Streaming View: An Efficient Data Processing Engine for Modern
Real-time Data Warehouse of Alibaba Cloud

Fangyuan Zhang" Chunlei Xu Jiyu Qiao Hua Fan Wenchao Zhou
Mengqi Wu* Yunong Bao Yingli Zhou Caihua Yin Feifei Li
Alibaba Cloud Alibaba Cloud Alibaba Cloud Alibaba Cloud Alibaba Cloud

Computing Computing Computing Computing Computing
Hangzhou, China Hangzhou, China Hangzhou, China Hangzhou, China Hangzhou, China

{zhangfangyuan.zfy,mengqi.wmgq,mengda.xcl,baoyunong.byn,qiaojiyu.qjy}
{zhouyingli.zyi,guanming.fh,caihua.ych,zwc231487 lifeifei}
@alibaba-inc.com

ABSTRACT 1 INTRODUCTION
Real-time data warehouses are essential for modern applications. With the rapid evolution of internet technologies and the shift
Extract-Transform-Load (ETL) as a fundamental component of of- of modern enterprises toward data-driven decision-making, the
fline data warehouses also provides crucial support within real- demand for real-time data analytics [49] within data warehouses is
time data warehouses. Among various traditional ETL approaches, more critical than ever. Meanwhile, surging real-time data volumes
Lambda and Kappa have emerged as classic real-time data process- and rising business complexity—driven by dynamic pricing [37] and
ing solutions due to their freshness and query performance, which personalized recommendations [18] in e-commerce [33], real-time
best meet business demands. However, both of them often require anti-fraud and anomaly detection in finance [50], and continuous
the integration of external stream processing engines, introduc- sensor data ingestion for fault detection and predictive maintenance
ing challenges related to complexity, efficiency, and consistency. in industrial IoT [45]—pose greater challenges to real-time data
ZeroETL has emerged as an approach to address these issues. Never- warehouses in throughput, latency, and performance.
theless, existing ZeroETL-based solutions primarily emphasize the Challenges in real-time data warehousing. Traditionally,
implementation of extraction and loading, resulting in limitations data warehouses have been designed as batch-processing systems
in handling transformation. Incremental View Maintenance (IVM) optimized for large-scale historical analysis [25, 46, 49]. Conse-
offers an alternative that can enhance ZeroETL. However, existing quently, in the Extract-Transform-Load (ETL) processes of offline
IVM implementations often focus on query acceleration rather than data warehouses, most data processing tasks are accomplished
supporting high-throughput, complex real-time workloads. using batch processing techniques. In contrast, real-time data ware-
To address these challenges, we propose Streaming View, an houses adopt a variety of data processing paradigms, including
efficient real-time data processing engine integrated within An- stream processing, batch/micro-batch processing, pure real-time
alyticDB of Alibaba Cloud. Unlike existing solutions, Streaming computation, and incremental processing. Each of these paradigms
View supports high-throughput, complex data processing for real- offers unique advantages and trade-offs across dimensions such as
time streaming ETL workloads. Furthermore, it can be leveraged data freshness, performance, efficiency, and implementation com-
to optimize ZeroETL-based approaches by enhancing transforma- plexity. Among these approaches, the widely used Lambda [47]
tion capabilities. We design tailored algorithms and optimizations and Kappa [34] architectures perform real-time data processing
for diverse syntaxes and high-throughput scenarios, ensuring the based on the paradigm illustrated in Figure 1. They leverage stan-
system meets complex application needs. By integrating incremen- dalone stream processing engines such as Apache Flink [7, 14] and
tal computation into the data warehouse, Streaming View reduces Spark Streaming [9, 48]. They provide substantial improvements
complexity, ensures data consistency, and boosts performance, of- over traditional batch/micro-batch and pure real-time computa-
fering a robust solution for real-world applications. Experiments tion approaches in terms of data freshness and query performance,
show Streaming View improves processing performance by up to while also offering a more comprehensive and robust solution com-
7x and 20x over traditional ETL and IVM methods, respectively, pared to current incremental processing techniques. However, as
and addresses complex scenarios unsolved by existing solutions. real-time data volumes and business complexities increase, stan-

dalone stream processing engines are facing growing challenges.
Firstly, their integration with existing data warehouses significantly
increases system complexity and operational overhead [41], as it

PVLDB Reference Format: requires additional efforts in system integration, debugging, and
Fangyuan Zhang, Mengqi Wu, Chunlei Xu, Yunong Bao, Jiyu Qiao, Yingli monitoring. Furthermore, the inclusion of additional system compo-
Zhou, Hua Fan, Caihua Yin, Wenchao Zhou, and Feifei Li. Streaming View: nents leads to increased data movement and processing overhead,

An Efficient Data Processing Engine for Modern Real-time Data Warehouse
of Alibaba Cloud. PVLDB, 18(12): 5153 - 5165, 2025.
doi:10.14778/3750601.3750634

which can degrade overall performance and delay query responses,
particularly in high-throughput scenarios. Additionally, ensuring
strong consistency across streaming engines and data warehouses

“Both authors contributed equally to this research. -
This work is licensed under the Creative Commons BY-NC-ND 4.0 International licensed to the VLDB Endowment.

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
this license. For any use beyond those covered by this license, obtain permission by doi:10.14778/3750601.3750634

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

5153

https://doi.org/10.14778/3750601.3750634
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750634

Flink/Spark/ Flink/Spark/

Datax/Flink/

Ccanal ... Kafka/Storm... Kafka/Storm...
Stream Stream
Processing & Processing
DataiSync =d Pl
— (S Coa 1
OLTP Operational Data Application
Data Store Warehouse Data Service
(ODS) Layer (DW) Layer (ADS) Layer
Extract & Load Transform

Figure 1: A common real-time data warehouse architecture
with integrated streaming ETL and processing engines.

becomes a significant challenge, especially during schema changes,
data corrections, or system failures, as these operations often re-
quire coordinated updates across multiple systems. Finally, this
approach struggles to effectively leverage the sophisticated query
optimization techniques prevalent in mature database systems, lead-
ing to suboptimal data processing performance.

The emergence of ZeroETL and its limitations. To address
these challenges, ZeroETL [5] has emerged as an approach aimed
at eliminating traditional ETL pipelines. ZeroETL-based solutions
are implemented by establishing a direct underlying connection
between data in OLTP and OLAP systems, thereby removing the
necessity for additional data synchronization tools and pipelines. Ex-
isting ZeroETL-based solutions primarily emphasize the implemen-
tation of extraction and loading, while the transformation process
remains relatively simplistic. However, based on observations in
applications, we believe that comprehensive transformation is indis-
pensable for real-time data warehouses. Firstly, there is an incompat-
ibility between data models, which stems from the divergent design
paradigms of OLAP and OLTP systems. OLTP systems typically em-
ploy Third Normal Form (3NF) [15], whereas OLAP systems often
utilize denormalized schemas (e.g., star schema, snowflake schema)
[19, 32]. This mismatch necessitates additional transformations to
bridge the gap, which existing ZeroETL-based solutions struggle
to handle efficiently. Furthermore, query optimization in OLAP
workloads heavily relies on pre-aggregation and pre-computed
views to accelerate query performance, particularly for large-scale
datasets and complex application scenarios. The simplified han-
dling of Transformation (T) steps in which existing ZeroETL-based
solutions can lead to degraded query performance. As observed in
practical applications, we find that this direct cross-system integra-
tion approach often falls short of meeting user requirements.

In response to these challenges and limitations, we propose
Streaming View, a high-performance, real-time data processing
engine integrated into AnalyticDB [6] on Alibaba Cloud. Stream-
ing View enables defining views with SQL, supporting both result
materialization and real-time streaming data processing. Unlike the
Batch SQL approach in offline warehouses, our approach uses views
to store SQL, allowing continuous transformation of real-time data
in a streaming fashion as specified. Compared to separately inte-
grated streaming engines, this built-in streaming capability reduces
system complexity, minimizes inter-system data transfer, enhances
performance, reduces latency, and simplifies data consistency man-
agement. Furthermore, Streaming View is deeply integrated with
the core warehouse optimizations, including SIMD instruction sets,
cost-based optimizers, and columnar storage.

In fact, apart from the Streaming View, incremental view main-
tenance (IVM) approaches may also serve as a potential solution,
which has been widely discussed in the database community [2, 13,

5154

28]. Systems such as Oracle [12], SQL Server [51], Greenplum [35],
Doris [8], Redshift [21], and Snowflake [17] have also integrated
support for it. However, in these systems, the design and imple-
mentation of IVM tend to focus on lightweight precomputation
and query acceleration, particularly in read-heavy environments,
adopting a read strong consistency model. They often lack opti-
mizations for write throughput and distributed environments, and
their limited syntax for incremental updates hinders complex SQL
queries, especially in deeply nested cases. Therefore, in the context
of contemporary complex data processing and high-throughput
application scenarios, utilizing the existing IVM functionalities of
these products fails to efficiently support data processing needs.
Another solution is to directly integrate existing stream process-
ing engines within the data warehouse. However, most mainstream
stream processing engines and databases are built with different pro-
gramming languages, creating integration challenges. Additionally,
standalone stream processing engines are typically memory-centric,
conflicting with the disk-based operations of databases. Thus, it is
essential to design a stream processing engine specifically tailored
for data warehouse integration, allowing full use of the warehouse
architecture and optimizations. In experiments and Alibaba busi-
ness practice, Streaming View has shown clear advantages over
standalone stream processing engines in simplifying real-time ana-
lytical architectures, as well as in performance and maintainability.
Unlike traditional incremental views that primarily focus on
the implementation of incremental computations, the proposed
solutions for streaming views aim to establish a high-throughput,
low-latency, and continuously online stream processing engine in-
tegrated within the data warehouse. This approach emphasizes sup-
port for eventually consistent write models, complex SQL syntax,
and adaptive optimization and operational support to sustain the
stable execution of stream tasks. The implementation of Streaming
View is based on our designed unified distributed stream processing
framework. Within Streaming View, we have strategically designed
specialized components such as pre-prune, static tuning, and adap-
tive optimization phases, as well as operational segments. Streaming
View eliminates the need for external stream processing engines,
reducing system complexity while ensuring data consistency. Addi-
tionally, Streaming View is deeply integrated with core warehouse
optimizations, facilitating easier achievement of high performance
and elasticity. By incorporating native stream data processing into
the data warehouse, Streaming View simplifies real-time data archi-
tecture, enhances the efficient execution of T operations within the
warehouse, and addresses diverse and complex user requirements.
Our contributions are as follows:
We introduce a distributed stream processing framework that
comprises customized components to ensure scalability and effi-
ciency, supporting both batch and incremental processing.
We design algorithms and optimizations tailored for various syn-
tax and high-throughput data processing, ensuring the system
meets the needs of high-throughput and complex applications.
We designed comprehensive monitoring and operational support
for the proposed method to ensure stable and efficient large-scale
real-time data processing in production-grade systems.
Extensive experiments show our method boosts processing per-
formance by up to 7x (resp. 20x) compared to traditional ETL
(resp. IVM) methods. Moreover, it supports complex scenarios
beyond the capabilities of existing approaches. Real-world tests
further validate the effectiveness of our solution.

Table 1: Frequently used notations.

Notation Description
Q A user defined query.
o4 A query after rewrite.
SQ1,-..,S0n Subqueries or CTEs
RRy,...,R, Base table(s).

\% A view generated by a query Q.

AV, AR The incremental changes of view V and base table R.
Nola The deleted or pre-update state records.
Anew The inserted or updated records.

R The after update state of R, usual R"=R+AR.
SPJG Selection, projection, inner join and group by in SQL.
SPOJ Selection, projection and outer join in SQL.

Ospj/Qspoy | A query of selection, projection and inner/outer join.
t List of group-by columns.
Aggi[-] Aggregations (sum, count, etc) on group-by columns t.

2 BACKGROUND AND MOTIVATION

2.1 Traditional ETL and processing methods

Extract, Transform, Load (ETL) [44] is a fundamental process that
facilitates the data from various disparate sources into a unified
data warehouse. The ETL process comprises three primary stages:
e Extract: Raw data is gathered from multiple sources such as
databases, flat files, or APIs.
Transform: The data undergoes cleansing, aggregation, and re-
formatting to align with application requirements.
Load: Transformed data is deposited into a target system for
subsequent analysis and reporting.
Next, we introduce some popular methods related to ETL imple-
mentations. The frequently used notations are shown in Table 1.
Data Sync Tools. The ETL process generally involves synchro-
nizing data from multiple systems into the data warehouse. Tra-
ditional methods typically rely on tools such as DataX [16] and
Apache Flume [22], which are responsible for extracting data from
various sources and subsequently loading it into the warehouse.
Streaming Engine. In real-time scenarios, ETL for real-time
data tends to favor stream processing engines such as Apache Flink
[7, 14] and Spark Streaming [9, 48]. These engines not only facilitate
data synchronization but also support the development of complex
data transformation tasks using SQL or programming methods.
Batch SQL. In traditional offline data warehouses, data is loaded
into the warehouse, after which the ETL process is completed by
running SQL in a batch-oriented manner during off-peak hours.
Incremental View Maintenance (IVM). IVM [2, 13, 28] in-
crementally updates materialized views by propagating changes
from base tables, avoiding full recomputation. For a view V =
Q(R1, Ry, - - -, Ry), IVM computes incremental changes AV = Q(R; +
ARy, -+, Rn+ARp)—Q(R1, - - -, Ry), enabling efficient updates. How-
ever, IVM supports only a limited subset of SQL and struggles with
high-write workloads due to strong consistency models, making it
unsuitable for complex real-time data processing.

2.2 Architecture of AnalyticDB

Streaming View is designed as a real-time data processing system
that is seamlessly integrated within a popular commercial data
warehouse AnalyticDB [6]. AnalyticDB is a typical MPP-based [11]
data warehouse with an architecture consisting of a coordinator
and multiple workers, as shown in Figure 2. The coordinator is

5155

Coordinator

Worker 1 Worker n
Table 1 sV Table n NY
: executor 5 executor
View 1 View n

Figure 2: The architecture overview of AnalyticDB.

Typical Warehouse Business Process

==
| -

— =
Purchase Data Develop ETL
/Deploy Load (ODS->DWD- Develop Deploy

>DWS->ADS) Query Query
2ty 2ty
ADB-SV Traditional IVM

Figure 3: Data warehouse business process.

responsible for generating execution plans, managing distributed
transactions, and handling query distribution and scheduling.

In most cases, tables in AnalyticDB are distributed across mul-
tiple workers using hash partitioning. Similarly, streaming views
created by AnalyticDB are also distributed across multiple work-
ers, just like regular tables. As a subsystem within AnalyticDB,
Streaming View consists of two main components: (i) Manager,
which runs on the Coordinator and is responsible for generating
incremental execution plans and managing the view maintenance
workflow, including adaptive optimization strategies. (ii) Executor,
which runs on each worker and handles incremental computations,
data merging, and other computational tasks.

2.3 Motivation

Traditional industry approaches to IVM primarily focus on view
maintenance [12], rewriting [1], and recommendation [3, 10]. The
key strategy involves collecting and analyzing the workload of SQL
queries to identify common subsets, which are then precomputed,
thus accelerating the online query performance. However, this ap-
proach has significant limitations in practical business scenarios. As
shown in Figure 3, a typical data warehouse construction process
involves initial setup, importing base data, developing layered ETL
processes, building ad-hoc queries on top of these ETL layers, and fi-
nally deploying queries. Traditional methods are disconnected from
this standard workflow because they are introduced too late—often
only optimizing after queries have already been running in the data
warehouse. As a result, IVM is not effective for this process.

To address this, Streaming View is designed to integrate into data
warehouse operations at an earlier stage, providing real-time sup-
port for ETL activities. While certain ETL processes, such as multi-
table JOIN operations and metric pre-computation, share some
similarities with traditional IVM by leveraging pre-computation
to enhance query performance, Streaming View handles a more
comprehensive workload that requires serial management within
the core data processing stream. Furthermore, for seamless inte-
gration into the ETL phase, view maintenance must achieve high
throughput, low latency, comprehensive syntax support, and main-
tain ongoing online stability for deployment in real-world applica-
tions. These requirements extend beyond the scope of traditional
IVM incremental computations and align more closely with the

Data Sync

Logs
System
Data Sync

AnalyticDB

I
Y

customer

t_shopcart

t_orders t_inventory

sv_trade_info sv_user_profiles t_live_chat

sv_delivery/profit... sv_recommended_items

|
v
gre. 9
LLM
AD-HOC ‘
(V5

Figure 4: A real-world case.

na Shopping
Assistant

characteristics of stream processing. Consequently, Streaming View
incorporates tailored designs and optimizations that enable it to
supplant traditional stream processing engines, facilitating seam-
less integration with ETL workloads at the early stages of the data
warehouse process. This approach significantly enhances data pro-
cessing performance in practical scenarios, ensuring that Streaming
View meets rigorous demands of modern data environments while
providing more effective operation compared to traditional IVM.

2.4 Real-world Case

Consider a popular e-commerce live-streaming scenario where

large language models (LLMs) are used to automatically recommend

corresponding products for real-time chat messages, alleviating
the workload of hosts. In this business scenario, real-time data
processing technology is leveraged to address issues related to the

timeliness and customization limitations within LLM systems [31].
As shown in Figure 4, the data for this system primarily origi-

nates from two sources: the OLTP database and the logs system.
There are several tables involved, including t_orders, t_customer,
t_inventory, t_shopcart,and t_live_chat. These are processed
through joins and group by operations using sv_trade_info and
sv_user_profiles. The real-time processed data is then channeled
through sv_recommended_items and input into the LLM to gener-
ate a list of recommended products. Several key challenges arise
during the real-time data processing:

o High Throughput:Requires high write throughput, typically reach-
ing hundreds of thousands of entries per second.

o Complex Joins: Traditional standalone stream processing engines
demand maintaining redundant copies of all relevant tables out-
side the data warehouse, which consumes significant resources.

o Data Freshness: Data processing involves multi-layered nested
pipelines. The extended data paths in standalone stream process-
ing engines exacerbate freshness issues.

Streaming View is specifically designed and optimized for high-
throughput, low-latency data processing. It is integrated within
the data warehouse and conducts incremental computations based
on disk storage, thereby avoiding data redundancy. This method
effectively satisfies the performance and freshness requirements.

3 SYSTEM DESIGN
3.1 Design Principles

Our goal is to serve as a stream engine replacement for real-time
data analytics, supporting complex ETL processing to simplify real-
time data architectures. Accordingly, the design of Streaming View
follows several key principles that address the limitations of tra-
ditional Incremental View Maintenance (IVM) in real-time data

5156

processing versus streaming data engines. These principles are es-
sential for driving the necessary paradigm shifts in key dimensions:
ultra-high throughput processing, incremental syntax complete-
ness, and automatic tuning with persistent availability guarantees.

Ultra-High throughput processing: Traditional IVM systems
typically operate in bypass mode under read-heavy scenarios. In
contrast, Streaming View is designed for in-line deployment within
the core data pipeline of real-time data processing. This requires
handling high throughput while maintaining strict latency con-
straints, ensuring data processing tasks complete within seconds.
To achieve this, Streaming View leverages distributed delta col-
lection and advanced pre-pruning to minimize the data processed
incrementally, and uses an eventually consistent write mode to
merge small write tasks, enhancing throughput. Additionally, the
system dynamically adjusts execution plans based on runtime infor-
mation, ensuring optimal performance under varying workloads.

Incremental Syntax Completeness: The complexity of view
maintenance definitions in data processing scenarios often involves
multi-level nested relationships. If the SQL syntax of any layer
exceeds the supported incremental syntax table, the integrity of
the entire ETL pipeline will be compromised. Streaming View ad-
dresses this by providing extensive support for key SQL operations,
including complex joins and aggregations. The incremental compu-
tation and merge stages of the system are designed to be extensible,
allowing for the integration of new incremental algorithms to sup-
port additional SQL constructs. Empirical analysis conducted post-
deployment validates the necessity of this design; in real-world
deployments, over 50% of lineage graphs exhibit depths exceed-
ing five levels and widths surpassing ten nodes. This complexity
not only introduces significant performance challenges but also
necessitates comprehensive syntactic coverage.

Automatic tuning and availability: In mission-critical data
transformation tasks, Streaming View systems must move beyond
the traditional IVM "create-tune-exit" optimization paradigm. Stream-
ing View employs pre-optimized incremental update strategies that
reduce the need for manual tuning. Furthermore, the system au-
tonomously adapts to workload fluctuations during continuous
incremental maintenance, ensuring persistent availability and sta-
bility.

To address these demands of real-time data processing, Stream-
ing View is designed with core principles ensuring high throughput,
comprehensive syntax support, and continuous online. Natively
integrated in AnalyticDB, it leverages optimizations like SIMD,
cost-based optimization, columnar storage, and elastic scaling to
minimize overhead. With AnalyticDB transaction framework, it
maintains eventual consistency for Streaming View updates while
preserving base table ACID properties, using a merge-on-write mech-
anism to eliminate runtime merge overhead and ensure consistent
read performance. The system provides extensive incremental syn-
tax support, reducing syntax failure risks and enhancing applica-
bility across business scenarios. Automatic optimization during
creation and maintenance phases minimizes manual intervention,
while continuous read/write operations ensure business continuity
during SQL definition changes. These principles enable Streaming
View to handle complex real-time data processing efficiently.

3.2 Architecture Overview

Based on the aforementioned goals and principles, we propose a
novel streaming view maintenance framework as shown in Figure 5.

J— . Incremental Maintenance Part
i
: °®
&1L o =
T Delta Runti

: untime
0(2 Prewrite Collect Preprune Tuning
o v gt
s@® [4 < ¢ 02
= &]
el Build Static Incremental Incremental
o Baseline Tuning Merge Calc
2o .
O . Operations Part -============--~. \
" (B —
i Static E] E>
! Tuning Rebuild Handle
| N Baseline Depends y

Figure 5: Architecture of Streaming View.

Our framework is structured into three main parts: Base Building
part, Incremental Maintenance part, and the Operations part. Unlike
traditional methods, which focuses on incremental computation
and merging, our framework expands other part and includes ad-
ditional stages such as Pre-write, Preprune Delta Data, Adaptive
Runtime Optimizer, Runtime Information Statistics and Feedback,
and the entire Operations part. These enhancements are designed
to further strengthen high throughput, low latency, syntactic com-
pleteness, and continuous online processing, making Streaming
View more suitable for data processing scenarios compared to tradi-
tional Incremental View. Additionally, our framework aims to unify
common components across the entire view maintenance lifecycle,
such as baseline building, distributed delta collection, advanced
incremental data pre-pruning, and support for transactional even-
tual consistency. Furthermore, we design extensible interfaces at
appropriate points to facilitate the continuous iteration of a wide
range of incremental syntax at a low cost. Despite much research
and discussion related to these topics, there remains a lack of a
complete framework design capable of fulfilling all the mentioned
requirements while supporting complex data processing pipeline
tasks with high throughput and low latency. In Section 4, we will
provide a detailed discussion of this framework.

Beyond the typical challenges and corresponding design trade-
offs, during the large-scale deployment of Streaming View, we
observed specific scenarios in real-world business cases. Although
these scenarios may seem niche, they account for a significant
portion of actual business requirements. To address these, we de-
signed and implemented targeted optimizations that significantly
improved the maintenance efficiency of views in these scenarios.
We will elaborate on these optimizations in Section 5.

3.3 Design Summary

We concludes the evaluation by summarizing the design trade-offs
illustrated in Figure 6. The figure provides an empirical ranking
(higher is better) of several schemes across various design attributes.
For each attribute, we score them based on their relative perfor-
mance or our experience in implementing the designs (e.g., syntactic
completeness). Streaming View achieves superior performance by
leveraging incremental maintenance with built-in database capabili-
ties, outperforming stream engine, traditional IVM, and batch-based

5157

Performance
Resource 4 Data

Isolation -~ /\ Freshness
/ N\
/ \
\\ —e— Streaming View

Streaming Engine

/ 4 ° o Traditional VM
| | —e— Batch/MiniBatch
N
Duiu. / Syntax
Correction \ / Completeness
\ /
N e
~_ -
Development Operational
Efficiency Simplicity

Figure 6: Design summary of the four strategies.

processing methods. It ensures high data freshness through stream-
like processing within a built-in system, moreover it maintains ANSI
SQL subset completeness, balancing expressiveness and efficiency.
Unlike stream engines, which require multisystem coordination,
Streaming View integrates built-in optimizations, improving op-
erational efficiency, development simplicity, and data correction.
While its isolation level is shared, its holistic design makes it a
robust solution.

4 DESIGN AND IMPLEMENTATION
4.1 Base Building Part

For the base building part, it corresponds to the creation process
of a materialized view in a typical IVM system. Typically, users
need to provide a SQL statement Q to define a specific view. The
syntax check is usually performed first to confirm whether Q is in
the list of syntaxes that support incremental updates. After passing
the check, the SQL is executed in a conventional manner to gener-
ate a set of base data. This part mainly includes three key stages:
query pre-rewriting, parallel batch processing construction, and
static optimization. The details of each stage will be introduced
later. The pseudocode is shown in Algorithm 1. First, the query pre-
rewriting stage prepares for subsequent operations by completing,
splitting, or rewriting the original query (line 1). Second, the batch
construction stage adopts a parallel computing strategy, signifi-
cantly improving the computational efficiency of data construction
(line 2). Finally, the static optimization stage generates optimization
information such as indexes and data distribution based on the
rewritten query and the constructed data (line 3), further enhanc-
ing data processing performance. Unlike the design of general IVM
systems, Streaming View uniquely designs the first and third stages
in this part to improve existing practices.

Algorithm 1: Base Building (Q)

1 Q' « Prewrite(Q);

2 V « BaseBuild(Q’) in parallel;

3 Index, Distribution, Other « StaticOptimize(Q’,V);
4 return V

Pre-write stage. Query pre-rewrite stage is aimed at aligning
complex SQL syntax. Standard SQL syntax can be quite intricate,
particularly when dealing with incremental updates. For example,
the algorithms differ between single table operations and JOIN
operations, as well as between inner joins and outer joins. However,

the actual situation is more complex and requires addressing various
details. Here are two specific examples:

EXAMPLE 1. For SQL statements containing a GROUP BY clause, it is
generally required that all GROUP BY fields are included in the SELECT
columns of result. If a user’s SQL does not meet these requirements,
our solution will automatically complete result columns for the user.

EXAMPLE 2. In our solution, the scenario of an outer join combined
with aggregation does not support non-equi join conditions. However,
scenarios with only outer joins without aggregation do support non-
equi join conditions. In such cases, during this stage, we rewrite the
outer join with aggregation into an outer join followed by a view
nested with a single-table aggregation. This approach maximizes
compliance with syntax requirements for the customer.

There are many similar scenarios in which we try to rewrite
queries as much as possible during this stage. In practice, we have
observed that this capability greatly enhances syntax completeness,
significantly reducing issues related to user syntax support.

Base building stage. In this stage, we execute the SQL defined
by streaming view to generate a base data. However, this process
cannot be completed immediately and may take some time. During
the execution of the SQL, the data snapshot is captured at the
moment the SQL execution begins. This means that any incremental
updates to the base tables occurring during this period are not
handled by the batch process and require additional attention.

A straightforward solution to ensure data consistency is to apply
a write lock on the base tables during the build stage. However, this
approach can significantly disrupt production environments, as
large views often need several minutes or even hours to complete
their construction. To address this, we developed a more efficient
method that allows base tables to remain writable during the build
process. At the start of the build, we employ a brief write lock
to create a delta table associated with the base table, utilizing a
reference counting method. If a delta table already exists due to
other streaming view processes on the same base table, it can be
reused; otherwise, a new one is created. Once the delta table is
established, we commit the transaction and release the write lock.
Consequently, the delta table records any incremental writes made
to the base table, which are subsequently processed once the build is
completed. This approach minimizes disruptions while maintaining
data consistency.

Static optimize stage. As previously mentioned, our system is
designed to ensure that users can perform maintenance on their
defined streaming view with high performance without tuning. To
achieve this, we have dedicated this particular stage to optimization.
In this stage, a series of optimization rules are generated by com-
prehensively analyzing the SQL characteristics of view definitions
and the statistical information from the base data produced in the
previous stage. These rules are applied to enhance the efficiency of
the subsequent maintenance stage, with automatic indexing and
distribution key selection being particularly critical.

Automatic indexing. Our solution maintains data strictly based
on SQL execution results for operations such as JOINs and aggre-
gations, avoiding the use of data windowing methods commonly
employed by many stream engines to reduce related data to ensure
complete support for incremental maintenance semantics. Given
the limited capacity of memory, Streaming View cannot rely on
in-memory hash tables for managing JOIN and aggregation states,

5158

as is common in window-based stream engines, and instead em-
ploys disk-based mechanisms to improve efficiency. Indexing plays
a pivotal role in this process. Key indexing strategies include: (i) Join
Views: Indexing the join key on base tables significantly improves
efficiency during incremental computation. (ii) SPJ Views: Creating
a near-unique index on the view enables more efficient deletion
during incremental merges. (iii) Group by Views: A unique index
on the Group By fields facilitates smoother incremental merge op-
erations. (iv) Min/Max Views: Indexing base table ensures efficient
recalculation of min/max values when deletions occur.

Additionally, specific indexing strategies are applied to handle
outer joins, window functions, and UNION ALL operations. How-
ever, the presence of multiple syntactic features in an view’s SQL
definition may necessitate multiple indexes, and an streaming view
may serve dual roles (e.g., as both an streaming view and a base table
for another streaming view). This can lead to index redundancy. To
address this, the process is divided into a rule collection stage and
a decision-making stage. The rule collection stage generates a can-
didate index list using extensible rules, while the decision-making
stage consolidates these into a final index list.

Automatic Distribution Key. As a typical MPP distributed data
warehouse, the choice of distribution keys significantly impacts
efficiency of incremental computation and merge operations. For
instance, aligning the distribution key of a base table with the
join key in JOIN operations eliminates network overhead. Unlike
automatic indexing, AnalyticDB only adjusts the distribution keys
on streaming views and provides recommendations for base tables,
striking a balance between maximizing maintenance efficiency and
preserving stability of existing user queries. This trade-off ensures
optimal performance while minimizing disruption to the system.

According to data collected from large-scale production environ-
ments, with the aforementioned optimizations, more than 99% of
streaming views reached a high-performance state that did not re-
quire tuning after the build stage, and the incidence of sub-optimal
conditions was less than 1%.

4.2 Incremental Maintenance Part

This part process the core of streaming view maintenance oper-
ations, where the view is continuously updated incrementally in
response to changes in the read and write activities of the base
tables. The conventional approach involves iteratively executing
delta collection, incremental computation, and incremental merg-
ing. However, with the requirements of application scenario for
high throughput, completeness, and sustained online stability, we
have custom-designed several stages: Pre-prune, AdaptiveOptimize,
monitoring and collection, and feedback. The pseudocode for this
part is shown as Algorithm 2.

The incremental maintenance process for a set of view V is initi-
ated by first obtaining the new and old deltas (Apew and Ayjg) from
the updated base table in parallel (Line 1). For each view’s query de-
fine Q[i], the deltas are pre-pruned to eliminate invalid data based
on the query constraints (Line 3), after the pre-pruning process is
completed, the pruned deltas (Aney and A,j4/) are obtained. Sub-
sequently, runtime adaptive optimization rules are generated to
tailor the computation to the specific characteristics of the deltas
and the query (Line 4). Depending on type of query (e.g., SP, INNER
JOIN, etc), the incremental data AQ[i] is calculated in parallel (Line

5), leveraging base table and optimization rules. The computed in-
cremental results are then merged with the previous state V[i] in
parallel, producing the updated view V[i]’ and the corresponding
delta AV[i] (Line 6). If the merged result has dependencies, the
process may recursively handle these dependencies, ensuring con-
sistency across the system (Line 7). Finally, the algorithm returns
the fully updated views V’ completing the incremental maintenance.
Next, we introduce the details of involved stages.

Algorithm 2: Inc-Maintenance(Q, V, BaseT able)

1 Apew, Aojg < ObtainDelta(BaseTable) in parallel;

2 fori < 1tondo

3 Anew, Dojgr < PrePrune(Anew, Dojg, QLil);

rules « AdaptiveOptimize(Apew’, Motar> QLil);

AQ[i] « IncCalc(Anew, Nogr, QLi], BaseTable, rules)
in parallel;

V'[i], AV[i] « IncMerge(AQ[i], V) in parallel;

if HasDepend(V'[i]) then recursive AV[i] ;

s end

4
5

6
7

9 return V’/;

Distributed delta collect stage. In our data warehouse, data
is distributed across multiple worker nodes. To support streaming
view, we introduce a distributed delta table mechanism. Each base
table is associated with two delta tables: a new delta table for captur-
ing inserted or updated records, and an old delta table for capturing
deleted or pre-update records. Specifically, an UPDATE operation
generates two records: one in the old delta table representing the
pre-update state, and another in the new delta table representing
the post-update state. Multiple views on the same base table share
the same set of delta tables to minimize storage and maintenance
overhead. The distribution strategy of delta tables aligns with that
of the base tables, ensuring that no data movement is required
during the delta collection stage.

Unlike alternative approaches that rely on subscribing to Write-
Ahead Logging (WAL) for asynchronous delta collection [12], we
avoid log-based methods due to their inherent limitations. Specif-
ically, log retrieval overhead increases significantly under high-
concurrency write scenarios, and using separate logs introduces
additional random disk I/O operations. Instead, our delta collection
mechanism is designed to handle concurrent writes efficiently by
merging tuples from multiple transactions during the delta collec-
tion stage. This is enabled by the eventual consistency of our solution,
which does not enforce strict ordering of transaction applications.
Instead, the system ensures that views are updated to their final
state as soon as possible after base table writes are committed.

Handling Concurrent Updates. A critical scenario involves con-

current updates to the same row by multiple transactions. For ex-
ample, suppose three transactions update same row from (1,1)
to (1,2), (1,3), and (1,4); the old and new delta tables record
a,n, (,2), (1,3)and (1,2), (1,3), (1,4), respectively.
Under eventual consistency, system merges deltas by retaining the
net transition from (1,1) to (1,4), discarding intermediate states,
with remaining delta records merged during next preprune stage.

Periodic maintenance and throughput optimization. Our system
performs periodic and prompt maintenance of delta data by de-
fault, followed by cleanup of delta tables. The system automatically
merges concurrent writes during the delta collection stage, enabling

5159

Table 2: Time cost for different optimizers and delta sizes

Delta Rows 10 [103 [10* [10° [10°
Native CBO (ms) 20 35 206 | 801 | 7,040
SV Adaptive (ms) | 20 | 35 | 87 | 504 | 5,205

high throughput even under heavy write workloads. This design is
particularly advantageous for real-time data warehousing scenarios,
where numerous small write transactions are common. Although
it supports strong consistency modes, our production experience
shows that the eventual consistency model, combined with prompt
maintenance, suffices for most analytical queries. It ensures that
view data only moves forward, avoiding phenomena such as phan-
tom reads while sacrificing minimal freshness. This trade-off aligns
well with the requirements of real-time analytics workloads.

Preprune delta data stage. After generating delta data, we in-
troduce a preprune stage. This stage serves two primary purposes:
(1) ensuring data correctness under concurrent updates in an even-
tual consistency model, and (2) reducing the volume of data propa-
gated to subsequent steps. To achieve the first goal, the following
operations are performed: Aj,ey, = Anew—A01a, AL 1 = Do1g—Aneww-
These operations not only guarantee correctness in concurrent up-
date scenarios but also optimize performance for updates, which
are common in real-time OLTP-to-OLAP synchronization.

In addition to the basic pruning operations, we implements ad-
vanced pruning rules for update scenarios, such as valid column
determination. Consider an example with two tables: R(a, b, ¢) and
S(i, j. k). A view V(c, k) is defined as R »a5g g5.5) S. In this case,
only updates to columns R.c, S.k, R.q, and S.i can affect the view,
while updates to R.b and S.j have no impact. Thus, the pruning
operations are extended as follows: A7, = Anewgarig) — Doldiyariay
A’O 1d = Doldigaria) ~ Breweatia)- The preprune stage is particularly
beneficial in multi-level nested scenarios, where a significant por-
tion of delta data generated by lower-level views can be pruned, re-
ducing the computational load for cascading updates and improving
system throughput. This is especially effective in OLAP workloads
involving wide tables, where fact tables are joined with multiple
dimension tables. Pruning dimension table data often significantly
reduces the volume of data processed in subsequent stages.

Adaptive runtime maintenance optimizer. In Section 4.1,
we discussed static optimization strategies, such as pre-building
indexes and distribution keys for maintenance processes. How-
ever, real-time data processing workloads are often highly dynamic,
with frequent changes in data volume and patterns. For instance,
temporary data imports or significant changes in base views can
lead to large volumes of delta data, complicating the selection of
incremental execution plans. To address this, we employ a hybrid
adaptive runtime maintenance optimizer combining cost-based and
rule-based approaches. It uses cost-based optimization with ad-
justed operator weights for stability, caches effective incremental
plans for reuse, and adapts dynamically based on delta data size
thresholds. For large deltas, it shifts to bulk processing or full view
regeneration. With this hybrid strategy, we can enhance stability,
reduce bad cases, and improve efficiency.

Table 2 shows that Streaming View (SV) Adaptive optimizer
delivers similar maintenance time as native cost-based optimizer
(CBO) for small delta sizes, but achieves lower latency at moderate
and large delta sizes. This indicates that the adaptive strategy is
more effective than native CBO in reducing maintenance costs.

Incremental calculation and data merge stage. Generally
speaking, the incremental maintenance algorithms discussed in
this stage constitutes the core phase of incremental process. Due
to space constraints, we provide a concise overview of the incre-
mental update terms for various SQL syntax scenarios supported
by Streaming View, leveraging bag algebra [27] and AGCA [29].
The following notations are defined in Table 1.

Standard SPJG Framework. The SPJG framework comprises se-
lection, projection, join, and group-by operations. We outline the
incremental update terms for three key scenarios:

- Selection & Projection on a single base table R:
AQsp(R) = Qsp(AR)
— Inner Join on base tables {RJ-}:
AQspy = Qspy(Ry >4 - - -
- Inner Join with Aggregation:
AQspjG = Aggt[Qspy(R1 >+ -+ b ARj b -+)4 Rp)],
Recalculation is required for min/max if deletions affect their values.

Subquery and common table expressions (CTE). We employ sub-
query pull-up or hierarchical nesting for non-correlated subqueries
and CTEs. Assume updates on base table R result in updates on m
subqueries and CTEs {SQ1,...,50m}, i.e. ASQi(R) = SQ;(AR) for
i =1,...,m, the incremental update term of single-layer nesting is:

AQspy(SQ1 > - >4 SQp) = 31, Qspy [SQi(AR)]
where 2(-) denotes bag union (UNION ALL) for all items. Multi-layer
nesting is handled recursively.

Time-dependent functions. For time functions like CURRENT_DATE,
Streaming View introduces an auto-created internal relation Ryjme
to handle time-driven updates:

AQ_tS'lP"]w(R) _ Q;v};}hout time
where AR;ime represents the time-driven delta data,

> ARj > - -+ b Rp)

(R >4 ARtime)

Q;‘vlgﬁhaut time
denotes the query with time function removed from the original
query Q?P"]’e.

Other SQL Patterns. We also support incremental maintenance
for window functions, higher-order aggregations functions (e.g.,
string_agg/array_agg), and UNION ALL, implemented via recom-
putation and recursive subclause processing.

Runtime info statistics and feedback optimizer. Despite
the extensive optimizations integrated into the framework, bad
cases are inevitable in complex real-world scenarios. As previously
mentioned, the lineage graph of view can often become highly
intricate, making monitoring and diagnostics crucial. For instance,
when latency occurs, it is essential to pinpoint exactly which views
within a lineage graph are experiencing bad or slow cases.

To address this, we deploy a comprehensive monitoring and di-
agnostic system that offers detailed runtime statistics for each view,
such as maintenance time, data volume, and other key metrics. The
system also includes rules for feedback-driven runtime optimiza-
tion—for example, upon execution errors or prolonged runtimes,
it invalidates and regenerates cached incremental execution plans
using the cost model. This feedback loop continuously enhances
execution efficiency and reliability.

4.3 Operations Part

In this part, we address the challenge of modifying the definition of
view maintenance in real-world applications, such as adding fields,
metrics, or altering JOIN relationships. Traditional methods often
require deleting and rebuilding the entire view pipeline, which be-
comes particularly cumbersome in systems, where complex nested

5160

views are common. To improve this process, we designed the opera-
tions part, with pseudocode shown in Algorithm 3. It first retrieves
the dependencies Depend associated with the current view V (Line
1). Then, it rebuilds the view V’ using the new user-defined query
Q’ in parallel, ensuring efficiency (Line 2). Subsequently, eachA
dependency Depend[i] is reconstructed to maintain consistency
with the updated V’. Leveraging Streaming View in-warehouse
capabilities, the process ensures transactional consistency for both
catalog and data changes, avoiding the challenges of maintaining
consistency in stream-based architectures. The part returns the
updated view V' and updated set of dependencies Depend’[n], pro-
viding a seamless transition while preserving data integrity and
minimizing user intervention.

Algorithm 3: Operations Part(Q’, V)

1 Depend[n] < GetDepend(V);
V' « BaseBuild(Q’) in parallel;
fori— 1tondo
‘ Depend’[i] « ReBuild(Depend[i],V’);
end
return V’,Depend’ [n];

To address the challenges of redefining view efficiently, Stream-
ing View introduces several innovative techniques. When a view
definition changes, a new base data is created using batch SQL exe-
cution and static optimization, similar to the initial build process.
Continuous delta collection is utilized to maintain write capabilities
on base tables during this transformation.

A critical challenge in traditional methods is the high-level lock-
ing required for catalog changes, which can render views inac-
cessible for extended periods. To mitigate this, Streaming View
introduces an online DDL capability, allowing catalog adjustments
and view hierarchy refreshes without making upper-layer views
inaccessible, thus reducing exclusive lock usage significantly. The
alteration process is decomposed into multiple transactions, each
managed by an independent worker. This includes creating a new
view, populating it with data, correcting catalog metadata, and
updating dependent views. This phased approach minimizes oper-
ational overhead and downtime, ensuring maximum accessibility
and consistency while reducing the need for view dependency
management by operators. This framework enhances ease of use
and availability, allowing seamless integration of SQL changes in
complex, nested view environments.

5 OPTIMIZATIONS FOR STREAMING VIEW

This section explores several key optimizations that enhance the
performance of view maintenance in complex query scenarios.
These optimizations improve the scalability, efficiency, and usability
of Streaming View in real-world OLAP workloads.

5.1 Left Join Algorithm Optimization

For outer join scenarios, it is widely well-known that the incremen-
tal maintenance result consists of the following two aspects: data
update caused by changing on normal tuples, and data tracking for
changing on orphan tuples [20, 30]. The corresponding incremental
update term AQgpo can be expressed as the following equation,

Table 3: Maintenance time of N left joins query (ms).

N 2158] 10] 12| 13 14 15
Traditional |1 oo 5o | 1424 | 7966 | 15801 | 38180 | 89640
Algorithm
Streaming | ol oo | 45 | g9 | 186 | 217 | 241 | 274

View
N o
AQspoj = AQ™ + AQ W

= Qspoy (R1 ™ -+ = AR bt - -+ b Ry) + AQY
where AQN and AQ© represent incremental update term caused
by normal tuples and orphan tuples separately. Note that AQN
follows the same form as the incremental update term of inner join
introduced in Section 4.2. For incremental maintenance on view
caused by updates on base tables, AQN and AQ® show mutually
inverse behavior: Insertion/deletion) on base table data always
triggers insertion/deletion for AQN and AQ© during incremental
maintenance of view. Symbolic distinctions about this behavior
will not be demonstrated in Equation.(1) or discussed in details.
As described in [30] (where AQO is denoted as AVY), a calculation
methodology is purposed for obtaining AQ®: For a SQL scenario
involving N outer joins, AQ© is calculated by constructing a graph
consist of M outer join terms, which ranges from N to 2N depending
on the structure of outer joins in this SQL. Subsequently, AQ© is
derived by performing computations across different outer join
terms for 1 ~ 2N times according to graph configuration.

Although this methodology emphasizes comprehensive coverage
of various combinations of outer join scenarios, it still may suffer
from exponential explosion issue in both time and space complexity
as number of outer joins N increases. Notably, over 90% outer join
SQL cases involve only left joins in real-world OLAP applications.
In order to optimize such cases with left join only, Streaming View
introduces the conception of forward join key graph, which system-
atically characterizes all join key propagation paths within current
left join SQL that may impact orphan tuples. When updates occur
in base tables, all related left join paths that are related to orphan
tuples can be directly determined easily by this graph. With such
optimization, the time and space complexity of incremental update
for left join only scenario can be significantly reduced as compari-
son: For methodology in existing literature [30], the time and space
complexity of constructing outer join term graph is O(N) ~ O(2N),
and outer join terms calculation are needed to be performed for at
most 2N times. In contrast, Streaming View achieves a time and
space complexity of O(N) ~ O(N?) for constructing forward join
key graph, and only requires to calculate once to derive AQ©.

In Table 3, we evaluate a typical OLAP scenario where a fact
table directly LEFTJOINs multiple dimension tables, the incremental
maintenance time taken (in milliseconds) of traditional algorithm
and Streaming View for updating a small amount of base table
data are demonstrated separately. It can be observed that as the
number of tables involved in the LEFTJOIN increases, the advantage
of our algorithm becomes more apparent. For practical OLAP wide
table scenarios, it’s quite common to have 10 or more LEFTJOINS,
Streaming View is particularly well-suited for these scenarios.

5.2 Low Cardinality Update Optimization

In OLAP scenarios, a common real-time data processing paradigm
is the wide table model, where a fact table joins with multiple

5161

Table 4: Maintenance time of low cardinality algorithm (ms).

Cardinality Level | High (10000) | Medium (100) | Low (1)
Without optimization 43 309 29980
With optimization 34 32 31

dimension tables to enrich attributes. A typical workload involves
a fact table containing billions of records joining with dimension
tables ranging from tens of thousands to hundreds of thousands of
records. In real-world scenarios with Streaming View, at least half
of the workloads follow this pattern. Among these, one of the most
challenging cases is the update of a dimension table, as a single
row update in the dimension table can propagate to hundreds of
thousands or even millions of records in the view.

As previously described, Streaming View primarily employs a
merge-on-write mechanism. However, for this specific workload, a
merge-on-read-like optimization is introduced to efficiently main-
tain low-cardinality fields in views. The core idea is to manage
low-cardinality fields using a dictionary-based approach. Instead of
storing repeated values directly, a dictionary is maintained where
each unique value is assigned a pointer. Consequently, updating a
low-cardinality field only requires modifying the dictionary entry,
significantly improving update performance at the cost of minor
read overhead due to dictionary lookups.

Updates are not limited to a single layer—low-cardinality fields
can propagate through multiple view dependencies. While updat-
ing such fields in the first-layer view only requires modifying the
dictionary, the standard process still generates a large number of
incremental records that propagate upward. To address this, we
propose a global dictionary referenced by all view layers. Encoding
begins at the base table, and upper-layer views store only pointers
to dictionary entries. The maintenance flow is as follows: initially,
follow the standard maintenance workflow to ensure all dictionary
fields in views use global pointers consistently across all nested
views. After periodic maintenance, only the relevant dictionary
values in the global dictionary repository need to be updated for
the base table’s dictionary columns.

Table 4 shows the execution time (in milliseconds) for incremen-
tal maintenance of a single UPDATE operation over 1 tuple on the
dimension table under the circumstance of a fact table with 1 million
tuples joining with a dimension table. It can be clearly noticed that
the execution performance of our optimization methodology shows
no obvious difference among 3 different cardinality levels of the fact
table. In comparison to normal algorithm, our optimization method
can achieve nearly 10x to 1,000x better execution performance in
low and medium cardinality scenarios.

5.3 Prestate Optimization

The incremental join algorithm described in Section 4.2 primarily
addresses scenarios where a single table undergoes modifications.
However, in real-world database systems, multiple tables often
update concurrently. Consider a three-way join scenario:
AQspy =Qspj(ARy ™ Rz > R3) + Qspy(R] > ARy > R3)
+QSP](R1 > Ré > AR3)
where R{, R, and R denote the after update states of Ry, Ry, and
Rs, respectively. Taking R; as an example:
Ry = Ri + (AorgR1 — AnewR1) — (AnewR1 — AgqR1)

Since view maintenance is typically performed after base table
updates, retrieving the post-update states R}, R}, and R, is straight-
forward. However, obtaining the pre-update states is non-trivial,

particularly for computing —(ApewR1 — AgjqgR1), which requires a
full-table comparison, incurring at least O(N) complexity.

A common approach in previous work is to maintain a snap-
shot s of Ry to facilitate retrieval of the pre-update state [52], then
Ry = snapshot(R]) where snapshot(R) presents accessing table R
via pre-update snapshot. However, simply recording a snapshot is
insufficient, as deleted tuples must be retained until all dependent
computations no longer require R;. This retention can block the
standard garbage collection mechanism of the database, leading to
performance degradation, query slowdowns, and data bloat.

In cope with this issue, Streaming View introduces an optimized
strategy that preserves snapshots of R without blocking garbage
collection. While accessing R via a specific snapshot s, newly in-
serted records in R are filtered out using snapshot isolation, and
deleted records are reconstructed via a UNION ALL operation on
historical delta logs. Then we obtain Ry as follow:

R = snapshot(Ri) +(Ap1gR1 — ApewR1)
Since UNION ALL is computationally lightweight compared to EXCEPT
ALL, which requires expensive comparisons and scans, this optimiza-
tion significantly reduces the computational overhead of retrieving
pre-update states while ensuring that the garbage collection mech-
anism remains unaffected.

6 EVALUATIONS
6.1 Evaluation Setup

Main competitors. We compare the performance of Streaming
View (abbr. SV), stream processing engines, and traditional data-
base IVMs in real-time data processing tasks. Streaming View is
implemented using the standard AnalyticDB service of Alibaba
Cloud. Following the previous work [28], we first anonymized all
the commercial products involved due to their license agreements.
Since dedicated stream processing engines typically support only
incremental computation, we integrate a cloud-hosted version of a
popular stream processing engine with the standard AnalyticDB
service to facilitate incremental computations and result updates
for a fair evaluation. We refer to this integrated system as SPY. For
IVM solutions in traditional databases, we tested two widely used
commercial databases, DBX and DBY. DBX offers both synchronous
and asynchronous IVM modes, while DBY supports only synchro-
nous mode. In this study, we use DBX in asynchronous mode and
DBY in synchronous mode as our test benchmarks.

Workloads. Since the common workloads for real-time ETL,
such as NEXMark [43], are mostly single-table scenarios, it is dif-
ficult to reflect the effect of real scenarios. We chose the standard
TPC-H [42] test set as the base data, and then built workloads by con-
structing corresponding views or view groups for Q1-Q22 queries
and generating data processing tasks. Initially, we conducted perfor-
mance evaluations on a TPC-H (Scale Factor = 10) dataset across all
tasks, measuring throughput under identical configuration settings
and assessing the completeness of syntax support across different
systems. Furthermore, we test the resource consumption at varying
update load levels to evaluate system performance under different
loads. Beyond these tests, we adjusted the scale factor of TPC-H to
assess the scalability of all tested systems.

System configurations. All tested methods are uniformly con-
figured with 8 CPUs and 32GB of memory or equivalent resources.
Specifically, our solution utilizes Alibaba Cloud standard Analyt-
icDB service, configured with four nodes, each with two Intel Xeon

5162

2.90GHz virtual cores, 8GB DDR4 DRAM, and PL1-level cloud stor-
age. To accommodate SPY additional storage needs, it is allocated
6 CPUs and 24GB DDR4 DRAM, bringing the total with Analyt-
icDB to 8 Intel Xeon 2.90GHz CPUs, 32GB DDR4 DRAM, and same
cloud storage, matching our solution. DBX runs on a cloud ECS
server, and DBY uses a cloud-hosted version, both with the same
configuration as our solution. Furthermore, AnalyticDB, SPY, DBX,
and DBY use their default configurations with minor optimizations
like SQL rewriting and pre-built indexing. Detailed descriptions of
optimizations are provided in the subsequent experimental sections.

During the experiment, we first import the appropriate size
TPCH standard dataset into each system. For each test scenario,
we then construct the corresponding views or stream processing
tasks. Mirroring real-world scenarios, the data update process in-
volves base table updates and the necessary updates to the views
or processing tasks’ result tables within the data warehouse. This
approach ensures a realistic and thorough evaluation of each sys-
tem’s capabilities in handling real-time data processing tasks under
consistent and comparable conditions.

6.2 Evaluation Results

Throughput performance. In this section, we conduct the test
for throughput of all methods. We use 10GB TPC-H to evaluate the
performance of various methods, for each of which we concurrently
apply enough update loads to test the highest throughput perfor-
mance that each system can achieve. Figure 7 shows the throughput
performance of different methods in 22 data processing tasks. If a
method does not support a data processing task, the correspond-
ing throughput is recorded as 0 and is not drawn in the figure. In
particular, when performing data processing tasks, the throughput
of Streaming View is 20 times higher than that of traditional IVM
systems. Compared with streaming engine, Streaming View is al-
ways superior to SPY engine in various scenarios, usually showing
at least twice the advantage. Especially for queries like Q18 and
Q22, the Streaming View is 7 times better than SPY. By simplify-
ing the processing path and improving the execution efficiency of
the internal data warehouse, the proposed method improves the
throughput performance as shown in the experiment results.

For syntax completeness, Streaming View supports all the re-
quired syntax. As mentioned earlier, DBX and DBY lack support for
certain syntax elements, which show limitations on data processing
tasks. In addition, Streaming View performs all queries with native
SQL and configuration without tuning. For other methods of evalu-
ation, we optimize according to the respective product guidelines
to achieve the best performance. SPY requires manual connection
reordering for multi-table join scenarios to prevent inconsistent
connection status and excessive intermediate data, which can par-
ticularly affect certain data processing tasks, such as Q2, Q8, and Q9.
Due to the lack of indexes, DBX and DBY face slower incremental
updates, requiring manual index enhancement before testing is
complete. To sum up, we can find that the proposed method is a
favorable choice among various data processing tasks.

System usage performance. In this experiments, we test repre-
sentative data processing tasks include Q1 (1-table with GROUP BY),
Q2 (JOIN without GROUP BY), Q8 (8-table JOIN with GROUP BY),
Q10 (4-table JOIN with GROUP BY), Q12 (2-table JOIN with GROUP
BY), and Q18 (nested scenario), for further usage performance eval-
uation. We tested various methods under different update speeds
(10K/s, 20K/s, 40K/s, K=1000) to assess system usage.

KXX SV EzE Sspy [N DBX [E= DBY
~ 140000 .
S _ K
S 120000 I - q i b
K
<2 100000 o S 4 _)
< 80000)))
§ 60000 . | L i I
2 40000 ;)
S 20000 1 ')

o1 02 03 04 05

06 Q07 08 Q9 Q10 QlI Q12 QI3 Q14 Q15 QI6 Q17 QI8 Q19 020 Q21 022

Figure 7: Throughput performance on 10GB TPC-H.

CPU usage and data delay. Figure 8 shows the CPU usage of all

methods under different workloads. Given that each experimen-
tal setup is equipped with 8 CPU cores and some are distributed
systems, we normalize the CPU usage to a maximum of 100%. The
corresponding data processing delay is presented in Figure 9, where
the delay is computed as the maximum data delay across all data
processing tasks. The experimental results show that Streaming
View can handle the highest workloads of all data processing tasks.
Consequently, no processing delay was observed in tests conducted
at three update speeds, with CPU consumption increasing linearly
with load. This suggests that SV resource consumption is primarily
driven by update load and the volume of data requiring stream
processing, benefiting from its Merge On update architecture.

In contrast, SPY can handle update operations exceeding 40K/s
for Q1, Q10, and Q12 without delay. However, in scenarios Q2, Q8,
and Q18, the maximum throughput failed to reach 40K/s, resulting
in delays at 40K/s. The delays in Q2 and Q8 are attributed to near-
full CPU resource utilization, while for Q18, the delay may stem
from the SQL complexity potentially impeding optimal resource
use. Overall, SPY exhibits limitations regarding CPU consumption
bottlenecks. DBX and DBY demonstrated continual delays during
testing, as their maximum throughput capacity was exceeded at
the initial update rate of 10K/s.

Memory Usage. Figure 10 illustrates memory consumption across
different methods. SV, DBX, and DBY operate in a disk-based data-
base mode, resulting in relatively lower memory utilization. SV re-
quires aggregation of node usage due to its distributed architecture,
its overall memory footprint is slightly higher compared to DBX
and DBY. As an in-memory stream processing engine, SPY loads
data into memory during processing, leading to a higher memory
consumption. This experiment shows that memory consumption
of SPY can be up to six times higher than memory consumption of
SV. We can find that even though SV uses disk mode, benefiting
from the multi-level caching mechanisms and execution efficiency
optimizations built into the database, it still has lower CPU usage
and higher throughput than SPY, that is, faster processing speed.
Overall, SV showed an excellent trade-off in various aspects.

Scalability test. In this set of tests, we scale the TPC-H data set
to observe the maximum throughput performance of each method
under data sizes of 10G, 100G, and 1T. The experimental results
are shown in Figure 11. For methods that take longer than 1 day to
load or do not support a data processing task, the corresponding
throughput is marked as 0. We find that SV, DBX, and DBY all work

5163

SV 10k EE SV 40k BN SPY 20k DBX (<10k)
B SV 20k Bz SPY 10k B SPY 40k W DBY (<10k)
<100
S 80
$ 60 _
S 40 I
2 20 g o
) g =Kz AR A
1) 08 010 Q12 QI8

Figure 8: CPU usage for all methods under various workloads.

—— DBX/Y(10K) —— DBX/Y(40K) —— SPY(10K) —— SPY(40K)
Qo= DBX/Y(20K) =<=- SV —<= SPY(20K)
5120
K100
g 80
)

5]
£ 40
3
3 200 ;

§ O FEmEEEEemmm o= =
= 20 40 60 80 100 120 140

Time (sec)

Figure 9: Maximum data freshness delay for all methods with
varying the size of workloads.

SV wE SPY DBX WEM DBY
175 7 =
S 150 é r

-

$12.5 . o
2100 o g
= 7.5 o
g 5.0
S 25

0.0) 2)

: ol 02 08 0I0 Q12 QI8

Figure 10: Memory usage for all methods under different
workloads.

on data sets of all sizes, but DBX and DBY are unsupported for
some tasks. SV maintains an order of magnitude advantage over
DBX/DBY. For the SPY method, because it operates in-memory, the
load time exceeds one day for 1T data sets. For certain tasks, such
as Q10 and Q18, a noticeable performance degradation appears as
data size increases, becoming evident with the 100G dataset. This
is due to SPY reaching a memory bottleneck as volume grows. Ad-
ditionally, for the 100GB data set, we observed that SPY performed
well on specific queries. We surmise this is because, although the

ez SV (10G) R SPY (100G) R DBX(IT)
EEE Sy (00G) EEE SPY(IT) 1 DBY(10G)
E= Sv (D) DBX (10G) B8 DBY (100G)
SPY (10G) DBX (100G) EE DBRY (IT)

= U

NS §

g0

< £ E

X i H g3

ER i 1

N gk H (H

g i g 4

= 2 B e

~ | B e

& g ¢

08010 0l 018

02
Figure 11: Throughput with varying the size of workloads.

total data set size exceeds SPY’s memory limit, some SQL queries
only access a subset of tables. After column pruning, actual memory
consumption may not reach SPY’s configuration limit. In summary,
SV proves superior to other methods. Therefore, Streaming View is
an excellent choice for a variety of data processing tasks.

Performance of production deployment. In the final exper-
iment, we evaluate Streaming View in a real-world e-commerce
scenario. In this application, the system builds dozens of nested
views, view defines including wide tables formed by joining fact ta-
bles with 10+ dimension tables, complex scenarios with hundreds of
sharded sub-tables combined via UNION ALL, and pre-aggregations
or pre-calculated metrics on these wide tables. In practice, the width
of these tables often exceeds 100 columns, with intricate business
logic nesting, and the data volume typically ranges from tens to
hundreds of terabytes. As a result, the AnalyticDB cluster consists
of dozens or even hundreds of nodes. We focus on the metrics
related to Streaming View maintenance activities of this system.

In Figure 12, we observe that during a typical e-commerce flash
sale event, the real-time data transactions synchronized to the data
warehouse surges from 10%/s to 2 * 10°/s due to a spike in trans-
actions, the OLAP queries also increased from 103 to 10%. During
this period, Streaming View effectively leverages the resources of
dozens of nodes. As the transaction volume increases, CPU con-
sumption rises proportionally, while memory usage remains stable
due to the disk-based model of Streaming View. The fluctuations in
memory usage are primarily caused by increased write concurrency.
Additionally, the eventual consistency maintenance model ensures
stable performance during peak times. The base table writes remain
unaffected, and the data delay increases slightly. After the peak
subsides, the data delay quickly decreases, returning to normal
levels. Throughout this process, Streaming View achieves real-time
updates for all views driven by updates to any table within the
warehouse, with low latency and comprehensive updates.

In contrast, traditional stream processing engines struggle with
complex SQL scenarios involving multi-level nesting, resulting in
significantly higher resource consumption and latency compared
to Streaming View. Moreover, they are prone to single-point bottle-
necks during peak times. Additionally, standalone engines outside
the data warehouse require redundant data in memory to fully
support operations like joins, which is costly and poses significant
stability challenges for datasets spanning tens of terabytes. Tradi-
tional IVM also falls short in terms of throughput, latency control,
system scalability, and comprehensive syntax support, making it
rarely suitable for large-scale, high-throughput, low-latency data
processing scenarios. From this analysis, we can conclude that

5164

—— Throughput (10K/S) --=-- CPU (%) <+ Delay (s)
it 0)

Query (10K/S) Mem (%) 100 100 N

_20 <
2 80 1000 %
S5 — Q
< 60 580 1750 =
N Sos g
%10 0 & 3500 =
3 N0 = L
E 5 20 250 E
0= Setotn 0o 4 o =

40 60

Minute

80 100 120

Figure 12: Performance in the real-world workload.

Streaming View is a favorable choice for handling real-time data
processing tasks in practical scenarios.

7 RELATED WORK

Over the past decades, IVM-related technologies have garnered sig-
nificant attention. Systems such as DBToaster[2, 28] and F-IVM[26,
38, 39] have implemented certain IVM frameworks. However, most
existing prototype solutions concentrate mainly on the algorithmic
aspects of incremental updates, lacking essential features required
for a robust IVM system in industrial applications, such as auto-
tuning, diagnostics, and online operational support mechanisms.
In commercial products, Oracle[3, 12], Microsoft SQL Server[1, 51],
Redshift[10], and Snowflake[4] have conducted extensive research,
primarily focusing on leveraging IVM for query optimization. How-
ever, these implementations largely target light-write scenarios,
and their support for incremental syntax remains limited.

With the growing urgency for real-time data processing, stan-
dalone stream processing engines like Apache Flink [7, 14] and
Apache Spark [9, 48] have rapidly evolved. These engines have
gained popularity due to their superior streaming performance and
relatively comprehensive syntax support. However, they present
challenges in terms of system integration complexity. Recently,
products such as Snowflake Dynamic Tables [24] and Databricks
Delta Live Tables [23] are also enhancing their capabilities in real-
time data processing. Streaming View places a strong emphasis
on optimizing latency, throughput, and syntactic completeness,
thereby enabling it to handle larger data volumes and more complex
business scenarios. Furthermore, independent streaming databases
such as RisingWave [40], Materialize [36] provide real-time data
processing solutions. However, they often lack the sophisticated
query optimizations found in established data warehouse systems,
leading to suboptimal query performance.

8 CONCLUSION

This paper introduces a modern streaming data processing sys-
tem integrated into AnalyticDB of Alibaba Cloud, which not only
supports query optimization in the traditional sense but also in-
corporates a series of enhancements to meet the demands of large-
scale real-time data processing. In real-time analytics scenarios,
the system demonstrates significant architectural and efficiency
advantages compared to traditional approaches relying on exter-
nal stream processing engines or in-warehouse batch processing.
Furthermore, numerous production cases within Alibaba’s internal
ecosystem and on Alibaba Cloud demonstrate that this system is
not an experimental prototype but a mature, stable commercial
product readily available to any user on the cloud.

REFERENCES

(1]

(2]

(3]

[4

=

>
&

(1]
[12]

[13]

[14]

[15]

[16]

[17

[19]

[20

[21

[22]
[23]
[24]

[25

[26]

Sanjay Agrawal, Surajit Chaudhuri, and Vivek R Narasayya. 2000. Automated
selection of materialized views and indexes in SQL databases. In VLDB, Vol. 2000.
496-505.

Yanif Ahmad and Christoph Koch. 2009. DBToaster: A SQL compiler for high-
performance delta processing in main-memory databases. Proceedings of the
VLDB Endowment 2, 2 (2009), 1566—1569.

Rafi Ahmed, Randall Bello, Andrew Witkowski, and Praveen Kumar. 2020. Au-
tomated generation of materialized views in oracle. Proceedings of the VLDB
Endowment 13, 12 (2020), 3046-3058.

Tyler Akidau, Fabian Hueske, Konstantinos Kloudas, Leon Papke, Niklas Semmler,
and Jan Sommerfeld. 2024. Continuous Data Ingestion and Transformation in
Snowflake. In Proceedings of the 18th ACM International Conference on Distributed
and Event-based Systems. 195-198.

Amazon Web Services 2022. AWS announces Amazon Aurora zero-ETL
intergration with Amazon Redshift. Retrieved March 16, 2025 from
https://aws.amazon.com/cn/about-aws/whats-new/2022/11/amazon-aurora-
zero-etl-integration-redshift/

AnalyticDB for PostgreSQL 2025. AnalyticDB for PostgreSQL: Online MPP Data
Warehousing Service - Vector Database - Alibaba Cloud. Retrieved Mar 16, 2025
from https://www.alibabacloud.com/en/product/hybriddb-postgresql

Apache Flink 2025. Apache Flink® — Stateful Computations over Data Streams.
Retrieved Mar 16, 2025 from https://flink.apache.org/

Apache Spark 2025. Apache Doris: Open source data warehouse for real time data
analytics - Apache Doris. Retrieved Mar 16, 2025 from https://doris.apache.org/
Apache Spark 2025. Apache Spark™ - Unified Engine for large-scale data analytics.
Retrieved Mar 16, 2025 from https://spark.apache.org/

Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta,
Sebastian Hillig, et al. 2022. Amazon Redshift re-invented. In Proceedings of the
2022 International Conference on Management of Data. 2205-2217.

Batcher. 1980. Design of a massively parallel processor. IEEE Trans. Comput. 100,
9 (1980), 836-840.

Randall G Bello, Karl Dias, Alan Downing, James Feenan, Jim Finnerty, William D
Norcott, Harry Sun, Andrew Witkowski, and Mohamed Ziauddin. 1998. Materi-
alized views in Oracle. In VLDB, Vol. 98. 24-27.

Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val Tannen. 2023.
DBSP: Automatic Incremental View Maintenance for Rich Query Languages.
Proc. VLDB Endow. 16, 7 (2023), 1601-1614.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015).
Edgar F Codd. 1972. Further normalization of the data base relational model.
Data base systems 6, 1972 (1972), 33-64.

Giuseppe Coviello, Kunal Rao, Murugan Sankaradas, and Srimat Chakradhar.
2021. DataX: A system for data exchange and transformation of streams. In
International Symposium on Intelligent and Distributed Computing. Springer, 319—
329.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, et al. 2016. The snowflake elastic data warehouse. In Proceed-
ings of the 2016 International Conference on Management of Data. 215-226.
Chaoyue Dai, Feng Qian, Wei Jiang, Zhoutian Wang, and Zenghong Wu. 2014.
A personalized recommendation system for netease dating site. Proceedings of
the VLDB Endowment 7, 13 (2014), 1760-1765.

Chiara Forresi, Enrico Gallinucci, Matteo Golfarelli, and Hamdi Ben Hamadou.
2021. A dataspace-based framework for OLAP analyses in a high-variety multi-
store. The VLDB Journal 30, 6 (2021), 1017-1040.

Timothy Griffin and Bharat Kumar. 1998. Algebraic change propagation for
semijoin and outerjoin queries. ACM SIGMOD Record 27, 3 (1998), 22-27.
Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. 2015. Amazon redshift and the case for simpler
data warehouses. In Proceedings of the 2015 ACM SIGMOD international conference
on management of data. 1917-1923.

Steve Hoffman. 2013. Apache Flume: distributed log collection for Hadoop. Packt
Publishing Ltd.

Databricks Inc. 2025. Delta Live Tables. Databricks Product Page. Retrieved June
2, 2025 from https://www.databricks.com/product/data-engineering/dlt
Snowflake Inc. 2025. Dynamic Tables. Retrieved June 2, 2025 from https:
//docs.snowflake.com/en/user-guide/dynamic-tables-about

HYV Jagadish, PPS Narayan, Sridhar Seshadri, S Sudarshan, and Rama Kanneganti.
1997. Incremental organization for data recording and warehousing. In VLDB.
ResearchGate GmbH, 16-25.

Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2024. F-IVM:
analytics over relational databases under updates. The VLDB Journal 33, 4 (2024),

903-929.
Anthony Klug. 1982. Equivalence of relational algebra and relational calculus
query languages having aggregate functions. Journal of the ACM (JACM) 29, 3

(1982), 699-717.
Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres N6tzli,

Daniel Lupei, and Amir Shaikhha. 2014. DBToaster: higher-order delta processing
for dynamic, frequently fresh views. The VLDB Journal 23 (2014), 253-278.
Christoph Koch. 2010. Incremental query evaluation in a ring of databases. In
Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. 87-98.

Per-Ake Larson and Jingren Zhou. 2006. Efficient maintenance of materialized
outer-join views. In 2007 IEEE 23rd International Conference on Data Engineering.
IEEE, 56-65.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in neural information processing systems 33 (2020), 9459-9474.
Yinan Li and Jignesh M Patel. 2014. Widetable: An accelerator for analytical data
processing. Proceedings of the VLDB Endowment 7, 10 (2014), 907-918.

Feifei Li. 2023. Modernization of databases in the cloud era: Building databases
that run like Legos. Proceedings of the VLDB Endowment 16, 12 (2023), 4140-4151.
Jimmy Lin. 2017. The lambda and the kappa. IEEE Internet Computing 21, 05
(2017), 60-66.

Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, et al.
2021. Greenplum: a hybrid database for transactional and analytical workloads.
In Proceedings of the 2021 International Conference on Management of Data. 2530~
2542.

Materialize. 2025. Materialize - The Streaming SQL Database. Materialize. Re-
trieved June 2, 2025 from https://materialize.com/

Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,
and Matei Zaharia. 2020. Analysis and exploitation of dynamic pricing in the
public cloud for ml training. In VLDB DISPA Workshop 2020.

Milos Nikolic and Dan Olteanu. 2018. Incremental view maintenance with triple
lock factorization benefits. In Proceedings of the 2018 International Conference on
Management of Data. 365-380.

Milos Nikolic, Haozhe Zhang, Ahmet Kara, and Dan Olteanu. 2020. F-IVM:
learning over fast-evolving relational data. In SIGMOD. 2773-2776.
RisingWave. 2025. RisingWave: The Cloud-Native Streaming Database. Rising-
Wave. Retrieved June 2, 2025 from https://www.risingwave.com/

Nicoleta Tantalaki, Stavros Souravlas, and Manos Roumeliotis. 2020. A review on
big data real-time stream processing and its scheduling techniques. International
Journal of Parallel, Emergent and Distributed Systems 35, 5 (2020), 571-601.

The Transaction Processing Council 2025. TPC-H Homepage. Retrieved Mar 16,
2025 from https://www.tpc.org/tpch/

Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. Nexmark—
a benchmark for queries over data streams (draft). Technical report (2008).
Panos Vassiliadis. 2009. A survey of extract-transform-load technology. Inter-
national Journal of Data Warehousing and Mining (II]DWM) 5, 3 (2009), 1-27.
Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang,
Rong Kang, Julian Feinauer, Kevin A McGrail, Peng Wang, et al. 2020. Apache
IoTDB: Time-series database for internet of things. Proceedings of the VLDB
Endowment 13, 12 (2020), 2901-2904.

Zuozhi Wang, Kai Zeng, Botong Huang, Wei Chen, Xiaozong Cui, Bo Wang,
Ji Liu, Liya Fan, Dachuan Qu, Zhenyu Hou, et al. 2020. Tempura: a general
cost-based optimizer framework for incremental data processing. Proceedings of
the VLDB Endowment 14, 1 (2020), 14-27.

James Warren and Nathan Marz. 2015. Big Data: Principles and best practices of
scalable realtime data systems.

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. 2016. Apache spark: a unified engine for big data processing.
Commun. ACM 59, 11 (2016), 56—65.

Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin,
Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, et al. 2019. AnalyticDB:
real-time OLAP database system at Alibaba cloud. Proceedings of the VLDB
Endowment 12, 12 (2019), 2059-2070.

Chao Zhang, Guoliang Li, and Tao Lv. 2024. HyBench: A new benchmark for
HTAP databases. Proceedings of the VLDB Endowment 17, 5 (2024), 939-951.
Jingren Zhou, Per-Ake Larson, Jonathan Goldstein, and Luping Ding. 2006. Dy-
namic materialized views. In 2007 IEEE 23rd International Conference on Data
Engineering. IEEE, 526-535.

Jingren Zhou, Per-Ake Larson, and Hicham G Elmongui. 2007. Lazy maintenance
of materialized views. In Proceedings of the 33rd international conference on Very
large data bases. 231-242.

https://aws.amazon.com/cn/about-aws/whats-new/2022/11/amazon-aurora-zero-etl-integration-redshift/
https://aws.amazon.com/cn/about-aws/whats-new/2022/11/amazon-aurora-zero-etl-integration-redshift/
https://www.alibabacloud.com/en/product/hybriddb-postgresql
https://flink.apache.org/
https://doris.apache.org/
https://spark.apache.org/
https://www.databricks.com/product/data-engineering/dlt
https://docs.snowflake.com/en/user-guide/dynamic-tables-about
https://docs.snowflake.com/en/user-guide/dynamic-tables-about
https://materialize.com/
https://www.risingwave.com/
https://www.tpc.org/tpch/

	Abstract
	1 Introduction

