
Cost-Effective, Low Latency Vector Search with Azure Cosmos DB
Nitish Upreti, Harsha Vardhan Simhadri, Hari Sudan Sundar, Krishnan Sundaram, Samer Boshra,
Balachandar Perumalswamy, Shivam Atri, Martin Chisholm, Revti Raman Singh, Greg Yang, Tamara
Hass, Nitesh Dudhey, Subramanyam Pattipaka, Mark Hildebrand, Magdalen Manohar, Jack Moffitt,
Haiyang Xu, Naren Datha, Suryansh Gupta, Ravishankar Krishnaswamy, Prashant Gupta, Abhishek
Sahu, Hemeswari Varada, Sudhanshu Barthwal, Ritika Mor, James Codella, Shaun Cooper, Kevin
Pilch, Simon Moreno, Aayush Kataria, Santosh Kulkarni, Neil Deshpande, Amar Sagare, Dinesh Billa,

Zishan Fu, Vipul Vishal
Microsoft

{niupre,harshasi,harsudan}@microsoft.com

ABSTRACT
Vector indexing enables semantic search over diverse corpora and
has become an important interface to databases for both users and
AI agents. Efficient vector search requires deep optimizations in
database systems. This has motivated a new class of specialized
vector databases that optimize for vector search quality and cost. In-
stead, we argue that a scalable, high-performance, and cost-efficient
vector search system can be built inside a cloud-native operational
database like Azure Cosmos DB while leveraging the benefits of a
distributed database such as high availability, durability, and scale.
We do this by deeply integrating DiskANN, a state-of-the-art vector
indexing library, inside Azure Cosmos DB NoSQL. This system uses
a single vector index per partition stored in existing index trees, and
kept in sync with underlying data. It supports < 20ms query latency
over an index spanning 10 million vectors, has stable recall over
updates, and offers approximately 43× and 12× lower query cost
compared to Pinecone and Zilliz serverless enterprise products. It
also scales out to billions of vectors via automatic partitioning. This
convergent design presents a point in favor of integrating vector
indices into operational databases in the context of recent debates
on specialized vector databases, and offers a template for vector
indexing in other databases.

PVLDB Reference Format:
Nitish Upreti, Harsha Vardhan Simhadri, Hari Sudan Sundar, Krishnan
Sundaram, Samer Boshra, Balachandar Perumalswamy, Shivam Atri,
Martin Chisholm, Revti Raman Singh, Greg Yang, Tamara Hass, Nitesh
Dudhey, Subramanyam Pattipaka, Mark Hildebrand, Magdalen Manohar,
Jack Moffitt, Haiyang Xu, Naren Datha, Suryansh Gupta, Ravishankar
Krishnaswamy, Prashant Gupta, Abhishek Sahu, Hemeswari Varada,
Sudhanshu Barthwal, Ritika Mor, James Codella, Shaun Cooper, Kevin Pilch,
Simon Moreno, Aayush Kataria, Santosh Kulkarni, Neil Deshpande, Amar
Sagare, Dinesh Billa, Zishan Fu, Vipul Vishal . Cost-Effective, Low Latency
Vector Search with Azure Cosmos DB. PVLDB, 18(12): 5166 - 5183, 2025.
doi:10.14778/3750601.3750635

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750635

1 INTRODUCTION
Advances in deep learning have made it possible to embed data
as vectors in high-dimensional vector spaces so that the distance
between vectors captures various notions of semantic similarity.
This opens up a new interface for users as well as AI models and
agents to interact with large information stores based on semantic
and contextual relevance, rather than literal matches or structured
queries. Therefore, efficient search in vector spaces has become a
critical requirement for information retrieval systems. Already, vec-
tor search is a central component in industrial scale retrieval (web
and document search) and recommendation systems. In databases,
especially document databases, augmenting existing workloads
with vector representations is becoming commonplace.

A new class of scenarios requiring vector search on operational
data modeling e-commerce, document retrieval, conversational
histories, and AI agent interaction patterns, are rapidly growing.
This has motivated a new class of specialized vector databases that
optimize primarily for vector search performance. However, this
pattern forces the replication of data between a primary operational
database and a secondary vector database which can cause data
divergence, and increased cost and complexity for the user. This
also may not provide the operational resilience that developers
expect.

An ideal solution to these workloads would be a highly available
and scalable operational database that allows flexible data models
and indexing over vector representations. It would further offer:
• A vector index in sync with underlying data without replication

to external systems.
• Elastic scaling to billions of vectors with thousands of dimen-

sions.
• Cost-effective and accurate search at any scale and QPS.
• Robustness to incremental changes – ensures data integrity and

consistency, and high search accuracy across updates.
• Low-latency transactions for data updates and retrieval.
• Built-in multi-tenancy to allow multiple users or groups to se-

curely and cost-effectively share the same database instance.
We achieve all these properties by integrating a state-of-the-

art vector indexing library, DiskANN, with Azure Cosmos
DB for NoSQL, an operational database for Tier-0 enterprise work-
loads. Cosmos DB already stores vast quantities of data such as
conversational history, documents and e-commerce data where
semantic retrieval is important. The database engine underlying

5166

https://doi.org/10.14778/3750601.3750635
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750635

Cosmos DB NoSQL [32] already offers many features to help re-
alize these properties including multi-tenant support, automatic
indexing with flexible schema, scale-out and high-availability archi-
tecture, multi-region support, as well as flexible cost structures such
as dynamic auto-scale and pay-per-use serverless models. We take
advantage of these properties by adapting the DiskANN library
within the contours of the Cosmos DB architecture.

Each collection in Cosmos DB maps to multiple physical parti-
tions (based on hashed key ranges), each of which is made highly
available with a replica-set. Each physical machine in a Cosmos
DB cluster hosts partitions corresponding to many collections to
maximize fleet efficiency. Therefore, only a portion of available
memory in these machines is available as a cache for the indices in
these replicas. The available cache might be 10 − 50× lower than
the size of the document data and indices over them. For a vector
index to be effective and cost-efficient in such a constrained setting,
it must be able to process incremental updates and queries with
limited memory. Moreover, the index must be truly incremental and
avoid needing to be rebuilt or merged to maintain search quality
over a long period of time or a large number of operations.

DiskANN is a suite of vector indexing algorithms [22, 36, 38]
designed for such constraints. It derives quantized representations
of vectors which can be much smaller than the original vectors,
and supports updates and queries to the index mostly via quantized
vectors. To perform a query, full-precision vectors stored in the in-
dex are accessed 50× less frequently compared to quantized vectors.
This allows the system to provide high performance even when
most of the index is stored on SSDs. DiskANN has been widely
deployed in several extreme scale: Microsoft semantic indices used
for web search, advertisements, Microsoft 365 search, Co-pilots as
well as on edge devices [28].

The DiskANN library [22] has previously been designed to con-
trol the layout of index terms either in memory or in SSD, akin
to other monolithic systems [14, 20]. While databases such as Sin-
gleStore [6] and Elastic [29, 39] use vector indexing libraries in
a loosely coupled way to produce a separate index for each im-
mutable data segment, we do not use such a design due to several
drawbacks: (a) each query has to fan out to numerous segments
which limits query efficiency, (b) regular rebuilds of vector indices
are needed as segments are merged or consolidated, which con-
sumes significant compute, memory and causes serious latency
spikes for queries [40, 41], (c) either large cold start latencies occur
while loading large vector indices into memory, or high expense is
incurred from having to hold the index in memory.

Instead, for simplicity and robustness of the system, we store
the terms representing the vector index on the Bw-Tree index in
Cosmos DB. Bw-Tree supports concurrency through latch free
algorithms, provides fast random reads and writes in a tiered mem-
ory/SSD setting. To enable this, we rewrote the DiskANN library to
decouple the algorithmic logic from physical index layout. The new
library provides supports updates and queries by manipulating or
reading index terms (quantized vector and graph adjacency lists)
stored external to the library.

This leads to several structural advantages:

• We can maintain and update just one vector index per replica,
which can be as large as 50GB, enabling higher query efficiency

via reduced fan-out. In fact, DiskANN’s query complexity scales
logarithmically (empirically) in the size of the index.

• A vector insert results in immediate and durable changes to the
index terms to Bw-Tree, and does not require further indexing
or merging down the line.

• The Bw-Tree caches index terms for hot partitions on demand,
while cold collections do not consume memory.
• A long tail of indices can be stored in a machine without paying

a minimum floor cost, especially in multi-tenant collections.
This deep integration eliminates the need for a vector index out-

side an operational database, and instead composes proven features
from Cosmos DB and DiskANN. From Cosmos DB, we inherit flexi-
ble cost structures, resource governance, elasticity, and resiliency.
By storing its indexing terms in Bw-Tree, which has a long history
of support in Cosmos DB, DiskANN benefits from its established
stability and ease of operation. From the new rewrite of DiskANN
we inherit existing features – querying with limited memory – as
well as new features developed for this integration such as index up-
dates with limited memory, and filter-aware and paginated search
for efficiently processing hybrid vector queries with predicates.

A few highlights of the integrated system include:
• Query cost that is nearly 12× and 43× lower than Zilliz and

Pinecone enterprise-tier serverless vector databases respectively
(for 10 million 768D vectors), while offering higher availability.
• Query latency of about 20 milliseconds, including the time to

fetch underlying docs, even at 10 million index scale.
• Query cost increases less than 2× despite a 100× increase in

index size in one partition. Query cost does not change much as
the dimensionality of the vector increases.

• Ingest offers stable recall over long update sequences, with cost
and performance comparable to other vector databases.

• Collections can scale out to a billion vectors.
• Multi-tenant design where the number of partition keys or the

vectors per partition can grow independently to large numbers.
• Pay-per-use or auto-scale cost structure.
• Optimized hybrid queries for better latency and cost than pagi-

nated search with post-filtering.

2 BACKGROUND
We now review necessary background on the DiskANN library and
the Cosmos DB system to motivate the new design in Section 3.

2.1 The DiskANN vector indexing library
DiskANN is a graph-structured index for vector search that can
efficiently index and update large sets of vector data, while sup-
porting accurate and fast vector search queries. It is widely used
at scale in Microsoft for semantic indices including those in web
search, enterprise document search, computational advertisement
and Windows Co-pilot runtime. The overall ideas are described
in [22] and an open-source implementation is available [35].

The index consists of a graph over the vectors in the database,
with one vertex representing each vector and directed edges con-
necting vertices. The search for a query 𝑞 uses a “greedy” approach,
starting at a designated start point 𝑠 , computing the distances from
𝑞 to each point in the out-edges 𝑁out (𝑠), and moving on to the
nearest neighbor of 𝑞 among 𝑁out (𝑠). It continues this process of

5167

Algorithm 1: GreedySearch(𝑠, x𝑞, 𝑘, 𝐿)
Data: Graph𝐺 with start node 𝑠 , query x𝑞 , result size 𝑘 , search list

size 𝐿 ≥ 𝑘

Result: L contains 𝑘-approx NNs, and set of visited nodes V
begin

initialize sets L ← {𝑠 }, E ← ∅, and V ← ∅
// L is the list of best 𝐿 nodes, E is the set of

nodes which have already been expanded from the
list, V is the set of all visited nodes, i.e.,
inserted into the list

initialize hops← 0 and cmps← 0
while L \ E ≠ ∅ do

let 𝑝∗ ← argmin𝑝∈L\E | |x𝑝 − x𝑞 | |
update L ← L ∪ (𝑁out (𝑝∗) \ V) and E ← E ∪ {𝑝∗}
if | L | > 𝐿 then

update L to retain closest 𝐿 points to x𝑞
update V ← V ∪ 𝑁out (𝑝∗)

return [closest 𝑘 points from V; V]

Algorithm 2: Insert(x𝑝 , 𝑠, 𝐿, 𝛼, 𝑅)
Data: Graph𝐺 (𝑃, 𝐸) with start node 𝑠 , new vector x𝑝 , parameter

𝛼 > 1, out degree bound 𝑅, list size 𝐿
Result: Graph𝐺 ′ (𝑃 ′, 𝐸′) where 𝑃 ′ = 𝑃 ∪ {𝑝 }
begin

initialize expanded nodes E ← ∅
initialize candidate list L ← ∅
[L, E] ← GreedySearch(𝑠, 𝑝, 1, 𝐿)
set 𝑁out (𝑝) ← RobustPrune(𝑝, E, 𝛼, 𝑅)
foreach 𝑗 ∈ 𝑁out (𝑝) do

if |𝑁out (𝑗) ∪ {𝑝 } | > 𝑅 then
set 𝑁out (𝑗) ← RobustPrune(𝑗, 𝑁out (𝑗) ∪ {𝑝 }, 𝛼, 𝑅)

else
update 𝑁out (𝑗) ← 𝑁out (𝑗) ∪ {𝑝 }

greedily visiting the closest neighbor to 𝑞 until it can no longer
improve on the closest neighbor to 𝑞, at which point the search ter-
minates. This algorithm is formally described in Algorithm 1, and
can be naturally extended to return the top-𝑘 neighbors by keeping
a priority queue of the 𝑘 closest neighbors instead of hopping to the
single closest neighbor each time. The accuracy, or Recall k@k, of a
search, is defined as how many of the 𝑘 results returned by a search
are the true top-𝑘 nearest neighbors. When clear from context, it is
also used to refer to the average recall over a batch of searches.

DiskANN’s query complexity grows logarithmically with the size
of the index (empirically observed [25, 38]). It can work effectively
with an almost entirely SSD-based index and limited memory, while
providing performance parity with in-memory indices like ScaNN
that consume an order of magnitude more memory. DiskANN is
IO efficient – it can achieve 90% recall@10 on a billion-size SIFT
dataset with just 50 random 4 KB reads to SSD. The same DiskANN
index can also be loaded entirely into DRAM for scenarios requiring
extreme throughput, where it outperforms graph-based methods
such as HNSW [18] and partition-based methods such as IVF and
ScaNN [24].

Algorithm 3: RobustPrune(𝑝, E, 𝛼, 𝑅)
Data: Graph𝐺 , point 𝑝 ∈ 𝑃 , candidate set E, distance threshold

𝛼 ≥ 1, degree bound 𝑅
Result:𝐺 is modified by setting at most 𝑅 new out-neighbors for 𝑝
begin
E ← (E ∪ 𝑁out (𝑝)) \ {𝑝 }
E ← sort E by distance from 𝑝

N ← ∅
for x𝑞, 𝑑𝑖𝑠𝑡_𝑞𝑝 ∈ E do

𝑎𝑑𝑑 ← True

for (x𝑟 , 𝑑𝑖𝑠𝑡_𝑟𝑝 ∈ N) do
if 𝛼 ∗ 𝑑𝑖𝑠𝑡_𝑟𝑝 < | |x𝑞 − x𝑟 | | then

𝑎𝑑𝑑 ← False

break

if add then
N ← N ∪ { (x𝑞, 𝑑𝑖𝑠𝑡_𝑞𝑝) }

if |N| = 𝑅 then
break

𝑁out (𝑝) ← {𝑞 for (x𝑞, 𝑑𝑖𝑠𝑡_𝑞𝑝) ∈ N}

Inserts and Replaces. The DiskANN graph is built via repeated
calls to the insertion algorithm, which is formally described in Algo-
rithm 2. At a high level, the insert procedure generates candidates
for insertion using a call to Algorithm 1, prunes the candidates
down to respect the degree bound 𝑅, and then adds edges pointing
to the newly inserted node to make it reachable. One of the main
innovations behind DiskANN’s performance is the RobustPrune
routine, shown in Algorithm 3, which is used to prune a vertex’s
out-neighbors down to the degree bound 𝑅. At a high level, it re-
moves an edge (𝑢, 𝑣) when 𝑣 is likely to be reachable via one of 𝑢’s
other neighbors. Furthermore, it utilizes a scaling parameter 𝛼 to
prune more or less aggressively; in practice, the ability to scale 𝛼 to
prune less aggressively is consequential for performance [36, 38].
In some cases, it may also be necessary to replace the vector corre-
sponding to a document identifier. We handle this by overwriting
the original vector and invoking Algorithm 2 to re-insert the new
vector. Any pre-existing edges pointing to the replaced point are
cleaned up lazily via later calls to pruning.

Mini-batch updates. Using multiple threads to insert vectors in a
DiskANN graph will result in race conditions between updates to
the adjacency lists in the graph which could be handled via fine-
grained locking [35]. In some cases, the underlying data structure
used to store the graph, may not tolerate parallel updates / parallel
updates with potential duplicate values for a key (graph vertex in
this case). The latter scenario also includes CosmosDB Bw-Tree
with stricter contracts around no duplicate insert patches for key
and delete patches for a non-existing key. In order to benefit from
parallelism while adhering to the above strict contracts, we utilize
so-called mini-batch updates, where the edge insertions correspond-
ing to a small batch of nodes are computed in parallel, then applied
to the graph in a single update. They are formally described in
Algorithm 5 in the Appendix, and follow a similar routine to the
batch build in ParlayANN [25]. Here, we use a smaller maximum
batch size (about 100) to support batch updates.

5168

In-place Deletion. When a document is deleted, the correspond-
ing vector and quantized vector are immediately removed from
the index. Diskann removes the graph index terms to reflect the
deletion using Algorithm 6 in the Appendix, which is an adaptation
of [44]. At a high level, the algorithm replaces the critical connec-
tions to the deleted point, ensuring stability of the index quality. A
lightweight background process continuously removes any remain-
ing edges pointing to the deleted point. Experiments show [44] that
the combination of in-place deletion and lightweight background
consolidation is effective at keeping recall stable over long cycles
of insertion and deletion.

Compressing Vectors via Quantization. An additional algorithmic
building block is quantization to compress the vectors. This allows
them to be stored more compactly in expensive storage tiers (e.g.,
main memory), transmitted more efficiently across memory bus,
and distance comparisons to be computed with fewer CPU cycles
with little loss in accuracy. One popular method is scalar quanti-
zation which maps each coordinate of the embedding to a smaller
representation. For example, 32-bit floating point representations
are easily rounded to the nearest 16-bit floating point with little loss
of precision. Rounding to the nearest 1- or 2-bit representations is
more lossy at a coordinate level, but could still preserve enough
information overall for the query to navigate the index.

Product quantization (PQ) [19] maps collections of coordinates to
a few bytes by clustering data and mapping the data to the identity
of the coordinate center. For many datasets, product quantization
achieves better compression than scalar quantization normalized
for errors introduced in distance calculations. For example, PQ can
compress OpenAI’s text-3-large embeddings (12KB) by 96x while
retaining enough information to navigate the index. Although PQ
was formulated for preserving euclidean distances between vectors,
in practice it also preserves inner product distances reasonably
well.

2.2 The Cosmos DB system
Azure Cosmos DB is Microsoft’s globally distributed, elastic, cloud-
native database service for managing JSON documents at Internet
scale. It is the primary database service in Microsoft cloud with 10s
of millions of database partitions, 100+ PBs of data under manage-
ment and 20M+ vCores. Prior work presents a detailed description
of the overall system [32]. Here we briefly present ideas necessary
for the design of the integrated vector index.

Schema Agnostic Indexing. Cosmos DB uses the simplicity of
JSON and its lack of a schema specification. No assumptions are
made about the documents stored and they can vary in schema. Cos-
mos DB operates directly at the level of JSON grammar, blurring the
boundary between the structure and instance values of documents.
This, in turn, allows the database to be "schema-free", enabling it to
automatically index documents without requiring schema or sec-
ondary indices. For additional control, a custom indexing policy[9]
can also be used to index specific properties using the ’path’ nota-
tion, that allows precise navigation to specific substructures in a
JSON document. For example, the property path ’/employee/name’
represents the ’name’ node in the ’employee’ object. Cosmos DB, in
addition to automatic indexing supported for the JSON type system,

Figure 1: Azure CosmosDB architecture diagram from [32].

also supports specialized indexes such as spatial indexing, and more
recently, indexing for vector and full-text search. For faster query
and to avoid storage bloat associated with JSON text, Cosmos DB
employs a custom binary encoding [37] for JSON data.

Logical Partitioning and Elasticity. Clients define a logical parti-
tion key on a Collection (up to three levels of hierarchy are allowed
in partition keys [8]). A Collection can thus span multiple physical
partitions, with data hashed horizontally across partitions based on
the logical partition key value. As clients adjust throughput and/or
storage needs, the compute and storage required for collections are
scaled out or scale back through partition splits and merges.

System Topology. Cosmos DB service is deployed worldwide on
clusters of machines each with dedicated local SSDs. The unit of
deployment, called a federation (Figure 1), is an overlay network of
machines, which can span one or more clusters. Each physical ma-
chine hosts replicas corresponding to various partitions for scaled
out collections. Replicas corresponding to a single partition are
placed and load balanced across machines spanning different fault
domains, upgrade domains and availability zones in the federation.
Each replica hosts an instance of CosmosDB database engine, which
manages the JSON documents as well as the associated indices.

Resource Governance. Cosmos DB provides performance isola-
tion between Replicas through the Resource Governance (RG) com-
ponent. Azure Cosmos DB normalizes the cost of all database oper-
ations using Request Units (or RUs, for short) and measures cost
based on throughput (RUs per second, RU/s). Request unit is a
performance currency abstracting the system resources such as
CPU, IOPS, and memory that are required to perform the database
operations. The RG component guarantees the provisioned RUs
per partition for user requests while at the same time rate limit-
ing requests when usage exceeds provisioned throughput. This
helps provide an isolated provisioned throughput experience, while
achieving high utilization per node and lower cost.

A Cosmos DB Replica’s database engine hosts:
• Document Store - Cosmos DB’s transactional database engine

that serves as the main store for documents.
• Inverted and Forward Index - Cosmos DB incorporates Bw-Tree

both as an Inverted and Forward Index for its indexing needs.
The Bw-Tree is a latch-free index that is designed for fast writes,
thanks to its support for blind incremental updates and underly-
ing log structured storage for persistence. The design effectively
batches multiple incremental updates into a single flush on to

5169

disk. As a result, Bw-Tree does not update in-place, helping it
reduce write amplification to SSD based storage. [32]

3 SYSTEM DESIGN
To create a vector index over a collection, users turn on the capa-
bility at a collection level and declare a JSON path as the target for
vector indexing. In addition, users specify the dimension and the
distance function to be used for the embeddings in this path, as
well as the vector indexing policy. Any document ingested with a
valid vector will be part of the vector index (we support one vector
per path). The JSON document along with the vector is stored in
the primary Document Store and other paths meant for non-vector
indexing are indexed into the Bw-Tree as described in [32].

The simplest (brute force) way to compute the nearest neighbors
of a query is to scan all JSON documents in the collection in the
query runtime, and compute the distance to each vector in the
designated vector path. This is useful for small collections, say with
less than 1000 documents but is not scalable otherwise.

An improvement would be to map all vectors in the collection
to a contiguous range in the Bw-Tree by prefixing the vectors with
the collection id and the name of the vector index path (we call this
the Flat index). This can be done easily in the user request path as
part of the "Document Analysis" during ingestion on the primary
replica, and then replicated to all secondaries. A range scan in the
Bw-Tree for the appropriate prefix would need many fewer random
accesses for smaller vectors. This is still not a great option since
vectors tend to be large and storing them twice limits scale up.

A second improvement would be to compress the vectors via
quantization (say using PQ) and store them in a contiguous range
in the Bw-Tree. This significantly reduces the number of nodes to
scan in the Bw-Tree, by up to 96× for OpenAI Ada v3 embeddings,
for example. To answer a request for the top-𝑘 nearest neighbors
to query 𝑞, we would first find, say, 5𝑘 entries to the query in the
quantized space. We could then look up the full precision vectors
corresponding to each of the 5𝑘 candidates from Document Store,
and compute the full fidelity distance to the query to identify the top-
𝑘 candidates. We refer to this as the Q-Flat (Quantized Flat) index.
With an appropriate multiplier over how many extra candidates
are retrieved in quantized space, this method can yield very high
recall. For moderate sized collections, or for small tenants in a multi-
tenant collection, this can be efficient. For instance, in a collection
of 5, 000 vectors quantized to 96 bytes, we need to touch about 60
8KB-sized Bw-Tree logical leaf nodes to answer the query and use
< 1𝑚𝑠 of CPU time to compute distances.

However, an exhaustive scan in quantized space does not scale to
larger replicas. Cosmos DB can fit over 10 million 768-dimensional
floating point vectors in one replica, and we need an index that
can answer queries by accessing fewer nodes in Bw-Tree. We use
the DiskANN graph-structured index for this. With the DiskANN
vector indexing policy in a collection, two additional indexing terms
in the Bw-Tree are created: quantized vectors (akin to Q-Flat) and
graph adjacency list terms which represent out-neighbors of each
vector in the index (see Fig. 2). In the rest of this section, we describe
how we layer these index terms in Cosmos DB, and how DiskANN
manipulates the terms to update and query the index.

Figure 2: A comparison of the storage media for monolithic
DiskANN for SSD [38] and the newer stateless DiskANN sys-
tem coupled with Cosmos DB indexing data structures.

3.1 Re-designing DiskANN for databases
DiskANN was previously written as a library that manages its own
buffers and index layout, thus limiting its use inside a database. We
rewrote it in Rust using the following principles so that it can be
used with many systems including databases and key-value stores.

Decoupled index layout. The index layout is not controlled or
even visible to the algorithms. The core of the library consists of
methods that update and query the index by reading and updating
index terms – quantized vectors, full precision vectors and neigh-
bor list for vertices – via implementations of Provider traits. The
NeighborProvider trait, for example, defines the way the index
would retrieve, append and overwrite the out-neighbors of a vector.
These traits are implemented by the database which specifies the
layout and encoding/decoding for each kind of indexing terms. The
database also owns the persistence and recovery of these terms.

Asynchronous interface. The term that the index needs may be
immediately available in a memory buffer or may need to be re-
trieved from a slower storage device. Therefore, the Provider traits
allow for get methods to return either the actual data or a future
that eventually returns the data so that the calling thread can be
scheduled with other work meanwhile. This is encoded via the
MaybeDone enumerated type in the snippet below:
/// Get the quantized vector for given `vector_id `
fn get_quant_vector (&self ,

context: &Context ,

vector_id: Data:: VectorIdType ,

) -> MaybeDone <impl Future <Output =

Result <Self::Element <'_>>> + Send >;

Consequently, all update and query methods in the library are
also asynchronous and need a runtime to manage threads and drive
the futures to completion. We use the Tokio runtime [1].

Execution Context. Since the library does not own any index
terms, one instantiation of the DiskANN process is sufficient to
update and query all the replicas in a machine which belong to
many different collections. The database process invokingDiskANN
methods uses the execution context variable to identify the target
replica for each request:
pub async fn insert (&self ,

context: &Context ,

vector_id: Data:: VectorIdType ,

vector: &[Data:: VectorDataType],

) -> Result <() >;

The insertmethod can in turn pass this through to the Provider
methods such as get_quant_vector to help the database identify

5170

Figure 3: Control flow of paginated search.

the term in the correct replica. The context can also contain LSN and
activity_id to help the database emit telemetry for debugging
and fine-grained performance metrics.

Our rewrite achieved these goals without compromising on
performance compared to monolithic “in-memory” libraries such
as [14, 35]. We can implement the Provider traits using a type
backed by memory buffers for maximum performance – in fact, the
new library is at least as fast as the previous monolithic DiskANN
library for all use cases it supported.

Further details on how inter-operation between Cosmos DB
and DiskANN including runtime configuration and the design of
C++/Rust asynchronous callbacks are in Appendix B.

3.2 Adaptations to the algorithm
Querying in quantized space. Given the limited memory available

to the indexer and query processor, Algorithms 2 and 1 would be
too slow since full precision vectors cannot be cached and require
random reads in to the SSD. 1 So we modify the search algorithm to
traverse the graph using distance between query and the quantized
representation of the vectors which can be cached. As observed
previously [38], this does not significantly impact the convergence
rate of greedy search. However, we must re-rank a small set of
best candidates found in quantized space using distances to full-
precision vectors (see Fig. 5). We configure the index so that a query
for top-10 entries on a graph with degree 32 and search list size
𝐿 = 100 might touch about 3500 quantized vectors, but only about
50 full precision vectors.

Indexing in quantized space . Inserting a vector 𝑝 first requires
querying for it as described in Algorithm 2 to retrieve the set of
visited vertices during search. Prior work has demonstrated that
this can be done entirely in quantized space. The next step is to
prune the visited vertex set to get the neighbor set of 𝑝 . Graph
based indices, as described in prior work, use full precision vectors
for the prune stage. We found that during prune, computations can
also be done on quantized vectors with moderate compression rates
without reducing index quality. For example, while indices over
OpenAI text-3-large embeddings can be navigated with 128 byte
PQ representations, pruning accurately needs 256 bytes. We use
this compression level for indexing and search.

1It is hard to re-arrange high-dimensional vectors for spatial locality in queries, so
each full precision vector read requires reading a random offset into the index.

Paginated search. When processing hybrid queries with predi-
cates other than similarity in vector space, the number of candidates
returned by greedy search that satisfy such predicates may be insuf-
ficient. Therefore, we designed paginated search to allow the query
layer to search iteratively until a sufficient number of candidates
that match the predicates are identified.

Paginated search maintains two priority queues, one named
best with max size 𝐿 as in the standard greedy search, and another
named backup that has unlimited size. Each pagination for the next
𝑘 candidates first explores the best queue and trims the queue
to size 𝐿. Any vertices popped out from best get pushed to the
backup queue. The search stops when all 𝐿 vertices in best have
been visited and returns the best 𝐾 results from the queue. When
the query asks for the next K, and best does not have enough can-
didates, it brings in the closest candidates from the backup queue
and continues the search until all 𝐿 vertices have been visited. A
visited set saved across paginations will prevent repeated results.
Paginated search can be performed in quantized space with appro-
priate reranking before returning results to the user. The control
flow of paginated search is sketched in Figure 3.

3.3 Design of index terms in Cosmos DB
Cosmos DB stores index terms as key-value pairs in Bw-Tree so
they can be read via a single index key lookup or a range scan
over keys. There are two kinds of index terms stored in Bw-Tree:
1) Inverted terms that map each term (path + document specific
value) to a set of ’document ids’ that contain them and 2) Forward
terms (introduced with Vector Search) that map each term (path +
document id) to any arbitrary value.

Design of Inverted and Forward Term. The general structure of
an inverted and forward term is as follows:
• TermKey-Prefix: 15 bytes, the murmur hash of the property path

encoded in this term.
• TermKey-TypeMarker : A 1 byte marker indicating the type of the

value encoded in the term.
• TermKey-EncodedValue: A range-comparable encoding of the

property’s value / derived value from the user document.
• TermValue: An arbitrary value for the key. In practice, this is

either an Inverted Value: Variable length compressed bitmap (in
buckets of 16k ranges called PES [32]), representing the set of
documents that have the property value encoded in the key OR
Forward Term: Adjacency List (array of 8 byte document ids).
Next we describe the design for index terms for Quantized vec-

tors and adjacency lists. For a concrete example for each scenario,
please refer to Appendix C.

We use the Inverted Term design to store the quantized repre-
sentations of the full vector from the user document. The TermKey-
EncodedValue includes “Document ID” – the 8-byte unsigned system
generated unique numerical ID of the user’s document – followed
by the quantized vector in binary (see Figure 4). The TermValue
PES in this case is a dummy. To retrieve a quantized vector given
the Document Id, a "Prefix Seek" API is used.

We designed a new “Forward Term” type that can have an arbi-
trary value rather than a bitmap (corresponding to posting lists).
The ’Adjacency list terms’ use the new forward term format. The
term encodes out-neighbors of the graph vertex representing the

5171

Figure 4: Index term design for quantized vectors (top) and
adjacency lists (bottom).

vector in the document. This is done by TermKey-EncodedValue con-
sisting of Document Id representing the vector and the TermValue
consisting of the list of Document IDs of the out-neighbors (see
Figure 4). The new value format supports blind incremental updates
to the adjacency list to support fast appends. A new corresponding
merge callback procedure is added to process the blind updates and
consolidate on to an effective value during Bw-Tree consolidations.
It would have been more natural to model Quantized Data with
Forward Term as well, and plan to reconcile this in the future.

Extending Term Design for sharded index. By default, we construct
one vector index across all the documents in the replica. In some
cases, the user might want to query data that matches a shard key. In
such a case, it is inefficient to query the entire vector index filtering
for the intended shard key. We instead allow the user to declare
a “Sharded DiskANN” with a vector index policy to create one
DiskANN index per value of the shard key present in the replica.

To support such indices, we extend the above term design by
prefixing TermKey-EncodedValue with a hash of shard key value.
This allows us to access both Quantized and Adjacency terms for a
given shard and also co-locates the terms for a shard in a continuous
key range making it easier to cache for highly active tenants. By
encoding each logical shard index as just another set of Bw-Tree
keys with a different prefix, the decoupling of logical and physical
terms helps store a long tail of tenants on a single replica.

3.4 Index construction and maintenance
Quantized Flat Index. The Quantized Flat index needs a sample

of vectors to create the quantization schema that is needed for
generating quantized vector terms. We empirically found about
1000 samples to be sufficient for creating a first, if not the best,
schema for PQ. Once the quantization schema is available, the
quantized vector terms are generated inline with the document
updates. A separate background process backfills the quantized
terms for existing vectors. The DiskANN index terms are a superset
of the Quantized Flat index and leverage quantized vector terms.

Graph Operations. Updates to the graph index to reflect inser-
tions, deletions and replications are performed outside the trans-
actional path to allow Cosmos DB to maintain latency SLAs for
transactions. We calibrate the charges for transactions with vector
operations to rate limit them so that the graph index running in
the background can catch up to transactions.

Upfront charging. Cosmos DB charges RUs for processing vectors
upfront during the transaction depending on the number of vectors
and size of each vector to offer predictability to users.

Re-quantization. As vectors are ingested in a collection, we re-
sample 25000 vectors to generate a higher quality PQ schema. Post
schema generation, quantized terms for all vectors are re-generated
in place. Newly ingested vectors are quantized with the updated
schema. We support distance computation between vectors quan-
tizedwith two related schemas. Since the refined schema is very sim-
ilar to the original, such distance calculations are meaningful, and
further, we do not need to rebuild the graph after re-quantization.

3.5 Query layer
Cosmos DB supports vector search using a built-in system function
called VectorDistance (formally described in Appendix D). Below
is an example of a vector search query in Cosmos DB.
SELECT TOP 10 c.title FROM c

WHERE c.category = 'category1 ' -- Non -vector filter

ORDER BY

VectorDistance(

c.embedding , -- Embedding path to match

[0.056 , -0.02 ,... ,0.014] , -- Query embedding

false , -- Approximate neighbors (true is exact)

{ 'searchListSizeMultiplier ':10, -- search params

'quantizedVectorListMultiplier ':7})

By default, the query engine scans all documents to compute
Vector Distances. When either Flat or Q-Flat index is present,
the query layer instead uses them. If quantized terms are used
to compute distance to the query, the query engine finds 𝑘′ =

quantizedVectorListMultiplier × 𝑘 closest vectors to the query in
the quantized space, and reranks them to estimate the true top 𝑘 .
Re-ranking is done by loading the documents corresponding to 𝑘′
quantized vectors from the store and re-ordering documents based
on distance between the query and the full precision vector.

Figure 5: Re-ranking 10 closest neighbors retrieved in quan-
tized space using full-precision vectors to find the top 𝑘 = 4.
quantizedVectorListMultiplier=2.5.

If a DiskANN index is present, then the query engine calls the
Paginated search API to get the number of documents required by
the re-ranking step. The parameter searchListSizeMultiplier controls
the quality of search – higher values return more accurate results
at higher latency and RU cost. The 𝐿 parameter sent to paginated
search set to 𝑠𝑒𝑎𝑟𝑐ℎ𝐿𝑖𝑠𝑡𝑆𝑖𝑧𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ∗ 𝑘 .

Filtering and runtime fallback. Filters in the query are evaluated
first followed by the ORDER BY. For the query listed above, the
filter c.category is evaluated first and translated in a compressed
bitmap representing the set of documents that satisfy the filter.
Further query plan depends on the selectivity of the filter — that
is, how many of the points satisfy the filter. If the selectivity is
low, i.ei, at least 5000 documents satisfy the filter, the query layer

5172

iteratively paginates DiskANN search over quantized vector until
it finds at least quantizedVectorListMultiplier×𝑘 documents that
satisfy the predicate. Predicate matches can be checked quickly
using the compressed bitmap.

Filter Aware Graph Search. Given fast access to the bitmap over
documents that satisfy the filter, we can modify DiskANN search to
make it more likely to find points that satisfy the filter. This is done
by Algorithm 7 in Appendix B, which scales down the distances
from the query to vectors that satisfy the filter by 𝛽 < 1.0 in greedy
search iteration. With this method, we can support the broad set of
predicates that Cosmos DB supports with filter aware graph search.

Highly Selective Queries. Queries with predicates that match
fewer than 5000 documents are routed by the query planner to
use either the quantized flat index or full precision vectors in the
document. Query planned uses the quantized vectors stored in Bw-
tree which supports fast range scan when the document matching
the filters are in a relatively small range. For queries that have
match few documents scatter across large range, query planner
decides to load individual points from document store instead of
doing a large range quant vector scan.

Sharded DiskANN. For larger indices with suitable distributions
on their labels, we require a sharded DiskANN index policy to pro-
vide shard key base on label. This allows us to create DiskANN
instance base on the shard key and a filtered query to route di-
rectly to the shard corresponding to its label, or one of its labels.
We can compose sharded and filter-aware DiskANN queries. For a
multi-tenant collection configured with sharded vector indexing,
the queries with filter over the shard key as well additional filters
𝑓 can limit search to the relevant shard and use the beta-biased
greedy search to optimize for filters 𝑓 .

Continuations. Cosmos DB backend requests are limited to 5
seconds. If a query does not complete by this time, it is preempted
with a continuation token capturing the query state that the client
can use to resume the query. While some queries such as regular
ORDER BY queries are streaming, pagination in quantized space
is not. The partial results in a vector search cannot be serialized
to the continuation token as it can be large in size. So, to handle
continuation, the partial results are returned to client, which is
responsible for reordering and merging them across continuations.

SDK Query Plan: Cosmos DB SDK has a query planner that
can distinguish between single partition queries which are passed
through and queries requiring cross partition fan out. The SDK
supports fan out and aggregates the results from different partitions.
It also handles continuations for non-streaming queries like Vector
Distance Order By, and supports collation of partial results, merging
cross-partition replies and re-ranking for the final results.

4 EVALUATION
We now measure the query latency, cost, and ingest performance
of our design. Our experiments scale up to 10 million vectors per
partition and scale out to 1 billion vectors across a collection.

Datasets. We use the following datasets in our experiments.

• Wiki-Cohere: 35 millionWikipedia articles embedded using the
cohere.ai multilingual 22-12 model [31], and a query set of 5000
embeddings of Wikipedia Simple articles, with 768 floating-point
dimensions. We use 100K, 1M and 10M prefixes of this collection.

• MSTuring: 1 billion Bing queries embedded to 100 dimensional
floating point using the Turing AGI v5 model [46], with 100,000
queries from the same distribution.

• YFCC Dataset: 1 million vectors corresponding to a 192 dimen-
sions CLIP embedding applied to (copyleft) photos and videos
in Flickr from the year 2004 until early 2014. This also includes
metadata such as camera model, country, year, month. The num-
ber of documents per year ranges from 30,000 to 144,000.
Runbooks are long-running sequences of insertion, deletion, and

queries to simulate various streaming scenarios [33, 34]. In this
work, our first runbook is based on an expiration time model -
where each point is inserted with a randomly selected expiration
time, at which point it is deleted - as they are a good proxy for com-
mon production scenarios. For expiration time model, we use two
instances based on the Wikipedia-10M dataset and the MSTuring-
1M dataset to benchmark the recall stability of the vector index.
Our second runbook is more adversarial and meant to imitate distri-
bution shift. This runbook instance is based on the MSTuring-10M
dataset. The dataset is partitioned into 32 clusters, and points are
inserted and deleted in clustered order. For each runbook, the same
query dataset is used at each query step.

Configuration. We use the the following parameters unless noted
otherwise. The graph degree is 32 to minimize footprint of the index,
and a slack factor of 1.3 is used to reduce number of secondary
prunes. We use 𝐿 = 100 for index construction. The parallelism
for mini-batch inserts is set to 8, since replicas might not regularly
get more than 3 cores on shared machines. Each physical partition
size limit is 50GB and Bw-tree max chain length is set to 15. When
measuring query performance, the index is queried in a warm up
phase, following by 5000 queries issued one at a time. The Bw-Tree
cache is configured to be large enough to cache the quantized and
adjacency list index terms.

4.1 Query latency and RU charges
Figure 6 shows the query latency and RU charge for an index of
10 million Wiki-Cohere vectors. Note that with LSearch=50, p50
latency is under 20 ms for the 10 million index with a recall@10 of
91.83%. Increasing 𝐿-search gives higher recall, but with increased
latency and RU charges. The corresponding plots for 1 million and
100,000 vector indices are shown in Figures 16 and 17 in Appendix F.

We hold the search list constant and compare the query com-
plexity as we increase the size of the index from 100𝐾 to 1 million
to 10 million vectors in Figures 7 and 8. We note that the p50, p95
and p99 latencies increase by less than 2× despite the 100×
increase in index size. The RU charge similarly increases less
than 2× except in the case of Wiki-Cohere 10M. Here, we chose a 2
partition set up (we could have also fit it in one partition). Therefore,
we pay the extra cost for fanning out to an additional partition.
Another important point to note is that despite the increase in
dimensionality from 100 to 768, there is barely any increase
in query latency or cost. The Cosmos DB design is well suited
for extremely high dimensional vectors.

5173

p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p990

20

40

60

80
La

te
nc

y
(m

s)

13.4
17.6

20.6
16.0

20.8
24.1

20.1
25.3

29.3 26.9

33.7
37.8

33.6

42.4
46.6

p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p990

50

100

150

Re
qu

es
t U

ni
ts

35.8
43.6 48.3

42.9
51.7

57.7 52.9
63.6

70.0 69.5

83.3
89.7 85.6

103.2
108.8

p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p990

20

40

60

80

La
te

nc
y

(m
s)

13.4
17.6

20.6
16.0

20.8
24.1

20.1
25.3

29.3 26.9

33.7
37.8

33.6

42.4
46.6 L Search=50, Recall=91.43

L Search=70, Recall=93.40
L Search=100, Recall=94.64

L Search=150, Recall=96.46
L Search=20, Recall=97.15

Figure 6: p50, p95 and p99 query latencies and query RU
charge for 10 million Wiki-Cohere vector index for various
values of search list size, and the corresponding recall@10.

Table 1: P99 vector search query andmonthly storage costs of
enterprise-grade serverless vector DBs for 1 million queries
over 10 million 768-dimensional vectors as of July 14, 2025.
Cosmos DB provides 94.64% recall@10.

RU per $ per $ per Storage
Query 1M RUs 1M queries Cost ($)

Cosmos DB 70 $0.25 $17.50 $22.25
Pinecone [30] 32 $24 $768 $11.55

Zilliz [48] 55 $4 $220 $17.84
DataStax[10] 768 $0.04 $30.72 $24

We compare Azure Cosmos DB vector search with enterprise-
grade serverless vector databases – Pinecone[30], Zilliz[48], and
DataStax[10] – using their publicly available pricing and docu-
mentation. For Azure Cosmos DB, we use query costs determined
from experimental tests using default settings. Costs for these other
services are reflect in their own cost units (Read Units, vCUs, etc.).

In Table 1, we see that for the 10 million Wiki-cohere index,
Cosmos DB has nearly 43×, 12×, and 1.75× lower query cost
than Pinecone (enterprise tier), Zilliz (enterprise tier), and
DataStax (standard tier) respectively.

4.2 Filtered queries
Next, we consider the recall, latency, and the cost of two approaches
for filtered queries using the YFCC dataset in Figure 9. We compare
the post-filtering search – an unmodified graph search which filters
the final answer to return only points satisfying the filter – and
filter-aware (Algorithm 7, 𝛽 = 0.3) approaches.

When the number of database points matching the filter is about
5000, the query planner sends queries invokes the DiskANN index

0

10

20

30

40

50

La
te

nc
y

(m
s)

100K
1M

10M
100K

1M
10M

100K

1M
10M

0
10
20
30
40
50
60
70
80

Re
qu

es
t U

ni
ts

100K1M

10M

100K1M

10M

100K
1M

10M

0

10

20

30

40

50

La
te

nc
y

(m
s)

100K
1M

10M
100K

1M
10M

100K

1M
10M

P50 P95 P99

Figure 7: p50, p95 and p99 query latencies and query RU
charges for Wiki-Cohere vector indices over 100K, 1 million
and 10 million vectors with 𝐿 = 100 which provides 94.64%
recall@10.

0

10

20

30

40

50

La
te

nc
y

(m
s)

100K
1M

10M

100K

1M
10M

100K

1M

10M

0

20

40

60

80

100

Re
qu

es
t U

ni
ts

100K1M

10M

100K
1M

10M

100K1M

10M

0

10

20

30

40

50

La
te

nc
y

(m
s)

100K
1M

10M

100K

1M
10M

100K

1M

10M

P50 P95 P99

Figure 8: p50, p95 and p99 query latencies and query RU
charge for MS Turing vector indices over 100K, 1 million and
10 million vectors with 𝐿 = 100.

P50 P95 P99 P50 P95 P99 P50 P95 P99 P50 P95 P990

200

400

600

800

1000

1200

1400

1600

1800

La
te

nc
y

(m
s)

8 72 122
8 75 129

8

616

1569

8

625

1587

P50 P95 P99 P50 P95 P99 P50 P95 P99 P50 P95 P990

200

400

600

800

1000

1200

Re
qu

es
t U

ni
ts

28
132

193

29
134

194

29

539

972

29

545

981

P50 P95 P99 P50 P95 P99 P50 P95 P99 P50 P95 P990

200

400

600

800

1000

1200

1400

1600

1800

La
te

nc
y

(m
s)

8 72 122
8 75 129

8

616

1569

8

625

1587

Filter-aware search, L=100, Recall=97.96
Filter-aware search, L=200, Recall=98.60

Post-filtered search, L=100, Recall=99.91
Post-filtered search, L=200, Recall=99.92

Figure 9: Comparison of the query latency and cost of post-
filtering and filter-aware search on the YFCC dataset.

p50p95p99 p50p95p99 p50p95p99 p50p95p99 p50p95p99 p50p95p990

50

100

150

La
te

nc
y

(m
s)

23.2
36.2

43.2 45.2
58.3

72.7

29.4

49.0
59.0 60.9

78.3

93.1

49.6

74.5

88.3 85.6

113.2

135.3

p50p95p99 p50p95p99 p50p95p99 p50p95p99 p50p95p99 p50p95p990

20

40

60

80

100

La
te

nc
y

(m
s)

12.8
19.422.6

44.9
50.9

55.4

22.1
30.0

34.3

54.9
63.5

71.8

33.1

42.7
48.1

66.3

77.9
85.6

p50p95p99 p50p95p99 p50p95p99 p50p95p99 p50p95p99 p50p95p990

50

100

150

La
te

nc
y

(m
s)

23.2
36.2

43.2 45.2
58.3

72.7

29.4

49.0
59.0 60.9

78.3

93.1

49.6

74.5

88.3 85.6

113.2

135.3

L Search=50, Server Latency
L Search=50, Client Latency

L Search=100, Server Latency
L Search=100, Client Latency

L Search=200, Server Latency
L Search=200, Client Latency

p50 p95 p99 p50 p95 p99 p50 p95 p990

1000

2000

3000

Re
so

ur
ce

 U
til

iza
tio

n

1012.2
1168.4 1205.4

1498.1
1770.5 1840.3

2425.9

2889.6 3005.4

p50 p95 p99 p50 p95 p99 p50 p95 p990

500

1000

Re
so

ur
ce

 U
til

iza
tio

n

395.5
453.1 470.4

592.6
689.4 718.3

975.1

1129.8 1171.1

p50 p95 p99 p50 p95 p99 p50 p95 p990

1000

2000

3000

Re
so

ur
ce

 U
til

iza
tio

n

1012.2
1168.4 1205.4

1498.1
1770.5 1840.3

2425.9

2889.6 3005.4

L Search=50, Recall=83.76 L Search=100, Recall=89.61 L Search=200, Recall=93.89

p50 p95 p99 p50 p95 p99 p50 p95 p990

500

1000

Re
so

ur
ce

 U
til

iza
tio

n

395.5
453.1 470.4

592.6
689.4 718.3

975.1

1129.8 1171.1

L Search=50, Recall=82.35 L Search=100, Recall=89.13 L Search=200, Recall=93.48

Figure 10: Query latency and RU charge for 1 billion (Left)
and 100 million (Right) MS Turing vector index collections.

5174

with either post-filtering or filter-aware search. Otherwise, query
planner falls back to simpler look ups as described in Section3.

We find that both approaches are capable of providing high
recall at low latency and RU cost. Post-filtering search produces
slightly higher recall than filter-aware search for the same 𝐿 value,
but it suffers from diminishing returns in recall and high p95 and
p99 latency. On the other hand, filter-aware search’s recall can be
improved by increasing the search depth (𝐿), while still retaining
predictable tail latency and RU cost.

For instance, 𝐿 = 200 with filter-aware search yields the similar
recall as 𝐿 = 200 with post-filtering search, but with 10x better p99
latency and 5x less p99 cost. This suggests that filter-aware is better
for controlling resource utilization and tail latency.

4.3 Scale out and Query Aggregation
Cosmos DB can scale up to millions of vectors per partition (subject
to the 50 GB limit on data and index), and scale out to billion-scale
vector indices. Figure 10 shows the query latency and RU properties
of such collections. The MS Turing 1 billion vector collection spans
50 partitions, while the 100 million vector collection spans 20. The
server latency is measured per partition and client latency is the end
to end latency observed in client side. We use a E64is_v3 Azure VM
with 64 vCPUs on the same Azure region as the index to aggregate
query results with maximum concurrency and minimum latency.
Since the query fans out to large partitions concurrently, the client
end-to-end latency is sensitive to the worst latency on the server
side. The best latency is achieved by using fewer partitions packed
with as many vectors as possible. The same applies to RU charges
since the query cost grows logarithmically with the number of
vectors in a partition, but linearly with the number of partitions.

4.4 Ingestion
We now study the vector ingestion component that updates the
Bw-tree with index terms reflecting new vector insertions. The
parallelism for batch inserts is set to 32 threads, The underlying
machine has 16 physical and 32 vCPUs. We set the cache to be large
enough to hold the vector index terms in memory (excluding full
precision vectors). We set the graph degree 𝑅 = 32, index build
parameter 𝐿𝑏𝑢𝑖𝑙𝑑 = 100 and Bw-Tree chain length set to 15. Each
insert typically accesses approximately 𝑅 · 𝐿𝑏𝑢𝑖𝑙𝑑 quantized vectors
and just over 𝐿𝑏𝑢𝑖𝑙𝑑 adjacency lists (with a wide margin of error).

Figure 11 provides a breakdown of the CPU time spent in each
insert. Most of the time is spent accessing the quantized vectors, as
expected. Since they are cached, this operation is synchronous and
involves traversal of cached Bw-Tree terms. The next two dominant
components are the time spent in DiskANN library and reading
the adjacency lists. The actual distance computations as well as
updating candidate sets in DiskANN is small – under 3ms/insert.

Figure 12 shows ingestion progress with Resource Governance
disabled to make it easier to analyze data. In practice, Resource
Governance controls compute available to a single replica to ensure
fairness. Earlier in the ingestion, the index cost to access quantized
vector terms is lower, and the rate of ingestion is higher. The inges-
tion rate gradually decreases as ingestion progresses since Bw-tree
chain lengths grow longer and each quantized vector lookup takes
more microseconds. The estimated CPU time needed for a single

Figure 11: Latency breakdown for single threaded MS Turing-
1M ingestionwith components (Quantized vectors, Adjacency
list, DiskANN library), Bw-Tree chain length = 15.

Figure 12: Ingestion progress on MS Turing-10M and
WikiCohere-10M datasets when Bw-Tree cache is large
enough for vector index terms.

single vector insert – with 𝑅 = 32, 𝐿𝑏𝑢𝑖𝑙𝑑 = 100, and 10𝜇𝑠 for sin-
gle quantized vector read, and 25𝜇𝑠 for graph adjacency list read,
and 3𝑚𝑠 spent in DiskANN library – is about 25ms. This yields a
throughput of 40 vectors/sec per thread, or 640 vectors/sec on a
16-core machine, which matches the steady state measurement in
Figure 12

We also evaluate vector ingestion costs on the WikiCohere-10M
dataset, using experimental data for Azure Cosmos DB and compare
it with the published pricing and cost guidance for the enterprise-
grade serverless vector databases their respective costing units
equivalent to RUs (i.e., Read Units for Pinecone [30] and DataS-
tax [10] and vCUs for Zilliz [48]) in Table 2. Cosmos DB demon-
strates lower vector insertion costs—approximately 33% and 53%
less than Pinecone and DataStax (standard tier), respectively.

Azure Cosmos DB does have 5.4× higher insertion charges than
Zilliz. However, provisioned throughput and autoscale billing mod-
els offer at least a 7× price discount on RU charges compared to
serverless, so these higher costs can be further reduced.

5175

Table 2: Insertion costs of enterprise-grade serverless vector
databases for 10 million 768D vectors (Wiki-Cohere-10M) as
of July 14th, 2025.

$/1M RU RU/insert Total cost ($)
Azure Cosmos DB $0.25 65 $162.5

Pinecone [30] $6 4 $240
Zilliz [48] $4 0.75 $30

DataStax[10] $0.04 768 $307.2

Table 3: Sharded Diskann with year as the shard key (row 1)
compared with non-sharded DiskANN (rows 2, 3) on YFCC.

Latency (ms)
Scenario Avg P50 P99 Recall@10

Sharded (Ls = 100) 7.28 10.07 13.43 98.09
Non-Sharded (Ls = 100) 22.40 21.29 38.59 66.17
Non-Sharded (Ls = 1000) 94 95.47 164 87

4.5 Recall Stability over Updates
We now consider the recall stability of a vector index in Cosmos
DB using the runbooks described at the beginning of this section,
plotted in Figures 13a , 13b, and 13c. In all runbooks, an initial quan-
tization is computed after 1000 vectors are inserted, and the index
is re-quantized after 25000 vectors are inserted. The experiments
compare the effects of taking no action other than dropping the
deleted vector (labeled "Drop Policy" in the plots) versus using the
inplace delete algorithm (Algorithm 6).

The experiments show that the in-place delete algorithm is crit-
ical for maintaining high recall under a stream of updates. In the
case of the expiration time runbooks (Figures 13a and 13b), in-place
delete increases average recall by 1-3 percentage points. On the
clustered runbook, which simulates distribution shift and is signifi-
cantly more difficult than the expiration time runbooks, in-place
deletes achieve recall that is as much as 20 percentage points higher
than the baseline, meaning they are significantly more robust to
distribution shifts.

4.6 Sharded indices for Multi-tenancy
For multi-tenant apps, Cosmos DB allows user to create smaller
DiskANN indices per tenant by specifying a VectorIndexShardKey
in the indexing policy, one for each unique value of the selected
document property. This can significantly lower the query latency,
cost and improve recall for queries that are focused on a tenant.

Table 3 compares sharded DiskANN with a single DiskANN
index on the YFCC dataset with year as the shard key. Sharded
DiskANN provides 3x lower mean and p99 latency with default
query settings. It also providedmuch higher recall at 98%. It was also
more accurate than increasing search depth for the case without
sharding. The query RU charge also compared favorably.

5 RELATEDWORK
5.1 Algorithms for Vector Search
Algorithms for vector search fall roughly into two categories. The
first category relies on partitioning the dataset into spatial cells and

choosing a small number of cells to exhaustively search at query
time. Common ways to partition include via clustering and locality-
sensitive hashing (LSH). Some widely used partition-based vector
search algorithms include FAISS [12, 19], SPANN [7], ScaNN [17],
and many more [3, 45]. Partition-based algorithms benefit from
shorter indexing times than graph algorithms on average, but their
query complexity increases much faster with the size of the dataset
when compared to queries on graphs [25].

Graph-based algorithms form a proximity graph with one vertex
per embedding and greedily traverse the graph at query time to
find a query’s nearest neighbors. Examples include HNSW [23],
NSG [15], DiskANN [38], and ELPIS [5]. Empirically, the query
complexity of graphs scales logarithmically with the size of the
dataset and is much better than LSH and clustering (see Figure 14).
Graph-based ANNS algorithms can maintain high recall in the
streaming setting [36, 44]. Furthermore, they are adaptable to fil-
tered queries [16] and queries that respect notions of diversity [2].
For these reasons—scalability, query efficiency, versatility, and ro-
bust updates—we use graphs in this work.

5.2 Vector Indices in Databases
SingleStore-V [6] supports both graph and clustering based vector
indices inside the SingleStore database. The design loosely couples
existing vector indexing libraries for HNSW and IVF algorithms.
SingleStore creates one vector index per segment, and rebuilds the
indices as segments merge. Each query has to fan out to indices
over multiple segments rather than being served by one index.
More importantly, each vector index must be stored in memory
for good performance, which can be expensive. For instance, a
machine with 256GB memory and 32 cores is used for 10 million
scale experiments. They report using 3.8GB memory for the million
sized GIST1M dataset. In contrast, we use <5GB of memory even
for 10 million scale indices over 12 KB embeddings. Our system’s
ability to match query performance with a small slice of machine’s
resources results in significantly lower system costs.

JVector [21] is a Cassandra-based vector index with DiskANN.
They construct a DiskANN index in one shot and ingest it into the
database, and support incremental insertions and deletions using
FreshDiskANN. Details on how the indices are managed and up-
dated across partitions and segments are not documented to the
best of our knowledge. DataStax offers a managed product based on
JVector. While their serverless offering does not provide an avail-
ability SLA, the enterprise provisioned capacity model has a 99.99%
SLA. While their enterprise pricing is unspecified, their standard
tier has a monthly price of $900/month for 10 Queries/second over
a million sized index. The corresponding Cosmos DB monthly cost
with Autoscale is less than $50.

Elastic [29] offers vector search using a segment-based indexing
system. It therefore has disadvantages similar to the SingleStore-
V design. Furthermore, as a managed search engine, it does not
offer the same level of robustness and data consistency as as an
operational database. To compare costs, consider the 10 million
vector index over Wiki-Cohere data. Even with scalar quantization,
we would need a machine with 15GB DRAM. We estimate using
their pricing tool that the smallest such machine from Vector Search
Optimized SKUs with 1.9vCPUS would costs about $0.7/hour or

5176

https://cloud.elastic.co/pricing

50 100 150 200 250
Runbook Steps

94.00

94.25

94.50

94.75

95.00

95.25

95.50

95.75

Re
ca

ll
@

To
p1

0

Drop Policy
Inplace Delete Policy

(a) WikiCohere-10M expiration time runbook.

60 80 100 120 140 160 180 200
Runbook Steps

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

Re
ca

ll
@

To
p1

0

Drop Policy
Inplace Delete Policy

(b) MS Turing-1M expiration time runbook.

50 100 150 200 250 300 350 400
Runbook Steps

65

70

75

80

85

90

Re
ca

ll
@

To
p1

0

Drop Policy
Inplace Delete Policy

(c) MSTuring-10M clustered runbook.

Figure 13: Recall trends for the runbooks described in Section 4. All runs used index parameters 𝑅 = 32, 𝐿𝑏𝑢𝑖𝑙𝑑 = 100, 𝐿𝑠𝑒𝑎𝑟𝑐ℎ = 200.
WikiCohere was compressed to 192 bytes and MSTuring to 50 bytes.

about $500/month. A manually provisioned Cosmos DB service for
500 RU/sec or 5000 RU/sec would serve 10 QPS and 100 QPS and
cost about $30 and $300/month respectively.

pgvector [4] integrates HNSW and IVF-Flat indexing algorithm
inside PostgreSQL and offers the inherent advantages of the Pos-
greSQL ecosystem. Initial versions required machines large enough
to fit the entire dataset as well as the index in memory for reason-
able performance. Scalar and binary quantizations have recently
been added to reduce the memory requirement, but performant
indexing and updates still rely on the availability of much larger
memory than our system. pgvectorscale [26] similarly integrates
DiskANN inside PostgreSQL and offers better performance than
pgvector in limited memory settings. We leave an exhaustive bench-
marking against these systems for future work. They primarily
differ from our system in that they do not offer flexible schemas,
multi-tenancy, and scale-out out of the box. V-Base [47] also builds
on PostgreSQL and aims to improve vector search performance.
However it uses an independent buffer pool not integrated with to
PostgreSQL storage engines. Substantially more work is needed to
build high-availability and other features in this system.

AnalyticDB-V [43] pioneered the concept of integrated high-
dimensional indices inside database systems that support hybrid
queries with SQL semantics. We do not directly compare with it
since it is a provisioning based system.

5.3 Specialized Serverless Vector DBs
Specialized serverless vector databases are popular due to their
ease-of-use, flexible pay-per-use pricing structure, especially for
early-stage applications, or workloads with irregular traffic patterns.
However, these platforms currently exhibit limitations regarding
enterprise-level readiness, particularly in terms of reliability, recov-
ery, security, and compliance features.

For example, Pinecone [30] offers 99.95% availability, but main-
tains only one data replica by default and provides limited backup-
and-restore functionality applicable solely to the vector index, not
the data itself. In terms of security, Pinecone supports Role-Based
Access Control (RBAC) for both control and data plane operations
without custom role support. Certifications include HIPAA BAA,
AICPA SOC, GDPR, and ISO 27001 as of this writing.

Another offering, Zilliz [48], provides no availability SLA, lacks
replication and backup-and-restore, and limits RBAC functionality
to the control plane without custom roles. Its compliance certifica-
tions are limited to SOC 2 Type II, ISO/IEC 27001, and GDPR.

Turbopuffer [13] is another serverless vector database designed
for multi-tenant usage. However, it still lacks significant enter-
prise and robustness features such as RBAC, backup-and-restore,
global availability. Turbopuffer does not publicly list query price for
10 million vector shards, however, its query complexity increases
substantially with the size of the tenant. For example, cost per 1
million queries increases from $3.58 to $33.4 when the number
of documents per name space increases from 100K to a modest 1
million[42].

In contrast, Azure Cosmos DB delivers robust enterprise readi-
ness with a default availability of 99.99%, configurable up to 99.999%,
alongside four data replicas by default. Distinct from any vector
database solution, Cosmos DB has an SLA on document reads and
writes of 10ms for 1KB transactional documents. It provides com-
prehensive RBAC capabilities for both control and data plane oper-
ations, including customizable role definitions. Additionally, it is
compliant on more than a dozen standard including HIPAA BAA,
FedRAMP, GDPR, ISO 27001, and others[27].

6 CONCLUSION
We have designed a serverless, cost-efficient, and elastic vector
index in an operational database. We were able to achieve this by
using the existing indexing tree, document store, and indexmanager
in Cosmos DB, thus inheriting many of its structural advantages. To
realize a highly efficient system, we redesigned the DiskANN vector
indexing library from scratch to inter-operate with databases at sub-
microsecond granularity. As part of the redesign, we introduced
support for handling asynchronous requests and multiple logical
indices from one DiskANN instance. We also introduced many
algorithmic novelties to better align with the databases. This design
offers a general template for designing vector indices in databases.

7 ACKNOWLEDGEMENTS
We thank Philip A. Bernstein for his feedback on the work and
suggestions for improving this draft.

5177

REFERENCES
[1] 2016. Tokio Runtime. https://tokio.rs/.
[2] Piyush Anand, Piotr Indyk, Ravishankar Krishnaswamy, Sepideh Mahabadi,

Vikas C. Raykar, Kirankumar Shiragur, and Haike Xu. 2025. Graph-Based Algo-
rithms for Diverse Similarity Search. CoRR 2502.13336 (2025). arXiv:2502.13336
http://arxiv.org/abs/2502.13336

[3] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig
Schmidt. 2015. Practical and Optimal LSH for Angular Distance. In Advances
in Neural Information Processing Systems 28: Annual Conference on Neural Infor-
mation Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada,
Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Ro-
man Garnett (Eds.). 1225–1233. https://proceedings.neurips.cc/paper/2015/hash/
2823f4797102ce1a1aec05359cc16dd9-Abstract.html

[4] Andrew Kane et al. 2024. https://github.com/pgvector/pgvector
[5] Ilias Azizi, Karima Echihabi, and Themis Palpana. 2023. Elpis: Graph-Based

Similarity Search for Scalable Data Science. Proceedings of the VLDB Endowment
(PVLDB) Journal 16 (2023). Issue 6.

[6] Cheng Chen, Chenzhe Jin, Yunan Zhang, Sasha Podolsky, Chun Wu, Szu-
Po Wang, Eric Hanson, Zhou Sun, Robert Walzer, and Jianguo Wang. 2024.
SingleStore-V: An Integrated Vector Database System in SingleStore. Proc. VLDB
Endow. 17, 12 (Aug. 2024), 3772–3785. https://doi.org/10.14778/3685800.3685805

[7] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong
Li, Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-
scale Approximate Nearest Neighborhood Search. In Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates,
Inc., 5199–5212. https://proceedings.neurips.cc/paper_files/paper/2021/file/
299dc35e747eb77177d9cea10a802da2-Paper.pdf

[8] Microsoft Corporation. 2024. Hierarchical partition keys in Azure Cosmos
DB. https://learn.microsoft.com/en-us/azure/cosmos-db/hierarchical-partition-
keys?tabs=net-v3%2Cbicep

[9] Microsoft Corporation. 2024. Indexing policies in Azure Cosmos DB. https:
//learn.microsoft.com/en-us/azure/cosmos-db/index-policy

[10] DataStax. 2025. DataStax Vector Search Pricing. https://www.datastax.com/
pricing/vector-search.

[11] Cosmos DB. 2024. Vector Index Scenario Suite. https://github.com/
AzureCosmosDB/VectorIndexScenarioSuite.

[12] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The Faiss library. CoRR abs/2401.08281 (2024). https://doi.org/10.48550/ARXIV.
2401.08281 arXiv:2401.08281

[13] Simon Hørup Eskildsen. 2024. turbopuffer: fast search on object storage. https:
//turbopuffer.com/blog/turbopuffer.

[14] Yury Malkov et al. 2019. Header-only C++/python library for fast approximate
nearest neighbors. https://github.com/nmslib/hnswlib.

[15] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graphs. PVLDB
12, 5 (2019), 461 – 474. https://doi.org/10.14778/3303753.3303754

[16] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy,
Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, NeelamMahapatro, Premku-
mar Srinivasan, Amit Singh, and Harsha Vardhan Simhadri. 2023. Filtered-
DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with
Filters. In Proceedings of the ACMWeb Conference 2023 (Austin, TX, USA) (WWW
’23). Association for Computing Machinery, New York, NY, USA, 3406–3416.
https://doi.org/10.1145/3543507.3583552

[17] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic Vector
Quantization. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine
Learning Research), Vol. 119. PMLR, 3887–3896. http://proceedings.mlr.press/
v119/guo20h.html

[18] HNSW. 2023. HNSW Github. https://github.com/nmslib/hnswlib/blob/master/
examples/python/EXAMPLES.md

[19] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 33, 1 (2010).

[20] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale Similarity
Search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[21] Jonathan Ellis et al. 2024. JVector. https://github.com/jbellis/jvector
[22] Ravishankar Krishnaswamy, Magdalen Manohar, and Harsha Vardhan Simhadri.

2025. The DiskANN library: Graph-Based Indices for Fast, Fresh and Filtered
Vector Search. IEEE Data Engineering Bulletin 48 (2025). Issue 3.

[23] Yury A. Malkov and D. A. Yashunin. 2016. Efficient and Robust Approximate
Nearest Neighbor Search using Hierarchical Navigable SmallWorld graphs. CoRR
abs/1603.09320 (2016). arXiv:1603.09320 http://arxiv.org/abs/1603.09320

[24] Magdalen Manohar, James Codella, Mark Hildebrand, Harsha Vardhan
Simhadri, and Ravishankar Krishnaswamy. 2024. Microsoft DiskANN in Azure

Cosmos DB. https://github.com/AzureCosmosDB/DiskANNWhitePapers/blob/
fc97578ee687189af3a086b35218f368f36b3085/Microsoft%20DiskANN%20in%
20Azure%20Cosmos%20DB.pdf.

[25] Magdalen Dobson Manohar, Zheqi Shen, Guy E. Blelloch, Laxman Dhulipala,
Yan Gu, Harsha Vardhan Simhadri, and Yihan Sun. 2024. ParlayANN: Scalable
and Deterministic Parallel Graph-Based Approximate Nearest Neighbor Search
Algorithms. In Proceedings of the 29th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, PPoPP 2024, Edinburgh, United
Kingdom, March 2-6, 2024, Michel Steuwer, I-Ting Angelina Lee, and Milind
Chabbi (Eds.). ACM, 270–285. https://doi.org/10.1145/3627535.3638475

[26] Matvey Arye et al. 2025. pgvectorscale. https://github.com/timescale/
pgvectorscale

[27] Microsoft. 2025. Azure Compliance Offerings. https://servicetrust.microsoft.
com/DocumentPage/7adf2d9e-d7b5-4e71-bad8-713e6a183cf3.

[28] Pavan Davuluri. 2024. Windows Copilot Runtime. https://blogs.windows.
com/windowsdeveloper/2024/05/21/unlock-a-new-era-of-innovation-with-
windows-copilot-runtime-and-copilot-pcs/

[29] Nick Pentreath, Abdulla Abdurakhmanov, and Rob Royce. 2017. Vector Scor-
ing Plugin for Elasticsearch. https://github.com/MLnick/elasticsearch-vector-
scoring

[30] Pinecone. 2025. PineCone Serverless Pricing Documents. https://docs.pinecone.
io/guides/organizations/manage-cost/understanding-cost#query

[31] Nils Reimers. 2022. Datasets: Cohere/wikipedia-22-12-en-embeddings. https:
//huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings.

[32] Dharma Shukla, Shireesh Thota, Karthik Raman,MadhanGajendran, Ankur Shah,
Sergii Ziuzin, Krishnan Sundaram, Miguel Gonzalez Guajardo, Anna Wawrzy-
niak, Samer Boshra, Renato Ferreira, Mohamed Nassar, Michael Koltachev, Ji
Huang, Sudipta Sengupta, Justin Levandoski, and David Lomet. 2015. Schema-
agnostic indexing with Azure DocumentDB. Proc. VLDB Endow. 8, 12 (Aug. 2015),
1668–1679. https://doi.org/10.14778/2824032.2824065

[33] Harsha Vardhan Simhadri, Martin Aumüller, Amir Ingber, Matthijs Douze,
George Williams, Magdalen Dobson Manohar, Dmitry Baranchuk, Edo Liberty,
Frank Liu, Ben Landrum, Mazin Karjikar, Laxman Dhulipala, Meng Chen, Yue
Chen, Rui Ma, Kai Zhang, Yuzheng Cai, Jiayang Shi, Yizhuo Chen, Weiguo Zheng,
Zihao Wan, Jie Yin, and Ben Huang. 2024. Results of the Big ANN: NeurIPS’23
competition. arXiv:2409.17424 [cs.IR] https://arxiv.org/abs/2409.17424

[34] Harsha Vardhan Simhadri, Martin Aumüller, Amir Ingber, Matthijs Douze,
George Williams, Magdalen Dobson Manohar, Dmitry Baranchuk, Edo Liberty,
Frank Liu, Ben Landrum, Mazin Karjikar, Laxman Dhulipala, Meng Chen, Yue
Chen, Rui Ma, Kai Zhang, Yuzheng Cai, Jiayang Shi, Yizhuo Chen, Weiguo Zheng,
Zihao Wan, Jie Yin, and Ben Huang. 2024. Results of the Big ANN: NeurIPS’23
competition. arXiv:2409.17424 [cs.IR] https://arxiv.org/abs/2409.17424

[35] Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, Gopal Srinivasa,
Suhas Jayaram Subramanya, Andrija Antonijevic, Dax Pryce, David Kaczynski,
Shane Williams, Siddarth Gollapudi, Varun Sivashankar, Neel Karia, Aditi Singh,
Shikhar Jaiswal, Neelam Mahapatro, Philip Adams, Bryan Tower, and Yash Patel.
2023. DiskANN: Graph-structured Indices for Scalable, Fast, Fresh and Filtered
Approximate Nearest Neighbor Search. https://github.com/Microsoft/DiskANN

[36] Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and Har-
sha Vardhan Simhadri. 2021. FreshDiskANN: A Fast and Accurate Graph-
Based ANN Index for Streaming Similarity Search. CoRR abs/2105.09613 (2021).
arXiv:2105.09613 https://arxiv.org/abs/2105.09613

[37] Rodrigo Souza. 2024. CosmosDB Dev Blog. https://devblogs.microsoft.com/
cosmosdb/announcing-cost-and-performance-improvements-with-azure-
cosmos-dbs-binary-encoding/.

[38] Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Krish-
naswamy, and Harsha Vardhan Simhadri. 2019. DiskANN: Fast Accurate Billion-
point Nearest Neighbor Search on a Single Node. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, HannaM.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett (Eds.). 13748–13758. https://proceedings.neurips.cc/
paper/2019/hash/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Abstract.html

[39] Julie Tibshirani. 2019. Text similarity search with vector fields. https://www.
elastic.co/blog/text-similarity-search-with-vectors-in-elasticsearch

[40] Benjamin Trent. 2023. Make HNSW merges faster. https://github.com/apache/
lucene/issues/12440

[41] Benjamin Trent. 2024. Make HNSW merges cheaper on heap. https://github.
com/apache/lucene/issues/14208

[42] Turbopuffer. 2025. TurboPuffer Pricing. https://turbopuffer.com/pricing.
[43] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,

and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards
Query Fusion for Structured and Unstructured Data. Proc. VLDB Endow. 13, 12
(2020), 3152–3165. https://doi.org/10.14778/3415478.3415541

[44] Haike Xu, Magdalen Dobson Manohar, Philip A. Bernstein, Badrish Chan-
dramouli, Richard Wen, and Harsha Vardhan Simhadri. 2025. In-Place
Updates of a Graph Index for Streaming Approximate Nearest Neighbor
Search. CoRR abs/2502.13826 (2025). https://doi.org/10.48550/ARXIV.2502.13826

5178

https://tokio.rs/
https://arxiv.org/abs/2502.13336
http://arxiv.org/abs/2502.13336
https://proceedings.neurips.cc/paper/2015/hash/2823f4797102ce1a1aec05359cc16dd9-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/2823f4797102ce1a1aec05359cc16dd9-Abstract.html
https://github.com/pgvector/pgvector
https://doi.org/10.14778/3685800.3685805
https://proceedings.neurips.cc/paper_files/paper/2021/file/299dc35e747eb77177d9cea10a802da2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/299dc35e747eb77177d9cea10a802da2-Paper.pdf
https://learn.microsoft.com/en-us/azure/cosmos-db/hierarchical-partition-keys?tabs=net-v3%2Cbicep
https://learn.microsoft.com/en-us/azure/cosmos-db/hierarchical-partition-keys?tabs=net-v3%2Cbicep
https://learn.microsoft.com/en-us/azure/cosmos-db/index-policy
https://learn.microsoft.com/en-us/azure/cosmos-db/index-policy
https://www.datastax.com/pricing/vector-search
https://www.datastax.com/pricing/vector-search
https://github.com/AzureCosmosDB/VectorIndexScenarioSuite
https://github.com/AzureCosmosDB/VectorIndexScenarioSuite
https://doi.org/10.48550/ARXIV.2401.08281
https://doi.org/10.48550/ARXIV.2401.08281
https://turbopuffer.com/blog/turbopuffer
https://turbopuffer.com/blog/turbopuffer
https://github.com/nmslib/hnswlib
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.1145/3543507.3583552
http://proceedings.mlr.press/v119/guo20h.html
http://proceedings.mlr.press/v119/guo20h.html
https://github.com/nmslib/hnswlib/blob/master/examples/python/EXAMPLES.md
https://github.com/nmslib/hnswlib/blob/master/examples/python/EXAMPLES.md
https://github.com/jbellis/jvector
https://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320
https://github.com/AzureCosmosDB/DiskANNWhitePapers/blob/fc97578ee687189af3a086b35218f368f36b3085/Microsoft%20DiskANN%20in%20Azure%20Cosmos%20DB.pdf
https://github.com/AzureCosmosDB/DiskANNWhitePapers/blob/fc97578ee687189af3a086b35218f368f36b3085/Microsoft%20DiskANN%20in%20Azure%20Cosmos%20DB.pdf
https://github.com/AzureCosmosDB/DiskANNWhitePapers/blob/fc97578ee687189af3a086b35218f368f36b3085/Microsoft%20DiskANN%20in%20Azure%20Cosmos%20DB.pdf
https://doi.org/10.1145/3627535.3638475
https://github.com/timescale/pgvectorscale
https://github.com/timescale/pgvectorscale
https://servicetrust.microsoft.com/DocumentPage/7adf2d9e-d7b5-4e71-bad8-713e6a183cf3
https://servicetrust.microsoft.com/DocumentPage/7adf2d9e-d7b5-4e71-bad8-713e6a183cf3
https://blogs.windows.com/windowsdeveloper/2024/05/21/unlock-a-new-era-of-innovation-with-windows-copilot-runtime-and-copilot-pcs/
https://blogs.windows.com/windowsdeveloper/2024/05/21/unlock-a-new-era-of-innovation-with-windows-copilot-runtime-and-copilot-pcs/
https://blogs.windows.com/windowsdeveloper/2024/05/21/unlock-a-new-era-of-innovation-with-windows-copilot-runtime-and-copilot-pcs/
https://github.com/MLnick/elasticsearch-vector-scoring
https://github.com/MLnick/elasticsearch-vector-scoring
https://docs.pinecone.io/guides/organizations/manage-cost/understanding-cost#query
https://docs.pinecone.io/guides/organizations/manage-cost/understanding-cost#query
https://huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings
https://huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings
https://doi.org/10.14778/2824032.2824065
https://arxiv.org/abs/2409.17424
https://arxiv.org/abs/2409.17424
https://arxiv.org/abs/2409.17424
https://arxiv.org/abs/2409.17424
https://github.com/Microsoft/DiskANN
https://arxiv.org/abs/2105.09613
https://devblogs.microsoft.com/cosmosdb/announcing-cost-and-performance-improvements-with-azure-cosmos-dbs-binary-encoding/
https://devblogs.microsoft.com/cosmosdb/announcing-cost-and-performance-improvements-with-azure-cosmos-dbs-binary-encoding/
https://devblogs.microsoft.com/cosmosdb/announcing-cost-and-performance-improvements-with-azure-cosmos-dbs-binary-encoding/
https://proceedings.neurips.cc/paper/2019/hash/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Abstract.html
https://www.elastic.co/blog/text-similarity-search-with-vectors-in-elasticsearch
https://www.elastic.co/blog/text-similarity-search-with-vectors-in-elasticsearch
https://github.com/apache/lucene/issues/12440
https://github.com/apache/lucene/issues/12440
https://github.com/apache/lucene/issues/14208
https://github.com/apache/lucene/issues/14208
https://turbopuffer.com/pricing
https://doi.org/10.14778/3415478.3415541
https://doi.org/10.48550/ARXIV.2502.13826

arXiv:2502.13826
[45] Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng

Li, Ziyue Yang, Fan Yang, Yuqing Yang, Peng Cheng, and Mao Yang. 2023.
SPFresh: Incremental In-Place Update for Billion-Scale Vector Search. In Pro-
ceedings of the 29th Symposium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, Jason Flinn, Margo I. Seltzer, Peter Dr-
uschel, Antoine Kaufmann, and Jonathan Mace (Eds.). ACM, 545–561. https:
//doi.org/10.1145/3600006.3613166

[46] Hongfei Zhang, Xia Song, Chenyan Xiong, Corby Rosset, Paul N. Bennett, Nick
Craswell, and Saurabh Tiwary. 2019. Generic Intent Representation in Web
Search. In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25,
2019, Benjamin Piwowarski, Max Chevalier, Éric Gaussier, Yoelle Maarek, Jian-
Yun Nie, and Falk Scholer (Eds.). ACM, 65–74. https://doi.org/10.1145/3331184.
3331198

[47] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai,
Yaoqi Chen, Yinxuan He, Yuqing Yang, Fan Yang, Mao Yang, and Lidong Zhou.
2023. VBASE: Unifying Online Vector Similarity Search and Relational Queries
via Relaxed Monotonicity. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23). USENIX Association, Boston, MA, 377–395.
https://www.usenix.org/conference/osdi23/presentation/zhang-qianxi

[48] Zilliz. 2025. Zilliz Serverless Pricing Documents. https://docs.zilliz.com/docs/
understand-cost#example

5179

https://doi.org/10.1145/3600006.3613166
https://doi.org/10.1145/3600006.3613166
https://doi.org/10.1145/3331184.3331198
https://doi.org/10.1145/3331184.3331198
https://www.usenix.org/conference/osdi23/presentation/zhang-qianxi
https://docs.zilliz.com/docs/understand-cost#example
https://docs.zilliz.com/docs/understand-cost#example

Algorithm 4: Index Construction
Data: Dataset 𝑃 , degree bound 𝑅, list size parameter 𝐿, RNG

parameter 𝛼
Result: Navigable Graph 𝐺 = (𝑃, 𝐸), start node 𝑠
let 𝑠 ← argmin𝑝∈𝑃 | |x𝑝 −

∑︁
𝑝′ ∈𝑃 x𝑝′

𝑛 | | // 𝑠 is the medoid

of the dataset

for each point 𝑝 in dataset 𝑃 do
run Insert(x𝑝 , 𝑠, 𝐿, 𝛼, 𝑅)

Algorithm 5: MiniBatchInsert(𝑋, 𝑠, 𝐿, 𝛼, 𝑅)
Data: Graph𝐺 (𝑃, 𝐸) with start node 𝑠 , set of new vectors 𝑋 ,

parameter 𝛼 > 1, out degree bound 𝑅, list size 𝐿
Result: Graph𝐺 ′ (𝑃 ′, 𝐸′) where 𝑃 ′ = 𝑃 ∪𝑋
parallel for 𝑥𝑝 ∈ 𝑋 do

initialize expanded nodes E ← ∅
initialize candidate list L ← ∅
[L, E] ← GreedySearch(𝑠, 𝑝, 1, 𝐿)
set 𝑁out (𝑝) ← RobustPrune(𝑝, E, 𝛼, 𝑅)

set 𝐵 ← ⋃︁
𝑥𝑝 ∈𝑋 𝑁out (𝑥𝑝)

parallel for 𝑏 ∈ 𝐵 do
set 𝑁 ← {𝑥𝑝 |𝑏 ∈ 𝑁out (𝑥𝑝) }
set 𝑁𝑏 ← 𝑁 ∪ 𝑁out (𝑏)
set 𝑁out (𝑏) ← RobustPrune(𝑏, 𝑁𝑏 , 𝛼, 𝑅)

A DISKANN PLOTS AND ALGORITHMS
In this appendix we provide pseudocode for the core DiskANN
algorithms described in the paper, as well as some supplementary
plots on performance of the DiskANN library.

Algorithm 1 shows the search algorithm on a DiskANN graph.
Algorithm 2 shows the insert procedure, while Algorithm 3 shows
the pruning subroutine which is used in both insertion and deletion.
Algorithm 4 shows how the insert procedure is used to incremen-
tally build the graph. Algorithm 5 shows the generalization of the
insertion routine to minibatch updates. Algorithm 6 specifies the
consolidation algorithm that clears deleted vertices from the graph.
Algorithm 7 shows the modification of greedy search to account
for a query label B.

Next, we provide some experimental evidence supporting the
conclusions in this paper on the efficiency of graph algorithms over
partition-based algorithms.

B COSMOS DB AND DISKANN
INTEROPERABILITY

To insert, the Cosmos DB IndexManager calls diskann.insert
with appropriate execution context, which in turn accesses the Bw-
Tree index and the Document Store. The DiskANN librarywritten in
Rust is sandwiched between IndexManager and Bw-Tree/Document
Store components written in C++. The interleaving is similar for
the query path, and is illustrated in Figure 15. Since all of these
components are written in an asynchronous programming style
with different languages and run times, this leads to an interesting
challenge of implementing asynchronous callbacks across language

Algorithm 6: Inplace Delete
Data: Dataset 𝑃 , degree bound 𝑅, list size parameter 𝐿, RNG

parameter 𝛼 , replace parameter 𝑐 , deleted point 𝑝 ∈ 𝑃
Result: Navigable Graph 𝐺 = (𝑃 \ 𝑝), start node 𝑠
begin

𝑁𝑡𝑤𝑜ℎ𝑜𝑝 ← 𝑁𝑜𝑢𝑡 (𝑁𝑜𝑢𝑡 (𝑝)) ∪ 𝑁𝑜𝑢𝑡 (𝑝)
𝐵 ← {𝑏 |𝑏 ∈ 𝑁𝑡𝑤𝑜ℎ𝑜𝑝&&𝑝 ∈ 𝑁𝑜𝑢𝑡 (𝑏)}
for 𝑏 ∈ 𝐵 do

𝑁𝑜𝑢𝑡 (𝑏) ← {𝑁𝑜𝑢𝑡 (𝑏) \ 𝑝}
𝐶 ← 𝑐 closest nodes to 𝑏 in 𝑁𝑜𝑢𝑡 (𝑝)
𝑁𝑜𝑢𝑡 (𝑏) ← 𝑁𝑜𝑢𝑡 (𝑏) ∪𝐶
if |𝑁𝑜𝑢𝑡 (𝑏) | > 𝑅 then

𝑁𝑜𝑢𝑡 (𝑏) ← RobustPrune(𝑏, 𝑁𝑜𝑢𝑡 (𝑏), 𝛼, 𝑅)

for 𝑏 ∈ 𝑁𝑜𝑢𝑡 (𝑝) do
𝐶 ← 𝑐 closest nodes to 𝑏 in 𝑁𝑜𝑢𝑡 (𝑝)
for 𝑐 ∈ 𝐶 do

𝑁𝑜𝑢𝑡 (𝑐) ← 𝑁𝑜𝑢𝑡 (𝑐) ∪ {𝑏}
if |𝑁𝑜𝑢𝑡 (𝑐) | > 𝑅 then

𝑁𝑜𝑢𝑡 (𝑐) ← RobustPrune(𝑐, 𝑁𝑜𝑢𝑡 (𝑐), 𝛼, 𝑅)

𝑁𝑜𝑢𝑡 (𝑝) ← ∅

Algorithm 7: BetaSearch(𝑠, x𝑞,B, 𝑘, 𝐿, 𝛽)
Data: Graph𝐺 with start node 𝑠 , query x𝑞 , label bitmap B, result

size 𝑘 , search list size 𝐿 ≥ 𝑘 , filter search parameter
0 ≤ 𝛽 ≤ 1

Result: Result set L containing 𝑘-approx NNs with the same label
bitmap as 𝑥𝑞 , and a set V containing all the visited nodes

begin
initialize sets L ← {𝑠 }, E ← ∅, and V ← ∅
Function dist(𝑥𝑝, B𝑝, 𝑥𝑞, B𝑞)

𝑑 ← | |𝑥𝑝 − 𝑥𝑞 | |
if B𝑝 == B𝑞 then

return 𝛽 ∗ 𝑑
else

return 𝑑

while L \ E ≠ ∅ do
let 𝑝∗ ← argmin𝑝∈L\E dist(x𝑝 , B, x𝑞, x𝑞 .label)
update L ← L ∪ (𝑁out (𝑝∗) \ V) and E ← E ∪ {𝑝∗}
if | L | > 𝐿 then

update L to retain closest 𝐿 points to x𝑞
update V ← V ∪ 𝑁out (𝑝∗)

return [closest 𝑘 points from V with label B; V]

boundary. The standard way to integrate Rust/C++ using C ABI
has no native support for async calls, and public FFI libraries that
support C++/Rust async inter-op are non-existent. We build an
internal solution to address this, and did not observe any significant
overheads from this interface.

Asynchronous Rust uses cooperative tasks which are polled to
completion. When polling, a Rust asynchronous runtime provides
tasks with a “waker" that moves a task from an “idle" state to a

5180

Figure 14: Comparison of number of distance comparions
needed for different values of recall@5 between DiskANN,
Clustering (10,000) centers and the Cross-polytope LSH from
FALCONN library [Razenshteyn’16]. Parameters for LSH are
swept from number of tables = {10, 15}, probe width = {25
50 100 200}, dimension of last polytope = {4 8 16 32}, cross
polytope number = 4, number of rotations = 3.

Algorithm 8: Asynchronous Set Up (Rust)
Data: Data structure 𝑥 to share with C++
Result: Reference counted data structure 𝐴 for

synchronization
begin

// Create reference counted data structure 𝐴

containing 𝑥, an atomic boolean 𝑑𝑜𝑛𝑒, and a
Rust 𝑤𝑎𝑘𝑒𝑟 protected by a Mutex

// Increment and leak reference count for 𝐴

// Provide C++ with a mutable pointer to 𝑥

embedded in 𝐴, a constant pointer to 𝐴, and
a function pointer to Algorithm 9
return 𝐴

“ready to run" state. A task that cannot make progress when polled
must store this waker and set up some mechanism by which the
waker is invoked when progress can be made. The runtime then
responds to waker invocations by polling the task again. Note that
runtimes may also poll suspended tasks eagerly rather than waiting
for a waker invocation.

Our asynchronous interface involves allocating shared data struc-
tures on the Rust side and providing C++ exclusive mutable access
to this shared data. The C++ side then releases it’s exclusive access
back to Rust, allowing Rust to make forward progress.

In more detail, to share an object 𝑥 (e.g., a data for a quantized
vector) asynchronously, we first run Algorithm 8. This embeds 𝑥
inside a reference counted data structure, leaks one reference count
to C++, and shared the embedded 𝑥 with C++. At this point, C++
has complete ownership of the shared object 𝑥 and can perform
backend operations required to populate 𝑥 with the correct data.
Reference counting ensures that C++ still has a valid object to work
with if the Rust side tasks gets canceled.

Algorithm 9: Asynchronous Callback (C++)
Data: A pointer 𝑝𝐴 to object 𝐴 from Algorithm 8
begin

𝐴 = restore_from_pointer(𝑝𝐴)
// This releases C++ ownership of 𝑥

𝐴.𝑑𝑜𝑛𝑒.𝑠𝑡𝑜𝑟𝑒 (𝑡𝑟𝑢𝑒, memory ordering release)
// Lock and if present, invoke 𝐴.𝑤𝑎𝑘𝑒𝑟

// Implicitly run the destructor for 𝐴,
decrementing the reference count

Algorithm 10: Asynchronous Poll (Rust)
Data: Object 𝐴 from Algorithm 8 and a Rust𝑤𝑎𝑘𝑒𝑟
Result: 𝑃𝑒𝑛𝑑𝑖𝑛𝑔 if Algorithm 9 has not been made,

otherwise the modified 𝑥
begin

// The below operation is done under a Mutex
𝐴.𝑤𝑎𝑘𝑒𝑟 = 𝑤𝑎𝑘𝑒𝑟

// Check if the callback has been made
𝑖𝑠𝑑𝑜𝑛𝑒 = 𝐴.𝑑𝑜𝑛𝑒.𝑙𝑜𝑎𝑑 (memory ordering acquire)
if isdone then

return 𝐴.𝑥

else
return 𝑃𝑒𝑛𝑑𝑖𝑛𝑔

Ownership of𝑥 is released by C++ byAlgorithm 9. This operation
atomically synchronizes the shared state in 𝑥 , invokes the waker is
present, and decrements the reference count previously leaked to
C++. After C++ makes this callback, it is not allowed to access the
shared object 𝑥 again.

The final piece of this interface is the Rust side polling in Algo-
rithm 10. The algorithm begins by setting the runtime’s waker in
the shared state, then atomically checking if the callback has been
completed. If the callback is complete, Rust reassumes ownership
of 𝑥 and makes forward progress. Otherwise, the task becomes idle
and waits for the callback to be made. Note that the waker inside
the reference counted object is stored behind a mutex to ensure
that completion of the callback is always observed by Rust.

The asynchronous protocol can be naturally extended to support
bulk operations by allowing the asynchronous callback in Algo-
rithm 9 to release just part of the shared state in 𝑥 with suitable
modifications to Algorithm 10. This can be used to group all quan-
tized vector reads for an expansion step in Algorithm 1 into a single
FFI setup call, reducing overhead.

Resource Governance. Cosmos DB uses co-operative scheduling
where all operations belonging to multiple collections frequently
check with the resource governor for available budget to continue
executing. When their resource is exhausted, they temporarily yield
control and resume later. Further a logical activity (unit of work) in
Cosmos DB backend can be scheduled to execute across multiple
threads during its lifetime.

To track the resource consumption of Rust-side operations, each
spawned task is embedded inside a monitoring layer. When the
tokio runtime polls a task, the monitoring layer begins CPU pro-
filing before polling the embedded task. When the embedded tasks

5181

Figure 15: Control flow of a DiskANN query in Cosmos DB.

exits polling, whether via completion or to cooperatively yield,
the monitoring layer accumulates the CPU resources (thread cy-
cles) utilized. Because asynchronous Rust tasks can only migrate
between threads when idle (i.e., not being polled), this technique
provides a low-overhead method of measuring compute resources
used directly for an activity.

Cosmos DB can use this resource consumption to temporarily
suspend a Rust-side task at the asynchronous FFI layer when the
task’s associated logical activity exceeds its budget quota.

C INDEXTERM EXAMPLES
Here is an example of a JSON document with a ’/embedding’ path.

{
"embedding": [

-0.029442504048347473,
-0.06647671014070511,
-0.22546832263469696,
...

]
}

Inverted Term
Inverted term design for Quantizated data.

TermKey = 0xD278B10FF01E964D33CC55AA01FE28B9⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
’/embedding’ Prefix (16 Bytes)

+ 0x17⏞⏟⏟⏞
’QuantTerm’ Type (1 Byte)

+ 0xAB12C3D4E5F60718|0x67..⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Document Id + QuantizedVector Value (Variable Length)

TermValue = Dummy Bitmap (for all values, irrespective of keys)⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞
PES Bitmap

Forward Term Representation.
Forward term design for Adjacency List data.

TermKey = 0xD278B10FF01E964D33CC55AA01FE28B9⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
’/embedding’ Prefix (16 Bytes)

+ 0x18⏞⏟⏟⏞
’AdjacencyTerm’ Type (1 Byte)

+ 0xAB12C3D4E5F60718⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
DocumentId (8 Bytes)

TermValue = [(0xDE4203A985225529), (DocId2), (DocIdN),]⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
Variable Length Adjacency List (8 Byte DocumentIds)

D VECTORDISTANCE FUNCTION
The VectorDistance system function takes in the following argu-
ments:

Parameter Description
vector_expr_1 This argument can be an array literal or

a path to a property in the document.
vector_expr_2 This argument can be an array literal or

a path to a property in the document.
bool_expr This argument indicates if the search

needs to be an exact search. “true” indi-
cates that it needs to be an exact search
so the execution plan will not use any
index that provides approximate results

obj_expr An optional JSON object that is used
to specify options that can control the
vector distance calculation. Some of the
options are: distanceFunction, datatype,
searchListSizeMultipier, quantizedVec-
torListMultiplier.

E INGESTING POPULAR DATASETS ON
COSMOS DB

An open source tool [11] was released by the team to one-click
ingest and query popular open datasets with Cosmos DB. Extending
the tool to ingest custom datasets is relatively simple and customers
can use it experiment with Vector Indexing and Cosmos DB.

F ADDITIONAL QUERY LATENCY AND RU
CHARGE PLOTS

Figures 16 and 17 present additional data to track the relation be-
tween search parameter, recall and query latency and RU cost.

5182

p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p990

10

20

30

40
La

te
nc

y
(m

s)

11.1

18.8
21.6

12.0

18.9
21.8

14.3

21.2
24.3

18.6

25.8

29.2

22.8

31.2

35.1

p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p990

20

40

60

Re
qu

es
t U

ni
ts

17.3
21.8

25.3
20.5

25.7
29.1

25.3

31.6
35.1

32.9

40.8
44.4

40.2

50.2
52.5

p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p990

10

20

30

40

La
te

nc
y

(m
s)

11.1

18.8
21.6

12.0

18.9
21.8

14.3

21.2
24.3

18.6

25.8

29.2

22.8

31.2

35.1

L Search=50, Recall=85.71
L Search=70, Recall=88.8
L Search=100, Recall=91.03

L Search=150, Recall=93.03
L Search=20, Recall=94.16

Figure 16: p50, p95 and p99 query latencies and query RU
charge for 1 million Wiki-Cohere vector index for various
values of search list size, and the corresponding recall@10.

p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p990

10

20

30

40

La
te

nc
y

(m
s)

8.7
11.2

12.8
10.4

12.8 13.9 12.8
15.8

17.6 16.9

20.8
23.2

21.1

26.2
28.8

p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p990

20

40

60

Re
qu

es
t U

ni
ts

15.9
18.8 18.8 19.1

22.4 24.3 23.2
27.1 28.8 29.8

34.9
37.2 35.8

42.5
44.8

p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p99 p50 p95 p990

10

20

30

40

La
te

nc
y

(m
s)

8.7
11.2

12.8
10.4

12.8 13.9 12.8
15.8

17.6 16.9

20.8
23.2

21.1

26.2
28.8

L Search=50, Recall=87.21
L Search=70, Recall=90.26
L Search=100, Recall=92.72

L Search=150, Recall=94.65
L Search=20, Recall=95.74

Figure 17: p50, p95 and p99 query latencies and query RU
charge for 100,000 Wiki-Cohere vector index for various
values of search list size, and the corresponding recall@10.

5183

	Abstract
	1 Introduction
	2 background
	2.1 The DiskANN vector indexing library
	2.2 The Cosmos DB system

	3 System Design
	3.1 Re-designing DiskANN for databases
	3.2 Adaptations to the algorithm
	3.3 Design of index terms in Cosmos DB
	3.4 Index construction and maintenance
	3.5 Query layer

	4 Evaluation
	4.1 Query latency and RU charges
	4.2 Filtered queries
	4.3 Scale out and Query Aggregation
	4.4 Ingestion
	4.5 Recall Stability over Updates
	4.6 Sharded indices for Multi-tenancy

	5 Related Work
	5.1 Algorithms for Vector Search
	5.2 Vector Indices in Databases
	5.3 Specialized Serverless Vector DBs

	6 Conclusion
	7 Acknowledgements
	References
	A DiskANN plots and algorithms
	B Cosmos DB and DiskANN interoperability
	C IndexTerm Examples
	D VectorDistance function
	E Ingesting popular datasets on Cosmos DB
	F Additional query latency and RU charge plots

