
GalaxyWeaver: Autonomous Table-to-Graph Conversion and
Schema Optimization with Large Language Models
Bing Tong

CreateLink & HKUST(GZ)
btong799@connect.hkust-gz.edu.cn

Yan Zhou∗
CreateLink

zhouyan@createlink.com

Chen Zhang
CreateLink

zhangchen@createlink.com

Jianheng Tang
HKUST(GZ)

jtangbf@connect.ust.hk

Jia Li∗
HKUST(GZ)
jialee@ust.hk

Lei Chen
HKUST(GZ)

leichen@ust.hk

ABSTRACT
Most enterprise graph data derives from relational databases, yet
transforming relational tables into query-optimized graph schemas
remains challenging. Existing approaches have notable limitations:
(1) transformations based on primary and foreign keys often fail
to generate schemas optimized for query performance; (2) manual
schema design, although !exible, is costly and requires domain ex-
pertise; and (3) machine learning methods predict graph structures
based on data patterns but heavily depend on large, high-quality
training datasets. To address these challenges, we propose Galaxy-
Weaver, a framework to automate query-aware graph schema gen-
eration. GalaxyWeaver utilizes the reasoning power of Large Lan-
guage Models (LLMs) to align graph schema designs with speci"c
query requirements, e#ectively integrating domain knowledge with
optimization strategies. The framework employs prompt-guided
analysis to enhance the decision-making accuracy of LLM agents,
facilitating iterative schema re"nement. Experiments across diverse
domains show that GalaxyWeaver simpli"es transformation while
improving query performance and reducing storage costs.

PVLDB Reference Format:
Bing Tong, Yan Zhou, Chen Zhang, Jianheng Tang, Jia Li, and Lei Chen.
GalaxyWeaver: Autonomous Table-to-Graph Conversion and Schema
Optimization with Large Language Models. PVLDB, 18(12): 5100 - 5112,
2025.
doi:10.14778/3750601.3750630
1 INTRODUCTION
Graph databases [1, 15, 28, 34, 43] have emerged as a transformative
paradigm for managing and analyzing complex network data. By
representing information as vertices, edges, and properties, they
enable e$cient traversal and querying of multi-hop relationships,
making them invaluable in domains such as social networking
[8, 12, 17, 24], energy transmission [44], fraud detection [21, 25, 33],
and knowledge graphs [7, 27, 32, 42].

However, this raises a fundamental question: where do graph
data come from? Based on deployment experiences from Galaxy-
base [34], a distributed graph database, we found that nearly 80%

* Corresponding Authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750630

of graph data utilized by enterprise users derives from relational
databases. However, the process of converting relational tables into
optimized graph structures remains a signi"cant challenge. Many
organizations lack the necessary tools, expertise, and methodolo-
gies for e#ective transformations, and most rely on external sup-
port to design graph structures that meet their analytical needs.
This disconnect between relational data and graph representation
often leads to suboptimal transformations, resulting in in!ated stor-
age costs, increased query latency, and diminished performance in
graph-speci"c analytics. Consequently, the full potential of graph
databases—particularly for multi-hop queries and complex relation-
ship modeling—remains underutilized, hindering their widespread
adoption across industries.

Existing approaches for table-to-graph conversion generally fall
into three categories. The "rst relies on direct mapping of primary
keys to vertices and foreign keys to edges [18, 35, 37], preserving
the structure of the relational schema but often resulting in subop-
timal graph structures for analytical tasks. The second approach
involves manual design, where users de"ne mappings interactively
to suit speci"c requirements [6, 13]. While this allows for tailored
solutions, it is labor-intensive and error-prone, especially for users
with limited graph modeling expertise. The third approach lever-
ages machine learning to predict graph structures based on data
patterns, automating parts of the process [29, 38]. However, this
method depends heavily on high-quality training data and struggles
to scale across large, heterogeneous datasets.

The rapid advancement of state-of-the-art large language models
(LLMs), such as ChatGPT [22], Claude [5], and DeepSeek[19], has
accelerated progress toward general arti"cial intelligence. In the
context of graph databases, LLMs hold promise for simplifying the
transformation of relational data into optimized graph structures
by interpreting and processing natural language instructions. This
capability lowers technical barriers, enabling users to generate or
re"ne graph schemas through descriptive prompts with minimal
expertise. Despite their potential, current LLMs face signi"cant
limitations in addressing the complexities of graph structure opti-
mization. First, they depend heavily on explicit and well-de"ned
instructions; ambiguous or incomplete prompts often result in sub-
optimal or poorly structured graph schemas. Second, they struggle
with multi-objective optimization tasks, which require balancing
competing goals such as minimizing graph size, enhancing query
performance, and maintaining schema compatibility.

To bridge this gap, we present GalaxyWeaver, an LLM-powered
framework designed to automate the transformation of relational

5100

https://doi.org/10.14778/3750601.3750630
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750630

AccountBalance

balance_id PK account_id FK balance balance_date

Guarantor

guarantor_id PK loan_id FK customer_id FK relationship

Account

account_id PK customer_id FK account_number account_type created_at status

Customer

customer_id PK first_name last_name email phone_number address created_at

LoanPayment

payment_id PK loan_id FK payment_amount payment_date status

Loan

loan_id PK account_id FK loan_amount interest_rate start_date end_date status

LoanCollateral

collateral_id PK loan_id FK collateral_type collateral_value description

Transaction

transaction_id PK from_account_id FK to_account_id FK amount transaction_date status description

Figure 1: Relational schema for !nancial data

data into optimized graph structures. Based on practical experience
from commercial Galaxybase deployments [34], where each graph
targets a speci"c business scenario with relatively stable query
patterns. Leveraging the reasoning capabilities of large language
models, GalaxyWeaver aligns graph designs with query intent and
integrates domain knowledge with optimization strategies. This
approach reduces operational complexity and empowers users to
harness the analytical potential of graph databases without requir-
ing advanced technical expertise. This work showcases how our
framework simpli"es data transformation and drives the evolution
of graph-based solutions across industries. The main contributions
of this work are as follows:

• GalaxyWeaver Framework: We propose GalaxyWeaver, an
LLM-powered framework that automates the entire process of
transforming relational data into optimized graph structures. By
incorporating query-awareness and domain knowledge, Galaxy-
Weaver iteratively re"nes graph schemas to align with analytical
requirements, reducing manual e#ort and enabling more e$cient
graph analysis.

• Systematic Schema Optimization Methodology: We revisit
table-to-graph conversion techniques, and systematically sum-
marize a set of graph schema optimization strategies based on
extensive real-world deployments of Galaxybase, providing
practical and reusable guidelines for graph modeling.

• Prompt-Guided Optimization Work"ow: GalaxyWeaver uni-
"es table-to-graph conversion and schema optimization into
a structured stepwise work!ow. The Advisor employs prompt-
guided analysis to enhance the decision-making accuracy of LLM
agents, while the Executor executes these decisions, enabling
adaptive schema evolution and ensuring schema integrity.

• Extensive Empirical Evaluation: We conduct extensive exper-
iments on datasets from diverse domains, including marketing,
e-commerce, social networks, and academic knowledge graphs.
Results show that GalaxyWeaver not only automates table-to-
graph transformation but also signi"cantly improves query per-
formance and reduces storage overhead across all domains.

2 PRELIMINARIES
2.1 Relational Database and Schema
A relational database [9, 14, 20] organizes data into a collection
of relational tables, each consisting of tuples (rows) structured
according to a prede"ned schema, as illustrated in Figure 1. The
schema speci"es the attributes (columns), their data types, and

associated constraints, serving as a blueprint for data organization
and integrity. Formally, a relational table R comprises the following
components:
• 𝐿𝑀𝑁𝑂𝑃_𝑄𝑀𝑅𝑃: The unique identi"er of a relational table in the

database.
• 𝑆𝑇𝑈𝑅𝑀𝑇𝑉_𝑊𝑃𝑉 (𝑋𝑌): A minimal set of attributes that uniquely

identify each tuple in a relational table.
• 𝑍 𝑎𝑇𝑃𝑈𝑏𝑄_𝑊𝑃𝑉 (𝑐𝑌): Attributes in one relational table that refer-

ence the primary key of another table, establishing inter-table
relationships.

• 𝑀: Attributes, properties, or characteristics that describe each
tuple in a relational table.

• 𝑑: Constraints such as uniqueness, referential integrity, and do-
main restrictions, which ensure data validity and maintain con-
sistency across the database.

R = {𝐿𝑀𝑁𝑂𝑃_𝑄𝑀𝑅𝑃, 𝑆𝑇𝑈𝑅𝑀𝑇𝑉_𝑊𝑃𝑉, 𝑍 𝑎𝑇𝑃𝑈𝑏𝑄_𝑊𝑃𝑉,𝑀, 𝑑}.
The schema of a relational database, comprising multiple relations,
is formally represented as:

S = {R1,R2, . . . ,R𝐿},

where each relational table R𝑀 is de"ned by its attributes, primary
keys, foreign keys, and constraints. Relationships between rela-
tional tables are expressed through foreign keys. For instance, a
foreign key 𝑐𝑌 (R𝑀 .𝑀𝑁) → 𝑋𝑌 (R 𝑂) signi"es that attribute 𝑀𝑁 in R𝑀
references the primary key of R 𝑂 .

2.2 Graph Database and Schema

Account
Balance

Customer

Account Loan

Guarantor

Transaction

Loan
Collateral

Loan
Payment

Figure 2: Graph schema for !nancial data

A graph database [1, 15, 28, 34, 43] is a system for storing, retriev-
ing, and analyzing data represented as a graph. Unlike relational
databases that use tables, graph databases model entities as vertices
and relationships as edges, enabling e$cient management of com-
plex, interconnected data. Formally, a graph database G = (V, E)
consists of a set of verticesV and a set of edges E. The property
graph model [2–4], widely adopted in graph databases, extends this

5101

basic structure by associating properties with both vertices and
edges.

To ensure consistency and robustness, we adopt a schema design
with constraints, as illustrated in Figure 2. Both vertices and edges
are represented as relations within a schema. The components of
graph schema are de"ned as follows:
• 𝑒 : Vertices, representing the nodes in the graph.
• 𝑃: Edges, representing the connections between vertices.
• 𝐿𝑉𝑆𝑃: The type or category of the vertex or edge.
• 𝑆𝑇𝑈𝑅𝑀𝑇𝑉_𝑊𝑃𝑉: A unique identi"er for each vertex.
• 𝑆𝑇𝑎𝑆𝑃𝑇𝐿𝑉: Attributes or properties associated with the vertex or

edge.
V = {𝑒 | 𝑒 = (𝐿𝑉𝑆𝑃, 𝑆𝑇𝑈𝑅𝑀𝑇𝑉_𝑊𝑃𝑉, 𝑆𝑇𝑎𝑆𝑃𝑇𝐿𝑉)},
E = {𝑃 | 𝑃 = (𝑓𝑎𝑔𝑇𝑑𝑃_𝑒, 𝐿𝑀𝑇𝑏𝑃𝐿_𝑒, 𝐿𝑉𝑆𝑃, 𝑆𝑇𝑎𝑆𝑃𝑇𝐿𝑉)}.

Each vertex is assigned a unique identi"er (𝑆𝑇𝑈𝑅𝑀𝑇𝑉_𝑊𝑃𝑉), and each
edge connects precisely one source vertex to one target vertex.
Multiple edges may exist between any two vertices, even when
these edges share the same type, and self-loops are permitted.

2.3 Large Language Models
Large Language Models (LLMs) are advanced arti"cial intelligence
systems trained on extensive textual corpora to perform language
understanding and generation tasks with human-like pro"ciency.
These models, such as ChatGPT [41], Claude [5], and DeepSeek[19],
are typically based on deep neural network architectures that lever-
age the attention mechanism [36]. This mechanism enables LLMs
to focus on relevant parts of the input sequence while generating
outputs, e#ectively capturing contextual relationships.

Prompt engineering is a key method for optimizing the perfor-
mance of LLMs. It focuses on crafting e#ective prompts to guide
the model toward desired outputs. Techniques such as few-shot
prompting [39] and the chain of thought approach enable models to
handle diverse tasks and complex reasoning. By shaping the input
structure, prompt engineering maximizes task accuracy without
modifying the underlying model.

LLM agents combine large language models with auxiliary mod-
ules—such as planning, memory, and external tools—to handle com-
plex, multi-step tasks [45, 47]. The LLM acts as the core reasoning
engine, coordinating actions and adapting to speci"c task needs.
This architecture extends LLMs to more interactive and problem-
oriented domains.

3 CHALLENGES AND MOTIVATIONS
To ensure data integrity while meeting query requirements, an ef-
fective table-to-graph conversion must balance two key objectives:
optimizing query performance and minimizing storage overhead.
Commonly used approaches include: (1) primary-foreign key-based
conversion, (2) manual design, and (3) machine learning techniques
that predict graph structures from data patterns, partially automat-
ing the process.

Manual methods require deep expertise in graph modeling, mak-
ing them impractical for non-specialists. Existing machine learning
approaches automate schema transformation but depend on large,
high-quality datasets and primarily optimize for predictive tasks
like node classi"cation, often failing to re"ne schemas for e$cient
query performance.

Given these limitations, we focus on primary-foreign key-based
conversions. Section 3.1 revisits and re"nes traditional methods
grounded in this approach, while Section 3.2 delves into graph
schema optimization, addressing inherent challenges and present-
ing practical solutions informed by insights from deploying Galaxy-
base.

3.1 Revisiting Standard Table-to-Graph
Conversion

Traditional methods for converting relational data to graphs work
well in simple cases with single primary key (PK) and foreign key
(FK) relationships [18, 35, 37]. While these approaches maintain
data integrity by mapping relational keys to graph structures, they
struggle with the complexity of real-world schemas, which fre-
quently involve multiple PKs, multiple FKs, and intricate interde-
pendencies beyond the scope of standard conversion techniques.
To address these limitations, we propose a standardized framework
that extends traditional methods with a systematic, adaptive rule set
capable of handling diverse PK-FK con"gurations. The conversion
rules are de"ned as follows:

Tables with Primary Keys but No Foreign Keys: For a re-
lational table R containing one or more PKs but no FKs, the PK
attributes are merged to create a unique vertex 𝑒 . All non-key at-
tributes (𝑀) of R are stored as properties of the vertex. This design
ensures that each tuple in R is represented as a distinct vertex,
preserving all associated attributes. Formally, the conversion of R
into verticesV is expressed as:

𝑒 (R) = (R .table_name,merge(R .𝑋𝑌𝑀 | 𝑈 ↑ [1,𝑄]), {R .𝑀𝑀 | 𝑈 ↑ [1,𝑊]}) ,
where table_name is the name of the relational table, 𝑋𝑌𝑀 are the
primary key attributes, and 𝑀𝑀 are the non-key attributes. The re-
sulting set of vertices is:

V(R) = {𝑒 (R) | each tuple in R}.
Tables with Primary Keys and Foreign Keys: For a relational

table R containing both PKs and FKs, the primary keys are merged
to form a unique vertex 𝑒 (R), with its non-key attributes (𝑀) stored
as properties. Additionally, edges E are created to link 𝑒 (R) to ver-
tices of referenced tables Rref via their FKs. This ensures that both
PK-based queryability and FK-based connectivity are preserved in
the graph representation. The vertex for R is de"ned as before, and
the edges are represented as follows:

𝑃 (R,Rref) = (𝑒 (R), 𝑒 (Rref),merge(R .table_name,Rref .table_name),↓) ,
where:
• R: The table containing the FK that establishes the relationship.
• Rref: The table referenced by R, where the corresponding PK

resides.
• merge(R .table_name,Rref .table_name): A label indicating the

relationship between R and Rref.
• ↓: Represents an edge without additional properties.

By assigning attributes (𝑀) to vertices instead of edges, this de-
sign maintains a clear distinction between data and relationships:
vertices store all data properties, while edges solely represent con-
nections. This approach minimizes redundancy by ensuring each
attribute is stored exactly once within the vertex it pertains to,

5102

streamlining data organization and integrity. The resulting set of
edges is:

E(R,Rref) = {𝑃 (R,Rref) | each foreign key in R referencing Rref}.
Tables without Primary Keys but with Foreign Keys: For

a relational table R that lacks a PK but contains FKs, an auto-
generated identi"er (auto_id) is assigned to each tuple to uniquely
identify the corresponding vertex 𝑒 (R). Non-key attributes (𝑀) are
stored as properties of the vertex, consistent with the design for
tables that include PKs. Edges are then created between this vertex
and the vertices of referenced tables using FKs, following the same
methodology as described for tables with FKs. The vertex de"nition,
with auto_id generated for R, is:

𝑒 (R) = (R .table_name, auto_id, {R .𝑀𝑀 | 𝑈 ↑ [1,𝑊]}) ,
where table_name represents the name of the relational table, auto_id
is an auto-generated identi"er, and 𝑀𝑀 denotes the non-key at-
tributes of R.

Since R lacks an original PK, it will not be referenced by foreign
keys from other tables. Consequently, edges involving R are exclu-
sively outgoing, representing its relationships with the referenced
tables.

Tables without Primary Keys or Foreign Keys: For a rela-
tional tableR that has neither a PK nor an FK, a auto_id is generated
for each tuple, creating an isolated vertex 𝑒 (R), consistent with
the approach used for generating vertices with auto_id in relations
without PKs. All attributes (𝑀) in the relational table are stored
as properties of the vertex. These vertices remain unconnected in
the graph, mirroring the standalone nature of such tables in the
relational schema.

3.2 Further Optimization on Graph Schema
While standard table-to-graph methods provide general solutions,
they often fail to meet the query performance needs of special-
ized industry scenarios. Focusing on "nancial services, this section
shows how context-aware schema restructuring—leveraging the
!exibility of graph models—can improve e$ciency for key tasks
such as transaction analysis and guarantor retrieval.

Account Transaction Account

(a)

Account Account
Transfer

(b)
Figure 3: Optimization of transaction-based queries

In particular, we point out four issues on the standard table-to-
graph conversion process:
(1) Suboptimal Traversal Complexity: One of the most promi-
nent challenges in the initial graph schema is the ine$ciency intro-
duced by multi-hop traversals, particularly for queries involving
indirect relationships. These ine$ciencies increase query execution
time and computational overhead, making the schema less suitable
for high-performance applications.

Example 3.1. In the context of Transaction-Based Queries, schema
design plays a pivotal role in determining query e$ciency. Consider
a query that retrieves a transaction based on its unique identi"er. In
this case, preserving the Transaction vertex, as shown in Figure 3a,

allows for a direct lookup using the primary key (transactionId),
ensuring e$cient query execution. However, for queries that an-
alyze transaction !ows between accounts, this schema design in-
troduces unnecessary intermediate steps. By replacing the inter-
mediate Transaction vertex with a direct Transfer edge between
Account vertices, as illustrated in Figure 3b, the traversal complex-
ity is signi"cantly reduced. This optimization e#ectively halves the
traversal steps required to analyze transaction chains.

phone_number: 123

phone_number: 123

Account
A1

Customer
C1

Account
A2

Customer
C2

(a)

Account
A1

Account
A2

Phone
123

Customer
C1

Customer
C2

(b)
Figure 4: Optimization of phone number-based queries

(2) Ine#cient Property Utilization: Another limitation lies in
the suboptimal use of vertex and edge properties, often resulting
in ine$cient "ltering and degraded query performance—especially
when properties must be accessed or "ltered at scale.

Example 3.2. Phone Number-Based Queries serve as a clear exam-
ple of this limitation. When retrieving a customer’s phone number
associated with a speci"c account, the initial schema, as shown
in Figure 4a, is su$cient. The query involves traversing from the
Account vertex to the Customer vertex and accessing the phone
number as a vertex property. However, for reverse queries—such
as identifying all accounts linked to a speci"c phone number—the
schema requires scanning all Customer vertices and "ltering based
on the phone_number property, leading to ine$ciencies. To address
this issue, representing Phone as a standalone vertex directly con-
nected to Customer vertices, as illustrated in Figure 4b, eliminates
the need for extensive property-based "ltering. Additionally, this
transformation introduces explicit relationships that support richer
graph analytics.

start_date: 20250214

Account Loan Guarantor

(a)

start_date:
20250214

Account Loan Guarantor

(b)
Figure 5: Enhancing query awareness in loan-based queries

(3) Lack of Query Awareness: Initial graph schemas are often
designed without su$cient consideration of speci"c query con-
texts, such as temporal constraints or relational dependencies. This
lack of adaptability can result in suboptimal performance for tar-
geted queries that require more sophisticated "ltering or traversal
strategies.

Example 3.3. Loan-Based Queries highlight opportunities for
schema optimization in query-aware contexts. For instance, re-
trieving guarantors for loans associated with a speci"c account
involves traversing from the Account vertex to the Loan vertex and

5103

then to the Guarantor vertices, as shown in Figure 5a. While this
design is adequate for basic queries, it becomes ine$cient when
temporal constraints are introduced. For example, "ltering loans
based on a speci"c issuance date requires scanning all Loan ver-
tices and applying a "lter on the temporal property. An optimized
schema, as illustrated in Figure 5b, stores temporal information
as an edge property between Account and Loan vertices. This de-
sign enables direct "ltering on edges during traversal, reducing
computational overhead.

(4) Data Redundancy: Data redundancy, such as unused vertices,
edges, or properties, not only complicates the graph structure but
also increases storage costs. This redundancy can negatively a#ect
both query performance and schema maintainability. For example,
in Transaction-Based Queries, retaining both the Transaction ver-
tex and direct Account-to-Account edges within the same schema
leads to duplicated information. Similarly, in Phone Number-Based
Queries, storing phone numbers as both vertex properties and sepa-
rate vertices introduces unnecessary redundancy.

These issues highlight a fundamental limitation in the standard
table-to-graph conversion process: it often overlooks the speci"c
demands of target queries and application scenarios, leading to
ine$ciencies such as redundant storage, traversal complexity, and
suboptimal query performance. To address these challenges, we
propose a targeted optimization framework that aligns the graph
schema with query requirements. This process involves analyzing
query patterns to identify bottlenecks and re"ning the schema to
enhance e$ciency and maintainability. Key strategies include:

• Convert Vertices to Edges: Transform less signi"cant vertices
into edges to simplify relationships and reduce traversal steps,
particularly for queries focused on path"nding or connectivity.

• Convert Vertex Properties to Edge Properties: Shift proper-
ties that are more relevant to relationships, such as weights or
timestamps, to edges to enable faster "ltering.

• Extract Vertex Properties into Separate Vertices: Promote
frequently queried properties into dedicated vertices to improve
direct accessibility and support property-speci"c queries.

• Remove Redundant Vertices, Edges, and Properties: Elim-
inate unnecessary elements to streamline the graph structure,
reducing storage overhead.

• Adjust Edge Directions: Orient edges to align with typical
query traversal patterns.

• Rename Vertex and Edge Types: Use clear, domain-relevant
naming conventions to enhance schema readability and facilitate
intuitive query construction.

4 SYSTEM DESIGN AND IMPLEMENTATION
4.1 Overview
We present GalaxyWeaver, a system designed to transform re-
lational schemas into graph schemas optimized for query perfor-
mance by leveraging strategies informed by domain expertise and
large language models (LLMs). As shown in Figure 6, the system
architecture consists of two primary modules: the Table-to-Graph
Module and the Graph Schema Optimization Module. Together, these
modules enable the seamless transformation and iterative re"ne-
ment of graph schemas tailored to speci"c application needs. The

system requires two inputs: (1) query speci"cations, de"ning the
queries that the graph schema must support e$ciently, and (2) a
relational database schema, providing the structure of the source
data. The output is an optimized graph schema that aligns with the
input queries, ensuring e$ciency and relevance.

The Table-to-Graph Module handles the initial transformation of
relational data into a graph structure using the Converter compo-
nent. This step follows the strategies detailed in Section 3.1, where
primary keys are converted into vertices, foreign keys into edges,
and other attributes into properties. The module supports direct
integration with relational databases such as MySQL and Oracle,
extracting primary and foreign key relationships from schemameta-
data. For cases where data is not available in traditional databases,
the system supports the direct input of schema information through
table schemas or SQL creation statements. Additionally, an intuitive
interface allows users to de"ne relationships manually, ensuring
compatibility with diverse data sources.

The Graph Schema Optimization Module iteratively re"nes the
initial graph schema using strategies outlined in Section 3.2, sup-
ported by LLMs that simulate human reasoning. The optimization
process prioritizes query performance, storage e$ciency, and struc-
tural simplicity. The work!ow is composed of four key components.
First, the Viewer component visualizes the graph schema, providing
users with insights into the current structure. Second, the Advisor
component prompts the LLM with a combination of the current
schema, input queries, and strategy-speci"c prompts to generate
optimization decisions. Third, the Executor applies these decisions
using rule-based functions to modify the schema. Finally, the Ad-
juster provides an interactive interface for users to review and re"ne
the schema manually if needed.

4.2 Table-to-Graph Module
The transformation from relational data to graph data is critical for
ensuring data accuracy and completeness. Tomeet the diverse needs
of users and maintain the integrity of data relationships, we design
a system: the Table-to-Graph Module. This module supports three
distinct transformation modes: (1) automatic conversion by con-
necting to relational databases, (2) automatic schema recognition
from SQL database creation scripts, and (3) interactive modeling for
manually de"ning relationships when source data is unavailable.

AutomaticConversion byConnecting toRelationalDatabases.
For well-structured relational databases, primary and foreign keys
are the foundation of data relationships. The Table-to-Graph Mod-
ule leverages these existing relationships to automatically con-
struct graph schemas. By extracting schema metadata directly from
databases such as MySQL or Oracle, the module can seamlessly map
primary keys to vertices, foreign keys to edges, and other attributes
to properties. This approach minimizes manual intervention while
ensuring the completeness and integrity of the graph structure.

Schema Recognition from SQL Creation Scripts. When
schema information is provided in the form of SQL creation state-
ments, the module parses these scripts to identify primary and
foreign key elements. This enables automated graph construction
even without a direct connection to a live database. By interpreting
schema de"nitions, the module generates an initial graph schema
that accurately re!ects the structure and relationships de"ned in
the original data.

5104

Input GalaxyWeaver

Queries Converter①

Primary Keys → Vertices
Foreign Keys → Edges

Others → Properties

Relational Schema

Convert Vertices to Edges

Convert Vertex Properties to Edge Properties

Extract Vertex Properties into Separate Vertices

Remove Redundant Vertices/Edges/Properties

Adjust Edge Directions

Rename Vertex/Edge Types

Rules

A list of graph
queries to be

executed after the
graph is

constructed.

Output

Graph Schema

A new graph
schema is
created by

converting and
optimizing a

relational
schema.

Viewer②

Visualization of
Graph Schema

Adjuster (optional)⑤

Adjust Schema with
Human Choice

Advisor③

Prompt LLM
Graph Schema

Queries
Rule

Decision

Executor④

Rule FunctionGraph Schema
Decision

New
Graph Schema

Repeat Steps
2–5 for each
rule until done.

Graph Schema

Optimization

Module

Table-to-Graph Module

Figure 6: The architecture of GalaxyWeaver

Interactive Modeling for Custom Relationship Input. In
scenarios where data lacks a well-de"ned schema or exists in semi-
structured formats (e.g., CSV or JSON "les), the module o#ers an
interactive interface that allows users to manually de"ne relation-
ships and construct the desired graph schema. Although this process
requires user input, users typically have deep domain knowledge
of their data and its inherent relationships, even if they are not
experts in graph schema design. For example, a user managing an
e-commerce dataset inherently understands that "User ID" links to
"Order ID" . This domain knowledge enables them to accurately
de"ne key relationships without requiring advanced technical ex-
pertise.
4.3 Graph Schema Optimization Module
E$cient design and optimization of graph schemas are critical for
achieving high performance in graph database applications. How-
ever, for users without prior experience in graph databases, tailoring
a schema to speci"c use-case requirements can be a challenging
and complex process, as discussed in Section 3.2. To address this,
we introduce the Graph Schema Optimization Module, an intelligent
module provided by GalaxyWeaver. This module is designed to
guide users through the schema optimization journey, combining
intuitive visualization tools with intelligent re"nement techniques.

Integrating LLMs into the Optimization Process. Large lan-
guage models (LLMs) o#er promising capabilities for automating
schema optimization by leveraging their natural language under-
standing and reasoning abilities. However, applying LLMs directly
to this task reveals several challenges: (1) Inconsistent Optimization
Results: LLM-generated plans often vary widely and may fail to bal-
ance multiple optimization objectives. (2) Schema Incompleteness:
In complex scenarios, LLMs may overlook critical schema elements,
leading to incomplete or suboptimal designs.

These limitations underscore the need for a more structured ap-
proach to harness LLM capabilities e#ectively. The Graph Schema
Optimization Module addresses this by adopting a human-inspired
optimization framework. By deconstructing the optimization pro-
cess into smaller, sequential tasks, it allows LLMs to focus on spe-
ci"c, well-de"ned decisions. This targeted approach not only im-
proves the precision of LLM-generated recommendations but also

integrates execution and validation mechanisms to ensure the re-
sulting schema is both complete and e$cient.

At the heart of this module are four tightly integrated compo-
nents, each serving a distinct yet complementary function:

• Viewer : Provides an intuitive visualization of the graph schema,
giving users a clear and immediate understanding of its current
structure.

• Advisor : Analyzes both the schema and user query requirements
to generate tailored optimization recommendations.

• Executor : Applies the recommended changes to the graph schema,
ensuring that schema integrity and correctness are maintained
throughout the process.

• Adjuster : Allows users to manually re"ne the schema, enabling
adjustments to accommodate speci"c use-case requirements or
domain-speci"c knowledge.

Among these, the Advisor serves as the cornerstone of the mod-
ule. It is tasked with generating actionable recommendations by
analyzing both user requirements and the graph’s structural char-
acteristics, ensuring that optimization decisions are both relevant
and impactful.

Enhancing Optimization through Prompt-Guided Anal-
ysis. A distinctive feature of the Advisor is its innovative use of
prompt-guided analysis to re"ne decision-making accuracy. Un-
like traditional approaches that rely on direct schema optimization
by LLMs, this module strategically leverages prompts to evaluate
speci"c schema aspects, enabling more informed and targeted trans-
formations. Below, we demonstrate this process with key examples
of graph schema optimization.

4.3.1 Converting Vertices to Edges. One optimization strategy tar-
gets scenarios where intermediate vertices exist solely to represent
1-to-1 relationships — vertices with exactly two outgoing edges
and no incoming edges. In these cases, collapsing such vertices into
direct edges between the connected entities reduces traversal com-
plexity and improves query e$ciency by eliminating unnecessary
hops.

For example, consider the vertex type Guarantor, which con-
nects Loan and Customer in a 1-to-1 relationship (Loan ↔ Guarantor

5105

→ Customer). The decision to retain Guarantor as vertices or
transform them into edges depends on their usage patterns:
• Retain as a vertex: If queries frequently retrieve Guarantor us-

ing their primary key, keeping them as vertices ensures e$cient
direct lookups.

• Transform into an edge: If Guarantor primarily serve as an
intermediary in traversal operations, converting them into edges
(e.g., Loan → Customer with edge properties) eliminates an
unnecessary vertex lookup and improves query performance.
To guide this decision-making, the Advisor constructs a struc-

tured prompt for the LLM, incorporating the graph schema and
queries at the beginning. This provides contextual information be-
fore presenting the decision-making problem to the model. We
outline the key decision-making prompt below:

I would like to understand how my vertex type [Guarantor]
is being used according to my query requirements. Which of
the following scenarios do you think it !ts? You may write
the query in Cypher to distinguish whether it is being located
or traversed.
(1) The requirement is to locate this vertex using the primary
key.
(2) The requirement is to traverse through neighbors to reach
this vertex.
(3) Both (1) and (2).
(4) Neither (1) nor (2).
For the !nal result, you should output the following format:
’I will choose 1/2/3/4. ’

If the response indicates scenario (2), where Guarantor are ac-
cessed solely through traversal, theAdvisor recommends converting
them into edges. The Executor then applies this transformation, pre-
serving schema integrity while enhancing traversal e$ciency. The
resulting output may look as follows:

I will choose 2.

4.3.2 Converting Vertex Properties to Edge Properties. Another op-
timization approach addresses cases where vertex properties are
exclusively used during traversal. In such scenarios, transferring
these properties to edges can reduce query complexity and improve
performance, especially when dealing with isolated vertices with
an out-degree of 1 and an in-degree of 0.

For example, consider the vertex type LoanPayment, which in-
cludes properties such as payment_amount, payment_date, and
status. These properties are associated with edges connecting
Loans to Customers. The decision to retain or transfer these prop-
erties depends on their usage patterns:
• Retain as vertex properties: If queries frequently locate LoanPayment

by its primary key, keeping the properties on the vertex ensures
e$cient lookups.

• Transfer to edge properties: If the properties are accessed
exclusively during traversal, transferring them to the edges elim-
inates unnecessary vertex lookups, enhancing query perfor-
mance.

To evaluate these patterns, theAdvisor uses the following prompt:

I would like to understand how my vertex type [LoanPay-
ment] and its properties [payment_amount, payment_date,
status] are being used according to my query requirements.
Which of the following scenarios do you think it !ts? You
may write the query in Cypher to distinguish whether it is
being located or traversed.
(1) The requirement is to locate this vertex using the primary
key.
(2) The requirement is to traverse through neighbors to reach
this vertex.
(3) Both (1) and (2).
(4) Neither (1) nor (2).
For the !nal result, you should output the following format: ’I
will choose 1/2/3/4. The properties [xxx, xxx] are retrieved by
locating the vertex, and the properties [xxx, xxx] are retrieved
by traversing through neighbors.’
Note: You cannot alter the !nal result format, and the lists
[xxx, xxx] may be empty.

If the response indicates scenario (3), the Advisor recommends
transferring the relevant properties to edges, as illustrated below:

I will choose 3. The properties [payment_amount, status]
are retrieved by locating the vertex, and the properties [pay-
ment_amount, payment_date] are retrieved by traversing
through neighbors.

Since payment_date is only accessed through traversal, the Ex-
ecutor moves this property from the vertex to the corresponding
edges, ensuring a more e$cient query structure.

4.3.3 Extracting Vertex Properties into Separate Vertices. Another
optimization strategy focuses on cases where speci"c vertex prop-
erties are frequently used for traversal or "ltering rather than for
direct lookups. In such scenarios, extracting these properties into
separate vertices can improve indexing e$ciency and reduce com-
putational overhead associated with property scans.

For instance, consider the vertex type User, which contains
properties such as name and phone. If queries often involve "ltering
or traversing User based on these properties, restructuring the
schema by promoting them to independent vertices can enhance
performance. The decision to extract these properties depends on
their usage patterns:

• Retain as vertex properties: If queries primarily retrieve name
and phone by directly looking up the User vertex, keeping them
as vertex properties ensures e$cient access.

• Extract into separate vertices: If these properties are fre-
quently used for "ltering or traversal, converting them into
independent vertices and linking them to User can optimize
query performance by leveraging edge relationships.

To evaluate whether a property should be extracted, the Advisor
generates the following prompt:

5106

Please write the Cypher query for my requirements and an-
swer the following questions: In each requirement, is there a
query that requires !nding a vertex by iterating over it based
on a speci!c property (not the primary key)? If so, please
identify this property and determine whether it can serve as
a vertex.
For the !nal result, you should output the following
format: ’The result is [VertexTypeName-PropertyName,
VertexTypeName-PropertyName...]’.
For example, ’The result is [User-name, User-phone]’.
Note: The lists [] may be empty.

If the LLM identi"es properties such as name and phone as
traversal-critical, they are extracted into separate vertices. The
response might appear as follows:

The result is [User-name, User-phone].

Based on this analysis, the Advisor recommends restructuring
the schema. The Executor then applies the transformation by creat-
ing new vertex types for these properties and establishing edges
between them and the original User vertex.

4.4 Running Example
To demonstrate how GalaxyWeaver transforms relational data into
optimized graph structures, this section presents a step-by-step
walkthrough using the "nance dataset shown in Figure 1. We focus
on the core decision-making process within the Graph Schema
Optimization Module, where the Advisor analyzes query workloads
to propose optimization decisions, and the Executor applies the
corresponding schema transformations.

We select four representative analytical queries based on this
dataset:

- Query 1: Retrieve the total loan amount issued to each customer,
along with the total loan amount they have guaranteed.

- Query 2: Compute the proportion of repayment amounts made by
each guarantor relative to the total loans they have guaranteed.

- Query 3: Determine the number of customers associated with a
given phone number.

- Query 4: Identify transaction relationships between two speci"ed
accounts.

Table 1 summarizes the core steps of the optimization process,
with the "nal optimized schema shown in Figure 7.

payment_amount

Transfer

Guarantee

Customer Phone

Loan
PaymentAccount Loan

Figure 7: Graph schema after optimization

Table 1: Schema optimization process in GalaxyWeaver
Step Target Data Decision Details
Convert Vertices to Edges
1 Account↔ Transaction→ Account Account → Account
2 Loan↔ Guarantor → Customer Loan→ Customer

Convert Vertex Properties to Edge Properties
3 AccountBalance→ Account No properties moved
4 LoanPayment→ Loan Move [payment_amount]
5 LoanCollateral→ Loan No properties moved

Extract Vertex Properties into Separate Vertices
6 Whole Vertex Types Extract [phone_number]

Remove Redundant Edges
7 Whole Edge Types Remove

[AccountBalanceToAccount,
LoanCollateralToLoan]

Remove Redundant Vertices
8 Whole Vertex Types Remove [AccountBalance,

LoanCollateral]

5 EVALUATION
In this section, we evaluate GalaxyWeaver’s schema generation
and optimization capabilities by comparing three query-based ap-
proaches: (1) executing queries on Relational Table data; (2) running
queries on Basic Graph data, constructed by directly converting
primary and foreign key relationships into graph structures; and
(3) assessing the performance on Optimized Graph data re"ned by
GalaxyWeaver.

5.1 Experimental Setup
Our experiments utilize Galaxybase [34] (version 3.5.2) for storing
and processing both Basic Graph and Optimized Graph representa-
tions, while MySQL (version 8.0.41) serves as the relational database
for Relational Table representations. All experiments are conducted
on a machine equipped with an Intel(R) Xeon(R) Gold 5218R CPU
(20 cores, 40 threads), 128 GB of RAM, running Ubuntu 20.04.6 LTS
with HDD storage.

Table 2: Statistics of each dataset

Dataset # Tables # Columns # Rows

AVS 3 24 349,967,371
AB 3 15 24,291,489
SE 7 49 5,399,818
MAG 5 13 21,847,396

To evaluate the e#ectiveness of GalaxyWeaver across diverse
data domains, we select four representative datasets from 4DBInfer
[38]: Acquire Valued Shoppers (AVS) [16], Amazon Book Reviews
(AB) [23], StackExchange (SE) [31], and Microsoft Academic Graph
(MAG) [30]. Table 2 provides a summary of their key characteristics.
For each dataset, we design three representative queries. The details
of these datasets and queries are outlined below. Due to space
constraints, only the key attributes are depicted in the schema
diagrams.
5.1.1 Acquire Valued Shoppers (AVS). TheAVS dataset [16], sourced
from the Kaggle Acquire Valued Shoppers Challenge, contains trans-
actional and promotional data from an e-commerce platform. It
includes three core tables:

5107

Company

Company PK

Customer

Customer PK

Chain

Chain PK

Brand

Brand PK

Category

Categhory

Transaction

Customer FK Chain FK Company FK Brand FK Category FK PurchaseAmount Date

Offer

Offer PK Company FK Brand FK Category FK

History

Customer FK Chain FK Offer FK Repeater

(a)

Company History

Brand Offer

Category Transaction

Chain

Customer

(b)

History

CompanyOffer Transaction

Customer

(c)
Figure 8: Schema transformation process for the AVS dataset

Review

review_id PK customer_id FK product_id FK

Product

categorypriceproduct_id PK

Customer

customer_id PK

(a)

price
category

Product Review Customer

(b)

price
ProductReview Category

(c)
Figure 9: Schema transformation process for the AB dataset

Tag

TagId PK

User

UserId PK

Post

PostId PK

Badge

BadgeId PK UserId FK

PostTag

PostId FK TagId FK

Vote

VoteId PK PostId FK

PostHistory

PostHistoryId PK PostId FK

Comment

CommentId PK PostId FK UserId FK

PostLink

PostLinkId PK PostId FK RelatedPostId FK

(a)

Tag

User Comment

PostLinkPostTag

Post

VoteBadge Post
History

(b)

TaggedWith

CommentedBy

RelatedPost

Tag

Post User

(c)
Figure 10: Schema transformation process for the SE dataset

Institution

InstitutionId PK

Author

AuthorId PK

Paper

PaperId PK

FieldOfStudy

FieldOfStudyId PK

AffiliatedWith

AuthorId FK InstitutionId FK

Write

AuthorId FK PaperId FK

Cite

PaperIdCite FK PaperIdCited FK

HasTopic

PaperId FK FieldOfStudyId FK

(a)

Cite

Paper

Author Write

FieldOf
Study

Has
Topic

Institution

Affiliated
With

(b)

Cite

HasTopic

Affiliated
With

Write

FieldOf
StudyPaper

Author Institution

(c)
Figure 11: Schema transformation process for the MAG dataset

- History: Tracks promotional o#ers received by customers.
- Offer: Details of each promotional o#er.
- Transaction: Records product purchases by customers.

The relational schema is shown in Figure 8a. To assess the im-
pact of schema transformation and optimization, we design three
queries:

- Query 1: Identify the most frequently purchased product cate-
gories among customers who have redeemed o#ers. This query
ranks product categories by purchase frequency within the target
customer group.

- Query 2: Compute the total purchase amount and transaction
count for a speci"c company within a de"ned time range. This

query aggregates transactions "ltered by company and time pe-
riod.

- Query 3: Analyze repeat purchase behavior among customers
post-o#er redemption. The query identi"es customers who made
repeat purchases in the same product category after using an
o#er.

5.1.2 Amazon Book Reviews (AB). The AB dataset [23] contains
product reviews from Amazon, organized into three tables:

- Customer: Unique customer identi"ers.
- Product: Detailed product information, including ID, brand, cat-
egory, description, price, and title.

5108

- Review: Links customers to products and includes review at-
tributes such as rating, review text, submission time, and veri"-
cation status.
The relational schema is shown in Figure 9a. We evaluate query

performance across di#erent representations using the following
queries:
- Query 1: Retrieve review details by review ID. This is a simple
primary key lookup.

- Query 2: Count the number of reviews for products in a speci"c
category. This query "lters products by category and aggregates
the reviews.

- Query 3: Identify products with reviews where the price exceeds
a speci"ed threshold. This query "lters products by price and
retrieves the associated reviews.

5.1.3 StackExchange (SE). The SE dataset captures interactions
on the StackExchange platform [31], including questions, answers,
comments, and user activities. It consists of several interconnected
tables:
- Badge: Records badges awarded to users.
- Comment: Stores comments associated with posts.
- Post, Tag, PostLink, PostHistory: Store data related to posts,
including content, post relationships, and editing history.

- User: Contains user pro"le information.
- Vote: Tracks votes cast on posts.

The relational schema is shown in Figure 10a. To evaluate perfor-
mance on this relational dataset, we design the following queries:
- Query 1: Find all posts related to a given post within 𝑄 hops,
returning post IDs and the shortest path length.

- Query 2: Identify the most active users based on the number of
comments posted, returning user IDs, display names, and total
comment counts.

- Query 3: Retrieve the most frequently used tags across all posts,
returning the tag name and associated post counts.

5.1.4 Microso! Academic Graph (MAG). The MAG [30] dataset is
a comprehensive knowledge graph encompassing academic pub-
lications, research topics, authors, and institutions. It consists of
several interconnected tables:
- Paper, FieldOfStudy, Author, Institution: Represent key aca-
demic entities.

- Cite, HasTopic, Write, AffiliatedWith: Capture relationships
between these entities, such as citation links and author a$lia-
tions.
The relational schema is shown in Figure 11a. To evaluate Galaxy-

Weaver’s performance on this academic graph, we design the fol-
lowing queries:
- Query 1: Explore the relationship between two papers (A and
B), retrieving all papers forming citation paths between the two
within 𝑄 hops.

- Query 2: Identify the top co-author with the most papers in a
given institution, returning the co-author with the highest num-
ber of papers published with authors from the target institution.

- Query 3: Retrieve the top 𝑄 papers associated with the largest
number of research domains, listing each paperwith its associated
domain count.

5.2 Experimental Methodology
To assess performance impacts across data representations, we
generate three versions per dataset: Relational Tables, Basic Graphs,
and Optimized Graphs. The Optimized Graphs are produced by
GalaxyWeaver, with schemas re"ned and tailored to match the
speci"c query workload. In this experiment, GalaxyWeaver utilizes
GPT-4o as the underlying LLM API.

To evaluate the e#ectiveness and robustness of GalaxyWeaver,
we conduct an LLM-based schema generation experiment across
four datasets. For each dataset, GalaxyWeaver is executed 10 times,
and we report (1) the average number of prompt and completion to-
kens, (2) average generation latency, (3) schema correctness, and (4)
schema optimization rate, as summarized in Table 3. For the down-
stream experiments, we select a schema from runs that successfully
produced both a correct and fully optimized design.

Table 3: LLM generation statistics and schema qualitymetrics
for GalaxyWeaver (averaged over 10 runs per dataset)

Dataset Prompt
Tokens

Completion
Tokens

Generation
Latency(s)

Schema
Correctness

Schema
Opt. Rate

AVS 6,463 2,249 35.7 9/10 74.4%
AB 5,575 2,653 45.8 10/10 84.4%
SE 17,974 5,218 91.1 9/10 97.5%
MAG 8,708 4,198 61.9 9/10 100%

* Schema Correctness indicates whether the generated schema supports
all prede"ned graph queries. Failures typically result from major semantic
issues such as collapsed vertices or missing vertex types.
* Schema Opt. Rate is computed only on correct schemas and re!ects how
many expert-identi"ed schema re"nements (e.g., Convert Vertices to Edges)
are successfully applied.

Table 4: Statistics of basic and optimized graphs

Dataset Basic Graph Optimized Graph

|V| |E| |V| |E|

AVS 350,196,856 1,748,759,227 350,160,197 699,631,692
AB 15,964,090 27,435,504 14,114,827 14,204,911
SE 6,140,680 6,839,823 841,982 1,541,125
MAG 23,050,750 42,222,014 1,939,743 21,111,007

The structural evolution from Relational Tables to Basic Graphs
for each dataset is illustrated in Figures 8b, 9b, 10b, and 11b. Galaxy-
Weaver applies a query-aware transformation process, generating
Optimized Graphs that are tailored to the analytical requirements
of the workload. The resulting Optimized Graphs are shown in
Figures 8c, 9c, 10c, and 11c. To enhance readability, only key edge
types and representative properties are retained in these visualiza-
tions. Table 4 presents the summary statistics for Basic Graph and
Optimized Graph representations across all datasets.

To evaluate query performance across these representations, we
apply the queries designed in Section 5.1 to each dataset under
all three formats. Speci"cally, queries are executed using SQL for
Relational Tables, and Cypher for both Basic Graphs and Optimized
Graphs. For example, the Cypher and SQL implementations for
Query 2 on the Amazon Book Reviews dataset are shown below.

SQL query on the Relational Table:

5109

SELECT p.category, COUNT(r.review_id) AS review_count
FROM Product p
JOIN Review r ON p.product_id = r.product_id
WHERE p.category = ’Books Sports’;

Cypher query on the Basic Graph:

MATCH (p:Product)<-[r:ReviewToProduct]-(:Review)
WHERE p.category = ’Books Sports’
RETURN p.category AS product_category, COUNT(r) AS
review_count;

Cypher query on the Optimized Graph:

MATCH (c:Category category: ’Books Sports’)
-[:CategorizedProduct]->(p:Product)
<-[r:ReviewedProduct]-(:Review)
RETURN c.category AS product_category, COUNT(r) AS
review_count;

�#� %�� �#� %�� �#� %��
�

��

�

��

�
��

�"
�$

��
��

�
�

	��
���

�
��

��� ��� ������ ��� ���

����"�����������
��!���� ���
��"���&���� ���

(a) AVS
� ��"�� � ��"�� � ��"��

�

	

��

�	

��

�
��
��
�!
��
��
�
�

���

����

����

���
��

��	��� ��� ���

����������������
�����������

�����#��������

(b) AB

�!��#�� �!��#�� �!��#��
�

��

��

��

�
��

�
�"

��
��

�
�

�	

����

����

��	 ��	 ������ ��� ���

���� �����������
������
����
�� ���$���
����

(c) SE
�"��$�� �"��$�� �"��$��

�

��

�

��

�
��
�!
�#
��
��

�
�

��	

����
�	�

���

���

���
��� ��� ���

����!�����������

� ��������
��!���%��������

(d) MAG
Figure 12: Comparative query performance across di$erent
data formats for various datasets

Each query is executed 10 times, and the average execution time
of all post-warm-up runs is reported to minimize the impact of
caching and execution bias. To facilitate direct performance com-
parison across data representations, we normalize the execution
time of each query by setting the execution time on the Optimized
Graph to 1. The relative performance of Relational Tables and Ba-
sic Graphs is then computed accordingly. The comparative query
performance results across all datasets are presented in Figure 12.

5.3 Main Results
Section 5.2 presented schema evolution and query performance
across data models. Here, we summarize key "ndings demonstrat-
ing GalaxyWeaver’s e#ectiveness in transforming and optimizing
graph schemas for complex analytics.

5.3.1 Graphs Outperform Tables for Multi-Table Join "eries. One
of the key advantages of transforming relational tables into graphs
is the improved handling of multi-table join queries. GalaxyWeaver
is speci"cally designed as a transformation framework tailored for
analytical workloads that involve complex join operations across

multiple tables. To re!ect this focus, the query workloads in our ex-
periments were deliberately designed to emphasize such scenarios.

As shown in Figure 12, for almost all multi-table join queries,
both Basic Graphs and Optimized Graphs consistently outperform
the corresponding Relational Tables. The only exception is Query
1 from the AB dataset, which retrieves review details by review
ID — a simple primary key lookup. For this type of direct entity
retrieval, relational tables and graph-based representations show
comparable performance, as illustrated in Figure 12b. This further
highlights that the performance bene"ts of graph-based approaches
emerge primarily in queries requiring complex relationship traver-
sals, rather than in isolated entity lookups.
5.3.2 Converting Vertices to Edges Reduces"ery Hops. For datasets
with rich relational structures, such as SE and MAG, converting
certain vertices into edges proves particularly bene"cial for re-
ducing query complexity. Taking MAG as an example, the Basic
Graph (Figure 11b) models foreign key relationship tables — such
as Cite, HasTopic, Write, and AffiliatedWith — as individual
vertex types. As a result, a query requiring a 6-table join in the
relational schema translates into a graph traversal spanning at least
6 hops in the Basic Graph.

In contrast, the Optimized Graph (Figure 11c) !attens these in-
termediate relationship vertices into direct edges between entity
vertices, reducing the required traversal length to just 3 hops. This
restructuring not only simpli"es query execution but also signif-
icantly enhances performance. As shown in Figures 12c and 12d,
the execution time of the Basic Graph is 1.4 to 6.3 times that of the
Optimized Graph, depending on the complexity of the query—such
as the number of hops required.
5.3.3 Converting Vertex Properties to Edge Properties Reduces Re-
dundant Access. For queries involving property-based "ltering along
relational paths, relocating key properties from vertices to edges
streamlines execution. This is exempli"ed by Query 3 in the AB
dataset, which identi"es products with reviews where the product
price exceeds a speci"ed threshold.

In the Basic Graph (Figure 9b), the price property resides on
the Product vertex. Executing this query requires traversing from
Review vertices to Product vertices in order to access the price
property, introducing unnecessary traversal overhead.

In the Optimized Graph (Figure 9c), GalaxyWeaver relocates the
price property directly onto the edges connecting Review vertices
to Product vertices. This allows the query to "lter directly on the
edge property during traversal, eliminating the need for extra vertex
lookups. As shown in Figure 12b, the execution time on the Basic
Graph is 1.5 times that of the Optimized Graph for Query 3, which
relies on property "ltering.
5.3.4 Extracting Key Properties into Independent Vertices Enhances
Filtering E#iciency. Another bene"cial optimization involves elevat-
ing important properties into standalone vertices to facilitate more
e$cient "ltering and indexing. This technique is demonstrated
by Query 2 of the AB dataset, which counts reviews for products
within a speci"c category.

In the Basic Graph (Figure 9b), category exists as a non-key
property on the Product vertex. Without an additional index, eval-
uating this query requires scanning all products to "nd those match-
ing the desired category.

5110

GalaxyWeaver addresses this ine$ciency by promoting category
to a separate vertex (Figure 9c), directly linking products to their
categories. This allows for e$cient category-based "ltering. As
shown in Figure 12b, the execution time on the Basic Graph is 2.8
times that of the Optimized Graph for Query 2.

5.3.5 Eliminating Redundant Vertices, Edges, and Properties Stream-
lines the Schema. Schema simpli"cation is another critical aspect of
GalaxyWeaver’s optimization process. In the AVS dataset (Figure 8),
entities such as Brand, Chain, and Category, while present in the
original relational schema, are unused by the actual query work-
load. GalaxyWeaver automatically identi"es and removes these
redundant elements during schema transformation, resulting in a
more compact and query-e$cient graph schema.

This reduction in unnecessary vertices, edges, and properties
not only simpli"es the schema but also reduces memory usage and
storage overhead, as illustrated by the changes in graph statistics
from the Basic Graph to the Optimized Graph in Table 4.

5.4 Case Study
A manufacturing client migrating from a legacy ERP system to
Galaxybase faced signi"cant challenges in data modeling, with over
40 relational tables and more than 300 attributes. The analytical
workload primarily involved complex multi-table joins covering
production orders, inventory movements, supplier relationships,
and maintenance logs—requiring frequent traversals across busi-
ness entities.

Traditionally, Galaxybase experts manually analyzed table re-
lationships and business logic to design the graph schema from
scratch. This process took approximately 20 person-days due to
the need to understand domain-speci"c semantics and iteratively
re"ne the schema. With GalaxyWeaver, the initial schema trans-
formation was completed within tens of minutes. Graph experts
then reviewed and "ne-tuned the automatically generated schema,
completing the entire design process in just a few days—achieving
over 80% time savings. The "nal schema included 11 vertex types
and 17 edge types.

GalaxyWeaver’s optimizations also resulted in signi"cant per-
formance improvements. In one representative scenario, a query
traversing four hops fromproduction orders to supplier vertices—was
automatically simpli"ed to a three-hop traversal using the Convert
Vertices to Edges rule. We benchmark this improvement across sev-
eral production orders. On average, query latency dropped from
around 2 seconds to just 20 milliseconds. In the most extreme case,
the query execution time was reduced from approximately 15 sec-
onds to 50 milliseconds.

However, due to the inherent instability and non-determinism
of current LLMs, GalaxyWeaver is positioned as a decision-support
tool rather than a fully autonomous solution for production envi-
ronments. By integrating automated schema generation with expert
validation, GalaxyWeaver signi"cantly reduces the cost and com-
plexity of table-to-graph transformation while ensuring schema
quality and reliability for critical business applications.

6 RELATEDWORK
Table-to-Graph Conversion. Existing table-to-graph conversion ap-
proaches can be broadly categorized into three types. Direct map-
ping methods [18, 35, 37] convert primary keys into vertices and

foreign keys into edges, preserving the original relational structure
within the graph. Manual design approaches [6, 13] allow users to
de"ne customized mappings, o#ering greater !exibility to meet spe-
ci"c analytical needs. More recently, machine learning techniques
have been employed to predict graph structures based on data
patterns, thereby automating parts of the process [29, 38]. These
methods o#er varying levels of automation and !exibility, laying
the groundwork for GalaxyWeaver’s approach to table-to-graph
conversion.

Graph Schema Optimization. Graph schema optimization focuses
on improving both query performance and data interpretability
by restructuring graph elements. Prior work has explored static
schema transformations [10], the conversion of RDF data into prop-
erty graphs [27], and techniques for re"ning property graph struc-
tures to enhance query e$ciency [11]. Building on this foundation,
GalaxyWeaver further integrates query workload analysis into the
optimization process, enabling the graph schema to be tailored to
the speci"c characteristics of analytical queries.

LLM Agents. LLM agents have demonstrated signi"cant potential
in automating complex reasoning and decision-making tasks across
a wide range of domains. AutoGen [40] provides a versatile frame-
work for developing applications of varying complexity and LLM
capabilities, while ChatDev [26] o#ers a highly customizable and ex-
tendable multi-agent framework designed to explore collaborative
intelligence among LLM agents. In the domain of database man-
agement, D-Bot [46] leverages LLM agents to automatically extract
diagnostic knowledge and assist with query optimization. Building
on these developments, GalaxyWeaver employs LLM agents to sup-
port graph schema design and adaptive optimization, utilizing their
natural language understanding and reasoning capabilities to lower
the barrier to graph modeling. To further improve reliability, we
plan to incorporate re!ection mechanisms into the agent work!ow,
allowing the LLM to assess its own rule-based decisions, identify
uncertainties, and support expert validation more e#ectively.

7 CONCLUSION
This paper introduces GalaxyWeaver, an LLM-powered framework
for automating table-to-graph transformation with query-driven
schema optimization. Combining prompt-guided analysis, domain
knowledge, and proven optimization strategies from real-world
deployments, GalaxyWeaver generates e$cient graph schemas
tailored to analytical needs. Experiments across diverse domains
demonstrate that GalaxyWeaver reduces manual e#ort, improves
query performance, and lowers storage overhead, providing an
e#ective solution for bridging relational data and graph analytics.

ACKNOWLEDGMENTS
This work was supported by NSFC Grant No. 62206067 and the
HKUST(GZ)-Chuanglin Graph Data Joint Lab. We sincerely thank
the anonymous reviewers for their valuable feedback. We are also
grateful to the entire team at CreateLink (Chuanglin) for their
design and development of GalaxyWeaver and its underlying dis-
tributed graph database, Galaxybase. Additionally, we appreciate
the professional guidance and insightful feedback from the team at
the HKUST(GZ)-Chuanglin Graph Data Joint Lab.

5111

REFERENCES
[1] 2024. Neo4j. https://neo4j.com/
[2] Renzo Angles. 2018. The Property Graph Database Model.. In AMW.
[3] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair

Green, Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, et al.
2023. PG-Schema: Schemas for property graphs. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–25.

[4] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W
Hare, Jan Hidders, Victor E Lee, Bei Li, Leonid Libkin, Wim Martens, et al.
2021. Pg-keys: Keys for property graphs. In Proceedings of the 2021 International
Conference on Management of Data. 2423–2436.

[5] Anthropic. [n.d.]. The Claude 3 Model Family: Opus, Sonnet, Haiku. https:
//api.semanticscholar.org/CorpusID:268232499. Accessed: 2, 6.

[6] Na"sa Anzum. 2020. Systems for Graph Extraction from Tabular Data. Master’s
thesis. University of Waterloo.

[7] Marcelo Arenas, Claudio Gutiérrez, and Juan F Sequeda. 2021. Querying in
the age of graph databases and knowledge graphs. In Proceedings of the 2021
International Conference on Management of Data. 2821–2828.

[8] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. Linkbench: a database benchmark based on the facebook
social graph. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. 1185–1196.

[9] Paolo Atzeni and Valeria De Antonellis. 1993. Relational database theory.
Benjamin-Cummings Publishing Co., Inc.

[10] Iovka Boneva, Benoit Groz, Jan Hidders, Filip Murlak, and Slawek Staworko.
2023. Static analysis of graph database transformations. In Proceedings of the
42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
251–261.

[11] Angela Bonifati, Filip Murlak, and Yann Ramusat. 2024. Transforming Property
Graphs. Proc. VLDB Endow. 17, 11 (Aug. 2024), 2906–2918. https://doi.org/10.
14778/3681954.3681972

[12] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-
mani. 2013. TAO: Facebook’s distributed data store for the social graph. In
Proceedings of the 2013 USENIX Conference on Annual Technical Conference (San
Jose, CA) (USENIX ATC’13). USENIX Association, USA, 49–60.

[13] Patrícia Cavoto and André Santanchè. 2015. ReGraph: bridging relational and
graph databases. In Proceedings of the 30th Brazilian Symposium on Databases.

[14] Edgar F Codd. 2007. Relational database: A practical foundation for productivity.
In ACM Turing award lectures. 1981.

[15] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. 2019. Tigergraph: A native
MPP graph database. arXiv preprint arXiv:1901.08248 (2019).

[16] DMDave, Todd B., and Will Cukierski. 2014. Acquire Valued Shoppers Challenge.
https://kaggle.com/competitions/acquire-valued-shoppers-challenge.

[17] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Cha", Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC social net-
work benchmark: Interactive workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 619–630.

[18] Hui Feng and Meigen Huang. 2022. An approach to converting relational data-
base to graph database: From MySQL to Neo4j. In 2022 IEEE 2nd International
Conference on Power, Electronics and Computer Applications (ICPECA). IEEE, 674–
680.

[19] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

[20] Jan L Harrington. 2016. Relational database design and implementation. Morgan
Kaufmann.

[21] Richard Henderson. 2020. Using graph databases to detect "nancial fraud. Com-
puter Fraud & Security 2020, 7 (2020), 6–10.

[22] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh,
Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. 2024.
Gpt-4o system card. arXiv preprint arXiv:2410.21276 (2024).

[23] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations
using distantly-labeled reviews and "ne-grained aspects. In Proceedings of the
2019 conference on empirical methods in natural language processing and the 9th
international joint conference on natural language processing (EMNLP-IJCNLP).
188–197.

[24] Anil Pacaci, Alice Zhou, Jimmy Lin, andM Tamer Özsu. 2017. Do we need special-
ized graph databases? Benchmarking real-time social networking applications.
In Proceedings of the Fifth International Workshop on Graph Data-management

Experiences & Systems. 1–7.
[25] Debachudamani Prusti, Daisy Das, and Santanu Kumar Rath. 2021. Credit card

fraud detection technique by applying graph database model. Arabian Journal
for Science and Engineering 46, 9 (2021), 1–20.

[26] Chen Qian, Xin Cong, Cheng Yang,Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan
Liu, and Maosong Sun. 2023. Communicative agents for software development.
arXiv preprint arXiv:2307.07924 6, 3 (2023).

[27] Kashif Rabbani, Matteo Lissandrini, Angela Bonifati, and Katja Hose. 2025. Trans-
forming RDF Graphs to Property Graphs using Standardized Schemas. (2025).

[28] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. O’Reilly Media, Inc.

[29] Joshua Robinson, Rishabh Ranjan,Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro
Dobles, Matthias Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, et al. 2024.
Relbench: A benchmark for deep learning on relational databases. Advances in
Neural Information Processing Systems 37 (2024), 21330–21341.

[30] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and
Kuansan Wang. 2015. An overview of microsoft academic service (mas) and
applications. In Proceedings of the 24th international conference on world wide
web. 243–246.

[31] StackExchange. n.d.. StackExchange Data Explorer. https://data.stackexchange.
com/.

[32] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. 697–706.

[33] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. 2022. Rethinking graph neural
networks for anomaly detection. In International Conference on Machine Learning.
PMLR, 21076–21089.

[34] Bing Tong, Yan Zhou, Chen Zhang, Jianheng Tang, Jing Tang, Leihong Yang,
Qiye Li, Manwu Lin, Zhongxin Bao, Jia Li, and Lei Chen. 2024. Galaxybase: A
High Performance Native Distributed Graph Database for HTAP. Proc. VLDB
Endow. 17, 12 (Nov. 2024), 3893–3905. https://doi.org/10.14778/3685800.3685814

[35] Yelda Unal and Halit Oguztuzun. 2018. Migration of data from relational database
to graph database. In Proceedings of the 8th International Conference on Information
Systems and Technologies. 1–5.

[36] A Vaswani. 2017. Attention is all you need. Advances in Neural Information
Processing Systems (2017).

[37] Harsha R Vyawahare, Pravin P Karde, and Vilas M Thakare. 2019. An e$cient
graph database model. Int. J. Innov. Technol. Explor. Eng 88, 10 (2019), 1292–1295.

[38] Minjie Wang, Quan Gan, David Wipf, Zheng Zhang, Christos Faloutsos, Weinan
Zhang, Muhan Zhang, Zhenkun Cai, Jiahang Li, Zunyao Mao, et al. [n.d.]. 4DBIn-
fer: A 4D Benchmarking Toolbox for Graph-Centric Predictive Modeling on
RDBs. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track.

[39] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, AndrewM Dai, and Quoc V Le. 2021. Finetuned language models
are zero-shot learners. arXiv preprint arXiv:2109.01652 (2021).

[40] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu,
Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, et al. 2023. Autogen: En-
abling next-gen llm applications via multi-agent conversation. arXiv preprint
arXiv:2308.08155 (2023).

[41] Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and
Yang Tang. 2023. A brief overview of ChatGPT: The history, status quo and
potential future development. IEEE/CAA Journal of Automatica Sinica 10, 5 (2023),
1122–1136.

[42] Jihong Yan, ChengyuWang, Wenliang Cheng, Ming Gao, and Aoying Zhou. 2018.
A retrospective of knowledge graphs. Frontiers of Computer Science 12 (2018),
55–74.

[43] Chen Zhang, Jing Wu, and Yan Zhou. 2024. Graph Databases: Theory and Practice.
Electronics Industry Press.

[44] TV Zhidchenko, MN Seredina, NM Udintsova, and NA Kopteva. 2021. Design of
energy-loaded systems using the Neo4j graph database. In IOP Conference Series:
Earth and Environmental Science, Vol. 659. IOP Publishing, 012108.

[45] Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang,
Shi Qiu, Jintian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. 2023. Agents:
An open-source framework for autonomous language agents. arXiv preprint
arXiv:2309.07870 (2023).

[46] Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu, Weize Chen, Jianming
Wu, Jiesi Liu, Ruohang Feng, and Guoyang Zeng. 2023. D-bot: Database diagnosis
system using large language models. arXiv preprint arXiv:2312.01454 (2023).

[47] Jun-Peng Zhu, Peng Cai, Kai Xu, Li Li, Yishen Sun, Shuai Zhou, Haihuang Su,
Liu Tang, and Qi Liu. 2024. AutoTQA: Towards Autonomous Tabular Question
Answering through Multi-Agent Large Language Models. Proceedings of the
VLDB Endowment 17, 12 (2024), 3920–3933.

5112

https://neo4j.com/
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://doi.org/10.14778/3681954.3681972
https://doi.org/10.14778/3681954.3681972
https://kaggle.com/competitions/acquire-valued-shoppers-challenge
https://data.stackexchange.com/
https://data.stackexchange.com/
https://doi.org/10.14778/3685800.3685814

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Relational Database and Schema
	2.2 Graph Database and Schema
	2.3 Large Language Models

	3 Challenges and Motivations
	3.1 Revisiting Standard Table-to-Graph Conversion
	3.2 Further Optimization on Graph Schema

	4 System Design and Implementation
	4.1 Overview
	4.2 Table-to-Graph Module
	4.3 Graph Schema Optimization Module
	4.4 Running Example

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Methodology
	5.3 Main Results
	5.4 Case Study

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

