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ABSTRACT

In the era of big data, the landscape of data management and ana-
lytics has signi�cantly transformed, presenting diverse challenges
for cloud platforms. Modern data warehouses face increasing chal-
lenges in handling hybrid transactional and analytical processing
(HTAP) workloads e�ciently in cloud environments. Traditional
shared-nothing architectures provide high-performance query exe-
cution but su�er from high storage costs and limited elasticity, while
shared-storage approaches improve scalability but often struggle
with query e�ciency due to increased data movement and indexing
overhead. Furthermore, existing execution engines lack optimized
support for vectorized processing and real-time analytics, limiting
their ability to handle large-scale workloads e�ciently.

To address these limitations, we introduce AnalyticDB-PG (ADB-
PG), a cloud-native, high-performance data warehouse designed
for modern analytical workloads. It integrates a uni�ed architec-
ture supporting both Shared-Nothing and Shared-Storage modes,
allowing �exible deployment and seamless elasticity. In ADB-PG,
we introduce Beam, a hybrid storage engine that e�ciently bal-
ances row-based and columnar storage for real-time analytics, and
Laser, an optimized execution engine leveraging vectorized execu-
tion and Just-In-Time compilation to accelerate query processing.
The system further incorporates advanced indexing mechanisms,
adaptive runtime �ltering, and dictionary encoding to enhance
performance. Extensive evaluations on TPC-H and TPC-DS bench-
marks demonstrate that ADB-PG achieves signi�cant performance
improvements while reducing storage and operational costs, mak-
ing it a compelling solution for modern cloud-based data analytics.
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1 INTRODUCTION

With the proliferation of technologies such as big data analytics
[36, 37] and arti�cial intelligence [38, 58], data volumes are growing
exponentially [31], and the demand for complexity of data types
processing and real-time data processing is intensifying. However,
the limitations of traditional databases in scalability, �exibility, and
operational costs make it di�cult for them to meet the demands of
modern complex business scenarios [1, 15, 35].

In this context, cloud-native databases [13, 18, 24, 26, 30, 56] have
emerged as crucial solutions, delivering elasticity, high performance,
and cost-e�ectiveness while handling diverse data workloads [8, 40].
Traditional data warehouse architectures are mainly classi�ed into
shared-nothing and shared-storage modes. The shared-nothing
mode, used by systems like PolarDB-X [17] and OceanBase [60],
o�ers strong isolation between compute nodes and minimizes inter-
node communication overhead, making it ideal for large-scale ana-
lytics. However, it su�ers from high storage redundancy, limited
elasticity, and elevated operational costs due to data replication
and rebalancing. In contrast, the shared-storage mode—exempli�ed
by systems that decouple compute and storage using cloud-based
object storage—enables on-demand elasticity and cost-e�cient data
management. Yet, performance bottlenecks remain due to increased
I/O overhead, data retrieval latency, and lack of e�cient indexing,
making it suboptimal for complex analytical queries.

Existing cloud-native data warehouses rely on traditional storage
engines and execution frameworks, each with inherent ine�cien-
cies. Many systems use either row-based or column-based storage
engines, resulting in suboptimal trade-o�s between transactional
e�ciency and analytical query performance. Column-store engines,
while excellent for analytical workloads, struggle with real-time
updates due to expensive merge processes and lack of e�cient
indexing, whereas row-store engines provide fast transactional up-
dates but su�er from slow analytical query performance. Similarly,
the execution engines in current systems are often constrained by
tuple-at-a-time query processing, which incurs signi�cant over-
head due to frequent function calls and lacks support for vectorized
execution [29], Just-In-Time (JIT) compilation, and adaptive query
optimization. These limitations prevent existing solutions from fully
leveraging modern hardware capabilities, resulting in ine�ciencies
in processing large-scale workloads.

AnalyticDB-PG [3] (abbreviated as ADB-PG), developed by Al-
ibaba Cloud, is designed to address contemporary challenges by
delivering a uni�ed, high-performance data warehouse solution
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supporting both shared-nothing [53] and shared-storage [45] archi-
tectures. The journey of ADB-PG began nine years ago. Initially, it
was built as a shared-nothing mode using local disk storage to pro-
vide e�cient analytics services. As public cloud infrastructure [42]
matured and new requirements arose, the system evolved to adopt
containerization [50] and a compute-storage disaggregated archi-
tecture [39], leveraging object storage [43] to enhance elasticity and
reduce costs. To serve both on-premise and cloud-based customers,
the architecture of ADB-PG was redesigned to abstract the com-
plexities of various storage types, ensuring high data availability
and performance in demanding environments.

As data processing demands diversify, providing high perfor-
mance data processing has become another major challenge for
modern data warehouses [25]. First, existing data warehouses lack
e�ective paradigms for handling data updates, resulting in either
poor timeliness or low e�ciency in real-time data processing. Sec-
ond, in execution engines di�erent operators have di�erent execu-
tion patterns; some are sequential, while others are random. This
requires the execution engine to be adaptive, optimizing the execu-
tion plan based on the characteristics of operators. To address this,
databases employ vectorization techniques and JIT (just-in-time)
code generation [9], signi�cantly enhancing execution e�ciency
by batching data processing operations. For instance, vectorization
techniques can process multiple data items in a batch, leveraging
modern CPU SIMD (single instruction, multiple data) instructions
[29] capabilities to increase data processing throughput. However,
despite e�ciency improvements o�ered by current technologies,
there are still shortcomings in areas such as storage format man-
agement, query optimization, and real-time data processing.

To address these challenges, ADB-PG uni�es the bene�ts of
shared-nothing and shared-storage architectures while optimizing
execution e�ciency. ADB-PG is designed to provide scalability,
elasticity, and high-performance query execution by integrating
a hybrid storage engine, an optimized execution framework, and
advanced indexing techniques. Speci�cally, ADB-PG introduces
Beam, a hybrid storage engine that dynamically balances row and
column-oriented storage, ensuring e�cient transactional updates
while maintaining high-throughput analytical performance. Unlike
traditional storage engines, Beam utilizes a combination of log-
structured updates, hybrid indexing strategies, and asynchronous
data �ushing mechanisms to optimize both transactional and an-
alytical query workloads. In parallel, ADB-PG incorporates Laser,
an advanced execution engine that leverages SIMD-based vector-
ized execution, adaptive runtime �ltering, and JIT compilation to
signi�cantly accelerate query processing. By integrating intelli-
gent storage management, elastic resource scaling, and AI-powered
query optimizations, ADB-PG overcomes the fundamental limi-
tations of existing cloud-native data warehouses, delivering high
e�ciency, cost-e�ectiveness, and real-time analytical capabilities
in cloud environments. Our contributions are as follows:
• We introduce ADB-PG, a cloud-native data warehouse that uni-

�es shared-nothing and shared-storage architectures, optimizing
both performance and elasticity.

• We propose Beam, a hybrid storage engine that e�ciently bal-
ances row-based and column-based storage models, enabling
high-throughput analytics with real-time updates.

• We introduce Laser, a high-performance execution engine in-
corporating vectorized query processing, JIT compilation, and
runtime �ltering to accelerate analytical workloads.

• Through comprehensive experiments in various aspects, we
found that the proposed method has superior performance and
cost-e�ectiveness compared to existing solutions.

2 MOTIVATION

Traditional on-premise databases [59] struggle to meet the evolving
demands of cloud computing, which requires �exibility, scalability,
and e�cient workload management. Cloud infrastructures, span-
ning both private and public clouds, have driven a shift toward
integrated service paradigms to address these challenges. However,
earlier versions of ADB-PG faced di�culties in meeting the diverse
storage needs of cloud clients, who require scalable, cost-e�cient
storage with high performance and support for random read/write
operations. Conventional storage solutions, while economical, of-
ten lack adaptability for broad cloud workloads. For instance, object
storage provides scalability and cost bene�ts but is hindered by
its append-only nature, highlighting the misalignment between
traditional storage architectures and cloud-native requirements.

Cloud-native data warehouses typically adopt either the Shared-
Nothing mode (SNM) or Shared-Storage mode (SSM), each with
trade-o�s. The SNM partitions data across independent nodes for
high-performance queries but su�ers from storage redundancy,
complex rebalancing, and limited elasticity. The SSM decouples
compute from storage for better scalability but incurs high I/O la-
tency and network overhead. A truly uni�ed cloud data warehouse
should combine both modes strengths—using local storage for fast
access and remote storage for scalability and cost-e�ciency—while
dynamically optimizing workload distribution. Additionally, cloud-
native architectures should fully leverage cloud features like dy-
namic resource allocation, automatic scaling, and bandwidth expan-
sion, enabling e�cient query execution and adaptive performance
tuning in modern cloud environments.

Challenges in Storage Engine Design. Early versions of ADB-
PG and other cloud-native data warehouses relied on either row-
based or column-based storage engines, each with inherent trade-
o�s. Column-store engines, such as those in Amazon Redshift and
Snow�ake, enable e�cient compression and fast analytical queries
but struggle with real-time updates due to high write ampli�cation
and complex merge processes. Conversely, row-store engines, as
seen in PostgreSQL-based solutions, provide e�cient transactional
updates but su�er from poor analytical query performance due to
ine�cient scan operations and higher storage overhead.

Object storage solutions like AWS S3 and Google Cloud Storage,
widely used in modern architectures, o�er high scalability and cost-
e�ectiveness but have high data access latency, lack native indexing,
and handle transactional workloads ine�ciently. These challenges
require hybrid storage engines that dynamically balance row- and
column-based storage, ensuring e�cient transactional updates and
high-throughput analytical queries.

Challenges in ExecutionEngine design.Computational frame-
works are categorized into compilation execution (e.g., Redshift [30],
Spark [61]) and vectorized execution (e.g., Photon [10], Velox [47],
ClickHouse [44]). Compilation execution compiles queries into a
single optimized kernel, minimizing data materialization overhead
but incurring high compilation costs, prolonged startup times, and
limited SIMD utilization. Vectorized execution processes data in
batches using a columnar memory layout, enhancing SIMD perfor-
mance and facilitating debugging but introducing additional data
materialization overhead. The ideal design should combine these
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Figure 1: Overall architecture of ADB-PG.

two categories. Reduce function call overhead and optimize the CPU
pipeline through batch processing while leveraging JIT compilation
to speed up complex expressions. However, in memory-constrained
operations such as hash join and sort, JIT compilation does not
provide signi�cant advantages over vectorized execution but rather
increases development complexity. Balancing performance, �exibil-
ity, and development e�ciency by selectively applying compilation
execution remains a challenge.

3 UNIFIED ARCHITECTURE

3.1 Architecture Overview

ADB-PG Core. Figure 1 illustrates the comprehensive architecture
of ADB-PG. On the left, external data is ingested into ADB-PG
through various methods, including applications, streaming, batch
processing, and DTS [28]. The central framework enables ADB-
PG deployment in two distinct con�gurations: the Shared-Nothing
Mode (SNM) and the Shared-Storage Mode (SSM). Similar to other
data warehouses with Shared-Nothing architecture, SNM utilizes
local disks or cloud disks EBS (Elastic Block Services) on cloud-
based virtual machines (ECS). Conversely, SSM employs a storage-
separated architecture based on ECS with local caching and remote
object storage (e.g., AliCloud OSS, AWS S3, etc.). Regardless of
deployment con�guration, cluster nodes can scale horizontally
(scale-out/in) and vertically (scale-up/down). Uni�cation of both
modes is facilitated by a consistent storage layer, which abstracts
various storage formats, including local disks, EBS devices, and
storage services such as log stores, page stores, and object stores.

From an industry perspective, the evolution of data warehouse
architectures has moved from traditional, on-premises deployments
based on SNM to cloud-native data warehouses that predominantly
adopt SSM architectures. Leading SSM systems (e.g., Snow�ake [23],
Redshift RA3 [14]) achieve superior elasticity and cost e�ciency,
but are limited in real-time operations due to object storage. ADB-
PG addresses these limitations by enabling both object-storage-
based SSM deployments and disk-based SNM deployments through
a uni�ed architecture. This design ensures not only the �exibil-
ity required by modern cloud scenarios, but also the operational
reliability and deployment convenience needed in regulatory or
on-premises use cases.

Within the ADB-PG worker nodes, the database kernel houses
the Beam storage engine, the Laser execution engine, and the Orca
optimizer. These components, along with query optimization tech-
niques, will be examined further in subsequent sections.

In practice, retaining SNM remains essential: (1) Many govern-
ment and �nancial customers require on-premises deployment
for compliance, where SNM deployment is more cost-e�ective
and avoids the complexity of local object storage; (2) For small
to medium data volumes, the extra overhead of SSM components
may outweigh storage savings, making SNM preferable; (3) SNM
allows data cached locally, providing more stable scan performance;
and (4) SNM in ADB-PG, when deployed on ECS/cloud disks, can
also leverage cloud-native features like online resizing, o�ering
more �exibility than traditional SN systems.

Furthermore, the right side of the diagram illustrates the inter-
action with various AI model services. ADB-PG features integrated
vector and full-text retrieval capabilities [59], leveraging large lan-
guage models to enhance intelligent product. This versatile archi-
tecture supports the creation of traditional data applications and
BI reports, as well as advanced applications like enterprise-speci�c
knowledge-based intelligent Q&A systems and in-database data
inference scenarios using vector databases and large models. This
part is not the focus of this paper, so we will not go into it in depth.
Control Plane. The control plane ensures security and isolation
through the use of Kubernetes (K8S) [4] and RUND [41] secure
containers. In enterprise applications, the demands for data se-
curity and isolation are critical. ADB-PG employs RUND secure
containers to ensure e�ective isolation among tenants and maintain
system security in a multi-tenant environment. For each tenant
Pod, ADB-PG provides an additional dedicated network interface
card, facilitating secure communication between the control plane
and the monitoring plane. This design not only ensures data se-
curity but also simpli�es the process for administrators to gather
operational status information from each Pod. Furthermore, the
system implements a strict read-only Volume mounting strategy
to con�ne tenant Pod storage space, thereby mitigating the risk of
data breaches between tenants.

Additionally, the control plane can dynamically adjust resource
allocations based on workload demands, enabling the serverless
functionality of ADB-PG. The elastic design of ADB-PG will be
discussed in more detail in Section 3.3.

3.2 Storage Design

HTAP Workload Requirements. We have observed that our
clients frequently require both rapid transaction processing and
robust analytical operations within their applications. For instance,
in logistics and order management scenarios, there is a simultane-
ous need for real-time order updates and analytical evaluation of
metrics such as order completion rates and cancellation ratios. It
is di�cult to eliminate transactional demands from business pro-
cesses, necessitating storage designs that support data updates and
primary key deduplication. This requirement becomes particularly
challenging in scenarios demanding high real-time performance,
such as in advertising and marketing. Consequently, developing
storage systems capable of supporting Hybrid Transactional/Ana-
lytical Processing (HTAP) is particularly demanding.

One of the primary challenges in implementing Storage-Compute
Separation in HTAP systems is the complexity of managing indices.
The necessity for data updates, along with the demands of full-
text and vector searches, means that indices cannot be entirely
eliminated from our design. However, the potentially large size of
indices presents signi�cant challenges, particularly in a serverless
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environment where nodes are subject to dynamic changes. In such
cases, the cost of migrating state data is considerable.
Uni�ed Storage Layer.We have implemented a uni�ed storage
API to abstract the complexities arising from various storage re-
quirements and types, ensuring that ADB-PG can concurrently
support both row and columnar storage, as well as local and remote
storage solutions. More speci�cally, the uni�ed storage layer o�ers
the following features:
• It employs a POSIX interface to abstract the intricacies of tradi-

tional �le systems and object storage, o�ering a uni�ed API for
distributed storage solutions.

• The proposed method can support a hybrid approach to storage
types: object storage, which is characterized by low cost, high
bandwidth, and high latency with append-only capability, is
complemented by a log store for low-latency writes and a page
store for low-latency random reads.

• Beyond the existing storage systems, the framework allows for
extensibility through plugins to support customized storage so-
lutions on specialized cloud environments, enabling users to
tailor their storage strategy without modifying the core code-
base of ADB-PG, even in cases where their internal technical
infrastructure is not standardized.

By adopting this design approach, we can implement a �exible and
maintainable solution using a uni�ed codebase.

To achieve row storage with a compute-storage separation ar-
chitecture, we employ a combination of a distributed log service
(log store), asynchronous log forwarding, and remote page storage
(page store). This setup ensures high data availability and consis-
tency. Unlike traditional log services (Log as a Service), our ap-
proach supports distributed transaction processing, which provides
consistency guarantees for handling multi-partition data updates.
Utilizing the aforementioned technologies, our compute-storage
separated row storage supports both writing data to object stor-
age (OSS) in an append-only fashion and delivering rapid query
performance. ADB-PG’s columnar storage takes advantage of ob-
ject storage, which o�ers cost e�ciency, separation of storage and
computation, and scalable capacity.

3.3 Elasticity Design

Elasticity is crucial for the control plane, balancing cost and stability.
By leveraging resource pooling and resource isolation, ADB-PG can
dynamically acquire storage and computing resources on demand.
This subsection details the mechanisms by which ADB-PG achieves
elasticity in both storage and computation.
Storage Elasticity. The underlying storage system, EBS, can dy-
namically adjust I/O operations per second performance, while
the OSS can dynamically adjust bandwidth performance. In other
words, ADB-PG utilizes the EBS of Alibaba Cloud [20] as the data
storage medium, enabling seamless dynamic I/O expansion. During
node failure recovery, when an agent in the system detects a node
failure, it automatically triggers the expansion of cloud disk I/O to
meet the high I/O demands of the recovery process. This ensures
that recovery operations do not impact other business operations,
maintaining continuous online services and performance stability.
Compute Elasticity. ADB-PG’s control plane dynamically allo-
cates resources during peak periods to meet instant computing
demands and releases excess resources during troughs, enhancing
utilization and reducing costs. For example, under high load or
instance failure, the system automatically triggers load balancing

and failover to ensure uninterrupted service. When high CPU load
is detected, it distributes new tasks to less loaded nodes and redi-
rects business tra�c to standby nodes during failures, ensuring an
una�ected user experience. In actual deployments, computational
elasticity often faces issues: insu�cient resources and horizon-
tal scaling can cause brief business interruptions, and new nodes
may lack pre-warmed caches, resulting in unstable services during
scaling-up. Consequently, users tend to prefer planned elasticity
over load-based elasticity.

To address these issues, we optimize our computational elasticity
strategy by prioritizing vertical scaling to maximize the stability
of business operations during scaling events. We predict business
loads before scheduling to ensure that vertical scaling resources
are su�cient. In cases where vertical resources are inadequate, we
perform cache pre-warming before horizontal scaling. Through
these measures, we have reduced the user-perceived downtime
during scaling operations by 90%.

4 STORAGE ENGINE BEAM

In modern database and data warehouse systems, data storage mod-
els typically include the row-store model, column-store model, and
hybrid row-column store model. To enhance data processing ef-
�ciency and performance, we propose a hybrid real-time engine
called Beam. Unlike traditional hybrid storage systems like Single-
Store [48] that maintain durable local state on compute nodes, Beam
is designed for completely stateless compute nodes in cloud-native
environments, with all durable state externalized to log services and
object storage. The proposed storage engine Beam combines the
advantages of row storage and column storage models to achieve
e�cient data read and write performance while enabling instant
elasticity and seamless storage-compute separation.

4.1 Beam Overview

The storage engine Beam divides data into two parts: real-time in-
cremental data (delta) and historical full-scale data (primary). Delta
data adopts the NSM (N-ary storage model) [11] row-store struc-
ture, focusing on supporting e�cient real-time data insertions,
updates, and deletions. Primary data uses the PAX (Partition At-
tribute Across) [12] hybrid row-column store structure, suitable
for high-throughput batch data imports and loading. Moreover,
delta data is periodically �ushed to primary data based on time
and data volume, while primary data is automatically optimized
in the background (supporting composite and Z-order clustering
[34]) to enhance query and scanning performance. Thus, it avoids
duplicating storage space by storing data exclusively in either row
or column format. This e�ciency is achieved through two distinct
data input modes: concurrent streaming and batch import. For each
data entry, Beam dynamically selects the appropriate mode based
on row count and insertion method (copy or insert). Speci�cally:
• Concurrent Streaming: Data is initially written into the row stor-

age segment without compression, utilizing shared memory to
minimize I/O operations. This approach o�ers more than a �ve-
fold performance advantage over column storage for typical
workload scenarios. This method is preferred for operations in-
volving fewer than 10,000 rows by default. It e�ectively mitigates
the ine�ciencies associated with frequent compression and I/O
activities observed in pure columnar storage systems like AWS
Redshift when handling concurrent real-time writes.
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by scanning to pinpoint the target row. This challenge is exacer-
bated in the presence of NULL values, as these formats optimize
storage by using null bit arrays to indicate NULLs, necessitating
supplementary decoding operations to reconstruct and populate
these values during data retrieval.

Beam addresses these limitations through an optimized layout
supporting e�cient row and column access. In row-based struc-
tures (Figure 3a), Beam provides straightforward row-level access
comparable to traditional row stores. Even in columnar layouts
(Figure 3b), Beam maintains direct row access for both �xed and
variable-length columns. The PAX format records NULL positions
in bit arrays and �lls gaps with zeros, preserving column alignment
within row chunks. While introducing minor storage overhead, this
is o�set by enhanced compression techniques. This design elimi-
nates decoding requirements during reads, signi�cantly improving
indexed point query and vectorized execution performance.

The layout enables rapid access to all column values for a row
using minimal metadata. Fixed-length columns are accessed via
sizeof<T> * ChunkPosition, while variable-length types utilize
o�set arrays. This architecture delivers index point query perfor-
mance approaching row-based storage levels. Rows are uniquely
identi�ed by a 48-bit CTID comprising <FragmentId, ChunkID,

ChunkPosition>, stored in secondary indexes for e�cient data
location. Unlike purely columnar models requiring extensive meta-
data for cross-column row positioning, this approach minimizes
overhead. Additionally, physically storing NULL values enables
direct computation without decompression in bitpacking scenarios.
Secondary Indexes. It can accelerate query performance by en-
abling rapid record identi�cation without full scans. While essential
for OLTP non-primary key queries and OLAP I/O reduction, tra-
ditional columnar storage faces signi�cant overhead during index
scans due to cross-column row reconstruction requirements.

Beam leverages its direct row-level addressing to support diverse
secondary index types, storing <Key, RowId> pairs. Query execu-
tion �rst retrieves the RowId via key lookup, then maps to Beam’s
<FragmentId, ChunkID, ChunkPosition> identi�er. The system
maintains comprehensive metadata for each <Fragment, Chunk>,
including row chunk metadata and position �les recording col-
umn chunk o�sets and lengths within fragment �les. Row position
determination involves accessing <Fragment, Chunk> metadata,
loading relevant column data, and performing e�cient row-level
addressing within data blocks to complete index queries.
Strong Primary Key Constraint. Strong primary key constraints
ensure uniqueness in OLTP systems but prove costly in OLAP en-
vironments due to row-level addressing overhead. Most analytical
systems employ weak primary keys, achieving eventual uniqueness
through backend compaction rather than real-time enforcement.

Beam implements strong primary key constraints e�ciently
through its secondary B-tree indexes and row-level locking capabil-
ities. During insertion, Beam veri�es primary key existence in the
B-tree index and checks deletion status if present. Data insertion
proceeds only when the primary key is con�rmed absent, ensuring
strict uniqueness enforcement.
Row-Level Locking. OLAP systems typically employ chunk-level
locking for high-concurrency reads and block-level columnar ac-
cess. However, this coarse granularity creates substantial over-
head for high-frequency single-row updates characteristic of OLTP
workloads. Beam achieves superior concurrency for update/delete

through row-level locking in columnar storage. The system main-
tains a dedicated metadata table for rows requiring updates, en-
abling e�ective con�ict detection and resolution across parallel
transactions. During update/delete operations, Beam records deletion-
marked row numbers in memory. Concurrent transactions attempt-
ing to modify identical rows check for existing row lock markers—if
an active transaction is updating the row, subsequent transactions
wait; otherwise, they proceed despite sharing the same chunk.
Upsert Support. Beam provides comprehensive Upsert functional-
ity supporting On Con�ict Do Update (OCDU) and On Con�ict Do
Nothing (OCDN) constructs, enabling user-speci�ed actions when
insert operations encounter con�icts.

Upsert di�ers from standard update/delete operations in that it
must handle scenarios where multiple sessions attempt to insert
records with the same primary key (pk) that do not yet exist in
the table. For example, concurrent sessions inserting pk=1 into an
empty table would both perceive no con�ict and proceed, creat-
ing duplicate primary keys. Beam addresses this through specu-
lative inserts: data is initially inserted with an index lock. Upon
detecting duplicate insertions, later-inserted data is immediately
deletion-marked to maintain uniqueness. The system then retries
the insertion, entering a wait state if con�icts are detected, until
the con�icting transaction commits or rolls back. Unlike alterna-
tives employing last write wins strategies that can produce isolation
errors in concurrent operations (e.g., ON CONFLICT(a) DO UPDATE

SET b=b+1 potentially yielding incorrect results when both transac-
tions update b to 2), Beam prevents such isolation errors, ensuring
accuracy in concurrent Upsert transactions.

4.3 Vectorized Scan Optimization

Beam speci�cally designs and optimizes vectorized scans for the
Laser execution engine, o�ering an advantage that other open-
source PAX formats cannot match. Vectorized execution signi�-
cantly accelerates processing e�ciency, particularly when handling
multiple columns; it requires row alignment across these columns.
As previously discussed, Beam’s storage of null values allows the
computation engine to perform vectorized calculations directly on
decompressed data. This eliminates the need for additional format
processing, thereby streamlining execution and enhancing speed.

For workloads involving low-cardinality string scans, �ltering,
and aggregation, Beam implements global dictionary encoding. Un-
like �le-level encoding, this approach not only reduces storage
requirements for low-cardinality strings but also leverages the ca-
pabilities of the execution engine and optimizer to enhance vector
and late materialization processes. During queries, data are man-
aged as integers, thereby reducing I/O overhead from extensive
data scanning and accelerating operations such as �ltering and ag-
gregation. Unlike SingleStore, which supports dictionary encoding
solely in the columnar section, Beam optimizes both the delta and
base components during queries through dictionary methods. To
address inconsistencies in storage models, we introduce a delta dic-
tionary to adapt row storage, where only dictionaries are collected
but not encoded. During queries, Beam merges, sorts, and maps
the dictionaries from both the base and delta components to form
a uni�ed global dictionary.

The performance of Laser is closely linked to the batch process-
ing unit. The storage unit of Beam, the row chunk, serves as the
smallest unit for expression �ltering and projection calculations in
Laser. By unifying the batching units for storage and computation,
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Beam enhances data computation’s memory locality and avoids
additional overhead from aligning batch sizes, ultimately boosting
batch computation performance.

5 EXECUTION ENGINE LASER

The performance optimization of a data warehouse execution en-
gine signi�cantly impacts overall performance. This subsection
discusses operator and expression computation optimizations on
the ADB-PG execution engine, Laser. Performance is a critical factor,
as it determines whether the response time can meet the require-
ments of business systems. Additionally, cost is intrinsically linked
to performance; a more e�cient system can achieve the same busi-
ness outcomes with fewer hardware resources, thereby reducing
costs. Consequently, in data warehouse scenarios involving large
volumes of data and complex analytical queries, the performance of
the computational layer is of utmost importance. Some computation
engine employs a traditional tuple-at-a-time architecture, which
su�ers from the overhead of frequent interpreted function calls due
to the volcano model. This approach cannot also leverage advanced
CPU features such as SIMD instructions, leading to suboptimal
performance. Therefore, we developed the high-performance com-
puting engine Laser to deliver ultra-fast analytical server. Unlike
existing systems that statically choose execution strategies, Laser
introduces an adaptive hybrid approach that analyzes each query
fragment at runtime to select between vectorized batch execution
and JIT-compiled kernels. Laser addresses these challenges through
various optimizations focusing on the computational framework,
memory layout, and expression evaluation. These optimizations are
co-designed with Beam chunked storage format, ensuring aligned
batch units and memory layouts for maximum e�ciency. Moreover,
it incorporates two key performance-enhancing features: runtime
�lter and dictionary encoding with cost-based plan adaptation.

5.1 Computational Framework

The computational framework in the industry predominantly fall
into two categories: Compilation Execution, exempli�ed by systems
like Redshift [30] and Spark [61], and Vectorized Execution, repre-
sented by Databricks Photon [10], Velox [47], and ClickHouse [44].
Comparing with these, Laser dynamically combines both strate-
gies based on workload-aware heuristics, enabling superior perfor-
mance for diverse query patterns in cloud-native workloads. The
advantages and disadvantages of these approaches are:
• Compilation Execution: This runtime compilation process can

transform the entire computation into a single kernel, executed
within CPU registers, yielding signi�cant performance bene�ts
without additional data materialization overhead. However, the
compilation process incurs unavoidable costs, potentially pro-
longing compile times in scenarios with complex computations
but small data volumes. Additionally, this approach poses chal-
lenges in development and debugging, and fails to fully exploit
CPU SIMD capabilities.

• Vectorized Execution: This method processes data in batches, stor-
ing data within each batch in a columnar memory layout, thus
maximizing SIMD performance enhancements. Code written in
C++ facilitates easier debugging and development and incor-
porates partial adaptive execution capabilities. However, this
approach introduces additional data materialization overhead,

requiring intermediate computation results to be repeatedly read
and written in memory.
Laser integrates the strengths of both frameworks, primarily

adopting Vectorized Execution, while combining Compilation Ex-
ecution with Vectorized Execution for expression computation.
The corresponding framework is shown in Figure 4. The rationale
behind this choice is that the core of Vectorized Execution—batch-
at-a-time computation—allows the CPU to focus on continuous data
processing, signi�cantly reducing interpreted function call over-
head. The column-oriented memory layout for batch computations
ensures that continuous storage and processing of similar data opti-
mally leverage CPU pipelining and SIMD instructions. Meanwhile,
Compilation Execution o�ers signi�cant advantages in complex
computation scenarios by optimizing instruction sets and reducing
function call overhead. This is particularly bene�cial in intricate
expression computations. In other scenarios, such as hash joins and
sorting, which are typical memory-stall scenarios, JIT approaches
o�er no distinct advantages over Vectorized Execution and present
considerable development challenges. Section 5.3 will details the
experssion evalution using this framwork.

5.2 Memory Layout

Firstly, we provide a concise overview of two memory layouts:
• DSM (Decomposition Storage Model), which aggregates and

stores data from the same �eld within records. This memory
layout is well-suited for scenarios involving continuous data
access and computation.

• NSM (N-ary Storage Model) aggregates and stores data from
all �elds of each record. This model is appropriate for scenar-
ios where data is accessed randomly in memory yet requires
computations across all �elds.
Database computation scenarios can be categorized into two

main types based on memory access patterns:
Sequential Memory Access: This category includes operations

like scans and shu�es, characterized by computations running
on contiguous memory. For such scenarios, a column-oriented
Data Storage Model (DSM) is the optimal choice, as it naturally
facilitates high-performance computing through SIMD instruction
sets directly on the same data memory.

Random Memory Access: This category encompasses operations
such as aggregation, join, and sort, where the primary bottleneck
is memory latency due to cache misses. If a DSM memory layout is
used in such situations, operations like join key comparisons and
projection outputs will experience frequent cache misses due to the
separate storage of each column. Therefore, for these scenarios, a
Row-oriented Storage Model (NSM) is ideal. However, not all data is
stored using the NSM structure. For instance, in hash join, join keys
and columns involved in �ltering and projection calculations are
organized individually in NSM format. This approach ensures that
the overall algorithm adheres to a batch-vectorized paradigm, while
simultaneously minimizing cache misses at each computational
stage by leveraging the NSM memory layout.

5.3 Expression Evaluation

In Sec. 5.1 we mentioned the use of an adaptive hybrid approach
combining compilation and vectorized execution for expression
computation. This subsection delves into the optimal scenarios for
each technique and explains how adaptive selection is achieved.
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• Expression Evaluation with Vectorized Execution: SIMD Uti-
lization: For arithmetic or comparison operations in a column-
oriented memory layout, Vectorized Execution fully exploits
modern CPU SIMD features (e.g., AVX2, AVX512), achieving
2–8× higher computational performance. Adaptive Execution:
Batch processing enables dynamic simpli�cation of computa-
tional logic based on null value presence during expression eval-
uation. Short-Circuit Scenarios: Logical operators like AND/OR
or CASE WHEN may short-circuit; frequent short-circuit checks
can introduce extra overhead.

• Expression Evaluation with Compilation Execution: (1) Inte-
grated Kernel Functions: By compiling all computations into a
single kernel at query runtime, calculations are e�ciently exe-
cuted in registers. In short-circuit scenarios, results are returned
immediately when conditions are met, unlike Vectorized Exe-
cution, which requires repeated evaluations. (2) Compilation
Overhead: Compiling an expression typically takes about 10ms.
For complex cases with small data volumes, compilation time
can exceed execution time, degrading performance. Addition-
ally, row-by-row computation does not utilize SIMD instructions,
limiting performance for continuous data processing scenarios.
Generally, Vectorized Execution excels in scenarios involving

continuous computations, while Compilation Execution is more
e�cient in short-circuit scenarios with logical operations. The adap-
tive approach we employ in Laser integrates these two techniques,
automatically routing to the optimal performance method based on
context. Speci�cally, in column-oriented memory layout scenarios,
we determine at runtime whether expression evaluation involves
short-circuit computations. If so, we dynamically decide whether
to compile a kernel based on the data volume, thereby accelerat-
ing expression evaluations in large-data scenarios while avoiding
unnecessary compilation costs in smaller datasets.

Moreover, as introduced in thememory layout section, hash joins
or aggregations that use a row-oriented method require row-based
computation for projection outputs. Under such circumstances,
Vectorized Execution would incur function call overhead due to
processing one row at a time within loops. Therefore, using Compi-
lation Execution provides a performance advantage in these cases.

JIT (Just-In-Time) compilation and vectorization (vectorized
primitives) are two distinct optimization techniques, each with
its own advantages and suitable contexts.

JIT compilation performs runtime compilation, allowing for dy-
namic optimization based on actual data and execution environ-
ments, potentially o�ering better performance than static compi-
lation. However, since compilation occurs during runtime, there
may be initial execution delays. JIT compilation is particularly
well-suited for scenarios where runtime information is critical for
optimization, such as large-scale data processing.

Modern processors often include SIMD instruction sets, enabling
vectorization to fully exploit these hardware features by processing
multiple data elements in parallel. For large arrays or matrix com-
putations, vectorization can signi�cantly enhance performance. By
utilizing a loop function approach to reduce the overhead of func-
tion calls, SIMD instruction sets can further enhance performance
when applied to columnar memory layouts. However, vectorized
primitives require structured data processing and lack the �exibility
of loops for complex conditional logic. Understanding and applying
vectorization necessitates a deep comprehension of array opera-
tions and underlying hardware. In summary, we employ vectorized
primitives for expression computations on DSM data structures,
while JIT compilation is preferred for NSM structures.

5.4 Optimization

Next, we introduce two high-performance features designed for spe-
ci�c scenarios: runtime �lter and dictionary encoding. Additionally,
it explains how the computational engine synergizes with storage
and the optimizer to deliver exceptional analytical performance.
Runtime �lter. HashJoin is a widely used and important database
operator. When join selectivity is low—meaning the probe side
output is much smaller than its input—a runtime �lter can greatly
reduce data volume, I/O and network overhead. This is achieved by
building a Bloom Filter from the HashJoin building and pushing it
down to the scan, shu�e, and computation nodes on the probe side.
Most analytical engines support runtime �lters, typically adding
them after execution plan generation based on estimated join selec-
tivity from statistics. However, late introduction can change output
data volumes and potentially lead to suboptimal join orders.
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To solve this, we implement a runtime �lter enforcer in our cas-
cade optimizer. This allows the optimizer to update cardinality and
cost estimates immediately after introducing runtime �lters, ensur-
ing better join order decisions. In our system (ADB-PG), Runtime
Filter requirements are generated at the Enforcer stage, propagated
down the operator tree, and materialized as physical runtime �lter
operators. Along this path, we dynamically adjust cardinality and
cost, letting the optimizer select plans that account for the impact of
runtime �lters. For example, in a TPC-H query involving lineitem,
orders, and supplier tables, two join plans for lineitem and orders
are possible. By updating cardinality using runtime �lter require-
ments, the optimizer identi�es that lineitem �ltered data will be
smaller than orders, and correctly places lineitem as the hash build
(inner) side, achieving optimal join reordering.

1 select *

2 from (select l_suppkey , sum(l_quantity) as sum_qty

3 from lineitem ,
4 orders
5 where l_orderkey = o_orderkey
6 group by l_suppkey) t,
7 supplier
8 where l_suppkey = s_suppkey

9 and s_comment like '%Customer%Complaints%';

Besides, the e�ectiveness of the Bloom Filter is determined by its
size, which directly in�uences its �ltering capability. Relying purely
on estimated cardinality could lead to suboptimal Bloom Filter sizes:
too small, leading to poor �ltering, or too large, increasing space
usage and network transmission, thereby degrading performance.
In Laser, the algorithm �nalizes the data materialization on the build
side before constructing the hash table, allowing for the precise
calculation of the Bloom Filter’s optimal size. This ensures an ideal
balance between �ltering e�ectiveness and resource utilization.
Dictionary Encoding Dictionary encoding is another widely used
performance-enhancing feature, particularly e�ective in scenar-
ios involving computations with low-cardinality string data, such
as string �ltering, sorting, and grouping. In these computations,
converting string operations into integer operations via dictionary
encoding can signi�cantly boost performance.

The principle behind dictionary encoding involves encoding
string data as integer values within each fragment �le at the stor-
age layer. A corresponding dictionary �le stores the mapping infor-
mation. During the plan generation phase, the optimizer collects
dictionary encoding requirements in a top-down manner through
the Plan Tree and matches these requirements with the dictionary
capabilities of the underlying scan operation. Plans that satisfy
these requirements undergo node rewriting, with a Decode opera-
tor inserted at the end, adhering to the Late Decode principle.

Within the computation phase, the Laser engine consolidates
dictionary information from multiple fragments during scanning
to create a uni�ed dictionary. It maps fragment-speci�c dictionary
data to the global dictionary, producing uniformly encoded integer
values. This facilitates high-performance computations using these
encoded integer values. The �nal step involves decoding the integer
values back into strings at the decode node.

6 EVALUATION

In this section, we evaluate the performance of ADB-PG across
various aspects, including the following problems:
• What is the overall performance and cost of ADB-PG?

Case vCPU Con�guration
TW=Transaction
Worker
AW=Analytic Worker

Transactional
Throughput
(TpmC)

Analytical
Throughput
(QPS)

1 16 0 TWs, 2 AWs - 0.14
2 16 16 TWs, 0 AWs 7932 -
3 16 16 TWs, 2 AWs shar-

ing one workspace
3260 0.061

Table 1: Summary of ADB-PG CH-BenCHmark results (1000
warehouses, 20 minute test executions)

• How does Beam balance and enhance the e�ciencies of both
row-oriented and column-oriented storage?

• How does Laser improve analytic performance of ADB-PG?
• How e�ective is resilience in the presence of failures?

6.1 Overall Performance

We test the proposed system scalability using di�erent data sizes.
A high-performance server is utilized to ensure the accuracy and
validity of our test results. The hardware con�guration consists of
eight compute nodes, each with 12 cores, leading to a total of 96
cores, leveraging Alibaba Cloud virtualization technology. Speci�-
cally, the servers are powered by Intel Xeon Platinum 8369B (Ice
Lake) processors, which have a base clock speed of 2.9 GHz and a
maximum turbo frequency of 3.5 GHz across all cores. The system
is equipped with 768 GB of RAM and utilizes PL1 level cloud stor-
age with Elastic Block Storage. For the software environment, the
experiments were conducted on AliOS 8.

Query performance. For an analytical data warehouse, achiev-
ing superior query performance is a core capability. We compare
the TPC-H query execution times of ADB-PG using shared-storage
mode (SSM) and shared-nothing mode (SNM). Figure 5 shows the
performance of these two architectures across various queries. The
geometric mean of all queries is also reported, as recommended
in the o�cial documentation [5]. We observe that ADB-PG with
SSM delivers query performance comparable to SNM overall. For
some queries (e.g., Q1, Q18), SSM demonstrates signi�cant perfor-
mance advantages. This is because, even with a uni�ed storage API,
ADBPG-SSM enables multi-shard optimization, making it feasible
to deploy twice as many nodes under the same scenario. There-
fore, for scan-intensive queries, SSM is faster than SNM when the
cache is hit. However, for certain queries (such as Q4, Q5), SSM
performs slightly worse than SNM due to the overhead of deploying
more nodes. For queries requiring network shu�ing, this leads to
increased network overhead, degrading performance for SQL opera-
tions involving substantial data transfer. In summary, SSM delivers
superior performance for most queries and, given its signi�cant
cost savings, ADB-PG with SSM demonstrates clear advantages.

Monetary cost.We compare the monetary costs associated with
di�erent data volumes under the SSM and the SNM, as shown in
Figure 6. The results indicate that the SSM achieves a reduction
in costs by an order of magnitude compared to the SNM. This is
primarily due to the innovative design of the SSM, which reduces
redundant components and improves resource utilization. By em-
ploying a uni�ed storage layer, the SSM allows for the deployment
of OSS at a lower cost, thereby reducing the overall system expenses.
Furthermore, as the volume of data changes, the SSM demonstrates
a signi�cant advantage in terms of cost. This provides practitioners
with strong guidance in selecting a data warehouse.
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Table 2: Performance Impact of Dictionary Encoding (DE) in SSB Queries

Description SQL DE No DE

Q1 Equal Filter SELECT count(*) FROM lineorder_�at WHERE p_brand = ’MFGR#12’; 0.21s 1.23s
Q2 Range Filter SELECT count(*) FROM lineorder_�at WHERE p_brand >= ’MFGR#200’ AND

p_brand <= ’MFGR#400’;
0.95s 38.87s

Q3 Group Key SELECT s_brand, count(*) FROM lineorder_�at GROUP BY s_brand; 1.56s 6.97s
Q4 Agg Expression SELECT s_region, SUM(CASE WHEN p_brand >= ’MFGR#2221’ AND p_brand

<= ’MFGR#2228’ THEN lo_extendedprice ELSE lo_ordtotalprice END) FROM
lineorder_�at GROUP BY s_region;

3.36s 52.36s

Table 3: Performance Impact of Runtime Filters(RF) on TPC-
DS Queries

Query No RF RF RF + Enforcer

TPC-DS Q24 6414 ms 3224 ms 3138 ms
TPC-DS Q64 10275 ms 7687 ms 6047 ms

Table 4: Performance Comparison of Adaptive and Normal
Runtime Filters(RF) on TPC-H Queries

Query Normal RF Adaptive RF

Q9 21.28s 17.65s
Q12 3.01s 2.81s

6.4 Recovery

To emulate failover behavior, we arti�cially induce a crash failure
on one worker node during live workload execution. Figure 8 shows
the changes in CPU utilization across di�erent worker nodes and
client throughput over time in ADB-PG under a real workload
case. In this scenario, Worker 1 serves as the backup node for
Worker 2. Upon the unexpected failure of Worker 2, we recorded
the automatic failover to Worker 1, accompanied by an automatic
scale-up. The upper part of the �gure displays the CPU utilization
for Worker 1, Worker 2, and Other Workers, where Other Workers
indicate the average resource utilization of other nodes. Before the
failure, the resource utilization across all nodes remained consistent.
After the failure occurred, the utilization of Worker 2 dropped to
zero, causing the resource utilization of Worker 1 to immediately
increase to ensure that the average resource utilization between
Worker 1 and Worker 2 remained consistent with that of the other
nodes. This guarantees the resource utilization of the overall system
remains stable. The lower part of the �gure shows the normalized
client throughput. We observe that throughput changes along with
resource utilization across all working nodes. After the failure of
Worker 2, the throughput continues to vary in line with the resource
utilization of other workers, indicating that the system can still
operate stably amid load �uctuations and sudden failures.

7 RELATEDWORK

Cloud-Native databases. Cloud-native databases leverage cloud
scalability and resilience, supporting microservices, dynamic scal-
ing, and high availability. Examples include Amazon Aurora [57],
Google Cloud Spanner [22], andMongoDBAtlas [2]. These databases
utilize containerization and orchestration, enhancing deployment
and management, while incorporating automated backup, moni-
toring, and security. Modern systems like Azure Cosmos DB [52]
and CockroachDB [55] support diverse workloads with features
such as multi-region replication, real-time analytics, and serverless
operation, evolving with cloud adoption.

Shared-nothing and shared-storage architectures. Shared-
nothing databases, used in systems like PolarDB-X [17], OceanBase
[60], and TiDB [33], partition data across independent nodes for
horizontal scalability but face challenges in coordination and fault
tolerance. In contrast, shared-storage architectures, exempli�ed by
Oracle RAC [19], enable easier coordination but su�er from high
network overhead and limited cloud �exibility.Modern cloud-native
databases [27] explore multi-primary con�gurations, improving
scalability yet introducing performance trade-o�s due to log syn-
chronization ine�ciencies and concurrency control complexities.

Mixed row/column formats. Mixed row/column formats sup-
port HTAP workloads by combining row-based write speed with
columnar analytics. There are actually many di�erences among
di�erent products. Systems like SingleStore [48] and CockroachDB
[54] tightly couple compute and storage with durable local state.
Others, like TiDB [32] and AlloyDB [6] separate compute from a
stateful, replicated storage cluster. Snow�ake [23] further disag-
gregates by using immutable cloud storage. In sharp contrast, the
cloud-native design of Beam in ADB-PG uses completely stateless
compute nodes by externalizing state to an external log service for
fast commits and to object storage as the ultimate source of truth.
This fully disaggregated model provides superior elasticity and fault
tolerance while preserving low-latency transactional performance.

Execution Engine. Vectorization Execution Engine, used in sys-
tem as DuckDB [49], ClickHouse [51], and Databricks Photon [16],
achieve acceleration by combining batch computing and columnar
computing, making full use of the characteristics of CPU SIMD. The
compilation execution, as Redshift [30], UmbraDB [46], through the
Just-in-time Compilation technology, dynamically generates a ker-
nel based on actual running SQL, and achieves high-performance
computing by eliminating the overhead of function calls and low-
latency access to data in registers. In contrast, Laser uniquely em-
ploys adaptive mode switching, dynamically choosing between
vectorized and compiled execution at runtime for each fragment.
Furthermore, Laser tightly couples its execution strategies with
storage layout and runtime optimization, enabling deeper integra-
tion of runtime �lters and dictionary encoding for adaptive plan
optimization, which is beyond the capabilities of traditional engines.

8 CONCLUSION

In this work, we presentedADB-PG, a cloud-native, high-performance
data warehouse that integrates shared-nothing and shared-storage
architectures to optimize scalability and elasticity. Our system intro-
duces Beam, a hybrid storage engine, and Laser, a high-performance
execution engine, enabling e�cient analytical query processing. Ex-
tensive evaluations on industry-standard benchmarks demonstrate
that ADB-PG achieves superior performance and cost-e�ciency
compared to existing solutions.
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