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ABSTRACT

Capturing the characteristics of real-world analytical workloads is
challenging yet critical for advancing industry practices and aca-
demic research. Historically, obtaining accurate query and data
characteristics has been difficult, largely because detailed work-
load information has often been confined to on-premises database
systems. With the rise of cloud-native databases like Snowflake,
it has become possible to analyze production query workloads at
scale and in greater detail. Leveraging this capability, this study
presents a comprehensive analysis of analytics workloads across
diverse customers and industries. In particular, we investigate the
query characteristics of 667 million queries issued by the most pop-
ular BI tools against Snowflake over a two-week period. Based on
this dataset, this paper makes two primary contributions: first, we
conduct a detailed examination of query properties, with partic-
ular attention to filters, joins, aggregations, and other previously
underexplored aspects. Second, we uncover unique and practically
relevant query patterns that are typically absent from standard
database benchmarks.
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1 INTRODUCTION

Understanding and addressing real-world problems is a cornerstone
of database research. Yet, gaining visibility into relevant workloads
remains a significant challenge. Most real-world query patterns are
locked away in proprietary applications or isolated within private
infrastructure, limiting visibility and hindering a deeper under-
standing of how database systems are actually used. To address this
lack of visibility, the database community relies on synthetic bench-
marks such as TPC-H [24], TPC-DS [23], or Clickbench [6], which
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aim to replicate the complexity and characteristics of real-world
data processing tasks. While these benchmarks offer a valuable
framework for evaluating database systems, they fall short of cap-
turing the full diversity and dynamics of actual workloads, leaving
many critical patterns unexplored [11, 26, 29].

The emergence of cloud-based data platforms such as Amazon
Redshift [3, 13], Google Big Query [20], and Snowflake [9] is sur-
facing previously inaccessible insights into real-world workloads.
Unlike traditional on-premise systems, these platforms operate
as a service, enabling providers to collect detailed telemetry on
how customers query and interact with their data. This offers un-
precedented visibility into workload patterns, helping providers
identify key challenges and prioritize engineering efforts that di-
rectly address real-world customer needs. Furthermore, some cloud
providers have begun sharing workload traces and other insights
with the research community, fostering collaboration and validating
emerging ideas [26, 30].

In this paper, we share insights gained from over a decade of
experience with analytical workloads at Snowflake. Specifically,
we analyze a representative production workload consisting of 667
million analytical queries executed by our customers. Using this
dataset, we provide an overview of key workload metrics and con-
duct an in-depth analysis of SQL query patterns, examining their
characteristics and frequency in real-world scenarios. Additionally,
we identify query patterns that are significant for industrial appli-
cations but are not adequately captured in standard benchmarks,
highlighting opportunities to refine evaluation frameworks. These
findings offer valuable perspectives for understanding real-world
workloads and open up new directions for future research.

Our contributions are two-fold:

(1) We analyze a representative analytical workload, focusing
on SQL patterns and other properties that have not been
extensively studied in the context of cloud data platforms.

(2) By comparing our findings with the TPC-DS benchmark,
we highlight opportunities to broaden its scope, offering
recommendations to better capture the diversity and com-
plexity of modern analytical workloads.

The primary focus of our study is to highlight how analytical
queries are structured and shaped in practice. This emphasis on
detailed query properties complements recent workload analyses -
such as the analysis of the Redset dataset published by van Renen et
al. [26] — which have primarily investigated data characteristics (e.g.,
table properties, data skew, and value distributions) and broader
workload trends. By explicitly analyzing real-world SQL query texts
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and execution plans, we provide novel insights into analytical query
patterns that complement the results of prior studies. By explicitly
analysing real-world SQL query texts and plans — revealing, for
instance, that 31% of all statements are metadata queries and that
78% of LIMIT queries still return more than one million rows — we
complement the data-centric observations of Redset.

Unlike previous work (e.g., Snowset by Vuppalapati et al. [30]
and Redset by van Renen et al. [26]), we explicitly decided against
releasing the dataset analyzed in this study. This decision was
driven by our emphasis on SQL query texts and query plans rather
than abstracted workload traces. Proper anonymization of raw SQL
queries and execution plans is particularly challenging, as constants,
table names, function properties, or even query shapes might un-
intentionally reveal customer-specific or personally identifiable
information (PII). To mitigate this risk, we prioritize customer pri-
vacy and data security, and consequently have chosen not to share
detailed query data publicly. Additionally, we currently have no
plans to propose new benchmarks based on our results.

The paper is structured as follows: Section 2 provides an overview
of the analyzed production workload, highlighting trends and char-
acteristics in real-world queries. Section 3 examines query patterns
across SQL components, offering insights into operator usage and
complexity. Section 4 discusses key findings on TPC-DS and query
patterns. Section 5 reviews related work, and Section 6 concludes.

2 WORKLOAD OVERVIEW

In this section, we provide an overview of the analyzed production
workload, including details on its collection process, key properties,
and query complexity.

2.1 Methodology

The dataset analyzed in this study comprises query traces, teleme-
try data, and query plan information collected from Snowflake’s
internal warehouse, Snowhouse, over a seven-day period (October
21 to 27, 2024). It includes 667 million production queries from a
single cloud region, with runtimes ranging from 0.2 seconds to
18 hours (median: 0.7 seconds; 99th percentile: 120 seconds). To
ensure our analysis reflects representative analytical workloads, we
focused exclusively on queries generated by the most widely used
BI tools among Snowflake customers, accounting for more than 60%
of all BI queries executed during this week!. These queries typically
support traditional BI reports, dashboards, and exploratory anal-
yses conducted by data analysts. We deliberately excluded other
use cases, such as ETL or data engineering, to maintain consistency
and reduce noise. Note that we did not deduplicate the dataset, as
the findings remained nearly identical regardless of deduplication.

Our analysis provides a comprehensive view of general charac-
teristics and functional coverage in analytical workloads. It draws
on occurrence-based metrics, such as the distribution of query types
observed by Snowflake. Note that we explicitly exclude memory and
CPU consumption metrics because they reflect system-specific im-
plementation choices rather than the nature of the workload itself.
Detailed execution times are also omitted to avoid unintentionally

'We chose not to publish a more detailed workload specification to avoid disclosing
sensitive business information and to respect customer confidentiality.
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Figure 1: Statement Types

revealing financial details, since Snowflake’s billing depends on vir-
tual warehouse runtime. Unless stated otherwise, query attributes
such as the number and type of joins are extracted directly from
optimized query plans. When deeper insights, such as actual car-
dinalities, are required, we rely on runtime telemetry collected by
the execution engine.

2.2 General Workload Patterns

We will now present an analysis of the workload’s characteristics,
focusing on statement types, SQL features, and operator usage.

2.2.1 Statement Types. Figure 1 shows the distribution of state-
ment types in the workload. SELECT queries dominate (47%), fol-
lowed by SHOW commands, which retrieve metadata about data-
base objects such as tables, views, roles, and warehouses (31%).
Together, these account for 78% of all queries, emphasizing the
read-heavy nature of analytical workloads. SESSION statements,
which set parameters like warehouse and schema, make up 16%,
while DDL and DML contribute 4% and 2%, respectively. TRANSAC-
TION statements (BEGIN, COMMIT, ROLLBACK) are rare at 0.5%.
Three key observations emerge:

(1) Metadata Query Prevalence: The high proportion of SHOW
commands (31%) underscores the critical role of catalog
performance for BI tools, which frequently access metadata
for reporting and visualization tasks. This highlights an
area of significant importance in analytical workloads.
DDL Queries Outnumber DML Queries: DDL queries (4%)
occur twice as often as DML queries (2%). For Bl-centric
workloads, this ratio is not unexpected and likely reflects
the frequent creation and use of views in BI scenarios,
where data is often restructured for analysis.

Read-Heavy Nature of BI Workloads: With only 4% of
queries modifying data, the workload is predominantly
read-focused, yielding a read/write ratio of 25:1. This trend
reflects the Bl-centric nature of our workload, though other
studies [26] have observed higher DML proportions in ana-
lytical workloads, likely due to different use cases.

@
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Table 1: Prevalence of Query Features

Order By Join Limit Union All
54% 46% 25% 6%
Group By Window Functions CTEs
55% 11% 25%

Table 2: Distribution of Operator Types in Queries

Operator Type Share (%) ‘ Operator Type Share (%)

Projection 44% Union All 2%
Filter 16% Top K 1%
Aggregate 14% Sort 1%
Table Scan 10% Window 0.6%
Join 10% Limit 0.03%

2.2.2 SQL Features. Table 1 shows the frequency of core SQL con-
structs in the workload. ORDER BY and GROUP BY appear in over
half of the queries, highlighting the importance of sorting and aggre-
gation tasks. Joins occur in 46% of queries, reflecting the emphasis
on integrating data from multiple sources. Common Table Expres-
sions (CTEs), used in 25% of queries, play a key role in structuring
complex queries. Similarly, 25% of queries include a LIMIT clause,
commonly used by BI tools to restrict rows in visualizations. Lastly,
11% of queries employ window functions for advanced analytics
such as cumulative sums and moving averages.

2.2.3  Physical Operators. We examine the distribution of physical
operators in the workload to understand its underlying properties.
Table 2 summarizes this data. Core relational operators, such as
Projection, Filter, Aggregate, Table Scan, and Join, dominate, account-
ing for 94% of operations and highlighting their central role in
analytical queries. Transformational operators, including Union All,
Sort, and Window, contribute 3.6%, adding complexity by reshaping
or reordering data. Finally, Top K (1%) and Limit (0.03%) are rare
but capture important aspects of real-world workloads. Note that
Tables 1 and 2 highlight different perspectives: the first shows how
often a feature appears in a query (e.g., 25% of all queries utilize
LIMIT), while the second shows how often a given operator ap-
pears overall (e.g., 0.03% of all operator types are LIMITS). The same
reasoning applies to discrepancies of JOIN and window function
features compared to their operator counts.

Table 3 presents the CPU time breakdown for operators, based on
internal per-operator CPU profiling data collected by Snowflake’s
execution engine. Comparing this with the occurrence-based distri-
bution from Table 2, we find that although Table Scans constitute
only 10% of operators, they account for 48.2% of CPU time, includ-
ing evaluating pushed-down and join filters. Conversely, Projection
operators represent 44% of occurrences but use just 10.1% of CPU
time. Similar trends occur for Aggregate, join, and Sort operators.
Unsurprisingly, scanning and filtering data consume most CPU
time, followed by Joins, Projections, and Aggregates. Operator types
consuming less than 1% of total CPU time are grouped under the
Other category.
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Table 3: Time Breakdown of Physical Operators

Operator Type Share (%) ‘ Operator Type Share (%)
Table Scan & Filter 48.2% Sort 4.1%
Join 16.4% Result 1.8%
Aggregate 14.8% DML Operators 1.2%
Projection 10.1% Other 3.4%
801 75% I Snowflake

I TPC-DS

70 1

Percentage of Occurrences

Figure 2: SQL Statement Length in Bytes

2.3 Understanding Query Complexity

SQL statement complexity plays a critical role in query optimization
and execution. While database benchmarks often include challeng-
ing queries, these are typically well-understood, with established
strategies for processing. In contrast, real-world queries can be
significantly more complex, making it infeasible to compute opti-
mal execution plans or manually evaluate their quality. To quantify
query complexity, we analyze two metrics: (1) SQL statement length
and (2) the number of physical operators and expressions in the
execution plan.

2.3.1 Statement Length. Our analysis of statement lengths includes
view definitions, recursively accounting for nested views. Figure 2
shows the distribution of statement lengths in bytes using quasi-
logarithmic binning, that is, base 10 buckets with an additional split
at 500 B to isolate the large share of sub 500 B statements.

While 67% of queries are under 1KB and 79% are under 10KB, 21%
exceed 10KB, with some queries reaching 10MB or more. Although
only 0.74% of queries surpass 10MB, database systems must be able
to handle even such extreme cases efficiently.

Compared to TPC-DS, which primarily features queries ranging
from 500B to 10KB, real-world workloads exhibit a broader range
of statement lengths. TPC-DS queries are generally longer on av-
erage but lack compact statements (<100B) and extremely large
ones (>100KB). This contrast highlights the diversity of real-world
queries and the need for systems that can efficiently process both
ends of the complexity spectrum.

2.3.2  Operator and Expression Count. The number of physical op-
erators and expressions in a query plan approximates for execution
complexity. In this study, we assume uniform complexity for each
operator, recognizing that some operators may be more expensive
than others. Similar proxies have been employed in prior work such
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Figure 3: Distribution of Number of Operators per Query

Table 4: Distribution of Projection and Filter Expressions

Projection Expressions

Category 1-10 11-100 101-1K
Snowflake  40% 46% 14%
TPC-DS 54% 45% 1%
Filter Expressions
Category 1-10 11-100 101-1K
Snowflake  24% 65% 11%
TPC-DS 54% 45% 1%

as Redset [26], Gupta et al.[14], and Jain et al. [15, 28]. Figure 3
shows that over 13% of queries involve 101 to 1,000 operators, re-
flecting the complexity of real-world workloads. Similarly, Table 4
illustrates expression counts in projections and filter predicates,
with most queries containing a maximum of 100 expressions. A
notable proportion (14%) includes 100 to 1,000 expressions, with
some queries even exceeding 1,000.

In comparison, TPC-DS queries typically involve fewer opera-
tors and expressions, with most containing between 11 and 100
operators and no more than 100 expressions. Unlike the uniform
distribution in TPC-DS, real-world queries exhibit a long tail, with
a higher proportion of queries featuring extensive operator and
expression counts. This distribution underscores the unique chal-
lenges posed by real-world workloads and highlights the broader
spectrum of query complexity.

3 QUERY PATTERNS

This section examines query patterns observed in our production
workload, structured by SQL clause type. We analyze the properties
of the SELECT, FROM, WHERE, GROUP BY, ORDER BY, LIMIT, and
UNION ALL clauses, highlighting their use in real-world queries.
Unless specified otherwise, results are presented by occurrence. To
provide context for these patterns, we compare them with TPC-
DS benchmark queries, illustrating the unique characteristics and
challenges of real-world workloads.
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Table 5: Distribution of Top Scalar Expressions for Snowflake
(SF) and TPC-DS (DS)

Expression SF (%) DS (%) ‘ Expression SF (%) DS (%)
ifthenelse 13.9 9.0 variantToText 27 0.0
equal 9.0 5.8 variantToNumber 2.3 0.0
extract 8.9 0.0 minus 1.6 3.8
numberCast 6.6 48.4 | multiply 1.4 8.2
ifnull 5.5 3.1 greaterThan 0.9 1.4
and 3.0 1.5 divide 0.5 3.1
3.1 SELECT

Our analysis of the SELECT clause covers expression complexity,
the most commonly used functions, and the distribution of data
types for both scalar and aggregate expressions. While analytical
window functions are also part of the SELECT clause, we omit a
detailed discussion of their properties due to space constraints.

3.1.1 Scalar Expressions. Table 5 highlights the most frequently
used functions in scalar expressions. Our workload demonstrates a
strong prevalence of conditional logic (ifthenelse: 13.9%, ifnull: 5.5%)
and temporal functions (extract: 8.9%), alongside various casting
and text manipulation functions, such as numberCast and variant-
ToNumber. These functions reflect the application-driven nature of
modern workloads, where logic and transformation are frequently
pushed into the database. Additionally, the complexity of expres-
sions is evident in the depth of expression trees, as shown in Figure
4. While 88% of expressions in our workload have a depth of 10 or
less, approximately 12% exhibit depths between 11 and 100, and a
small fraction exceeds 100. Such deeply nested expressions high-
light the challenges posed by hierarchical conditions and complex
transformations, which place increased demands on query planners
and execution engines.

Compared to our production workload, TPC-DS queries tend to
involve simpler expressions, dominated by numerical casts (num-
berCast: 48.4%) and arithmetic functions, including minus, multiply,
and divide. TPC-DS queries rarely feature deeply nested expressions,
with most expressions having a depth of 10 or less. This contrast
underscores the need for benchmarks like TPC-DS to evolve, incor-
porating characteristics such as functional diversity and structural
complexity observed in real-world workloads, to better reflect the
demands of modern analytical systems.

Table 6: Aggregation Functions Used (Top 5)

‘anyvalue sum count max min

5
1

Snowflake (%)
TPC-DS (%)

58
13

15
64

12
21

11
0.4

3.1.2  Aggregate Expressions. Table 6 shows that anyvalue? is the
most common aggregation function in our workload, used in 58%
of queries, followed by sum (15%), count (12%), max (11%), and min
(5%). Figure 5 highlights the diversity of column types processed
by these functions. While numeric data remains the primary target

Zanyvalue returns a single non-deterministic value from a group of rows. BI tools use
it to add descriptive columns to aggregate queries without bloating the GROUP BY.
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Figure 5: Logical Types used by Aggregation Functions

(49%), text columns account for 34% of aggregations, with smaller
proportions for real (7%) and timestamp (3%, ntz). These results
demonstrate that real-world workloads rely heavily on processing a
wide range of data types, with significant emphasis on non-numeric
inputs such as text.

In comparison, TPC-DS queries show a starkly different pat-
tern. Numeric types dominate (98%), with minimal use of text (2%).
Similarly, sum (64%) and count (21%) are the most frequent ag-
gregation functions, while anyvalue accounts for just 13%. These
differences highlight the limitations of TPC-DS in representing the
functional and data type diversity of real-world workloads, where
non-numeric data and less conventional functions like anyvalue
play a critical role.

3.2 FROM

For our analysis of the FROM clause, we focus on the properties
of joins in our production workload, discussing their types, the
number of joins per query, key types, and the observed input cardi-
nalities and join selectivities.

3.2.1 Join Types. Table 7 shows the distribution of join types in
our workload. While inner joins are the most common (59%), outer
joins account for a substantial 37%, followed by semi (3%) and anti
(1%) joins. In contrast, TPC-DS queries are dominated by inner joins
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Table 7: Distribution of Join Types

‘INNER OUTER SEMI ANTI

59 37 3 1
82 3 13 1

Snowflake (%)
TPC-DS (%)

Table 8: Distribution of Number of Joins per Query for Snow-
flake (SF) and TPC-DS (DS) Workload

Range SF(%) DS (%) | Range SF(%) DS (%)
1-2 34.0 9.0 | 31-50 1.8 0.0
3-5 270 450 | 51-100 1.0 0.0
6-10 19.0 32.0 | 101-500 0.5 0.0
11-20 12.0 13.0 | 501-1000  0.02 0.0
21-30 5.0 1.0 | 1000+ 0.0003 0.0

(82%) and underrepresent outer joins (3%). This discrepancy high-
lights the greater reliance of real-world workloads on outer joins
to maintain completeness in reports and analyses by preserving
information about entities without matching counterparts. Efficient
implementations of all join types, particularly outer and semi joins,
are essential to handle the diverse and complex scenarios found in
real-world queries.

3.22  Number of Joins per Query. Table 8 shows the distribution of
joins among queries with at least one join. Most queries are simple,
with 34% containing one or two joins, 27% having three to five joins,
and 19% featuring six to ten joins. Notably, 20% of queries include
ten or more joins, with a small fraction (0.52%) exceeding 100 joins
and some even surpassing 1,000. In contrast, TPC-DS queries rarely
exceed ten joins, underrepresenting the occasional complexity of
real-world workloads, where a notable fraction of queries involve
significantly larger join graphs.

These results highlight the significant demands placed on query
optimizers in production workloads. Static optimization techniques,
while sufficient for simpler queries, struggle to handle large-scale
joins effectively. Complex queries with extensive join graphs require
dynamic optimization strategies, such as adaptive join ordering,
runtime partitioning, and parallel join execution, to avoid perfor-
mance bottlenecks. Advanced runtime methods, like Holistic Join
Broadcast Decisions [8], emphasize the importance of adaptivity
in managing skewed intermediate results and optimizing memory
usage for large join workloads.

3.2.3 Join Key Types. Our analysis of key types focuses on equality-
based join predicates, either single conditions (e.g., T1.a = Tz.a)
or conjunctions (e.g., T1.a Tr.a ATi.b = Th.b ATi.c = Th.0).
These predicates dominate analytical workloads and provide a clear
framework for evaluating the distribution of join keys.

Figure 6 shows that nearly half of all join keys in our workload
use text-based types, while 39% rely on fixed integer types, with the
remainder spanning date and timestamp columns. For physical data
types (Figure 7), 47% are LOBs (internal text format), and integer
keys are distributed across sizes, including 32-bit (20%), 16-bit, and
8-bit. In contrast, TPC-DS predominantly uses 32-bit integer keys,
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which make up 49% of all join keys in its queries, compared to just
17% that join on text keys.

This discrepancy highlights the importance of optimizing join
performance under diverse conditions, particularly for text keys,
which dominate real-world workloads. Compression techniques,
such as dictionary encoding to map text keys into compact integer
formats, can significantly improve efficiency. Additionally, join al-
gorithms must be evaluated across a broader range of key types
to ensure robustness. Expanding benchmarks like TPC-DS to in-
clude a broader variety of key types, particularly text keys, would
enhance their ability to model the complexities of real-world ana-
lytical workloads and provide a more comprehensive foundation
for evaluating join algorithms.

3.24  Join Input Cardinalities. Accurately measuring join input
cardinalities is challenging due to runtime optimizations such as
pruning, bloom filters, and dynamic re-partitioning, which can
significantly alter observed input sizes. These optimizations, while
improving execution performance, complicate efforts to capture
logical input sizes or account for adjustments applied before the
join. As a result, the measurements reported here reflect observed
execution behavior but may not fully represent the logical input
cardinalities.

Table 9 presents the distribution of join input cardinalities for
both the build and probe sides, covering a range from fewer than 10
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Table 9: Join Input Cardinalities for Snowflake (SF) and TPC-
DS (DS) after Evaluation of Pushdown Filters

Size Range | Build Input Probe Input
SF(%) DS (%) | SF(%) DS (%)
<10 27 6 13 3
<100 18 20 11 2
<500 12 13 9 1
<1K 5 4 4 1
<10K 16 12 18 3
<100K 12 10 17 4
<1M 7 15 17 12
<10M 2 7 8 15
>10M 0.7 13 3 58

rows to over 10 million rows. On the build side, 78% of inputs have
fewer than 10,000 rows, reflecting a skew toward smaller inputs.
The probe side, however, exhibits a more balanced distribution, with
45% of inputs exceeding 10,000 rows. These differences highlight
the need for join algorithms that handle asymmetry effectively,
where one side of a join may be orders of magnitude larger than
the other.

Compared to TPC-DS, our production workload demonstrates a
broader range of input cardinalities, particularly on the probe side.
TPC-DS queries tend to focus on large inputs exceeding 10 million
rows but underrepresent smaller and mid-sized joins, partially due
to evaluations using SF10000. Real-world workloads, in contrast,
demand join algorithms capable of handling diverse input sizes,
where small build sides are often paired with much larger probe
sides. Ensuring consistent performance across this spectrum is
critical for robust, production-grade query processing.

3.25 Join Selectivities. As discussed in the previous section, mea-
suring input cardinalities is prone to underestimating cardinalities
due to runtime optimizations, making direct cardinality measure-
ments unreliable representations of logical behavior. To overcome
this limitation, we instead roughly categorize joins based on the
relationship between their output size and the largest input size:

e Preserving: Output size approximately matches the input
size (within 5% slack).

Exploding: Output size is larger than the input size.
Filtering: Output size is smaller than the input size.
Cartesian: Output size is the product of the input (exclud-

ing joins with 0 or 1 rows).

This categorization offers a practical and robust framework for
understanding join behavior, providing insights into the runtime
characteristics of joins without relying on potentially misleading
direct selectivity measurements.

Table 10: Join Categorization for Snowflake (SF) and TPC-DS
(DS)

‘Preserving Exploding Filtering Cartesian

SF (%)
DS (%)

70
72

16
7

13
21

0.9
0.2




[ Snowflake
I TPC-DS

Percentage of Occurrences

Figure 8: Filter Column Logical Type

Table 10 shows that preserving joins dominate (70%), followed
by exploding (16%), filtering (13%), and Cartesian joins (0.9%). This
distribution suggests that real-world workloads frequently involve
joins that preserve input cardinalities. The significant share of
exploding joins highlights the need for efficient handling of large
intermediate results, requiring robust materialization strategies and
dynamic resource management, as static optimization decisions
may fail to fully account for runtime conditions.

Compared to our workload, TPC-DS includes more filtering
joins and fewer exploding joins, reflecting an underrepresentation
of scenarios where join outputs expand significantly. To effectively
evaluate join performance, algorithms must be tested under diverse
conditions that mirror the complexity of real-world workloads.

3.26 Discussion. Our analysis highlights two key insights about
join patterns. First, limiting benchmarks to narrow key types, like
32-bit integers, covers only 20% of real-world cases. To better reflect
modern analytical workloads, benchmarks should include diverse
data types — textual keys, various integer sizes (8, 16, 64, 128 bits),
and floating-point values. Second, 70% of joins preserve or increase
input cardinalities, underscoring the significant impact of join ma-
terialization costs. This highlights the need for evaluations that
consider not only filtering but also the preservation and expansion
of result sizes, ensuring that algorithms and system optimizations
scale efficiently.

3.3 WHERE

Our analysis of the WHERE clause examines the filter predicates in
our workload, focusing on four key aspects: the accessed column
types, the applied functions, as well as their observed complexity
and selectivity.

3.3.1 Filtered Column Types. Figure 8 shows that text columns
dominate filtering in our workload (58%), with numeric filters ac-
counting for only 25%. In contrast, TPC-DS filters are primarily
numeric (71%) and less text-focused (22%). Date columns appear
infrequently in both cases ( 6-7%), while our workload includes a
small proportion of timestamp, boolean, and real filters.

The prevalence of text filtering in production workloads sug-
gests a reliance on flexible, domain-specific representations, such
as storing date or boolean values as strings. While this approach
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Table 11: Distribution of Top Filter Expressions for Snowflake
(SF) and TPC-DS (DS)

Expr SF(%) DS (%) | Expr SF (%) DS (%)
equals 21.7 17.7 | not 3.8 0.0
isnotnull 16.7 28.0 | greatereq 3.2 10.1
and 9.3 15.5 | contains 3.1 0.0
ifthenelse 6.3 0.1 isnull 2.6 0.4
notequal 4.1 1.2 or 25 3.7
in 3.9 10.0 | lessthan 1.5 0.5

improves adaptability, it introduces challenges for optimization, as
existing indexing and filtering techniques often assume numeric or
date-oriented predicates.

3.3.2  Common Predicate Functions. Table 11 highlights the distri-
bution of top filter expressions in our workload. Equality checks
(including IN lists) are the most common predicates (25.6%), fol-
lowed by IS NOT NULL (16.7%) and logical operators (AND, OR,
NOT) at 15%. Interestingly, text-oriented predicates like CONTAINS
appear in 3.1% of queries, whereas TPC-DS predicates focus more
on numeric and equality-based filters.

This diversity in predicate types, including text-specific filters
and non-numeric predicates, illustrates the complexity of produc-
tion environments. Queries like WHERE product_name = ’X’ rely
on categorical matching, requiring efficient handling of text-based
predicates. Future optimizations could explore hardware-accelerated
techniques (e.g., SIMD) or algorithms tailored for text filtering to
address the unique challenges posed by real-world workloads.

3.3.3 Nesting Depth of Filters. Figure 9 shows that while 82% of
filters in our workload are shallow (< 5), 15% exhibit moderate
complexity (6-10 levels), and a notable fraction extends beyond 10
levels. By comparison, TPC-DS filters are predominantly shallow,
with 84% at depths of just 1-2 and none exceeding 10.

The presence of deeply nested filters in real-world workloads
highlights opportunities for advanced optimization. Strategies like
reordering selective predicates to minimize intermediate results or
improve runtime performance become critical. Structurally complex
filters emphasize the need for robust query planners capable of han-
dling intricate filtering conditions, ensuring efficient performance
in modern analytical workloads.

3.3.4  Selectivity Distribution. We derive filter selectivities by com-
paring the input cardinality of table scans to the output cardinality
of the final filtering operator in a scan pipeline. Queries with in-
complete statistical summaries or those terminated early due to
limit conditions are excluded to ensure accuracy. Due to limitations
in our query telemetry, our analysis of selectivities can sometimes
include join-derived filters, such as bloom filters.

Table 12 summarizes the selectivity distribution of filters in our
workload. Approximately 13% of filters eliminate all rows (selectiv-
ity ~ 0), while 19% let all rows pass (selectivity ~ 1). High-selectivity
filters (0 < selectivity < 0.2) dominate, accounting for 46%, with the
remaining selectivities distributed across other ranges. In compari-
son, TPC-DS queries exhibit a narrower range, with 86% of filters
removing at least 80% of rows.
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Figure 9: Maximum Nesting Depth of Filter Predicates per
Query

Table 12: Selectivity Distribution of Filters for Snowflake (SF)
and TPC-DS (DS)

Bucket SF (%) DS (%) | Bucket SF (%) DS (%)
0 13 3 (0.50,0.80] 5.9 3.4
(0, 0.05] 38 60 | (0.80,0.90] 2.8 1
(0.05, 0.10] 4 7 (0.90, 0.95] 1 0.4
(0.10, 0.20] 4 16 | (0.95, 1) 6 4
(0.20,050] 5.6 72 |1 19 1

The broader selectivity patterns in real-world workloads high-
light the need for adaptive query optimization strategies. High-
selectivity filters benefit from techniques such as indexing, clus-
tering, and pruning to reduce unnecessary data access. In contrast,
mixed-selectivity filters require dynamic predicate reordering to
minimize intermediate results, while moderate-selectivity filters
(selectivity ~ 0.5) introduce challenges like branching mispredic-
tions. These findings underline the importance of benchmarks to
capture the broader variability of selectivity patterns seen in pro-
duction environments, ensuring that evaluation conditions reflect
the complexities of real-world workloads.

3.3.5 Discussion. Our findings highlight that real-world analytical
workloads pose unique challenges for filter processing. The exten-
sive use of text columns, prevalence of complex predicates, and
frequent occurrence of deeply nested filtering conditions demand
solutions that go beyond traditional numeric and shallow-filter
assumptions. Recognizing the prominence of text-based filters and
diverse selectivity patterns can guide system designers toward
more adaptable optimization methods. Leveraging compression
techniques for textual data, employing dynamic predicate evalua-
tion to reduce intermediate results, and adjusting planning algo-
rithms for deeper nesting levels can enhance system robustness
and better address the intricacies of production workloads.

3.4 GROUP BY

For the GROUP BY clause, we focus on two key aspects: the distribu-
tion of the number of grouping keys and the unique key cardinalities
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Table 13: Aggregation Group By Keys

0 1-2 3-5 6-10 10+
Snowflake (%) 7 53 26 7 7
TPC-DS (%) 8 56 28 7 0
30
27% [ Snowflake

I TPC-DS

Percentage of Occurrences

Figure 10: Number of Distinct GroupBy Keys

of group-by operators. This complements our previous discussion
of the most common aggregation functions in Section 3.1.2.

3.4.1 Distribution of Number of Grouping Keys. Table 13 reveals
that only 7% of aggregating queries compute scalar aggregates.
The majority (86%) computes grouped aggregates involving 1-10
grouping keys, with 7% exceeding 10 keys, and another 7% even
surpassing 100 keys. Aside from its lack of queries with a large
number of grouping keys, TPC-DS captures the distribution of
smaller groupings reasonably well. This highlights the complexity
of real-world queries, where compact key representations, such
as single integers, may not suffice. Aggregation algorithms must
efficiently handle scenarios with larger numbers of grouping keys.

3.4.2 Grouping Key Cardinalities. Figure 10 illustrates the distribu-
tion of key cardinalities for grouping keys. Our production work-
load predominantly produces small to medium numbers of groups,
with the vast majority (70%) of queries generating fewer than 1,000
groups, 40% fewer than 10 groups, and 13% not producing a single
group at all. Only 27% of queries handle medium key cardinalities
(1K-1M groups), and group sizes exceeding 100M are rare.

In contrast, TPC-DS tends to represent higher key cardinali-
ties, with 45% of queries producing over 1M groups, while smaller
cardinalities of ten or fewer groups are covered by only 11% of
queries. This difference highlights how TPC-DS skews toward large
cardinality scenarios, underrepresenting the more common small-
to-medium cardinalities seen in real-world workloads.

These findings underscore the importance of designing aggrega-
tion strategies that efficiently handle both moderate and extremely
large numbers of distinct groups. Effective systems must balance
performance across the full spectrum of cardinalities while focusing
on the specific challenges posed by small-to-medium groups, which
dominate production workloads.
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Figure 12: Distribution of Number of Sorted Rows

3.5 ORDER BY

For the ORDER BY clause, we analyze the logical column types used
as sort keys and the distribution of sorted rows. Figure 11 shows
that sorting spans a diverse range of data types, with numeric (39%)
and text (38%) columns leading, while timestamp columns account
for 11.3%. While our workload is largely aligned with TPC-DS,
it includes sorting on timestamp columns, which TPC-DS lacks.
Figure 12 reveals that 82% of sort operations handle fewer than 1,000
rows, reflecting a focus on small-scale sorting. However, there is a
long tail of queries sorting millions of rows, underscoring the need
for scalable sorting algorithms capable of efficiently processing
both small and large datasets.

3.6 LIMIT

The LIMIT clause often serves as a mechanism to control result
sizes, but our analysis shows that real-world queries can request
far larger subsets than commonly assumed. Although LIMIT is
frequently perceived as a way to fetch only a few rows, the ac-
tual usage patterns reflect more complex scenarios and practical
considerations.

3.6.1 Limit Without Order By. Table 14 reports the distribution
of limits applied without an ORDER BY clause. While 1-10 rows
comprise 6% of these queries, a striking 71% request between 1M
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Table 14: Limit Distribution Without ORDER BY

| o 1-10 11-100  101-1K
Snowflake (%) 1 6 3 10
TPC-DS (%) 0 0 100 0

| 100K-1M 1M-10M 10M-100M >1B
Snowflake (%) 0.7 71 2 5
TPC-DS (%) 0 0 0 0

Table 15: Limit Distribution With ORDER BY

| o 1-10 11-100 101-1K
Snowflake (%) 60 1 4 26
TPC-DS (%) 26 0 74 0

| 1K-10K  10K-100K 100K+
Snowflake (%) 3 5 0.3
TPC-DS (%) 0 0 0

and 10M rows, and 5% even exceed 1 billion rows. This result may
seem surprising, as limits are generally expected to be small.

Further investigation revealed that some business intelligence
(BI) tools set large default limits to ensure that desktop data visual-
ization applications receive a sufficient amount of data. For instance,
a limit value of 1,000,001 rows appears frequently, corresponding
to a default configuration in a popular BI tool. Such queries can be
considered “BI Tool Extracts®, where the aim is to cap retrieval sizes
to prevent overwhelming the client environment. Compared to
the narrower range observed in TPC-DS benchmarks (exclusively
11-100), real-world workloads exhibit a skew toward larger limits,
particularly in the 1IM-10M row bucket with a long tail of queries
requesting over 1 billion rows.

3.6.2  Limit With Order By (TopK Queries). Table 15 shows that 60%
of queries combining LIMIT and ORDER BY specify a limit of k = 0,
effectively turning these queries into metadata retrieval requests. In
addition, 31% handle between 1 and 1,000 rows, while a long tail of
9% involves more than 1,000 rows. This indicates that top-k queries,
often considered lightweight operations, must also adapt to a range
of scenarios from returning no data at all to delivering extensive re-
sult sets. Such variability requires robust top-k execution strategies
capable of quickly returning small amounts of metadata or scal-
ing to process large ordered subsets without incurring substantial
overhead. This also gives optimization opportunities for systems
to recognize and efficiently handle hidden metadata queries.

3.7 UNION ALL

In this subsection, we examine the usage of UNION ALL operators
and their unique challenges in real-world analytical queries.

3.7.1 Distribution of Union All Operators. Figure 13 shows that
among queries containing at least one UNION ALL operator, 97%
include 1-10 UNION ALL operators, 2% include 11-20 operators,
and 0.7% exceed 20 operators. While most queries remain relatively
simple, there is a clear tail of more complex queries that chain
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Figure 13: Number of Union Alls

together a large number of UNION ALL operators. TPC-DS queries
follow a similar distribution but do not surpass 10 UNION ALL op-
erators. Real-world workloads, however, reveal a need for handling
scenarios that extend well beyond such limits, emphasizing the
importance of ensuring efficient plan execution even for queries
with extensive query blocks. This complexity highlights oppor-
tunities to evaluate advanced optimization strategies, including
inter-operator parallelism, where multiple independent sub-plans
can be processed simultaneously to improve performance.

3.7.2  Distribution of Number of Input Links. Table 16 presents
the distribution of input links per UNION ALL operator. In our
workload, slightly less than 90% of UNION ALL operators have 1-10
input links, and 10% have 11-100 input links, leaving a small but
critical fraction of operators with more than 100 input links. This
one-percent tail of highly complex operators indicates that systems
must efficiently handle cases where numerous input streams merge
into a single result set.

Table 16: Distribution of Union All Input Links

‘1—2 3-5 6-10 11-100 101-1000 1000+

Snowflake (%) | 41
TPC-DS (%) | 33

31
43

18
12

10
12

0.4
0

0.001
0

Such complexity in UNION ALL usage suggests that real-world
analytical systems benefit from strategies enabling concurrent pro-
cessing of independent inputs. Efficient parallelization and careful
resource management ensure that even large-scale UNION ALL
operations remain performant.

4 DISCUSSION AND OUTLOOK

In this section, we reflect on our analysis of real-world queries
and explore how TPC-DS, while suitable for standard BI scenarios,
diverges from the complexities observed in Snowflake’s workloads.
These include metadata queries, deeply nested expressions, and
complex joins, along with uncommon but critical query patterns
that pose significant challenges for query processing.
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4.1 Extending TPC-DS for Modern Analytical
Workloads

Our analysis of analytical queries run by BI tools shows that TPC-DS
effectively captures the core characteristics of analytical workloads,
providing a strong foundation for evaluating database performance
in standard BI scenarios. Its well-structured query set reflects the
thoughtful design of the committee, covering a broad range of SQL
features, data transformations, and query complexities typical of
analytical use cases. However, as its primary focus is on standard
scenarios, some of the complexities observed in real-world produc-
tion systems, such as those discussed in our workload, naturally fall
outside its scope. Identifying these gaps presents opportunities to
complement TPC-DS by extending benchmarks to cover additional
dimensions of modern workloads.

4.1.1 Metadata Queries. Our analysis reveals that metadata queries,
such as those accessing schema definitions or table statistics, are
a critical component of real-world workloads but are absent in
TPC-DS. These queries play a vital role in query planning, caching,
and metadata indexing. Incorporating metadata-heavy queries into
benchmarks would enable a more comprehensive evaluation of
database systems, particularly for cloud-native platforms where
such queries are frequent.

4.1.2  Expressions. Production workloads frequently feature deeply
nested expressions, especially in SELECT and WHERE clauses,
with some exceeding depths of 100. While TPC-DS is designed to
evaluate typical workloads, it does not account for such deeply
nested expressions, limiting its ability to test query optimizers
under these conditions. Expanding benchmarks to include these
patterns would better reflect the complexity of modern workloads.

4.1.3 Joins. Our analysis also shows that production workloads
have a long tail of join complexity, with some queries featuring over
500 joins and 3.3% involving 30 or more joins. TPC-DS underrepre-
sents such scenarios and focuses primarily on inner joins, whereas
real-world workloads highlight the importance of outer joins and
text-based join keys. Extending the benchmark to include diverse
join types, exploding joins, and text-key joins would enhance its
coverage of real-world challenges.

4.1.4 Aggregations. Aggregations, such as anyvalue and those in-
volving text-based columns, are common in Snowflake workloads
but are less emphasized in TPC-DS. Adding queries that include
these patterns would improve the benchmark’s alignment with
production workloads.

4.1.5 Limit and Top-K. Real-world workloads frequently involve
limit queries with substantial result sizes, where 78% of limits return
over 1M rows, and 34.3% of top-k queries involve k > 100. TPC-DS
does not account for these scenarios. Including large-result limits in
benchmarks would better test database system performance under
such high-output conditions.

4.1.6  Union All. Our findings show that production workloads
often exceed the limits of UNION ALL operators in TPC-DS, with
2.7% of queries containing more than 10 operators and 0.4% exceed-
ing 100 input links. Including such patterns in benchmarks would



Table 17: Components of Top 1% Outlier Queries

Expressions Aggregates Filters Projection Joins Union All Scan
mean 1413 337 305 357 76 23 75
10% 524 67 89 187 35 9 34
50% 908 232 178 269 58 17 58
90% 2584 740 511 584 131 47 139
99% 7953 2100 2957 1682 352 127 348

provide a more accurate representation of real-world inter-operator
parallelism and input variability.

4.2 Unusual but Not Uncommon Query Patterns

In this section, we highlight query patterns that are both distinctive
and occur frequently enough to warrant closer attention. While a
single query featuring thousands of expressions or several hundred
UNION ALL operators represents an edge case, our focus is on iden-
tifying groups of queries that consistently stand out across multiple
dimensions. To achieve this, we employ Isolation Forests [18], a
tree-based anomaly detection technique that isolates outliers by
recursively partitioning the dataset and identifying queries that
are easier to separate from the rest. We then analyze the top 1% of
outliers to understand the patterns they exhibit. Given the large
scale at which cloud providers operate, this 1% still represents a
substantial number of queries. Table 17 summarizes the statistics
of these unusual yet common workloads.

As shown in the table, even at lower percentiles, the number
of expressions, predicates, and joins is already substantial, indicat-
ing that a notable fraction of queries are inherently complex and
resource-intensive. At the higher end of the spectrum, the 99th per-
centile reveals extremely complex queries that could significantly
influence system performance. These findings reinforce the need
for robust query processing and resource management strategies
capable of efficiently handling diverse and challenging workloads.

5 RELATED WORK

In order to position our findings in the broader research context,
we now discuss two areas of related work: first, recent studies
analyzing production database workloads to better understand their
real-world properties; second, studies focused on benchmarking,
which assess whether existing database benchmarks accurately
reflect the complexity and patterns observed in practice.

5.1 Workload Analysis

Several recent studies have investigated real-world SQL workloads
to better understand their characteristics. Vuppalapati et al. [31]
published Snowset, a dataset containing statistics for 70 million
queries collected over a 14-day period at Snowflake. They identi-
fied several research opportunities based on query characteristics,
workload patterns, and system performance metrics. In contrast,
our study focuses on query characteristics such as operator distri-
bution, complexity, and usage patterns, emphasizing core relational
operators (e.g., table scans, joins, aggregations). We also compare
our findings with TPC-DS, highlighting gaps where it does not fully
capture real-world analytical workloads.
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Similarly, van Renen et al. [26] conducted an extensive workload
analysis, publishing Redset, a dataset containing anonymized query
logs. Their work primarily addresses data characteristics, including
table properties, data skew, row-count distributions, common-value
frequencies, and null-value fractions, alongside workload-level fea-
tures such as elasticity and repeating queries. Our study comple-
ments their findings by investigating how analytical SQL queries
are structured, composed, and executed in practice, emphasizing
query-level characteristics and real-world query patterns. From
a sample of 667M BI queries we find that 31 % of all statements
are catalog metadata queries, reads outnumber writes 25 : 1, and
78 % of LIMIT clauses return at least one million rows — query-level
patterns absent from the Redset analysis and critical for tuning.

Durner et al. introduced TracEx [12], a workload exploration
tool designed for detailed analysis and comparison of query traces
from multiple database systems. Using TracEx, they compared the
Snowset workload with TPC-DS and concluded that TPC-DS lacked
comprehensive coverage, highlighting the need for additional, more
representative queries — a conclusion consistent with our findings.

Comparably, Boissier et al. [5] analyzed SQL workload traces
from a live SAP ERP system to extract fine-grained access patterns
and study data relevance. Their work highlights differences between
real-world workloads and the synthetic OLTP benchmarks TPC-C
and TPC-E, providing a similar conclusion to ours.

Aleyasen et al. [1, 2] employ their profiling tool qInsight to exam-
ine 40 production workloads drawn from large enterprises covering
a broad range of workload metrics. Their study quantifies data
volume and variety, inspects logical design (e.g., primary-key and
foreign-key usage), reviews physical layout choices (partitioning
and compression), and measures query mix and throughput. The au-
thors surface several unexpected patterns, such as minimal foreign-
key enforcement and the frequent use of non-traditional data types,
that challenge conventional data-warehousing best practices. While
the work also targets query properties, it does not compare them
with synthetic benchmarks, but rather argues for workload-aware
database replatforming.

Further highlighting gaps in current benchmarks, Vogelsgesang
et al. [29] analyzed query complexity and expression evaluation
bottlenecks on a set of more than 60k real-world BI repositories of
Tableau customers. Their findings demonstrate that simpler query
structures may hide significant complexities in expression evalua-
tion, while some queries possess operator complexities that are not
represented in standard benchmarks. While their work explores
data-type distributions and operator frequency, our analysis empha-
sizes comprehensive coverage of query structure, focusing explicitly
on language properties and real-world distribution of relational
operators and constructs.



Jain et al. conducted multiple studies on generalized SQL work-
load analysis. In [16], they advocated for managing database work-
loads independently of specific database implementations to opti-
mize efficiency in cloud and hybrid database systems. In another
study [15], Jain et al. analyzed multi-year workloads from a database-
as-a-service platform, noting the prevalence of ad-hoc and ex-
ploratory queries written mostly by non-experts.

Tsai et al. [25] examined challenges associated with benchmark-
ing SaaS applications, specifically addressing scalability testing
and proposing novel metrics for assessing these systems. Addition-
ally, automated workload analysis remains essential in self-tuning
database systems, including workload-driven partitioning and repli-
cation strategies (Curino et al. [7]), robust workload forecasting
(Ma et al. [19]), and predictive analysis of SQL query properties
(Zolaktaf et al. [34]).

Stokely et al. [22] published and analyzed a three-year dataset
of hourly VM-demand across multiple Snowflake workloads. Using
this data, they characterize demand patterns and derive effective
optimizations to balance compute capacity commitments and costs
for cloud customers.

5.2 Benchmarks

Beyond workload characterization, another closely related research
direction investigates the limitations of traditional benchmarks -
particularly their ability to accurately capture cloud-specific work-
load characteristics — and proposes new benchmarks designed
specifically to reflect realistic database usage and performance.
Binnig et al. [4] emphasize that benchmarks for cloud databases
should account for critical properties such as scalability, elasticity,
fault tolerance, and pay-as-you-go pricing. They also argue that
cloud benchmarks must ensure results remain comparable across
providers and service configurations.

Poggi et al. [21] introduced the Elasticity Test, an extension to ex-
isting TPC benchmarks designed explicitly for cloud environments.
Their benchmark emphasizes elasticity and evaluates database re-
sponsiveness under realistic big-data scenarios, including metrics
based on service-level agreements.

Van Renen et al. [27] compared traditional benchmarks (TPC-
DS, TPC-H) with real-world query workloads on cloud databases
based on the Snowset dataset. They identified several shortcomings
and proposed the Cloud Analytics Benchmark (CAB), enabling
users to evaluate system performance and cost-effectiveness more
accurately in cloud scenarios.

Zhang et al. [32] proposed HyBench, a benchmark designed
specifically for hybrid transactional and analytical processing (HTAP)
workloads. It targets hybrid transaction/analytical scenarios, whereas
our work exclusively addresses analytical queries and their detailed
query characteristics.

Gruenheid et al. introduced DIAMetrics [10], a comprehensive
benchmarking suite developed at Google to evaluate database sys-
tems at scale. DIAMetrics offers broad compatibility and versatility
across multiple database systems and industrial use-cases. Tang et
al. propose CSDBen [33], a benchmark that focuses on cloud-native
storage services. They discuss where TPC-C and YCSB benchmarks
fall short and enable users to generate I/O traces that accurately
resemble real-world I/O traces.
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Collectively, these benchmarks underscore the ongoing effort to
develop more representative testing and benchmarking methodolo-
gies. Our work supports this effort by providing new insights into
the shape and structure of real-world analytical workloads, which
the research community can use to enhance existing benchmarks
or revisit cost models for optimal instance configuration [17].

6 CONCLUSION

In this paper, we analyzed a real-world sample of queries executed
by popular BI tools on the Snowflake platform, uncovering key
insights into modern analytical workloads and identifying critical
gaps in existing benchmarks such as TPC-DS.

Workloads. Our analysis revealed that while most queries are
simple, a significant tail of complex queries with thousands of
operators and diverse configurations poses unique challenges for
database systems. Even rare query patterns (e.g., 0.1% of the work-
load) are common enough to influence system design, emphasizing
the need for robust handling of complex workloads at scale.

Query Patterns. By examining SQL components such as SE-
LECT, WHERE, GROUP BY, and LIMIT clauses, we identified preva-
lent operator and expression properties, including frequent condi-
tional logic and deeply nested expressions. These findings enable
researchers to evaluate new database algorithms and optimiza-
tion strategies based on realistic workload characteristics. For ex-
ample, the dominance of text processing and temporal functions
underscores the need for optimizing predicate evaluation and text-
oriented processing algorithms.

Insights on TPC-DS. While TPC-DS captures a broad range
of query complexities and operator configurations, our findings
highlight the following gaps: 1) Metadata queries essential for query
planning and caching, 2) High query complexities such as deeply
nested expressions and large join graphs, and 3) Diverse selectivity
patterns and operator types, particularly conditional logic and text
processing.

Benchmark Evolution. The observed differences between Snow-
flake and TPC-DS workloads emphasize the need to evolve bench-
marks to better reflect the diversity and complexity of modern
analytical workloads. Incorporating metadata queries, complex join
patterns, and mixed selectivity filters would enable a more compre-
hensive evaluation framework for database systems.

By addressing these gaps, this work contributes to the develop-
ment of robust, scalable, and adaptable database systems capable
of meeting the demands of real-world analytical workloads.
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