Ursa: A Lakehouse-Native Data Streaming Engine for Kafka

Matteo Merli, Sijie Guo, Penghui Li, Hang Chen, Neng Lu
StreamNative, Inc.
ursa-paper@streamnative.io

ABSTRACT

Data lakehouse architectures unify the cost-efficiency of data lakes
with the transactional guarantees of data warehouses. Yet, real-time
ingestion often depends on external streaming systems such as
Apache Kafka, along with bespoke connectors that read from Kafka
and write into the lakehouse—leading to increased complexity and
high operational costs. In particular, traditional leader-based data
streaming platforms are designed for sub-100 ms low-latency work-
loads; however, when used for data-intensive ingestion in a cloud
environment, cross availability-zone (AZ) disk-based replication
significantly raises total infrastructure costs due to excessive net-
work traffic and overprovisioned disk storage. This paper introduces
Ursa, a leaderless, cloud-native, and Kafka-compatible streaming
engine that writes data directly to open lakehouse tables on ob-
ject storage. By eliminating leader-based replication, disk-based
broker storage, and external connectors, Ursa markedly reduces in-
frastructure costs while preserving high throughput, exactly-once
semantics, and near-real-time streaming capabilities. Experimen-
tal results show that Ursa matches the performance of traditional
Kafka clusters at a fraction of the cost, offering up to a 10x reduction
in infrastructure expenses.

PVLDB Reference Format:

Matteo Merli, Sijie Guo, Penghui Li, Hang Chen, Neng Lu. Ursa: A
Lakehouse-Native Data Streaming Engine for Kafka. PVLDB, 18(12): 5184 -
5196, 2025.

doi:10.14778/3750601.3750636

1 INTRODUCTION

Enterprise analytics increasingly relies on lakehouse architectures [25],

which unify the transactional guarantees, schema management, and
performance optimizations of data warehouses with the elasticity
and low-cost storage of data lakes. Concurrently, Apache Kafka [15]
has become a de facto standard for real-time data streaming, of-
fering low-latency ingestion from various sources. Although both
paradigms have seen wide adoption, they are commonly operated as
separate infrastructures: data flows into Kafka first, then is periodi-
cally moved to lakehouse tables. As organizations emphasize cloud-
native deployments and cost consciousness, integrating Kafka with
lakehouse environments can be challenging.

One complexity arises from leader-based streaming systems (e.g.,
Kafka, Pulsar [17], Redpanda [3]), which rely on disk-based repli-
cation for sub-100ms latency. However, lakehouse ingestion often

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
do0i:10.14778/3750601.3750636

5184

only requires sub-second latencies (200-500ms). In these scenar-
ios, cross-AZ communication and replication significantly increase
costs, while overprovisioned brokers and complex maintenance
tasks (leader elections, rebalancing) add unnecessary overhead.

A second challenge involves integrating Kafka with lakehouse.
Moving data requires connectors or ETL pipelines, forcing organi-
zations to manage two distinct systems with fragmented tooling.
Data is copied multiple times, raising costs, while real-time data re-
mains locked in Kafka until scheduled ingestion, delaying analytics
availability.

This paper introduces Ursa, a leaderless, lakehouse-native, and
Kafka-compatible streaming engine that writes data directly into
open table formats in object storage. By decoupling compute from
storage, Ursa tackles real-time data streaming challenges in two
ways: (1) removing leader-based replication and disk-based broker
storage cuts costs, especially in multi-AZ deployments, and (2)
unifying stream and table semantics within a single storage layer
eliminates connectors and staging areas. This direct-to-lakehouse
design streamlines operations, shortens time-to-insight, and enables
a universal data platform for analytics, event-driven applications,
and Al—all without the overhead of multiple infrastructures.

2 BACKGROUND AND MOTIVATION

2.1 Lakehouse Architectures and Real-Time
Data Pipelines

Modern data lakehouse architectures, built on open table formats
(for example, Apache Iceberg [14] or Delta Lake [1]), unite the low
cost of cloud object storage with transactional guarantees, schema
evolution, and performance optimizations such as partition pruning
and file compaction. As a result, lakehouses increasingly blur the
line between batch-oriented data lakes and high-performance data
warehouses.

Yet, real-time ingestion often relies on external streaming en-
gines that temporarily store records on disk before converting them
into columnar formats suitable for lakehouse queries. This addi-
tional step introduces latency and operational overhead. Apache
Kafka has become an industry standard for low-latency stream-
ing pipelines, offering publish-subscribe messaging, horizontally
scalable partitions, and robust replication. However, integrating
Kafka with a lakehouse typically involves a standalone Kafka clus-
ter along with supplemental connectors (e.g., Katka Connect [7])
for offloading and transforming disk-based topic partitions into
columnar files. As retention periods grow from days to weeks or
months, version management, error handling, schema validation,
and resource consumption all become more complex, compounding
latency and operational costs.

https://doi.org/10.14778/3750601.3750636
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750636

1. Inter-Zone
Data Transfer

Copies

Figure 1: Cost drivers of data streaming

2.2 Data Streaming Cost Drivers

Although pairing Kafka with a lakehouse is widely adopted, organi-
zations often encounter substantial expenses when examining each
cost factor individually. Figure 1 summarizes the main cost drivers:

(1) Inter-Zone Data Transfer. Kafka’s leader-based replica-
tion designates a single broker as leader for each partition,
with additional brokers acting as followers. In multi AZ
deployments, producers located in one zone may need to
communicate with remote leaders, while cross-AZ repli-
cation further inflates network costs. Although multi-AZ
redundancy strengthens fault tolerance, it becomes expen-
sive at scale when a significant portion of traffic and replicas
traverse zone boundaries.

(2) Disk-Based Replication. Kafka’s default operational model
relies on broker-level disk replication, often necessitating
premium hardware. Retaining multiple copies of data on
disk for extended durations inflates storage costs. Even
when tiered storage is employed, core replication overhead
still drives up both capacity and I/O demands, especially
during peak loads or rebalancing events.

(3) Overprovisioned Compute. Because Kafka couples com-
pute and storage resources, adding disk capacity requires
provisioning additional brokers. This approach can lead
to overprovisioning [21], with clusters incurring full op-
erational costs during off-peak hours. Periodic partition
rebalancing to spread data across new brokers complicates
operations and may require planned downtime.

(4) Connector Overheads. Transferring data from Kafka into
a lakehouse frequently involves specialized connectors (e.g.,
Kafka Connect), which consume CPU, memory, and I/O
resources. They also introduce additional failure points and
operational overheads related to schema validation, trans-
formations, and version management. Large organizations
may deploy multiple connectors to feed different analytics
platforms, magnifying complexity.

(5) Duplicate Data Copies. Multi-step pipelines and numer-
ous target systems often create multiple data copies in differ-
ent formats and locations (e.g., raw events on Kafka brokers,
transformed files in the lakehouse, intermediate landing
zones). Storing these duplicates inflates costs, complicates

5185

governance, and risks inconsistent versions or incomplete
lineage, especially when integrating with additional ser-
vices such as Databricks or Snowflake.

These factors combine to dramatically increase infrastructure
costs for lakehouse ingestion. Ursa addresses these drivers through
a leaderless, lakehouse-native architecture.

3 OVERVIEW
3.1 Design Goals

Ursa’s design is driven by the need to unify real-time data streaming
with lakehouse-centric analytics while controlling infrastructure
expenses. The key requirements include:

Cost Efficiency. Many organizations incur significant costs in
multi AZ deployments due to cross-zone data transfers and disk-
based storage. The system should eliminate the major cost drivers
discussed in Section 2.2.

Lakehouse Native. The system must support native writes to
open table formats, removing the need for bespoke connectors or
staging areas and enabling a single data flow from ingestion to
analysis.

Scalability and Elasticity. As data volumes and workloads
change, the infrastructure should scale transparently without re-
balancing partitions or migrating data.

Stream-Table Duality. The system should merge real-time
event processing and tabular analytics on a single set of files,
thereby minimizing data duplication and operational complexity.

3.2 New CAP Theorem

Ursa’s development revealed that no single configuration can opti-
mize all requirements in cloud environments. We propose a "New
CAP Theorem" for data streaming, identifying trade-offs among
Cost, Availability, and Performance Tolerance:

o Cost: Infrastructure expenses per MB throughput—systems
minimizing cross-zone replication can dramatically reduce
networking costs.

o Availability: Resilience to AZ failures—systems requiring
full multi-AZ availability must implement costly cross-zone
replication.

e Performance Tolerance: Acceptable latency bounds—applications

tolerating 200-500ms latency can leverage object storage
for cost savings.

These properties cannot be maximized simultaneously. Sub-50ms
latency with multi-AZ availability requires expensive replication,
while accepting higher latencies enables dramatic savings. Ursa’s
pluggable architecture allows workloads to tune these trade-offs.

3.3 Architecture

Ursa is designed to be leaderless, cloud-native, and lakehouse-native
to satisfy the key requirements discussed above. Figure 2 provides a
conceptual view of Ursa’s high-level architecture, which comprises
three core layers:

Metadata Service: A centralized metadata service, currently
implemented via StreamNative Oxia [24], is responsible for offset as-
signment, partition metadata, and transaction states. By delegating

Figure 2: Ursa High-Level Architecture

these tasks to a separate service, Ursa eliminates the need for bro-
kers to perform leader-based coordination. This approach ensures
consistent offset ordering for each topic-partition and simplifies
failover scenarios.

Stream Storage: Ursa separates storage from compute by persist-
ing incoming data first to an external write-ahead log (WAL)—which
can be remote disk-based or object-based—and later converting it
into columnar files stored in open table formats for long-term re-
tention. By avoiding local disk-based logs on brokers, this approach
reduces operational overhead and simplifies data replication.

Stateless Brokers: Ursa brokers accept client connections, han-
dle the Kafka protocol, and interface with the Stream Storage layer
to write or read messages. They also communicate with the meta-
data service to commit updates and retrieve offset indexes. Because
brokers do not maintain partition-specific state or disk-based logs,
they can be scaled up or down without requiring partition rebal-
ancing. Zone-aware routing ensures that producers and consumers
within the same availability zone connect to local brokers, signifi-
cantly reducing cross-AZ traffic.

Additionally, a compaction service periodically converts row-
based WAL objects into columnar Parquet [16] files, which are
then registered in open lakehouse formats (Apache Iceberg, Delta
Lake, etc.). This conversion makes newly ingested data immediately
available for both batch queries and continuous streaming reads.

3.4 Metadata Service

Ursa employs a centralized metadata service - currently imple-
mented with StreamNative Oxia - to coordinate critical operations
at scale. Oxia offers essential primitives for building distributed
sequencers to generate offsets, stores partition- and topic-level
metadata, and maintains membership information for all brokers in
the cluster. By centralizing these functions, Ursa offloads tasks that
would otherwise reside in brokers, thus, simplifying Ursa broker
design and improving fault tolerance.

This approach underpins Ursa’s leaderless model, where the
metadata service functions as the single authoritative source of off-
sets and transaction state. Whenever a broker processes a "Produce’
or 'Fetch’ request, it consults the metadata service to retrieve or
update offset indexes and to guarantee correct ordering of incoming
messages.

Oxia was chosen for its ability to scale seamlessly as new par-
titions, brokers, or topics are introduced. It manages concurrency

5186

through lightweight, optimistic protocols that preserve global order-
ing across metadata commits, without incurring the complexities
often associated with leader-based broker models. While Oxia is
the default, Ursa’s pluggable design supports alternative implemen-
tations like ETCD or Spanner for different deployment scenarios.
Further details about metadata structures and offset indexes appear
in Section 4.

3.5 Stream Data Storage

Ursa’s stream data storage layer unifies real-time data streaming
and batch analytics by implementing both stream and table seman-
tics within a single dataset. It achieves this duality by combining
a write-ahead log (WAL) for newly ingested messages—stored in
row-based formats—with an open lakehouse format (e.g., Apache
Iceberg or Delta Lake) for long-term columnar storage in cloud ob-
ject stores such as Amazon S3. A scalable offset index, maintained
within Ursa’s metadata service, tracks location whether it resides
in the WAL or in the lakehouse tables.

3.5.1 Write-Ahead Log Storage. When brokers receive new data,
they buffer incoming messages until reaching a configurable thresh-
old, triggered by time or data size. At that point, the accumulated
records are flushed into row-based WAL objects, and the corre-
sponding metadata references are updated in the metadata service
to allow efficient lookups. This design enables Ursa brokers to re-
trieve specific data blocks without scanning the entire WAL object,
thereby supporting low-latency reads for streaming consumers.
Acknowledgments to producers are deferred until the WAL ob-
ject and its metadata references are durably recorded, ensuring
that messages cannot be lost in the event of a broker or network
disruption.

To address diverse workload requirements, Ursa offers a plug-
gable write-ahead log interface. For latency-sensitive applications,
Ursa can employ Apache BookKeeper [12] with replicated disk
storage to achieve p99 latencies from the single-digit to the low-
hundreds of milliseconds. For cost-sensitive scenarios, Ursa can
rely on object storage for the WAL, which supports sub-second
latency while significantly reducing storage costs. This flexibility
allows organizations to align data streaming configurations with
both budgetary and performance goals.

3.5.2 Lakehouse Storage. Once data has been durably stored in the
WAL, a background compaction service converts row-based WAL
objects into columnar Parquet files that are partitioned by topic. As
each Parquet file is produced, the compaction service updates the
offset index in Ursa’s metadata service, mapping the relevant offset
range to the newly created file. This mechanism enables brokers to
serve read requests directly from Parquet files, thereby enhancing
retrieval efficiency. Following compaction, the original WAL objects
can be safely removed to reclaim storage.

In addition to updating the metadata service, the compaction
service also commits the compacted files to a lakehouse table, yield-
ing a unified view of the dataset without creating extra copies. This
design immediately exposes data to a wide range of processing
engines (such as Spark [18], Trino [20], or Flink [13]), eliminating
the need for additional connectors to migrate streaming data into a
separate lakehouse environment. By reading and updating the same

objects, Ursa streamlines data lifecycle management and reduces
operational overhead.

Ursa’s native mechanism for managing these lakehouse tables
is referred to as a Stream-Backed Table (SBT). Under this model,
the data resides in cloud object storage and is fully managed by
Ursa, with the streaming index in the metadata service and the
lakehouse table metadata both referencing the same underlying
objects. External analytical engines can query the lakehouse tables
in read-only mode.

3.5.3 Compaction Service. Beyond converting WAL objects into
Parquet, Ursa’s compaction service can also deliver data to external
lakehouse tables (e.g., Databricks Unity Catalog [8] or Snowflake
Open Catalog [22]) through a Stream-Delivered-to-Table (SDT)
mode, and it supports Kafka topic compaction by retaining only
the latest version of each key. Section 5 examines the internals of
this service.

3.6 Stateless Brokers

Ursa’s brokers are stateless and leaderless, diverging from the con-
ventional model where each broker stores local state and often
serves as a leader for specific partitions. Instead, brokers concen-
trate on fulfilling producer and consumer requests while delegating
data persistence and offset sequencing to the metadata service and
the storage layer. This division of responsibilities affords multiple
benefits. Brokers can be added or removed without rebalancing
partitions or migrating data, as they do not maintain local logs
for each partition. Failures do not trigger leader elections or parti-
tion redistributions; any other broker can simply resume handling
requests by consulting metadata and retrieving data from object
storage.

By employing zone affinity, producers typically connect only to
brokers in the same availability zone, thereby avoiding inter-zone
hops that would otherwise escalate network expenses in conven-
tional Kafka architectures. Furthermore, the absence of partition
leadership or on-disk replication notably reduces the complexity of
routine tasks such as upgrades and scaling. Section 5 elaborates on
the implementation details of Ursa brokers, covering both the data
flow and the features that ensure Kafka protocol compatibility.

4 URSA STREAM STORAGE

This section describes Ursa’s stream storage design in detail, in-
cluding its core stream format, data objects, offset index, and the
distributed compaction service that converts WAL objects into Par-
quet files for lakehouse formats. It also explains how the same
mechanisms are extended to handle external lakehouse tables and
implement Kafka topic compaction.

4.1 Stream Format

Each topic-partition in Ursa is stored as a Stream—an append-only
sequence of records, each assigned a monotonically increasing
offset. Records within a stream cannot be modified once appended,
preserving the strict order that is central to Kafka’s consumption
model. Throughout this paper, we use stream and topic-partition
interchangeably.

Figure 3 illustrates the Ursa stream storage layout: every stream
is composed of physical data objects residing in either the WAL

5187

akehouse Table 4API Kafka APT

Lakehouse Table . .
Stream Offset Index

Object

Figure 3: Ursa Stream Format

or the lakehouse storage, with all references tracked by an offset
index in the metadata service. Each stream has a unique Stream
ID, assigned at creation time by the metadata service.

Ursa distinguishes between two primary types of data objects.
The first, a WAL object (WO), aggregates records from multiple
streams in row-based format, enabling efficient appends. The sec-
ond, a Compacted object (CO), is stored as a Parquet file specific to
an individual stream. When a latency-optimized WAL is used, WAL
objects reside in Apache BookKeeper (see Section 3.5.1); otherwise,
they are stored in object storage under a designated 'storage’ folder.
Parquet files are placed under a ’compaction’ folder, organized by
topic-partition.

4.1.1 WAL Objects. WAL objects contain batched messages from
multiple streams. To maximize write efficiency, Ursa sorts entries
by their stream identifiers before writing them to each WAL object,
minimizing the number of index segments needed for lookups. Al-
though these objects can accumulate data from many partitions,
the offset index ensures that consumers only retrieve the relevant
ranges for a given topic-partition. This approach prevents the cre-
ation of excessively small files while keeping memory usage within
acceptable bounds. Once the data in a WAL object is durably writ-
ten to storage, Ursa commits the corresponding metadata updates
atomically in the metadata service.

Each WAL object is assigned a unique name (often a GUID), and
the association between any WAL object and a particular stream is
determined by the corresponding offset index.

4.1.2 Compacted Objects. Compacted objects are topic-partition-specific

data objects used to store data in columnar formats. They reside
in the compaction folder and are organized by topic-partition. The
compaction service transforms WAL objects into these columnar
objects, and Ursa also provides APIs that allow writers to append
Parquet files directly or update the offset index to replace WAL
references with Parquet references for subsequent reads.

Parquet was chosen as the columnar format because it offers
compression flexibility, supports nested data structures, and consti-
tutes the de facto file format standard for open lakehouse systems.
By adopting Parquet, Ursa can seamlessly expose these compacted
objects to lakehouse tables without duplicating data and can imme-
diately benefit from new Parquet features or optimizations, as well
as integrations with other engines.

Each compacted object is assigned a unique name—often a GUID—and

may be referenced by the stream’s offset index or by the metadata
in any lakehouse tables that share the same underlying data.

4.1.3 Stream Offset Index. Each topic-partition maintains an offset
index in the metadata service to reference the entries produced into
that partition. The offset index consists of a sequence of location
objects, each mapping a continuous range of logical offsets to a
physical data object—either a WAL object or a compacted Parquet
file. This mapping uses a composite key formed from ’StreamID’,
’OffsetEnd’, and ’CumulativeSize’:

e StreamID uniquely identifies a topic-partition.

o OffsetEnd is the exclusive upper-bound offset covered by
this index entry.

o CumulativeSize tracks the total byte count from the start
of the stream up to the data covered by this index entry.

The value associated with this composite key is an index entry
containing the metadata necessary to locate the data in its physical
data object:

Location indicates where the data is stored.

FileType specifies whether the data resides in a WAL object
or a Compacted object.

EntryCount indicates the number of entries indexed by
this entry.

MessageCount indicates the total number of messages
indexed by this entry.

OffsetInObject specifies the exact position within the
physical location for efficient data retrieval.
EntryOffsets is a local index that references the data en-
tries captured by this index entry, reducing the total number
of offset-index entries needed.

All key-value pairs in the offset index are ordered by "OffsetEnd’
and ’CumulativeSize’. This ordering enables the metadata service
to quickly identify the correct data block for a given offset. For
instance, when a broker needs to read from offset 'x’, it locates the
smallest key such that Of fsetEnd > x, then uses the corresponding
metadata to retrieve the data from the appropriate storage location.

4.1.4 Table Metadata. Because all compacted objects in Ursa are
stored in Parquet, these files can be committed to a lakehouse table
without duplicating or re-copying data. As an example, for Delta
Lake, each newly produced Parquet file can be incorporated via
Delta Lake’s primitives, recording an ’Add File’ entry in the Delta
log. When smaller files are compacted into a larger Parquet file, the
compaction service issues corresponding 'Remove File’ and ’Add
File’ actions. Ursa applies a similar workflow for Iceberg, thereby
allowing the same compacted objects to be exposed as either Iceberg
or Delta tables. This design enables stream-table duality on a single
set of data objects and avoids maintaining multiple data copies.
The overall approach is similar to Delta UniForm [9] or Apache
XTable [19], which aim at interoperability among table formats,
whereas Ursa targets interoperability between streaming semantics
and table semantics.

4.2 Access Protocols

Ursa’s access protocols are designed to ensure linearizability when
multiple clients concurrently append records to the same stream.

5188

Writer

WAL Object

WAL Storage

Metadata Service

Figure 4: Append entries to a Ursa stream

Once a client’s append operation returns, any subsequent reader
should be able to observe the newly appended record at the correct
offset.

4.2.1 Append Entries. Figure 4 illustrates how entries are appended
to a Ursa stream:

(1) Entry Buffering. The Ursa library buffers incoming en-
tries from different writers in memory until a size or time
threshold is reached. All buffered entries are then sorted by
stream id. It is shown as step 2 in Figure 4.

(2) WAL Persistence. The library flushes the buffer to a WAL
storage layer. When using the cost-optimized WAL, entries
are persisted as an object in object storage; for the latency-
optimized WAL, entries are stored as a blob in BookKeeper.
The entire WAL object must be durably recorded before
proceeding. It is shown as step 3 in Figure 4.

(3) Atomic Offset Index Update. Next, the Ursa library in-
vokes a transactional update in the metadata service to
assign new offsets and add corresponding index entries.
This step ensures that offsets remain strictly increasing.
It is shown as step 4 in Figure 4. The pseudocode below
illustrates this procedure:

with oxia.transaction(stream_id) as tx:
last = tx.get_last_key(stream_id)
new_key = (stream_id,
last.Offset_end + entry.MsgCnt,
last.CumulativeSize + entry.Size)
tx.put(new_key, BatchMetadata(
“wal_object_location”,
batch.MsgCnt, batch.Size,
batch.OffsetInObject))

(4) Consistency. By composing ‘OffsetEnd’ and ’Cumulative-
Size’ monotonically, Ursa ensures no overlapping offset

ranges. The metadata service’s concurrency control en-
forces linearizable writes, guaranteeing that newly commit-
ted entries are immediately visible to subsequent readers.

The write protocol requires a metadata service with either a
built-in “atomic increment” primitive (as provided by Oxia) or trans-
actional capabilities for metadata operations to ensure the atomicity
of offset generation and offset-index updates.

By sequencing the steps of appending entries to the WAL and
then committing the corresponding metadata, multiple writers can
operate concurrently without blocking each other, thereby maxi-
mizing throughput and maintaining linearizability. If a writer fails
after writing a WAL object but before committing its metadata, or
if it fails to commit the metadata, the resulting unreferenced WAL
object becomes orphaned and is subsequently cleaned up by the
compaction service.

4.2.2 Read Entries. Reading entries from offset x in a Ursa stream
involves three main steps:

(1) Index Lookup. The broker (or Ursa reader) queries the
metadata service to locate the smallest index key for which
OffsetEnd > x. This lookup immediately identifies the
object that stores the required records.

Data Retrieval. After retrieving the relevant index entry,
the reader knows the precise location of the records. It then
reads the data from the appropriate offset within the WAL
or compacted object.

Optional Format Conversion. If the requested data re-
sides in a WAL object, the broker can return it without
conversion. If the data is stored in a Parquet file, Ursa con-
verts it from columnar to row-based format to comply with
the Kafka protocol. Although this conversion introduces
additional CPU cost, Parquet’s columnar layout typically
yields faster disk I/O, mitigating the overhead. In the fu-
ture, enhancements to the Kafka protocol (e.g., support
for Arrow) could eliminate the need for such conversions
entirely.

Although the read process appears straightforward, Ursa em-
ploys various optimizations to minimize load on both the metadata
service and the underlying storage layer. For example, Oxia sup-
ports a notification mechanism that alerts readers in real time when
offset-index updates occur—such as when WAL objects are replaced
by compacted objects—avoiding repeated offset-index queries. Fur-
ther read-path optimizations for reducing amplification are dis-
cussed in Section 5.3.

4.2.3 Update Offset Index. Streams in Ursa are typically immutable,
so there is no need for in-place updates to existing records. How-
ever, because Ursa stores row-based WAL objects for low-latency
ingestion and later compacts them into columnar objects, the off-
set index must occasionally be updated to replace multiple entries
referencing different WAL objects with a single entry referencing a
compacted Parquet file. Ursa provides a primitive for this workflow:

with oxia.transaction(stream_id) as tx:
tx.remove(index_entry_1_key)
tx.remove(index_entry_2_key)
tx.remove(index_entry_3_key)
tx.put(compacted_index_entry_key,

5189

BatchMetadata(“compacted_object_location”,
batch.MsgCnt, batch.Size))

By removing old index entries and inserting a new one within
the same transaction, Ursa ensures that no partial updates occur
and that consumers see consistent state at all times.

4.2.4 Consistency Guarantees. Ursa provides linearizable writes,
read-your-writes semantics, and durable commits while keeping
brokers stateless.

e Linearizable writes. All partition metadata—offset indices,
fencing states, and group state—is committed to Oxia, a
shared key-value store whose shards each elect a leader
and replicate every update to a quorum of followers be-
fore acknowledgement. This Raft-based replication proto-
col ensures all writes for a given shard are totally ordered,
precluding intermediate states.

Read-your-writes. Because every ‘Produce’ is only ac-
knowledged after commiting to Oxia, subsequent ‘Fetch'
requests necessarily observe an offset >= the caller’s last
commit. Brokers stamp cache entries with the latest Oxia
revision to ensure session monotonicity.

Durability & atomicity. A commit spans (i) the replicated
WAL object and (ii) its Oxia index entry; the index is com-
mitted only after the WAL write succeeds, guaranteeing
that every acknowledged record resides on durable media.
Ephemeral caches. In-memory broker buffers accelerate
hot reads but are never authoritative; if lost, a broker re-
builds cache directly from the WAL and Oxia without data
loss.

Note. Oxia’s consensus protocol, heartbeat mechanism, and fenc-
ing semantics are described in detail in [24]; we omit them here for
brevity.

4.2.5 Failure Recovery. The same design upholds consistency dur-
ing both crash-stop and brown-out events.

e Broker failover. Heart-beat loss (x5s) marks a broker of-
fline; the discovery service instantly remaps its partitions
to healthy peers, which resume service by reading the last
committed offset from Oxia and the corresponding WAL
bytes—no shard copy is required.

Brown-out mitigation. A broker that remains alive yet
shows sustained latency spikes or throughput collapse is
flagged degraded when its publish/fetch latency exceeds
Pog + 30 (standard deviation) for 30 s. The discovery ser-
vice (i) evicts the node and (ii) immediately re-assigns its
partitions, a zero-copy operation because brokers hold no
durable state. Producers/consumers can pickup the new
assignment on retries, so tail-latency inflation is capped to
a single retry. If the broker’s metrics return to the nominal
envelope for ~60 s, it is automatically re-admitted, prevent-
ing transient slowdowns from throttling the cluster while
preserving elastic capacity.

Metadata resilience. If an Oxia shard leader fails, a fully
caught-up follower is promoted; quorum replication en-
sures every committed index entry survives.

Client impact. Producers and consumers see only a short
interruption—typically one retry RTT (<100ms when the

TCP connection closes) and, in the silent-failure case, at
most the heartbeat interval (=5s)—after which requests
flow to the new broker; no acknowledged record is lost,
no duplicate emitted, and linearizability as well as read-
your-writes hold across broker crashes, brown-outs, and
metadata fail-overs.

4.3 Distributed Compaction Service

4.3.1 Overview. While WAL objects enable high-throughput, low-
latency appends, interleaving many streams in one file hurts catch-
up reads. A broker can issue range requests to fetch the exact
slice containing a given offset, yet a lagging consumer still has to
issue numerous, non-contiguous range reads across many WAL
objects—one for every batch that belongs to its stream. This frag-
mented access defeats object-store read-ahead and cache locality, so
in practice the client winds up touching most of each file even if it
needs only a small fraction of the bytes. When multiple consumers
back-fill different partitions, the amplification compounds.

To alleviate this problem and to satisfy heterogeneous retention
goals, Ursa runs a dedicated compaction service that periodically
rewrites WAL objects into larger, topic-partition—specific Parquet
files. After compaction a consumer can obtain its entire backlog
with a handful of sequential reads, restoring I/O efficiency while
live tail-reads continue to use range requests on the latest WAL
segments. During the rewrite the service leverages the embedded
schema ID (Avro, JSON, or Protobuf) to convert row batches into
columnar Parquet and registers the output with the lakehouse cat-
alog. The next subsections describe the compaction service, how
it mitigates read amplification, and how the same mechanism sup-
ports tasks such as upserts to external lakehouse tables and Kafka
topic compaction.

4.3.2 Compaction Workflow. Ursa’s compaction service follows
a three-stage pipeline, inspired by MapReduce [10], that ensures
exactly-once transformations while preserving the strict ordering
of each stream. The offset index in the metadata service remains
central to this process, guaranteeing that no data is duplicated,
reordered, or lost. Newly compacted Parquet files are committed
atomically to an object storage system resilient to availability zone
failures, ensuring continuous data accessibility.

Stage 1: Task Generation.

A leader node inspects the offset ranges for each stream and
partitions them into smaller, independently processable segments.
The pseudocode below demonstrates how the leader determines
segment sizes dynamically, based on each topic’s throughput. By
checkpointing its state to Oxia every 30 seconds, the leader can
tolerate partial failures and recover gracefully.

def generate_tasks(topic):

offsets = Oxia.get_offset_range(topic)
segment_size = adaptive_window(throughput(topic))
return [

CompactionTask(topic, start,

min(start + segment_size, offsets.end))
for start in range(

offsets.start, offsets.end, segment_size)

5190

Stage 2: Distributed Compaction.

Once the leader generates tasks, worker nodes retrieve the des-
ignated WAL objects, optionally filter or preprocess them, and
convert the row-based data into columnar Parquet files. Ursa uses
the relevant schema (e.g., Avro, JSON, or Protobuf) to perform this
transformation. The workers then produce metadata describing the
new Parquet files—location, message count, and offset bounds—and
send this information back to the leader. Because compaction oc-
curs outside Ursa brokers, it can scale horizontally across hundreds
of thousands of topics without burdening real-time ingestion. The
pseudocode below illustrates this procedure.

def wal_to_parquet(wal_segment):
df = createDataFrame(wal_segment.messages, schema)
df.write.parquet(temp_path, compression="ZSTD")
return FileMetadata(
temp_path, df.count(), min_max_offsets)

Stage 3: Commit.

The leader gathers metadata from the workers and batches the
newly generated files—often 100 to 1,000 at a time—then updates
the offset index in the metadata service. Concurrently, it performs
an atomic commit via Iceberg or a comparable API to register these
Parquet files with the underlying lakehouse table. Grouping mul-
tiple files reduces the metadata overhead in both Ursa’s metadata
service and the lakehouse catalog. Version rollback is available, as
Oxia retains a few previous committed versions for swift recovery
or partial rewinds. Once the new files are successfully committed,
the system can safely reclaim older WAL objects, minimizing data
duplication and read amplification for future data consumers.

4.3.3 Read Amplification Mitigation. During Stage 2, compaction
worker nodes might repeatedly read WAL objects, risking excessive
read amplification. To address this, workers benefit from a zonal
distributed cache, discussed in Section 5.3.1, which reduces redun-
dant loads when multiple compaction tasks require the same data.
By limiting re-fetching overhead, Ursa lowers costs and latency for
large-scale compaction activities.

4.3.4 Data Cleanup. The leader node maintains a holistic view of
the compaction progress and can readily purge any WAL objects
fully converted into Parquet. Orphaned objects—those no longer ref-
erenced by the offset index—are also removed. This ongoing cleanup
conserves storage resources while preserving a clear, streamlined
index structure.

4.4 External Lakehouse Tables

The existing compaction framework also supports "SDT" (Stream-
Deliver-to-Table) scenarios for external lakehouse tables. In Stage 2
of the compaction process, the worker reuses the same WAL reading
pipeline to avoid duplicate reads, but writes separate Parquet files
optimized for the target catalog (e.g., Databricks Unity Catalog or
Snowflake). While this creates two Parquet copies, one for Ursa’s
internal storage and one for the external table—it enables catalog-
specific optimizations and flexible data sharing across platforms.

4.5 Schema Evolution

Ursa inherits column-addition, type-promotion, and field-rename
rules from Iceberg/Delta, but adds a stream-friendly policy that

avoids write-time compatibility checks. Each producer tags ev-
ery record with a schema-ID obtained from the Kafka Schema
Registry. During compaction, the worker deserialises records with
their own writer schema and rotates to a new Parquet file whenever
the schema-ID changes; a single compaction cycle can therefore
emit several files—one per contiguous schema version—while each
file remains internally self-consistent. On the lakehouse side Ursa
builds the table schema by union-merging all historical versions,
preserving every additive field and marking it nullable (primary-
key columns stay required). Deletions are logical only: they vanish
from query output but the physical column is retained for back-
ward compatibility. Because the catalog stores that merged schema
and each WAL object retains its original schema-ID, analytic en-
gines can always rehydrate a record with the correct writer schema
even as the table evolves. The result is zero write failures dur-
ing rapid producer roll-outs, graceful support for mixed-version
streams, and schema management that stays orthogonal to Ursa’s
high-throughput streaming path.

Handling malformed records. If deserialization fails—for ex-
ample, because a producer sends data that does not conform to
the declared schema—the compaction worker routes the offending
payload to a dead-letter topic (DLT) linked to the original stream.
Offsets of discarded records are still recorded in the main index, pre-
serving gap-free ordering, while operators can inspect or reprocess
the DLT asynchronously without blocking the primary ingestion
path.

4.6 Kafka Topic Compaction

Ursa’s compaction framework can also implement Kafka-style topic
compaction with only minor adjustments. In Stage 1, the leader
generates specific compaction tasks based on configured thresh-
olds (e.g., size- or time-based triggers) and the data’s freshness
requirements.

In Stage 2, compaction worker nodes receive these tasks and un-
dertake additional steps beyond standard row-to-columnar conver-
sion. Specifically, they maintain a key—-offset mapping in memory
or on disk, tracking the highest offset observed for each key (po-
tentially loading this information from the last compacted object).
The worker then scans any uncompacted WAL segments. For each
record (key,value,offset):

(1) The worker checks the key—-offset map.

(2) Ifthe existing offset for that key exceeds the current record’s
offset, the worker discards this older record.

(3) Otherwise, the worker updates the map to mark this record
as the latest and retains it for compaction.

The worker finally writes these retained records—the most recent
per key up to the scanned offsets—into a new Parquet file, then
returns metadata describing the file’s location and offset bounds to
the leader. In Stage 3, the leader performs an atomic update of the
offset index to reference the newly compacted object.

By rewriting into a fresh Parquet file, Ursa ensures older com-
pacted objects remain intact until the new one is fully written. This
approach enables zero-downtime read operations, as existing con-
sumers can continue reading the old compacted objects until the
system transitions to the new object. Although the design permits
multiple concurrent compaction tasks, Ursa typically ensures only

5191

one active Kafka-topic compactor operates on each partition at a
time, simplifying concurrency control and ensuring consistency.

5 DATA FLOW

This section describes how Ursa handles data production and con-
sumption while addressing a key challenge: minimizing inter AZ
traffic.

5.1 Broker Discovery

In a conventional Kafka cluster every partition has a leader bro-
ker [15]; clients therefore begin with a Metadata request to learn
which brokers lead which partitions, then open separate connec-
tions to those leaders. Even with rack-aware reads this design causes
unavoidable cross-AZ hops whenever a producer or consumer sits
in a different zone from the leader.

5.1.1 Zone-aware, Leaderless Design. Ursa removes the per-partition
leader and lets any broker handle produce or fetch for any parti-
tion. To keep traffic local, each broker advertises its AZ (read from
Kubernetes or EC2 metadata) in Oxia; this forms a cluster-wide
map <broker — zone> cached by every node. When a client adds
zone_id=<zone> to its ‘client.id’, the receiving broker:

(1) hashes<topic, partition, zone>to pick azonal owner—the
broker in the same AZ that should serve that partition;

(2) returns a Metadata reply whose leader field is set to that
zonal owner;

(3) lets the client connect directly to the owner for all subse-
quent traffic.

Because all brokers are stateless, the mapping is purely for local-
ity; internally Ursa remains leaderless.

5.1.2 Partition Assignment. The consistent-hash ring used above
keeps all requests for a given partition on the same broker, improv-
ing batching and cache hits while eliminating cross-AZ transfers.
If a broker fails or is removed for a brown-out (4.2.5), the ring
instantly remaps its partitions to healthy peers without data copy,
and clients learn the new owners on their next retry. This simplicity
aids capacity planning and tail-latency debugging.

5.1.3 Group Coordinator Assignment. Consumer-group metadata
is also stored in Oxia. A hash of <groupID, zone> selects a group
coordinator, preferring a broker in the consumer’s AZ; traffic vol-
umes are small, so occasional cross-AZ placement has negligible
cost.

Result. Clients normally talk only to brokers in their own zone,
achieving high throughput and low network cost without the com-
plexity of leader elections or partition rebalancing.

5.2 Produce Data

Once producers have identified the broker responsible for their
target topic-partitions, they begin sending records. Ursa’s brokers
buffer these Produce requests—aggregating messages from multiple
topic-partitions—until a configured size threshold or time interval is
reached. The broker then writes the entire batch to the write-ahead
log (WAL).

Buffered data is stored in row-based format as a single WAL
object. After the broker has successfully persisted this object, it

commits the WAL metadata to Ursa’s metadata service and ac-
knowledges all produce requests in the batch. Figure 4 illustrates
this process.

By combining multiple produce requests for different topic-
partitions into one WAL object, Ursa avoids the proliferation of
small files and limits how much data remains in memory at any
given time. Using a dedicated WAL system also simplifies cluster
operations. First, it removes the need for partition rebalancing, a
common challenge in Kafka. Second, brokers can be scaled up or
down without triggering data transfers. Third, the system acknowl-
edges produce operations only after the WAL has been durably
stored, ensuring zero data loss even under broker failures.

5.2.1 Durability, Cost and Latency. Ursa defers produce acknowl-
edgments until the WAL object is persisted and its metadata is
committed, mirroring Kafka’s acks=all semantics. However, Ursa
offers a pluggable approach for WAL storage, enabling applications
to decide between cost optimization and lower latency.

o Cost-Optimized WAL. Data may be buffered for up to
200 ms or until a batch reaches around 4 MB, reflecting
the typical write latency of hundreds of milliseconds for
object storage. This approach removes the need for Ursa to
replicate data across zones because object-storage providers
already replicate data internally, substantially lowering net-
working costs.

Latency-Optimized WAL. For scenarios demanding lower
latency, Ursa can use disk-based replication (e.g., Apache
BookKeeper) to achieve WAL write latencies on the order of
single-digit milliseconds. To accommodate such workloads,
the buffering interval might be as low as 5 ms or the batch
size might be restricted to 512 KB.

This design lets organizations tailor WAL behavior to specific
latency and cost goals, striking an optimal balance for each work-
load.

5.2.2 Ordering and Idempotency. Ursa preserves Kafka’s ordering
and idempotency guarantees [4] by leveraging a centralized meta-
data service that tracks offset indexes for each partition. Once a
broker writes a WAL object, the metadata service increments and
assigns offsets, returning them to the broker. Consequently, data
ordering is finalized upon the metadata commit, rather than when
data is flushed to the WAL. This design accommodates large-scale
parallel writes—potentially from multiple brokers—to the same
partition while upholding ordering and idempotency semantics.

Decoupling metadata flow from data flow similarly simplifies
data replication and migration. Offsets can be preserved using con-
ditional writes at specified offsets in the metadata store, which is
particularly helpful for multi-datacenter deployments or incremen-
tal adoption in existing Kafka environments.

5.3 Consume Data

When a consumer sends a Fetch request specifying an offset 'x,
the broker consults the metadata service for a list of storage loca-
tions—pointers to WAL objects or compacted Parquet files—for the
relevant topic-partition. This list respects Kafka’s ordering seman-
tics, allowing the broker to retrieve the requested messages in the
correct sequence and forward them to the consumer.

5192

Fetch (t1, p2, x) Feteh (2, p3, v) Feteh (£1, p5, 2)

|——Read Cache—ip| | I I |@-Read cachemm|

R

Figure 5: Distributed Cache

Although the logic is straightforward, the leaderless nature of
Ursa means any broker can serve fetch requests for any partition,
which risks increased read amplification in object storage if multiple
brokers repeatedly fetch the same data. Ursa employs additional
strategies to mitigate these effects.

5.3.1 Local Write Buffer and Distributed Read Cache. Ursa reduces
read amplification by ensuring data is fetched from storage only
once per AZ and by coalescing requests for large data chunks.

First, Ursa uses consistent hashing to designate a “responsible”
broker for Produce and Fetch operations in each AZ, even though
the design remains leaderless at a global scale. Directing both pro-
ducers and consumers of a partition to the same broker allows tail
reads to be served from that broker’s local write buffer, bypassing
repeated retrievals of recently written data.

Second, if the requested data has already been flushed out of the
local buffer, Ursa employs a zone-local distributed cache to further
minimize repeated storage reads. The system assigns a specific
cache broker in each AZ to fetch data chunks and cache them
in memory. Other brokers in the same zone that receive a Fetch
request can then obtain the data from the cache broker rather than
from object storage. Although this approach may still require an
initial fetch per zone, it prevents costly cross-AZ traffic and enables
subsequent reads to be fulfilled from memory.

By consistently routing produce and consume operations to a
deterministic broker for each partition in a given AZ, Ursa increases
cache hit ratios and consequently improves tail-read performance.
Meanwhile, storage retrieval remains localized to each zone, mit-
igating read amplification for catch-up reads. Figure 5 illustrates
this design.

In Figure 5, Broker A receives a fetch request for a particular
topic, partition, and offset. Broker A looks up which broker is re-
sponsible for caching that data chunk, identifies Broker B, and issues
arequest to Broker B’s cache APL If Broker B has already cached the
data from a prior fetch, it returns it from memory. Otherwise, Bro-
ker B fetches the relevant chunk from storage, caches it, and then
serves the request. Subsequent requests for the same chunk—like
those from Broker C—are satisfied from Broker B’s cache, avoiding
redundant data transfers from the underlying storage.

6 USE CASES

Ursa supports the full spectrum of Kafka-style streaming use cases
while offering specialized advantages for lakehouse integration.

5000 -

4000 - -

3000 - -

Throughput (MB/s)

2000 - -

1000 - -

200 300 500

Time (seconds)

M 100 topics - 5p
W 500 topics - 3p

W 100 topics - 10p
1000 topics - 3p

Figure 6: Max throughput: Impact of number of partitions

Key applications include: (1) Real-time analytics where Ursa re-
duces latencies from hours to seconds for clickstream analytics,
fraud detection, and operational monitoring by ingesting directly
into Iceberg/Delta Lake tables; (2) ML feature engineering with
seamless schema evolution enabling IoT sensor aggregation and
real-time inference pipelines; and (3) Multi-cloud modernization
using CDC streams for incremental warehouse migration while
maintaining Delta/Iceberg consistency across regions. Ursa stream-
lines these workloads by serving both streaming consumers and
analytical queries from unified stream-table storage, eliminating
traditional ingestion lag while maintaining Kafka compatibility.

7 PERFORMANCE EVALUATION

We evaluated Ursa’s performance on Amazon Web Services (AWS)
using a cost-optimized WAL configuration, leveraging the Open-
Messaging Benchmark to generate event streams at various vol-
umes. All benchmark profiles are publicly accessible at https://
github.com/streamnative/openmessaging-benchmark.

Test Environment. The setup comprised 12 ingestion nodes
(m61i.8xlarge) deployed across three availability zones, with six
nodes allocated to producers and six to consumers. An additional 12
nodes (m6i.8x1large) hosted Ursa brokers and Oxia coordination
services. Amazon S3 served as the primary storage layer.

7.1

This set of experiments measured Ursa’s peak throughput when
consumers could keep pace with incoming data, focusing on the sys-
tem’s ability to scale under different partition counts and message
sizes.

We first evaluated how increasing the number of partitions af-
fects Ursa’s throughput. Figure 6 shows that consume throughput
remained around 5 GB/s, regardless of partition count, validating
Ursa can scale horizontally without performance degradation.

Next, we investigated whether Ursa’s throughput is sensitive to
message size. Figure 7 depicts the results for 1 KB, 4KB, and 64 KB
message sizes, showing that both publish and consume throughputs
remained around 5 GB/s across all tested configurations.

Maximum Throughput

5193

5000 - \
S S
0
g
=}
£
B L
H
g
4
3
S
=

1000 {2 n S en e neanens s eenn e neenneneenn s s s

o
o 100 20 o w 0
Time (seconds)
M 1KB M 4KB
W 64KB

Figure 7: Max throughput: Impact of message size

200

a0

20
%
£
£ e
>
3
g
§ o0
g
5
=

1200

o

a

90.0 % 99.0 % 99.9 % 99.99 % 99.999 %

Percentile

Wil
1:1-compressed

W15

Wi
mi: W 1:5-compressed

3
3-compressed

Figure 8: Publish latency under 1GB/s workload

7.2 Latency

Beyond maximum throughput, we examined publish latency and
end-to-end latency under different write-to-read ratios (1:1, 1:3, and
1:5) to assess how fan-out levels affect Ursa’s produce latency. As
shown in Figures 8, the P99 publish latency remained below 1s
even at elevated fan-out ratios. Compression can reduce storage
overhead and further lower these latency distributions. However,
the P999 latency rose significantly with higher fan-out, likely due
to hitting the network constraints.

7.3 Catchup read

We next evaluated Ursa’s ability to process large backlogs under
continued high-ingestion rates. We tested backlog draining while
continuing to ingest up to 2 GB/s. Latency remained stable except
for spikes at the 99.9th percentile as shown in Figure 9.

7.4 Resource Utilization

Under peak loads, Ursa nodes typically operated at 30-60% CPU
utilization, with network I/O emerging as the principal bottleneck.
Amazon S3 provided sufficient throughput for ingestion, although

https://github.com/streamnative/openmessaging-benchmark
https://github.com/streamnative/openmessaging-benchmark

32000

28000

24000

20000

16000

Latency (ms)

12000

8000

4000

9.0 % 99.9 %
Percentile

M 1G6/s
M 2G/s

M 1G/s-compressed
2G/s-compressed

Figure 9: Publish latency during backlog draining

short memory queueing occurred during traffic spikes. Overall,
Ursa effectively leveraged available resources while sustaining high
throughput and manageable latency.

7.5 Production Deployment

Ursa has run in continuous production on StreamNative Cloud for
two years and now starts to back every service tier—from fully
managed single-tenant clusters to Bring-Your-Own-Cloud (BYOC)
installs. Today StreamNative Cloud operates across AWS, GCP,
and Azure in hundreds of clusters, scaling from small developer
sandboxes to large scale pipelines that ingest multiple GB/s. Field
measurements match our benchmark results: end-to-end latency
stays < 1 s while infrastructure spend is = 5% of a comparably sized
Kafka stack. One large enterprise cut total infrastructure cost by
10x after replacing a multi-AZ Kafka deployment with a single Ursa
cluster that writes Iceberg tables directly to S3. Because brokers
are stateless and multi-tenant—with per-namespace auth, quotas,
and encryption—multiple business units can safely share capacity,
boosting utilisation without extra ops work.

8 DATA STREAMING COST ANALYSIS

To evaluate how Ursa alleviates these cost drivers discussed in
Section 2.2, we ran 200 JR clients [2] for two hours, producing ten
billion records (180GB compressed with LZ4) into a six-partition
topic. This workload was executed on six m6a. large nodes.

During this experiment, Ursa’s WAL storage received approxi-
mately 70,000 objects, and the compaction service generated 2,597
Parquet files (totaling 55GB) for the lakehouse table. Storing the
data in Parquet yielded a threefold reduction in size compared to the
raw data, while 144,000 S3 read requests were issued to transform
row-based WAL objects into Parquet files.

8.1 Cost Comparison

To quantify Ursa’s cost advantages, we compared it against two
Kafka configurations: one using local disks ("Kafka (Disk)") and
another employing tiered storage ("Kafka (TS)"). The same workload
was applied to each system. Table 1 summarizes expenses over
a two-hour run, assuming seven-day retention for Kafka-based

5194

Table 1: Cost comparison: Ursa vs Kafka.

Ursa Kafka (Disk) Kafka (TS)
Server EC2 $1.04 $0.52 $0.52
Connector EC2 $0 $0.52 $0.52
Interzone Network $0 $6 $6
Storage $1.27 $28.27 $4.94
S3 Requests $0.40 $0 $0
Total $2.71 $35.31 $11.98

systems (to support data replays) and a one-month retention period
for lakehouse data.

Server EC2. Ursa uses six m6a. large nodes (three brokers plus
three lakehouse compaction services), running for two hours at
$0.0864 per hour. This totals $1.04, whereas the Kafka-based sys-
tems employ three brokers, incurring roughly $0.52 for the same
duration.

Connector EC2. Because Ursa natively writes data to the lake-
house, it requires no separate connector layer. By contrast, the
Kafka configurations use an additional three-node connector ser-
vice to fetch from follower replicas before storing data in a columnar
format, adding $0.52 in each case.

Interzone Network. Ursa’s leaderless, zone-aware design elim-
inates nearly all cross-AZ data transfers except for minor meta-
data traffic, contributing $0 in interzone network costs. The Kafka
systems, with leader-based replication, produce inter-AZ network
usage of $6 in this scenario, as outlined in Section 2.2.

Storage. Ursa removes WAL objects once compaction completes,
retaining only the final 55 GB in Parquet format on S3. At $0.023
per GB-montbh, the total storage cost is $1.27. Kafka (Disk) keeps
three replicas of 200 GB for seven days (for replay) plus 55 GB in
lakehouse storage, resulting in $28.27. Kafka with tiered storage
uses local disks for 20 GB and offloads 180 GB to object storage,
alongside 55 GB in the lakehouse, totaling $4.94.

S$3 Requests. Ursa triggers about 73 K S3 write operations for
WAL objects and a similar number of S3 read operations for com-
paction. At $0.005 per thousand writes and $0.0004 per thousand
reads, the resulting API costs total $0.40. The Kafka systems rely
primarily on local disks or specialized tiered storage and thus incur
no direct S3 request charges.

8.2 Cost Savings

As shown in Figure 10, Ursa delivers a 92% cost reduction relative
to Kafka (Disk) and a 78% reduction compared to Kafka (TS). These
savings derive from minimizing cross-AZ transfers, eliminating
disk-based replication, and avoiding dedicated connector instances.
Furthermore, by storing data in Parquet, Ursa consolidates real-time
ingestion and analytical querying into a single, compact dataset,
thereby reducing overhead for large-scale batch processing.

Overall, Ursa’s leaderless, lakehouse-native architecture directly
addresses the cost drivers highlighted in Section 2.2, enabling or-
ganizations to accommodate real-time ingestion needs without
incurring the excessive infrastructure expenses common in tradi-
tional streaming systems.

$40

$30

$20

$10

Kafka (tiered storage)

Ursa

$0
Kafka (local disks)

8 Server EC2 4 Connector EC2 " Interzone Network @ Storage # S3 requests

Figure 10: Data Streaming Cost Comparison: Ursa vs. Kafka
(lower is better).

9 RELATED WORK

Modern streaming systems commonly adopt leader-based replica-
tion protocols to ensure consistency under failures. Notably, Apache
Kafka employs an In-Sync Replica (ISR) mechanism, Redpanda uses
Raft [26], and Apache Pulsar integrates a Paxos-like protocol [23].
While robust, these architectures anchor every partition to a desig-
nated leader, inflating inter-AZ network traffic and complicating
fail-over in multi-zone deployments. Ursa’s leaderless design re-
moves that single-leader bottleneck, reducing cross-zone chatter
and simplifying recovery.

A second line of work eliminates local disks entirely. For example,
WarpStream [6] or Confluent Freight Cluster [5] employs a “zero-
disk” architecture, persisting all events directly to an object store.
Although this reduces local storage dependencies, WarpStream
maintains a proprietary format and centralized metadata service,
limiting interoperability. Ursa, by comparison, persists data in open
formats—Apache Iceberg or Delta Lake—while placing metadata
under the user’s control. This enables compatibility with exter-
nal engines (e.g., Databricks, Snowflake) and lowers total costs. In
addition, WarpStream and Confluent Freight Clusters focus only
on object storage based solution that can only support latency-
relaxed workloads that can accept sub-second latency. Ursa, in
contrast, supports pluggable WAL storage that is able to support
both latency-optimized and cost-optimized workloads.

Flink Dynamic Tables [11] and Apache Paimon [27] pursue the
opposite, table-first path to stream-table unification. Dynamic Ta-
bles are a logical abstraction inside Flink that treats streams as
continuously updating tables, yet the state is ephemeral and con-
fined to the running job. Apache Paimon (born as Flink Table Store)
materialises that state persistently: it stores updates in an LSM-
style layout, enabling ACID snapshots and real-time queries across
Flink, Spark, or Hive. Ursa, by contrast, is stream-first and Kafka-
API compatible—producers and consumers interact through log
semantics while the engine simultaneously commits those logs to
Iceberg/Delta tables. Thus, Dynamic Tables / Paimon maximise
integration with the Flink SQL API for CDC and high-frequency
updates, whereas Ursa offers a drop-in Kafka replacement that

5195

collapses streaming and lakehouse layers with a leaderless, cost-
oriented architecture. Both achieve stream-table duality but target
different ecosystems and optimisation fronts.

Connector frameworks like Kafka Connect and Pulsar I/O pro-
vide a route for moving streaming data into external systems but
generally require separate deployments and configurations. These
connector-based pipelines also risk introducing data duplication
and added operational overhead. Ursa circumvents this fragmen-
tation through a zero-ETL design, directly stores data in real-time
data streams and exposing the underlying data as Lakehouse ta-
bles—achieving “stream-table duality” within a single engine with
a single copy of data.

Finally, while systems such as Delta Lake and Apache Iceberg
support limited streaming ingestion, they often rely on micro-batch
cycles and do not natively provide a Kafka streaming abstraction.
Ursa augments these table formats with a write-ahead log and offset
indexing, thus enabling both near-real-time ingestion and flexible
storage tiering (latency-optimized vs. cost-optimized) within the
same architecture.

10 CONCLUSION

We have introduced Ursa, a leaderless, lakehouse-native engine
that significantly simplifies and lowers the cost of real-time data
ingestion. By removing disk-based broker storage and leader-based
replication, Ursa mitigates the key cost drivers of multi AZ environ-
ments. Integration with open table formats further streamlines data
management and analytics workflows, delivering high throughput
and near-real-time latency at a fraction of traditional costs.

Looking ahead, we plan to expand Ursa’s capabilities in four
directions: (i) leveraging machine learning to dynamically switch
between cost-optimized (object-based) and latency-optimized (disk-
based) modes, (ii) extending stream-table duality by generating
real-time change logs from table updates, (iii) offering Ursa’s storage
as a standalone library so applications can directly append Arrow
or Parquet data without broker intermediaries, and

(iv) exposing live WAL objects through a catalog extension
so engines can scan hot WAL rows alongside Parquet, enabling
millisecond-fresh OLAP without compaction delays.

ACKNOWLEDGMENTS

Ursa is the culmination of sustained effort by numerous individu-
als—past and present—who worked tirelessly to realize the vision of
a truly lakehouse-native data streaming platform. We thank all who
contributed their time, expertise, and creativity along the way. We
are especially grateful to our customers and users, whose real-world
scenarios, requirements, and continual feedback shaped Ursa’s fea-
tures and guided our development. We also extend our thanks to
the Apache Pulsar, Apache Iceberg, and Delta Lake communities
for their invaluable insights and feedback. Lastly, we appreciate the
guidance from contributors and committers in the Apache Kafka
community, whose support on Kafka protocol internals enabled
our Kafka compatibility.

REFERENCES

[1] Michael Armbrust, Tathagata Das, Liwen Sun, et al. 2020. Delta Lake: High-
Performance ACID Table Storage over Cloud Object Stores. Proceedings of the

[10]

[11]

[12]

[13

[14

VLDB Endowment 13, 12 (2020), 3411-3424. https://doi.org/10.14778/3415478.
3415560

JR Tool Authors. 2025. JR: A High-Performance Data Generation and Bench-
marking Tool. Retrieved March 1, 2025 from https://github.com/jr-tool
Praseed Balakrishnan. 2022. Redpanda Cloud brings the fastest Kafka® API to
the cloud. Retrieved March 1, 2025 from https://redpanda.com/blog/introducing-
redpanda- cloud-for-kafka

Confluent. 2017. Exactly-Once Semantics in Apache Kafka. Retrieved March 1,
2025 from https://www.confluent.io/blog/exactly-once-semantics-are-possible-
heres-how-apache-kafka-does-it/

Confluent. 2025. Freight Clusters: High-Capacity Kafka Deployments. Retrieved
March 1, 2025 from https://www.confluent.io/product/freight- cluster/
Confluent. 2025. WarpStream: A Cloud-Native, Zero-Disk Apache Kafka Alter-
native. Retrieved March 1, 2025 from https://www.warpstream.com

Inc. Confluent. 2025. Kafka Connect Fundamentals: What is Kafka Connect?
Retrieved March 1, 2025 from https://www.confluent.io/blog/kafka-connect-
tutorial/

Databricks. 2025. Databricks Unity Catalog. Retrieved March 1, 2025 from
https://www.databricks.com/product/unity-catalog

Databricks. 2025. Delta Lake UniForm: Unified Table Formats for Interoperability
in the Lakehouse. Retrieved March 1, 2025 from https://www.databricks.com/
blog/2023/05/16/introducing- delta-lake-uniform-way-unify-your-data.html
Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Process-
ing on Large Clusters. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI'04). 137-150. https://www.usenix.org/legacy/
events/osdi04/tech/dean.html

Apache Flink. 2025. Flink Dynamic Tables. Retrieved Jun 9,
2025 from https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/
concepts/dynamic_tables/

Apache Software Foundation. 2025. Apache BookKeeper. Retrieved March 1,
2025 from https://bookkeeper.apache.org/

Apache Software Foundation. 2025. Apache Flink. Retrieved March 1, 2025
from https://flink.apache.org/

Apache Software Foundation. 2025. Apache Iceberg. Retrieved March 1, 2025
from https://iceberg.apache.org/

5196

[15

[16

(17

[18

[19

IS
=

[21]

[22

[23

[24

[26

[27]

Apache Software Foundation. 2025. Apache Kafka. Retrieved March 1, 2025
from https://kafka.apache.org/

Apache Software Foundation. 2025. Apache Parquet. Retrieved March 1, 2025
from https://parquet.apache.org/

Apache Software Foundation. 2025. Apache Pulsar. Retrieved March 1, 2025
from https://pulsar.apache.org/

Apache Software Foundation. 2025. Apache Spark. Retrieved March 1, 2025
from https://spark.apache.org/

Apache Software Foundation. 2025. Apache XTable (Incubating): Universal Table
Formats Interoperability. Retrieved March 1, 2025 from https://incubator.apache.
org/projects/xtable.html

Trino Software Foundation. 2025. Trino. Retrieved March 1, 2025 from https:
//trino.io/

Sijie Guo. 2024. A Guide to Evaluating the Infrastructure Costs of
Apache Pulsar and Apache Kafka. Retrieved March 1, 2025 from
https://streamnative.io/blog/a- guide-to- evaluating-the- infrastructure-
costs-of-apache- pulsar-and-apache-kafka

Snowflake Inc. 2025. Snowflake Open Catalog. Retrieved March 1, 2025 from
https://www.snowflake.com/en/product/features/open- catalog/

Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News 32, 4 (December
2001), 51-58. https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
Matteo Merli. 2023. Introducing Oxia: Scalable Metadata and Coordination.
Retrieved March 1, 2025 from https://streamnative.io/blog/introducing- oxia-
scalable-metadata-and-coordination

et al. Michael Armbrust, Ali Ghodsi. 2021. Lakehouse: A New Generation of
Open Platforms that Unify Data Warehousing and Advanced Analytics. In CIDR.
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf 11th Conference on
Innovative Data Systems Research (CIDR), January 2021, Virtual.

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC 14). 305-319. https://doi.org/10.5555/2643634.2643666

Apache Paimon. 2025. Apache Paimon. Retrieved Jun 9, 2025 from https:
//paimon.apache.org/

https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560
https://github.com/jr-tool
https://redpanda.com/blog/introducing-redpanda-cloud-for-kafka
https://redpanda.com/blog/introducing-redpanda-cloud-for-kafka
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/product/freight-cluster/
https://www.warpstream.com
https://www.confluent.io/blog/kafka-connect-tutorial/
https://www.confluent.io/blog/kafka-connect-tutorial/
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/blog/2023/05/16/introducing-delta-lake-uniform-way-unify-your-data.html
https://www.databricks.com/blog/2023/05/16/introducing-delta-lake-uniform-way-unify-your-data.html
https://www.usenix.org/legacy/events/osdi04/tech/dean.html
https://www.usenix.org/legacy/events/osdi04/tech/dean.html
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/concepts/dynamic_tables/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/concepts/dynamic_tables/
https://bookkeeper.apache.org/
https://flink.apache.org/
https://iceberg.apache.org/
https://kafka.apache.org/
https://parquet.apache.org/
https://pulsar.apache.org/
https://spark.apache.org/
https://incubator.apache.org/projects/xtable.html
https://incubator.apache.org/projects/xtable.html
https://trino.io/
https://trino.io/
https://streamnative.io/blog/a-guide-to-evaluating-the-infrastructure-costs-of-apache-pulsar-and-apache-kafka
https://streamnative.io/blog/a-guide-to-evaluating-the-infrastructure-costs-of-apache-pulsar-and-apache-kafka
https://www.snowflake.com/en/product/features/open-catalog/
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://streamnative.io/blog/introducing-oxia-scalable-metadata-and-coordination
https://streamnative.io/blog/introducing-oxia-scalable-metadata-and-coordination
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://doi.org/10.5555/2643634.2643666
https://paimon.apache.org/
https://paimon.apache.org/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Lakehouse Architectures and Real-Time Data Pipelines
	2.2 Data Streaming Cost Drivers

	3 Overview
	3.1 Design Goals
	3.2 New CAP Theorem
	3.3 Architecture
	3.4 Metadata Service
	3.5 Stream Data Storage
	3.6 Stateless Brokers

	4 Ursa Stream Storage
	4.1 Stream Format
	4.2 Access Protocols
	4.3 Distributed Compaction Service
	4.4 External Lakehouse Tables
	4.5 Schema Evolution
	4.6 Kafka Topic Compaction

	5 Data Flow
	5.1 Broker Discovery
	5.2 Produce Data
	5.3 Consume Data

	6 Use Cases
	7 Performance Evaluation
	7.1 Maximum Throughput
	7.2 Latency
	7.3 Catchup read
	7.4 Resource Utilization
	7.5 Production Deployment

	8 Data Streaming Cost Analysis
	8.1 Cost Comparison
	8.2 Cost Savings

	9 Related Work
	10 Conclusion
	References

