

queries are run on shared data too, but it is a small fraction.

9 CASE STUDY: DELIVERING SYSTEM TABLES
WITH DELTA SHARING

System tables in how Databricks shares various analytical data

about a customer’s usage of Databricks back with the customer [36].

It allows customers to do centralized monitoring and analysis of

platform usage, billing, and access activities, providing a robust

foundation for operational intelligence within the Databricks Lake-

house environment. In this way, customers can get deep observ-

ability into their usage of Databricks out-of-the-box.

System tables is internally built as a platform that allows di�erent

product teams to surface relevant operational data to customers in a

uni�ed way. The operational data tables are stored in a Databricks-

managed storage account and are securely shared with customers

using Delta Sharing. System tables data is partitioned by account

ID, and individual partitions are shared with the customers owning

that account ID, thus ensuring they can only access data relevant to

their own accounts. Delta Sharing allows customers to access their

live operational data without the need for complex ETL processes,

thereby reducing latency, cost, and complexity.

System table and all Databricks internal usage was removed from

the data we reported in Section 8. If we include them, System tables

5207



is by far the largest user of Delta Sharing – we are sharing analyt-

ical data with almost every 12,000+ customer of Databricks (the

biggest external data provider is almost 10X smaller in cardinality

in comparison).

10 RELATED WORK

There are two broad categories of systems related to Delta Sharing:

a) FTP and data dumps are traditional methods for sharing data,

and b) using sharing features in modern data warehouses, which

share between instances of that same data warehouse. We describe

how Delta Sharing di�ers from them in detail in this section.

Sharing via FTP/SFTP. Sharing data via FTP is common, per-

haps not as prevalent as it used to be. It is a versatile solution sup-

ported by most operating systems, with low barrier to use. However,

it has a number of limitations. As a recipient, one will have to build

and maintain ETL pipelines to copy data from the server and keep

it up to date, which introduces operational overhead. Providers face

even more limitations. They will have to maintain ETL pipelines to

create di�erent �ltered datasets for di�erent recipients, and cannot

easily scale the system to serve a large number of recipients. Fur-

thermore, it can be cumbersome to manage recipients, requiring

manual account creation and password/token resets by administra-

tors, which increases security risks. To address these limitations,

providers often need to invest signi�cant resources to develop a

custom infrastructure and integrate it with their other systems.

Dumping data into cloud storage such as S3/GCS/ADLS.

While this is more modern and scalable than FTP, it comes with

many of the same challenges. Providers still have to maintain ETL

pipelines to create �ltered datasets per recipient and push it to

the recipient’s storage bucket. Access controls and audit trails are

coarse-grained, at the object storage level. Managing recipients

and their permissions at the object storage level remains cumber-

some. Recipients will have to integrate their tools and work�ows

with these data dumps. If a recipient consumes data from di�erent

providers, these integrations will have to adapt to di�erent formats

from the di�erent providers.

Unlike FTP or data dumps, Delta Sharing allows live access to

shared datasets without requiring complex ETLs. Providers can

share structured tables, at �ne grain, with a large number of recipi-

ents, with low management overhead. Table management facilities

such as time travel, change data feeds and streaming consumption

are easily supported. In addition, Delta Sharing supports cross-

platform compatibility by enabling recipients to consume shared

data directly in standard format in their tools of choice. Because

the bulk of the data is in Parquet format, tools that integrate with

Parquet can fairly easily be adapted to support Delta Sharing (they

mostly need to request some data URLs from the server and read

Parquet from a HTTPS URL).

In-data-warehouse sharing features. Snow�ake Sharing [34],

Azure Data Share [8], Google BigQuery Analytics Hub [9], and

Amazon Redshift Data Sharing [32] are other options available for

customers in this category.

Snow�ake Sharing focuses on seamless real-time data sharing

within the Snow�ake ecosystem. It allows live access to shared

data and provides robust security features. However, it is limited to

sharing within Snow�ake. When data is shared with external users,

they are still required to create "reader accounts" on Snow�ake

and access it there. Azure Data Share o�ers �exibility with both

snapshot-based and in-place data sharing, but it requires Azure

subscriptions for both providers and consumers – as in both parties

have to be on Azure. Google BigQuery Analytics Hub emphasizes

privacy-safe collaboration through features like data clean rooms

but is restricted to only Google Cloud ecosystem. Amazon Redshift

Data Sharing enabling live in-place sharing across Redshift clusters

within AWS; it supports workload isolation by allowing separate

clusters for di�erent teams but sharing same data. However, data

sharing is still limited to AWS Redshift users.

All data warehouses discussed above restrict sharing to be only

within their system/cloud. Furthermore, many clouds store data in

proprietary formats. Together, it severely sacri�ces interoperability

across tools and platforms. This restricts data providers who want

to serve a large number of customers in di�erent clouds. To over-

come these problems the providers are forced to, again, maintain

ETL pipelines to copy and update data to di�erent clouds. And

then they have to manage their recipients in each cloud, perform

audit/tracking across clouds, etc. creating a lot of management

overhead. This restricts recipients, too: recipients have to adapt or

migrate to new clouds/tools. If they want to consume data from dif-

ferent data providers, especially if they are not on the tools/clouds

the recipient uses, they are forced to use di�erent platforms and

tools, replicate data, etc. These limitations create arti�cial barriers

for organization to collaborate and share data.

In contrast, Delta Sharing’s open interface allows cross-platform

interoperability and removes barriers for data collaboration. This

approach leverages simple REST APIs and standard open formats

like Delta Lake and Parquet. This open approach avoids vendor

lock-in, works with existing tables in the Parquet and Delta Lake

formats, and supports diverse work�ows across cloud platforms

and enables interoperability with even non-Databricks tools like

Tableau, PowerBI, Pandas, and others. Many customers have cited

these reasons for using Delta Sharing [24–27].

11 CONCLUSION

This paper introduces Delta Sharing, an open protocol for secure,

e�cient, and cost-e�ective sharing of data within and across or-

ganizations. Delta Sharing builds on open formats like Delta Lake

and Apache Parquet, with simple HTTP APIs on top to vend access

to cloud objects, thus making it easy to consume shared data live in

heterogeneous client tools and platforms. We outlined the key chal-

lenges in building Delta Sharing and how our solutions addressed

them. We also presented what we believe to be the �rst large-scale

study of production sharing workload based on usage by over 4000

organizations since its launch in 2021. The study shows that: 1)

Our open approach and simplicity of the sharing protocol have

enabled interoperability across a wide set of tools and platforms.

2) Many organizations, beyond Databricks, have adopted and are

participating in advancing the ecosystem. 3) Delta Sharing has em-

powered organizations to seamlessly collaborate with tabular and

non-tabular assets both within and outside their organizations. We

hope that the insights from our study will help researchers and

practitioners understand this emerging data platform capability.

5208



REFERENCES
[1] Amazon S3. https://aws.amazon.com/s3/.
[2] Amperity builds an innovative consumer data platform with Delta Shar-

ing. https://www.databricks.com/blog/delta-sharing-and-emergence-lakehouse-
customer-data-platform-cdp.

[3] Amperity Bridge. https://docs.amperity.com/datagrid/bridge_databricks.html.
[4] M. Armbrust, T. Das, S. Paranjpye, R. Xin, S. Zhu, A. Ghodsi, B. Yavuz, M. Murthy,

J. Torres, L. Sun, P. A. Boncz, M. Mokhtar, H. V. Hovell, A. Ionescu, A. Luszczak,
M. Switakowski, T. Ueshin, X. Li, M. Szafranski, P. Senster, and M. Zaharia. Delta
lake: High-performance acid table storage over cloud object stores. Proceedings
of the VLDB Endowment, 13:3411–3424, 2020.

[5] AVEVA and Databricks Forge Strategic Collaboration to Accelerate
Industrial AI Outcomes and Enable a Connected Industrial Ecosys-
tem. https://www.aveva.com/en/about/news/press-releases/2024/aveva-
and-databricks-forge-strategic-collaboration-to-accelerate-industrial-ai-
outcomes-and-enable-a-connected-industrial-ecosystem/.

[6] Azure Blob Storage. https://azure.microsoft.com/en-us/products/storage/blobs.
[7] Azure Shared Access Signatures. https://learn.microsoft.com/en-us/azure/

storage/common/storage-sas-overview.
[8] Azure Data Share. https://azure.microsoft.com/en-us/products/data-share.
[9] BigQuery Analytics Hub. https://cloud.google.com/analytics-hub/?hl=en.
[10] R. Chandra, H. Chen, R. Matharu, S. Cai, J. Chen, P. Dutta, B. Ghita, T. Greenstein,

G. Holla, P. Huang, Y. Huo, A. Ionescu, A. Ispas, T. Januschowski, V. Karajgaonkar,
S. Leone, D. Lewis, A. Li, N. Li, C. Lian, S. Link, Q. Lu, Y. Ma, C. Pettit, V. Prab-
hakaran, B. Raducanu, K. Rong, P. Roome, S. Shetty, S. Smith, X. Sun, Y. Tang,
W. Wen, L. Xia, J. Zeng, B. Zhang, R. Xin, and M. Zaharia. Unity catalog: Open
and universal governance for the lakehouse and beyond. In Proceedings of the
2025 ACM SIGMOD International Conference on Management of Data (SIGMOD).
ACM, 2025.

[11] Databricks Clean Rooms. https://www.databricks.com/product/clean-room.
[12] current_recipient function. https://docs.databricks.com/en/sql/language-

manual/functions/current_recipient.html.
[13] Announcing Public Preview of Delta Sharing with Cloud�are R2 Integra-

tion. https://www.databricks.com/blog/announcing-public-preview-delta-
sharing-cloud�are-r2-integration.

[14] Delta Kernel. https://delta.io/blog/delta-kernel/.
[15] Delta Lake. https://delta.io/.
[16] Delta Sharing Protocol. https://github.com/delta-io/delta-sharing/blob/main/

PROTOCOL.md.

[17] Delta Sharing. https://github.com/delta-io/delta-sharing.
[18] Delta Sharing Server. https://github.com/delta-io/delta-sharing/tree/main/

server.
[19] Top Three Data Sharing Use Cases With Delta Sharing. https:

//www.databricks.com/blog/2022/01/14/top-three-data-sharing-use-cases-
with-delta-sharing.html?t.

[20] GCP Signed URLs. https://cloud.google.com/storage/docs/access-control/signed-
urls.

[21] Google Cloud Storage. https://cloud.google.com/storage.
[22] Apache Hudi. https://hudi.apache.org/.
[23] Apache Iceberg. https://iceberg.apache.org/.
[24] How Delta Sharing Enables Secure End-to-End Collaboration. https:

//www.databricks.com/blog/how-delta-sharing-enables-secure-end-end-
collaboration?t.

[25] ActionIQ Adds Databricks Delta Sharing: Flexibility and Control in Data Integra-
tion. https://www.actioniq.com/blog/databricks-delta-sharing-integration/?t.

[26] Exploring Premium Data Sharing Solutions: Databricks Delta Sharing vs.
Snow�ake Data Sharing. https://www.linkedin.com/pulse/exploring-premium-
data-sharing-solutions-databricks-delta-ben-poole/.

[27] Streamline data collaborationwith Databricks Delta Sharing andMicrosoft Power
BI. https://techcommunity.microsoft.com/blog/analyticsonazure/streamline-
data-collaboration-with-databricks-delta-sharing-and-microsoft-power-
/3707837?t.

[28] Databricks Marketplace. https://www.databricks.com/product/marketplace.
[29] Unlimited data-driven collaboration with Data Sharing of Oracle Autonomous

Database. https://blogs.oracle.com/datawarehousing/post/share-data-with-
oracle-autonomous-database-data-sharing.

[30] Apache Parquet. https://parquet.apache.org/.
[31] Pre-Signed URLs. https://docs.aws.amazon.com/AmazonS3/latest/userguide/

ShareObjectPreSignedURL.html.
[32] Amazon Redshift Data Sharing. https://aws.amazon.com/redshift/features/data-

sharing/.
[33] SAP and Databricks Open a Bold New Era of Data and AI. https://news.sap.com/

2025/02/sap-databricks-open-bold-new-era-data-ai/.
[34] Snow�ake for Collaboration. https://www.snow�ake.com/en/data-cloud/

workloads/collaboration/.
[35] Data Sources. https://spark.apache.org/docs/latest/sql-data-sources.html.
[36] Monitor account activity with system tables. https://docs.databricks.com/en/

admin/system-tables/index.html.
[37] Universal Format (UniForm). https://docs.delta.io/latest/delta-uniform.html/.

5209


	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Workload Study

	2 Use Cases
	2.1 Internal Sharing
	2.2 Point-to-Point Sharing
	2.3 Commercial Data Sharing
	2.4 SaaS (Software as a Service) Data Sharing
	2.5 Privacy-safe Collaboration

	3 Delta Sharing Overview
	3.1 Essential Components
	3.2 Object Model
	3.3 Delta Format Background
	3.4 Delta Sharing Protocol and Server

	4 System Design
	4.1 Universal sharing
	4.2 Fine-grained sharing (FGAC)
	4.3 Governing shared assets
	4.4 Secure sharing
	4.5 Managing cloud costs and billing
	4.6 Performance

	5 Implementation
	5.1 Connector Implementation

	6 Products and Companies Supporting Delta Sharing Ecosystem
	6.1 Sharing Servers
	6.2 Connectors

	7 Performance Evaluation
	8 Workload Study on the Databricks Platform
	8.1 Cross-domain sharing adoption over time
	8.2 Sharing across domains, regions, and clouds
	8.3 Cardinality of sharing by providers
	8.4 Queried table size distribution
	8.5 Heterogeneity of clients using the platform
	8.6 Types of shared assets queried
	8.7 Types of queries on shared data

	9 Case Study: Delivering System Tables with Delta Sharing
	10 Related Work
	11 Conclusion
	References

