
Streaming View: An E�icient Data Processing Engine for Modern
Real-time Data Warehouse of Alibaba Cloud

Fangyuan Zhang∗

Mengqi Wu∗

Alibaba Cloud
Computing

Hangzhou, China

Chunlei Xu
Yunong Bao
Alibaba Cloud
Computing

Hangzhou, China
{zhangfangyuan.zfy,mengqi.wmq,mengda.xcl,baoyunong.byn,qiaojiyu.qjy}
{zhouyingli.zyi,guanming.fh,caihua.ych,zwc231487,lifeifei}

Jiyu Qiao
Yingli Zhou
Alibaba Cloud
Computing

Hangzhou, China

@alibaba-inc.com

Hua Fan
Caihua Yin
Alibaba Cloud
Computing

Hangzhou, China

Wenchao Zhou
Feifei Li

Alibaba Cloud
Computing

Hangzhou, China

ABSTRACT

Real-time data warehouses are essential for modern applications.
Extract-Transform-Load (ETL) as a fundamental component of of-
�ine data warehouses also provides crucial support within real-
time data warehouses. Among various traditional ETL approaches,
Lambda and Kappa have emerged as classic real-time data process-
ing solutions due to their freshness and query performance, which
best meet business demands. However, both of them often require
the integration of external stream processing engines, introduc-
ing challenges related to complexity, e�ciency, and consistency.
ZeroETL has emerged as an approach to address these issues. Never-
theless, existing ZeroETL-based solutions primarily emphasize the
implementation of extraction and loading, resulting in limitations
in handling transformation. Incremental View Maintenance (IVM)
o�ers an alternative that can enhance ZeroETL. However, existing
IVM implementations often focus on query acceleration rather than
supporting high-throughput, complex real-time workloads.

To address these challenges, we propose Streaming View, an
e�cient real-time data processing engine integrated within An-
alyticDB of Alibaba Cloud. Unlike existing solutions, Streaming
View supports high-throughput, complex data processing for real-
time streaming ETL workloads. Furthermore, it can be leveraged
to optimize ZeroETL-based approaches by enhancing transforma-
tion capabilities. We design tailored algorithms and optimizations
for diverse syntaxes and high-throughput scenarios, ensuring the
system meets complex application needs. By integrating incremen-
tal computation into the data warehouse, Streaming View reduces
complexity, ensures data consistency, and boosts performance, of-
fering a robust solution for real-world applications. Experiments
show Streaming View improves processing performance by up to
7x and 20x over traditional ETL and IVM methods, respectively,
and addresses complex scenarios unsolved by existing solutions.

PVLDB Reference Format:

Fangyuan Zhang, Mengqi Wu, Chunlei Xu, Yunong Bao, Jiyu Qiao, Yingli

Zhou, Hua Fan, Caihua Yin, Wenchao Zhou, and Feifei Li. Streaming View:

An E�cient Data Processing Engine for Modern Real-time Data Warehouse

of Alibaba Cloud. PVLDB, 18(12): 5153 - 5165, 2025.

doi:10.14778/3750601.3750634

∗Both authors contributed equally to this research.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

1 INTRODUCTION

With the rapid evolution of internet technologies and the shift
of modern enterprises toward data-driven decision-making, the
demand for real-time data analytics [49] within data warehouses is
more critical than ever. Meanwhile, surging real-time data volumes
and rising business complexity—driven by dynamic pricing [37] and
personalized recommendations [18] in e-commerce [33], real-time
anti-fraud and anomaly detection in �nance [50], and continuous
sensor data ingestion for fault detection and predictive maintenance
in industrial IoT [45]—pose greater challenges to real-time data
warehouses in throughput, latency, and performance.

Challenges in real-time data warehousing. Traditionally,
data warehouses have been designed as batch-processing systems
optimized for large-scale historical analysis [25, 46, 49]. Conse-
quently, in the Extract-Transform-Load (ETL) processes of o�ine
data warehouses, most data processing tasks are accomplished
using batch processing techniques. In contrast, real-time data ware-
houses adopt a variety of data processing paradigms, including
stream processing, batch/micro-batch processing, pure real-time
computation, and incremental processing. Each of these paradigms
o�ers unique advantages and trade-o�s across dimensions such as
data freshness, performance, e�ciency, and implementation com-
plexity. Among these approaches, the widely used Lambda [47]
and Kappa [34] architectures perform real-time data processing
based on the paradigm illustrated in Figure 1. They leverage stan-
dalone stream processing engines such as Apache Flink [7, 14] and
Spark Streaming [9, 48]. They provide substantial improvements
over traditional batch/micro-batch and pure real-time computa-
tion approaches in terms of data freshness and query performance,
while also o�ering a more comprehensive and robust solution com-
pared to current incremental processing techniques. However, as
real-time data volumes and business complexities increase, stan-
dalone stream processing engines are facing growing challenges.
Firstly, their integration with existing data warehouses signi�cantly
increases system complexity and operational overhead [41], as it
requires additional e�orts in system integration, debugging, and
monitoring. Furthermore, the inclusion of additional system compo-
nents leads to increased data movement and processing overhead,
which can degrade overall performance and delay query responses,
particularly in high-throughput scenarios. Additionally, ensuring
strong consistency across streaming engines and data warehouses

licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750634

5153

https://doi.org/10.14778/3750601.3750634
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750634

5154

5155

5156

5157

the actual situation ismore complex and requires addressing various
details. Here are two speci�c examples:

Example 1. For SQL statements containing a GROUP BY clause, it is
generally required that all GROUP BY �elds are included in the SELECT
columns of result. If a user’s SQL does not meet these requirements,
our solution will automatically complete result columns for the user.

Example 2. In our solution, the scenario of an outer join combined
with aggregation does not support non-equi join conditions. However,
scenarios with only outer joins without aggregation do support non-
equi join conditions. In such cases, during this stage, we rewrite the
outer join with aggregation into an outer join followed by a view
nested with a single-table aggregation. This approach maximizes
compliance with syntax requirements for the customer.

There are many similar scenarios in which we try to rewrite
queries as much as possible during this stage. In practice, we have
observed that this capability greatly enhances syntax completeness,
signi�cantly reducing issues related to user syntax support.

Base building stage. In this stage, we execute the SQL de�ned
by streaming view to generate a base data. However, this process
cannot be completed immediately and may take some time. During
the execution of the SQL, the data snapshot is captured at the
moment the SQL execution begins. This means that any incremental
updates to the base tables occurring during this period are not
handled by the batch process and require additional attention.

A straightforward solution to ensure data consistency is to apply
a write lock on the base tables during the build stage. However, this
approach can signi�cantly disrupt production environments, as
large views often need several minutes or even hours to complete
their construction. To address this, we developed a more e�cient
method that allows base tables to remain writable during the build
process. At the start of the build, we employ a brief write lock
to create a delta table associated with the base table, utilizing a
reference counting method. If a delta table already exists due to
other streaming view processes on the same base table, it can be
reused; otherwise, a new one is created. Once the delta table is
established, we commit the transaction and release the write lock.
Consequently, the delta table records any incremental writes made
to the base table, which are subsequently processed once the build is
completed. This approach minimizes disruptions while maintaining
data consistency.

Static optimize stage. As previously mentioned, our system is
designed to ensure that users can perform maintenance on their
de�ned streaming view with high performance without tuning. To
achieve this, we have dedicated this particular stage to optimization.
In this stage, a series of optimization rules are generated by com-
prehensively analyzing the SQL characteristics of view de�nitions
and the statistical information from the base data produced in the
previous stage. These rules are applied to enhance the e�ciency of
the subsequent maintenance stage, with automatic indexing and
distribution key selection being particularly critical.

Automatic indexing. Our solution maintains data strictly based

on SQL execution results for operations such as JOINs and aggre-
gations, avoiding the use of data windowing methods commonly
employed by many stream engines to reduce related data to ensure
complete support for incremental maintenance semantics. Given
the limited capacity of memory, Streaming View cannot rely on
in-memory hash tables for managing JOIN and aggregation states,

as is common in window-based stream engines, and instead em-
ploys disk-based mechanisms to improve e�ciency. Indexing plays
a pivotal role in this process. Key indexing strategies include: (i) Join
Views: Indexing the join key on base tables signi�cantly improves
e�ciency during incremental computation. (ii) SPJ Views: Creating
a near-unique index on the view enables more e�cient deletion
during incremental merges. (iii) Group by Views: A unique index
on the Group By �elds facilitates smoother incremental merge op-
erations. (iv) Min/Max Views: Indexing base table ensures e�cient
recalculation of min/max values when deletions occur.

Additionally, speci�c indexing strategies are applied to handle
outer joins, window functions, and UNION ALL operations. How-
ever, the presence of multiple syntactic features in an view’s SQL
de�nition may necessitate multiple indexes, and an streaming view
may serve dual roles (e.g., as both an streaming view and a base table
for another streaming view). This can lead to index redundancy. To
address this, the process is divided into a rule collection stage and
a decision-making stage. The rule collection stage generates a can-
didate index list using extensible rules, while the decision-making
stage consolidates these into a �nal index list.

Automatic Distribution Key. As a typical MPP distributed data

warehouse, the choice of distribution keys signi�cantly impacts
e�ciency of incremental computation and merge operations. For
instance, aligning the distribution key of a base table with the
join key in JOIN operations eliminates network overhead. Unlike
automatic indexing, AnalyticDB only adjusts the distribution keys
on streaming views and provides recommendations for base tables,
striking a balance between maximizing maintenance e�ciency and
preserving stability of existing user queries. This trade-o� ensures
optimal performance while minimizing disruption to the system.

According to data collected from large-scale production environ-
ments, with the aforementioned optimizations, more than 99% of
streaming views reached a high-performance state that did not re-
quire tuning after the build stage, and the incidence of sub-optimal
conditions was less than 1%.

4.2 Incremental Maintenance Part

This part process the core of streaming view maintenance oper-
ations, where the view is continuously updated incrementally in
response to changes in the read and write activities of the base
tables. The conventional approach involves iteratively executing
delta collection, incremental computation, and incremental merg-
ing. However, with the requirements of application scenario for
high throughput, completeness, and sustained online stability, we
have custom-designed several stages: Pre-prune, AdaptiveOptimize,
monitoring and collection, and feedback. The pseudocode for this
part is shown as Algorithm 2.

The incremental maintenance process for a set of view+ is initi-
ated by �rst obtaining the new and old deltas (∆=4F and ∆>;3) from
the updated base table in parallel (Line 1). For each view’s query de-
�ne &[8], the deltas are pre-pruned to eliminate invalid data based
on the query constraints (Line 3), after the pre-pruning process is
completed, the pruned deltas (∆=4F′ and ∆>;3 ′) are obtained. Sub-
sequently, runtime adaptive optimization rules are generated to
tailor the computation to the speci�c characteristics of the deltas
and the query (Line 4). Depending on type of query (e.g., SP, INNER
JOIN, etc), the incremental data ∆&[8] is calculated in parallel (Line

5158

5), leveraging base table and optimization rules. The computed in-
cremental results are then merged with the previous state + [8] in
parallel, producing the updated view + [8]′ and the corresponding
delta ∆+ [8] (Line 6). If the merged result has dependencies, the
process may recursively handle these dependencies, ensuring con-
sistency across the system (Line 7). Finally, the algorithm returns
the fully updated views+ ′ completing the incremental maintenance.
Next, we introduce the details of involved stages.

Algorithm 2: Inc-Maintenance(& , + , �0B4)01;4)

1 ∆=4F ,∆>;3 ← $1C08=�4;C0(�0B4)01;4) in parallel;

2 for 8 ← 1 to = do
3 ∆=4F′ ,∆>;3 ′ ← %A4%AD=4(∆=4F ,∆>;3 , &[8]);

4 AD;4B ← �30?C8E4$?C8<8I4(∆=4F′ ,∆>;3 ′ , &[8]);

5 ∆&[8]← �=2�0;2(∆=4F′ ,∆>;3 ′ , &[8], �0B4)01;4, AD;4B)

in parallel;

6 + ′[8],∆+ [8]← �=2"4A64(∆&[8],+) in parallel;

7 if HasDepend(+ ′[8]) then recursive ∆+ [8] ;

8 end

9 return + ′;

Distributed delta collect stage. In our data warehouse, data
is distributed across multiple worker nodes. To support streaming
view, we introduce a distributed delta table mechanism. Each base
table is associated with two delta tables: a new delta table for captur-
ing inserted or updated records, and an old delta table for capturing
deleted or pre-update records. Speci�cally, an UPDATE operation
generates two records: one in the old delta table representing the
pre-update state, and another in the new delta table representing
the post-update state. Multiple views on the same base table share
the same set of delta tables to minimize storage and maintenance
overhead. The distribution strategy of delta tables aligns with that
of the base tables, ensuring that no data movement is required
during the delta collection stage.

Unlike alternative approaches that rely on subscribing to Write-
Ahead Logging (WAL) for asynchronous delta collection [12], we
avoid log-based methods due to their inherent limitations. Specif-
ically, log retrieval overhead increases signi�cantly under high-
concurrency write scenarios, and using separate logs introduces
additional random disk I/O operations. Instead, our delta collection
mechanism is designed to handle concurrent writes e�ciently by
merging tuples from multiple transactions during the delta collec-
tion stage. This is enabled by the eventual consistency of our solution,
which does not enforce strict ordering of transaction applications.
Instead, the system ensures that views are updated to their �nal
state as soon as possible after base table writes are committed.

Handling Concurrent Updates. A critical scenario involves con-

current updates to the same row by multiple transactions. For ex-
ample, suppose three transactions update same row from (1,1)

to (1,2), (1,3), and (1,4); the old and new delta tables record
(1,1), (1,2), (1,3) and (1,2), (1,3), (1,4), respectively.
Under eventual consistency, system merges deltas by retaining the
net transition from (1,1) to (1,4), discarding intermediate states,
with remaining delta records merged during next preprune stage.

Periodic maintenance and throughput optimization. Our system

performs periodic and prompt maintenance of delta data by de-
fault, followed by cleanup of delta tables. The system automatically
merges concurrent writes during the delta collection stage, enabling

Table 2: Time cost for di�erent optimizers and delta sizes

Delta Rows 10
2

10
3

10
4

10
5

10
6

Native CBO (ms) 20 35 206 801 7,040

SV Adaptive (ms) 20 35 87 504 5,205

high throughput even under heavy write workloads. This design is
particularly advantageous for real-time data warehousing scenarios,
where numerous small write transactions are common. Although
it supports strong consistency modes, our production experience
shows that the eventual consistency model, combined with prompt
maintenance, su�ces for most analytical queries. It ensures that
view data only moves forward, avoiding phenomena such as phan-
tom reads while sacri�cing minimal freshness. This trade-o� aligns
well with the requirements of real-time analytics workloads.

Preprune delta data stage. After generating delta data, we in-
troduce a preprune stage. This stage serves two primary purposes:
(1) ensuring data correctness under concurrent updates in an even-
tual consistency model, and (2) reducing the volume of data propa-
gated to subsequent steps. To achieve the �rst goal, the following
operations are performed: ∆′=4F = ∆=4F−∆>;3 , ∆

′
>;3

= ∆>;3 −∆=4F .

These operations not only guarantee correctness in concurrent up-
date scenarios but also optimize performance for updates, which
are common in real-time OLTP-to-OLAP synchronization.

In addition to the basic pruning operations, we implements ad-
vanced pruning rules for update scenarios, such as valid column
determination. Consider an example with two tables: '(0, 1, 2) and
((8, 9, :). A view + (2, :) is de�ned as ' Z?('.0,(.8) (. In this case,

only updates to columns '.2 , (.: , '.0, and (.8 can a�ect the view,
while updates to '.1 and (. 9 have no impact. Thus, the pruning
operations are extended as follows: ∆′=4F = ∆=4F(E0;83)

− ∆>;3(E0;83) ,

∆′
>;3

= ∆>;3(E0;83) − ∆=4F(E0;83)
. The preprune stage is particularly

bene�cial in multi-level nested scenarios, where a signi�cant por-
tion of delta data generated by lower-level views can be pruned, re-
ducing the computational load for cascading updates and improving
system throughput. This is especially e�ective in OLAP workloads
involving wide tables, where fact tables are joined with multiple
dimension tables. Pruning dimension table data often signi�cantly
reduces the volume of data processed in subsequent stages.

Adaptive runtime maintenance optimizer. In Section 4.1,
we discussed static optimization strategies, such as pre-building
indexes and distribution keys for maintenance processes. How-
ever, real-time data processing workloads are often highly dynamic,
with frequent changes in data volume and patterns. For instance,
temporary data imports or signi�cant changes in base views can
lead to large volumes of delta data, complicating the selection of
incremental execution plans. To address this, we employ a hybrid
adaptive runtime maintenance optimizer combining cost-based and
rule-based approaches. It uses cost-based optimization with ad-
justed operator weights for stability, caches e�ective incremental
plans for reuse, and adapts dynamically based on delta data size
thresholds. For large deltas, it shifts to bulk processing or full view
regeneration. With this hybrid strategy, we can enhance stability,
reduce bad cases, and improve e�ciency.

Table 2 shows that Streaming View (SV) Adaptive optimizer
delivers similar maintenance time as native cost-based optimizer
(CBO) for small delta sizes, but achieves lower latency at moderate
and large delta sizes. This indicates that the adaptive strategy is
more e�ective than native CBO in reducing maintenance costs.

5159

Incremental calculation and data merge stage. Generally
speaking, the incremental maintenance algorithms discussed in
this stage constitutes the core phase of incremental process. Due
to space constraints, we provide a concise overview of the incre-
mental update terms for various SQL syntax scenarios supported
by Streaming View, leveraging bag algebra [27] and AGCA [29].
The following notations are de�ned in Table 1.

Standard SPJG Framework. The SPJG framework comprises se-

lection, projection, join, and group-by operations. We outline the
incremental update terms for three key scenarios:
– Selection & Projection on a single base table ':

∆&(% (') = &(% (∆')

– Inner Join on base tables
{

' 9

}

:
∆&(% � = &(% � ('1 Z · · · Z ∆' 9 Z · · · Z '=)

– Inner Join with Aggregation:
∆&(% �� = �66t[&(% � ('1 Z · · · Z ∆' 9 Z · · · Z '=)],

Recalculation is required for<8=/<0G if deletions a�ect their values.
Subquery and common table expressions (CTE). We employ sub-

query pull-up or hierarchical nesting for non-correlated subqueries
and CTEs. Assume updates on base table ' result in updates on<
subqueries and CTEs {(&1, . . . , (&<}, i.e. ∆(&8 (') = (&8 (∆') for
8 = 1, . . . ,<, the incremental update term of single-layer nesting is:

∆&(% � ((&1 Z · · · Z (&=) = Σ<8=1&(% � [(&8 (∆')]
where Σ(·) denotes bag union (UNION ALL) for all items. Multi-layer
nesting is handled recursively.

Time-dependent functions. For time functions like CURRENT_DATE,

Streaming View introduces an auto-created internal relation 'C8<4

to handle time-driven updates:

∆&C8<4
(% � (') = &F8Cℎ>DC C8<4

(% � (' Z ∆'C8<4)

where ∆'C8<4 represents the time-driven delta data, &F8Cℎ>DC C8<4
(% �

denotes the query with time function removed from the original

query &C8<4
(% �

.

Other SQL Patterns. We also support incremental maintenance

for window functions, higher-order aggregations functions (e.g.,
string_agg/array_agg), and UNION ALL, implemented via recom-
putation and recursive subclause processing.

Runtime info statistics and feedback optimizer. Despite
the extensive optimizations integrated into the framework, bad
cases are inevitable in complex real-world scenarios. As previously
mentioned, the lineage graph of view can often become highly
intricate, making monitoring and diagnostics crucial. For instance,
when latency occurs, it is essential to pinpoint exactly which views
within a lineage graph are experiencing bad or slow cases.

To address this, we deploy a comprehensive monitoring and di-
agnostic system that o�ers detailed runtime statistics for each view,
such as maintenance time, data volume, and other key metrics. The
system also includes rules for feedback-driven runtime optimiza-
tion—for example, upon execution errors or prolonged runtimes,
it invalidates and regenerates cached incremental execution plans
using the cost model. This feedback loop continuously enhances
execution e�ciency and reliability.

4.3 Operations Part

In this part, we address the challenge of modifying the de�nition of
view maintenance in real-world applications, such as adding �elds,
metrics, or altering JOIN relationships. Traditional methods often
require deleting and rebuilding the entire view pipeline, which be-
comes particularly cumbersome in systems, where complex nested

views are common. To improve this process, we designed the opera-
tions part, with pseudocode shown in Algorithm 3. It �rst retrieves
the dependencies �4?4=3 associated with the current view+ (Line
1). Then, it rebuilds the view + ′ using the new user-de�ned query
& ′ in parallel, ensuring e�ciency (Line 2). Subsequently, eachA
dependency �4?4=3[8] is reconstructed to maintain consistency
with the updated + ′. Leveraging Streaming View in-warehouse
capabilities, the process ensures transactional consistency for both
catalog and data changes, avoiding the challenges of maintaining
consistency in stream-based architectures. The part returns the
updated view+ ′ and updated set of dependencies �4?4=3′[=], pro-
viding a seamless transition while preserving data integrity and
minimizing user intervention.

Algorithm 3: Operations Part(& ′, +)

1 �4?4=3[=]← �4C�4?4=3(+);

2 + ′ ← �0B4�D8;3(& ′) in parallel;

3 for 8 ← 1 to = do
4 �4?4=3′[8]← '4�D8;3(�4?4=3[8],+ ′);

5 end

6 return + ′,�4?4=3′[=];

To address the challenges of rede�ning view e�ciently, Stream-
ing View introduces several innovative techniques. When a view
de�nition changes, a new base data is created using batch SQL exe-
cution and static optimization, similar to the initial build process.
Continuous delta collection is utilized to maintain write capabilities
on base tables during this transformation.

A critical challenge in traditional methods is the high-level lock-
ing required for catalog changes, which can render views inac-
cessible for extended periods. To mitigate this, Streaming View
introduces an online DDL capability, allowing catalog adjustments
and view hierarchy refreshes without making upper-layer views
inaccessible, thus reducing exclusive lock usage signi�cantly. The
alteration process is decomposed into multiple transactions, each
managed by an independent worker. This includes creating a new
view, populating it with data, correcting catalog metadata, and
updating dependent views. This phased approach minimizes oper-
ational overhead and downtime, ensuring maximum accessibility
and consistency while reducing the need for view dependency
management by operators. This framework enhances ease of use
and availability, allowing seamless integration of SQL changes in
complex, nested view environments.

5 OPTIMIZATIONS FOR STREAMING VIEW

This section explores several key optimizations that enhance the
performance of view maintenance in complex query scenarios.
These optimizations improve the scalability, e�ciency, and usability
of Streaming View in real-world OLAP workloads.

5.1 Left Join Algorithm Optimization

For outer join scenarios, it is widely well-known that the incremen-
tal maintenance result consists of the following two aspects: data
update caused by changing on normal tuples, and data tracking for
changing on orphan tuples [20, 30]. The corresponding incremental
update term ∆&(%$� can be expressed as the following equation,

5160

Table 3: Maintenance time of N left joins query (ms).
N 2 5 8 10 12 13 14 15

Traditional
Algorithm

18 55 336 1424 7966 15801 38180 89640

Streaming
View

18 29 45 89 186 217 241 274

∆&(%$� = ∆&# + ∆&$

= &(%$�
(

'1 Z · · · Z ∆' 9 Z · · · Z '=
)

+ ∆&$
(1)

where ∆&# and ∆&$ represent incremental update term caused

by normal tuples and orphan tuples separately. Note that ∆&#

follows the same form as the incremental update term of inner join
introduced in Section 4.2. For incremental maintenance on view
caused by updates on base tables, ∆&# and ∆&$ show mutually
inverse behavior: Insertion/deletion) on base table data always

triggers insertion/deletion for ∆&# and ∆&$ during incremental
maintenance of view. Symbolic distinctions about this behavior
will not be demonstrated in Equation.(1) or discussed in details.

As described in [30] (where ∆&$ is denoted as ∆+ �), a calculation

methodology is purposed for obtaining ∆&$: For a SQL scenario

involving # outer joins, ∆&$ is calculated by constructing a graph

consist of" outer join terms, which ranges from# to 2# depending

on the structure of outer joins in this SQL. Subsequently, ∆&$ is
derived by performing computations across di�erent outer join

terms for 1 ∼ 2# times according to graph con�guration.
Although this methodology emphasizes comprehensive coverage

of various combinations of outer join scenarios, it still may su�er
from exponential explosion issue in both time and space complexity
as number of outer joins # increases. Notably, over 90% outer join
SQL cases involve only left joins in real-world OLAP applications.
In order to optimize such cases with left join only, Streaming View
introduces the conception of forward join key graph, which system-
atically characterizes all join key propagation paths within current
left join SQL that may impact orphan tuples. When updates occur
in base tables, all related left join paths that are related to orphan
tuples can be directly determined easily by this graph. With such
optimization, the time and space complexity of incremental update
for left join only scenario can be signi�cantly reduced as compari-
son: For methodology in existing literature [30], the time and space

complexity of constructing outer join term graph is $(#) ∼ $(2#),
and outer join terms calculation are needed to be performed for at

most 2# times. In contrast, Streaming View achieves a time and

space complexity of $(#) ∼ $(# 2) for constructing forward join

key graph, and only requires to calculate once to derive ∆&$.
In Table 3, we evaluate a typical OLAP scenario where a fact

table directly LEFTJOINs multiple dimension tables, the incremental
maintenance time taken (in milliseconds) of traditional algorithm
and Streaming View for updating a small amount of base table
data are demonstrated separately. It can be observed that as the
number of tables involved in the LEFTJOIN increases, the advantage
of our algorithm becomes more apparent. For practical OLAP wide
table scenarios, it’s quite common to have 10 or more LEFTJOINs,
Streaming View is particularly well-suited for these scenarios.

5.2 Low Cardinality Update Optimization

In OLAP scenarios, a common real-time data processing paradigm
is the wide table model, where a fact table joins with multiple

Table 4: Maintenance time of low cardinality algorithm (ms).
Cardinality Level High (10000) Medium (100) Low (1)

Without optimization 43 309 29980

With optimization 34 32 31

dimension tables to enrich attributes. A typical workload involves
a fact table containing billions of records joining with dimension
tables ranging from tens of thousands to hundreds of thousands of
records. In real-world scenarios with Streaming View, at least half
of the workloads follow this pattern. Among these, one of the most
challenging cases is the update of a dimension table, as a single
row update in the dimension table can propagate to hundreds of
thousands or even millions of records in the view.

As previously described, Streaming View primarily employs a
merge-on-write mechanism. However, for this speci�c workload, a
merge-on-read-like optimization is introduced to e�ciently main-
tain low-cardinality �elds in views. The core idea is to manage
low-cardinality �elds using a dictionary-based approach. Instead of
storing repeated values directly, a dictionary is maintained where
each unique value is assigned a pointer. Consequently, updating a
low-cardinality �eld only requires modifying the dictionary entry,
signi�cantly improving update performance at the cost of minor
read overhead due to dictionary lookups.

Updates are not limited to a single layer—low-cardinality �elds
can propagate through multiple view dependencies. While updat-
ing such �elds in the �rst-layer view only requires modifying the
dictionary, the standard process still generates a large number of
incremental records that propagate upward. To address this, we
propose a global dictionary referenced by all view layers. Encoding
begins at the base table, and upper-layer views store only pointers
to dictionary entries. The maintenance �ow is as follows: initially,
follow the standard maintenance work�ow to ensure all dictionary
�elds in views use global pointers consistently across all nested
views. After periodic maintenance, only the relevant dictionary
values in the global dictionary repository need to be updated for
the base table’s dictionary columns.

Table 4 shows the execution time (in milliseconds) for incremen-
tal maintenance of a single UPDATE operation over 1 tuple on the
dimension table under the circumstance of a fact table with 1million
tuples joining with a dimension table. It can be clearly noticed that
the execution performance of our optimization methodology shows
no obvious di�erence among 3 di�erent cardinality levels of the fact
table. In comparison to normal algorithm, our optimization method
can achieve nearly 10x to 1,000x better execution performance in
low and medium cardinality scenarios.

5.3 Prestate Optimization

The incremental join algorithm described in Section 4.2 primarily
addresses scenarios where a single table undergoes modi�cations.
However, in real-world database systems, multiple tables often
update concurrently. Consider a three-way join scenario:

∆&(% � =&(% � (∆'1 Z '2 Z '3) +&(% � ('
′
1 Z ∆'2 Z '3)

+&(% � ('
′
1 Z '′2 Z ∆'3)

where '′1, '
′
2, and '

′
3 denote the after update states of '1, '2, and

'3, respectively. Taking '1 as an example:
'1 = '′1 + (∆>;3'1 − ∆=4F'1) − (∆=4F'1 − ∆>;3'1)

Since view maintenance is typically performed after base table
updates, retrieving the post-update states '′1, '

′
2, and '

′
3 is straight-

forward. However, obtaining the pre-update states is non-trivial,

5161

particularly for computing −(∆=4F'1 − ∆>;3'1), which requires a
full-table comparison, incurring at least $(#) complexity.

A common approach in previous work is to maintain a snap-
shot B of '1 to facilitate retrieval of the pre-update state [52], then
'1 = B=0?Bℎ>C ('′1) where B=0?Bℎ>C (') presents accessing table '
via pre-update snapshot. However, simply recording a snapshot is
insu�cient, as deleted tuples must be retained until all dependent
computations no longer require '1. This retention can block the
standard garbage collection mechanism of the database, leading to
performance degradation, query slowdowns, and data bloat.

In cope with this issue, Streaming View introduces an optimized
strategy that preserves snapshots of ' without blocking garbage
collection. While accessing ' via a speci�c snapshot B , newly in-
serted records in ' are �ltered out using snapshot isolation, and
deleted records are reconstructed via a UNION ALL operation on
historical delta logs. Then we obtain '1 as follow:

'1 = B=0?Bℎ>C ('′1) + (∆>;3'1 − ∆=4F'1)
Since UNION ALL is computationally lightweight compared to EXCEPT
ALL, which requires expensive comparisons and scans, this optimiza-
tion signi�cantly reduces the computational overhead of retrieving
pre-update states while ensuring that the garbage collection mech-
anism remains una�ected.

6 EVALUATIONS

6.1 Evaluation Setup

Main competitors. We compare the performance of Streaming
View (abbr. SV), stream processing engines, and traditional data-
base IVMs in real-time data processing tasks. Streaming View is
implemented using the standard AnalyticDB service of Alibaba
Cloud. Following the previous work [28], we �rst anonymized all
the commercial products involved due to their license agreements.
Since dedicated stream processing engines typically support only
incremental computation, we integrate a cloud-hosted version of a
popular stream processing engine with the standard AnalyticDB
service to facilitate incremental computations and result updates
for a fair evaluation. We refer to this integrated system as SPY. For
IVM solutions in traditional databases, we tested two widely used
commercial databases, DBX and DBY. DBX o�ers both synchronous
and asynchronous IVM modes, while DBY supports only synchro-
nous mode. In this study, we use DBX in asynchronous mode and
DBY in synchronous mode as our test benchmarks.

Workloads. Since the common workloads for real-time ETL,
such as NEXMark [43], are mostly single-table scenarios, it is dif-
�cult to re�ect the e�ect of real scenarios. We chose the standard
TPC-H [42] test set as the base data, and then built workloads by con-
structing corresponding views or view groups for Q1-Q22 queries
and generating data processing tasks. Initially, we conducted perfor-
mance evaluations on a TPC-H (Scale Factor = 10) dataset across all
tasks, measuring throughput under identical con�guration settings
and assessing the completeness of syntax support across di�erent
systems. Furthermore, we test the resource consumption at varying
update load levels to evaluate system performance under di�erent
loads. Beyond these tests, we adjusted the scale factor of TPC-H to
assess the scalability of all tested systems.

System con�gurations. All tested methods are uniformly con-
�gured with 8 CPUs and 32GB of memory or equivalent resources.
Speci�cally, our solution utilizes Alibaba Cloud standard Analyt-
icDB service, con�gured with four nodes, each with two Intel Xeon

2.90GHz virtual cores, 8GB DDR4 DRAM, and PL1-level cloud stor-
age. To accommodate SPY additional storage needs, it is allocated
6 CPUs and 24GB DDR4 DRAM, bringing the total with Analyt-
icDB to 8 Intel Xeon 2.90GHz CPUs, 32GB DDR4 DRAM, and same
cloud storage, matching our solution. DBX runs on a cloud ECS
server, and DBY uses a cloud-hosted version, both with the same
con�guration as our solution. Furthermore, AnalyticDB, SPY, DBX,
and DBY use their default con�gurations with minor optimizations
like SQL rewriting and pre-built indexing. Detailed descriptions of
optimizations are provided in the subsequent experimental sections.

During the experiment, we �rst import the appropriate size
TPCH standard dataset into each system. For each test scenario,
we then construct the corresponding views or stream processing
tasks. Mirroring real-world scenarios, the data update process in-
volves base table updates and the necessary updates to the views
or processing tasks’ result tables within the data warehouse. This
approach ensures a realistic and thorough evaluation of each sys-
tem’s capabilities in handling real-time data processing tasks under
consistent and comparable conditions.

6.2 Evaluation Results

Throughput performance. In this section, we conduct the test
for throughput of all methods. We use 10GB TPC-H to evaluate the
performance of various methods, for each of which we concurrently
apply enough update loads to test the highest throughput perfor-
mance that each system can achieve. Figure 7 shows the throughput
performance of di�erent methods in 22 data processing tasks. If a
method does not support a data processing task, the correspond-
ing throughput is recorded as 0 and is not drawn in the �gure. In
particular, when performing data processing tasks, the throughput
of Streaming View is 20 times higher than that of traditional IVM
systems. Compared with streaming engine, Streaming View is al-
ways superior to SPY engine in various scenarios, usually showing
at least twice the advantage. Especially for queries like Q18 and
Q22, the Streaming View is 7 times better than SPY. By simplify-
ing the processing path and improving the execution e�ciency of
the internal data warehouse, the proposed method improves the
throughput performance as shown in the experiment results.

For syntax completeness, Streaming View supports all the re-
quired syntax. As mentioned earlier, DBX and DBY lack support for
certain syntax elements, which show limitations on data processing
tasks. In addition, Streaming View performs all queries with native
SQL and con�guration without tuning. For other methods of evalu-
ation, we optimize according to the respective product guidelines
to achieve the best performance. SPY requires manual connection
reordering for multi-table join scenarios to prevent inconsistent
connection status and excessive intermediate data, which can par-
ticularly a�ect certain data processing tasks, such as Q2, Q8, and Q9.
Due to the lack of indexes, DBX and DBY face slower incremental
updates, requiring manual index enhancement before testing is
complete. To sum up, we can �nd that the proposed method is a
favorable choice among various data processing tasks.

System usage performance. In this experiments, we test repre-
sentative data processing tasks include Q1 (1-table with GROUP BY),
Q2 (JOIN without GROUP BY), Q8 (8-table JOIN with GROUP BY),
Q10 (4-table JOIN with GROUP BY), Q12 (2-table JOIN with GROUP
BY), and Q18 (nested scenario), for further usage performance eval-
uation. We tested various methods under di�erent update speeds
(10K/s, 20K/s, 40K/s, K=1000) to assess system usage.

5162

5163

5164

REFERENCES
[1] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R Narasayya. 2000. Automated

selection of materialized views and indexes in SQL databases. In VLDB, Vol. 2000.
496–505.

[2] Yanif Ahmad and Christoph Koch. 2009. DBToaster: A SQL compiler for high-
performance delta processing in main-memory databases. Proceedings of the
VLDB Endowment 2, 2 (2009), 1566–1569.

[3] Ra� Ahmed, Randall Bello, Andrew Witkowski, and Praveen Kumar. 2020. Au-
tomated generation of materialized views in oracle. Proceedings of the VLDB
Endowment 13, 12 (2020), 3046–3058.

[4] Tyler Akidau, FabianHueske, Konstantinos Kloudas, Leon Papke, Niklas Semmler,
and Jan Sommerfeld. 2024. Continuous Data Ingestion and Transformation in
Snow�ake. In Proceedings of the 18th ACM International Conference on Distributed
and Event-based Systems. 195–198.

[5] Amazon Web Services 2022. AWS announces Amazon Aurora zero-ETL
intergration with Amazon Redshift. Retrieved March 16, 2025 from
https://aws.amazon.com/cn/about-aws/whats-new/2022/11/amazon-aurora-
zero-etl-integration-redshift/

[6] AnalyticDB for PostgreSQL 2025. AnalyticDB for PostgreSQL: Online MPP Data
Warehousing Service - Vector Database - Alibaba Cloud. Retrieved Mar 16, 2025
from https://www.alibabacloud.com/en/product/hybriddb-postgresql

[7] Apache Flink 2025. Apache Flink® — Stateful Computations over Data Streams.
Retrieved Mar 16, 2025 from https://�ink.apache.org/

[8] Apache Spark 2025. Apache Doris: Open source data warehouse for real time data
analytics - Apache Doris. Retrieved Mar 16, 2025 from https://doris.apache.org/

[9] Apache Spark 2025. Apache Spark™ - Uni�ed Engine for large-scale data analytics.
Retrieved Mar 16, 2025 from https://spark.apache.org/

[10] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta,
Sebastian Hillig, et al. 2022. Amazon Redshift re-invented. In Proceedings of the
2022 International Conference on Management of Data. 2205–2217.

[11] Batcher. 1980. Design of a massively parallel processor. IEEE Trans. Comput. 100,
9 (1980), 836–840.

[12] Randall G Bello, Karl Dias, Alan Downing, James Feenan, Jim Finnerty, William D
Norcott, Harry Sun, Andrew Witkowski, and Mohamed Ziauddin. 1998. Materi-
alized views in Oracle. In VLDB, Vol. 98. 24–27.

[13] Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val Tannen. 2023.
DBSP: Automatic Incremental View Maintenance for Rich Query Languages.
Proc. VLDB Endow. 16, 7 (2023), 1601–1614.

[14] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache �ink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015).

[15] Edgar F Codd. 1972. Further normalization of the data base relational model.
Data base systems 6, 1972 (1972), 33–64.

[16] Giuseppe Coviello, Kunal Rao, Murugan Sankaradas, and Srimat Chakradhar.
2021. DataX: A system for data exchange and transformation of streams. In
International Symposium on Intelligent and Distributed Computing. Springer, 319–
329.

[17] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, et al. 2016. The snow�ake elastic data warehouse. In Proceed-
ings of the 2016 International Conference on Management of Data. 215–226.

[18] Chaoyue Dai, Feng Qian, Wei Jiang, Zhoutian Wang, and Zenghong Wu. 2014.
A personalized recommendation system for netease dating site. Proceedings of
the VLDB Endowment 7, 13 (2014), 1760–1765.

[19] Chiara Forresi, Enrico Gallinucci, Matteo Golfarelli, and Hamdi Ben Hamadou.
2021. A dataspace-based framework for OLAP analyses in a high-variety multi-
store. The VLDB Journal 30, 6 (2021), 1017–1040.

[20] Timothy Gri�n and Bharat Kumar. 1998. Algebraic change propagation for
semijoin and outerjoin queries. ACM SIGMOD Record 27, 3 (1998), 22–27.

[21] AnuragGupta, DeepakAgarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. 2015. Amazon redshift and the case for simpler
data warehouses. In Proceedings of the 2015 ACM SIGMOD international conference
on management of data. 1917–1923.

[22] Steve Ho�man. 2013. Apache Flume: distributed log collection for Hadoop. Packt
Publishing Ltd.

[23] Databricks Inc. 2025. Delta Live Tables. Databricks Product Page. Retrieved June
2, 2025 from https://www.databricks.com/product/data-engineering/dlt

[24] Snow�ake Inc. 2025. Dynamic Tables. Retrieved June 2, 2025 from https:
//docs.snow�ake.com/en/user-guide/dynamic-tables-about

[25] HV Jagadish, PPS Narayan, Sridhar Seshadri, S Sudarshan, and Rama Kanneganti.
1997. Incremental organization for data recording and warehousing. In VLDB.
ResearchGate GmbH, 16–25.

[26] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2024. F-IVM:
analytics over relational databases under updates. The VLDB Journal 33, 4 (2024),

903–929.
[27] Anthony Klug. 1982. Equivalence of relational algebra and relational calculus

query languages having aggregate functions. Journal of the ACM (JACM) 29, 3
(1982), 699–717.

[28] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli,
Daniel Lupei, and Amir Shaikhha. 2014. DBToaster: higher-order delta processing
for dynamic, frequently fresh views. The VLDB Journal 23 (2014), 253–278.

[29] Christoph Koch. 2010. Incremental query evaluation in a ring of databases. In
Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. 87–98.

[30] Per-Ake Larson and Jingren Zhou. 2006. E�cient maintenance of materialized
outer-join views. In 2007 IEEE 23rd International Conference on Data Engineering.
IEEE, 56–65.

[31] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in neural information processing systems 33 (2020), 9459–9474.

[32] Yinan Li and Jignesh M Patel. 2014. Widetable: An accelerator for analytical data
processing. Proceedings of the VLDB Endowment 7, 10 (2014), 907–918.

[33] Feifei Li. 2023. Modernization of databases in the cloud era: Building databases
that run like Legos. Proceedings of the VLDB Endowment 16, 12 (2023), 4140–4151.

[34] Jimmy Lin. 2017. The lambda and the kappa. IEEE Internet Computing 21, 05
(2017), 60–66.

[35] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, et al.
2021. Greenplum: a hybrid database for transactional and analytical workloads.
In Proceedings of the 2021 International Conference on Management of Data. 2530–
2542.

[36] Materialize. 2025. Materialize - The Streaming SQL Database. Materialize. Re-
trieved June 2, 2025 from https://materialize.com/

[37] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,
and Matei Zaharia. 2020. Analysis and exploitation of dynamic pricing in the
public cloud for ml training. In VLDB DISPA Workshop 2020.

[38] Milos Nikolic and Dan Olteanu. 2018. Incremental view maintenance with triple
lock factorization bene�ts. In Proceedings of the 2018 International Conference on
Management of Data. 365–380.

[39] Milos Nikolic, Haozhe Zhang, Ahmet Kara, and Dan Olteanu. 2020. F-IVM:
learning over fast-evolving relational data. In SIGMOD. 2773–2776.

[40] RisingWave. 2025. RisingWave: The Cloud-Native Streaming Database. Rising-
Wave. Retrieved June 2, 2025 from https://www.risingwave.com/

[41] Nicoleta Tantalaki, Stavros Souravlas, and Manos Roumeliotis. 2020. A review on
big data real-time stream processing and its scheduling techniques. International
Journal of Parallel, Emergent and Distributed Systems 35, 5 (2020), 571–601.

[42] The Transaction Processing Council 2025. TPC-H Homepage. Retrieved Mar 16,
2025 from https://www.tpc.org/tpch/

[43] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. Nexmark–
a benchmark for queries over data streams (draft). Technical report (2008).

[44] Panos Vassiliadis. 2009. A survey of extract–transform–load technology. Inter-
national Journal of Data Warehousing and Mining (IJDWM) 5, 3 (2009), 1–27.

[45] Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang,
Rong Kang, Julian Feinauer, Kevin A McGrail, Peng Wang, et al. 2020. Apache
IoTDB: Time-series database for internet of things. Proceedings of the VLDB
Endowment 13, 12 (2020), 2901–2904.

[46] Zuozhi Wang, Kai Zeng, Botong Huang, Wei Chen, Xiaozong Cui, Bo Wang,
Ji Liu, Liya Fan, Dachuan Qu, Zhenyu Hou, et al. 2020. Tempura: a general
cost-based optimizer framework for incremental data processing. Proceedings of
the VLDB Endowment 14, 1 (2020), 14–27.

[47] James Warren and Nathan Marz. 2015. Big Data: Principles and best practices of
scalable realtime data systems.

[48] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. 2016. Apache spark: a uni�ed engine for big data processing.
Commun. ACM 59, 11 (2016), 56–65.

[49] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin,
Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, et al. 2019. AnalyticDB:
real-time OLAP database system at Alibaba cloud. Proceedings of the VLDB
Endowment 12, 12 (2019), 2059–2070.

[50] Chao Zhang, Guoliang Li, and Tao Lv. 2024. HyBench: A new benchmark for
HTAP databases. Proceedings of the VLDB Endowment 17, 5 (2024), 939–951.

[51] Jingren Zhou, Per-Ake Larson, Jonathan Goldstein, and Luping Ding. 2006. Dy-
namic materialized views. In 2007 IEEE 23rd International Conference on Data
Engineering. IEEE, 526–535.

[52] Jingren Zhou, Per-Ake Larson, and Hicham G Elmongui. 2007. Lazy maintenance
of materialized views. In Proceedings of the 33rd international conference on Very
large data bases. 231–242.

5165

https://aws.amazon.com/cn/about-aws/whats-new/2022/11/amazon-aurora-zero-etl-integration-redshift/
https://aws.amazon.com/cn/about-aws/whats-new/2022/11/amazon-aurora-zero-etl-integration-redshift/
https://www.alibabacloud.com/en/product/hybriddb-postgresql
https://flink.apache.org/
https://doris.apache.org/
https://spark.apache.org/
https://www.databricks.com/product/data-engineering/dlt
https://docs.snowflake.com/en/user-guide/dynamic-tables-about
https://docs.snowflake.com/en/user-guide/dynamic-tables-about
https://materialize.com/
https://www.risingwave.com/
https://www.tpc.org/tpch/

	Abstract
	1 Introduction

