
ScaleCache: Scalable and Production-grade Bu!er Management
for Disk-based Database Systems

Mingyu Liu
Huawei Company

China
liumingyu15@huawei.com

Junbin Kang∗
Huawei Company

China
kangjunbin1@huawei.com

Kai Wang
Huawei Company

China
wangkai0@huawei.com

Lu Zhang
Huawei Company

China
zhanglu214@huawei.com

Haibo Chen
Huawei Company

China
hb.chen@huawei.com

Xiuchang Li
Huawei Company

China
lixiuchang@huawei.com

Tianhong Ding
Huawei Company

China
dingtianhong@huawei.com

ABSTRACT
Bu!er management is critical for DBMSs but often su!ers from
scalability bottlenecks and poor cache locality, which stems from
centralized reference counting in page access and intensive locking
in page-to-bu!er translation. However, prior radical approaches
like pointer swizzling or optimistic lock can hardly be adopted
in production-grade DBMSs due to its inherent complexity and
incompatibility.

This paper proposes ScaleCache, a scalable, highly-e"cient and
production-grade bu!ermanagement systemwith three key designs.
ScaleCache #rst incorporates a novel compact per-group bu!er ref-
erence counting technique, which enables scalable bu!er pinning
and unpinning by concurrent threads on many-core servers. It
then devised a novel read-write lock based on copy-on-write and
per-group reference counting, which is suitable for B-link tree.
At last, we propose an optimistic, CPU-cache friendly and SIMD-
accelerated hash table for fast and scalable page-to-bu!er trans-
lation, which eliminates most contention on modern many-core
hardware. ScaleCache has been adopted in Huawei GaussDB, a com-
mercial high-performance DBMS. Evaluation on a 128-core server
demonstrates that ScaleCache exhibits near-linear scalability and
can signi#cantly improve index query throughput of both classic
B-link tree index and complex graph-based vector index.

PVLDB Reference Format:
Mingyu Liu, Junbin Kang, Kai Wang, Lu Zhang, Haibo Chen, Xiuchang Li,
and Tianhong Ding. ScaleCache: Scalable and Production-grade Bu!er
Management for Disk-based Database Systems. PVLDB, 18(12): 5073 - 5085,
2025.
doi:10.14778/3750601.3750628
∗Corresponding author and project leader.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750628

1 INTRODUCTION
The bu!er management serves as the cornerstone of modern on-
disk database management systems (DBMS) but often su!ers from
scalability bottlenecks and poor cache locality, which stems from
centralized reference counting in page access and intensive locking
in page-to-bu!er translation. Speci#cally, the traditional bu!er man-
ager design leverages a lock-protected and chained hash table to
record the mapping of cached disk page identi#ers (IDs) to memory
pointers within the bu!er pool for page-to-bu!er translation and
uses centralized reference counting to prevent page eviction during
page access [20, 21]. Intensive use of locking and atomic operations
can lead to excessive CPU cache-line invalidation on many-core
hardware. Meanwhile, the chained bu!er hash table lookup, which
occurs on each page access, presents noticeable overhead due to
poor CPU cache locality during chain traversal.

Previous research work starting from 2008 [13, 15, 20, 21] demon-
strated that the traditional bu!er manager introduces signi#cant
overhead and proposed several e"cient but radical bu!er pool
designs like pointer swizzling [13, 21] and virtual memory assisted
bu!er pool (vmcache for short) [20]. Pointer swizzling replaces disk
page IDs embedded in B+ tree pages with memory pointers when
they are looked up from the hash table, thus mostly eliminating the
hash table translation as well as synchronization overhead on the
critical page cache hit path. However, in practical usage, pointer
swizzling encounters an issue: it modi#es the index tuple structure,
requiring data reloading in production environments and prevent-
ing seamless upgrades due to incompatibility between old and new
database versions.

The recent work vmcache [20] proposed to map the entire data-
base storage into anonymous virtual memory and to let the DBMS
to manage page loads and evictions explicitly. vmcache gets rid
of expensive hash-table-based page translation by leveraging the
MMU hardware to translate page IDs into memory pointers within
the virtual memory address space.

Both LeanStore and vmcache uses optimistic latches [3, 22, 23]
during index traversal, which relies on the retry mechanism to

5073

https://doi.org/10.14778/3750601.3750628
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750628

resolve con$icts upon concurrent page modi#cations. vmcache fur-
ther proposes to retry optimistic page reads upon concurrent page
eviction. Practical limitations emerge when using the simple retry
mechanism for optimistic page reads: (1) it may lead to potential
problems such as unpredictably long iteration loops and out-of-
bounds read access errors during the binary iteration over the key
array in one index page due to corrupted page #elds by concurrent
modi#cation, such as the key array size, index item (tuple) o!set
and index tuple header. (2) error signal handling (e.g., zero divi-
sion) due to corrupted data incurs non-trivial overhead. The above
downsides impede vmcache and LeanStore from being applied to
production-grade DBMSs.

This paper proposes ScaleCache, a scalable, highly e"cient and
production-grade bu!ermanagement systemwith three key designs
as an alternative method. First, ScaleCache incorporates a novel
per-group bu!er reference counting technique that allows mul-
tiple threads to pin and unpin a page in the bu!er pool scalably on
modern many-core hardware. Second, ScaleCache introduced an
innovative non-leaf read-write page latch mechanism leveraging
copy-on-write and the aforementioned per-group reference count-
ing technique to eliminate most CPU cache-line invalidation during
index traversal. Finally, ScaleCache introduces an optimistic, CPU
cache-friendly hashing scheme with SIMD acceleration to enable
high-throughput page-to-bu!er translation on modern many-core
architectures, eliminating cache-line contention while enhancing
cache locality during translation. A comprehensive analysis of the
proposed framework is presented in Section 3.

ScaleCache is now adopted by Huawei GaussDB, a commercial
high-performance DBMS. Evaluation of the B-link tree index on
a 128-core Huawei Kunpeng server [16] using several benchmarks
show that ScaleCache exhibits near-linear scalability and improves
the index query throughput by up to 3.3X compared to the baseline
(i.e., GaussDB without ScaleCache). In terms of vector search, Sca-
leCache improves the throughput by 46% and reduces the latency
by 33% on the SIFT1M dataset without any modi#cation to the
GaussDB DiskANN vector index [35], demonstrating that Scale-
Cache can speed up complex vector index search and is expected
to bene#t other complex indexes such as inverted index and spatial
index in a transparent way. Implementing our per-group read-write
latch for the DiskANN vector index could further improves the
vector search performance signi#cantly and we leave this as our
future work.

In summary, this paper makes the following contributions: (1)
We have experimentally and quanti#ably identi#ed the root sources
of ine"ciencies of modern disk-based bu!er management and dis-
cussed the limitations of existing solutions in Section 2. (2) We
propose ScaleCache, a scalable and production-grade bu!er man-
agement system in Section 3 with three e"cient techniques, namely
per-group bu!er reference counting, per-group read-write latch,
and SIMD-accelerated, lookup-optimistic and CPU-cache friendly
page-to-bu!er translation, to eliminate CPU cache-line contention
and to improve CPU-cache locality, thus scaling bu!er pool services
to many cores. (3) We have implemented ScaleCache in GaussDB, a
commercial high-performance DBMS production, evaluated Scale-
Cache using several benchmarks including OLTP, OLAP and vector

search workloads experimentally and showed that ScaleCache ex-
hibits near-linear scalability and improves both the index query
throughput and latency signi#cantly in Section 4.

2 BACKGROUND
In this section, we #rst analyze the root bottlenecks of modern
bu!er pool design adopted by most open-source and commercial
DBMSs, then introduce recent related work that aims to address
such bottlenecks and that inspires our work.

2.1 The bottlenecks of traditional bu!er
management

We #rst examine the architectural limitations inherent in conven-
tional bu!er pool implementations.

Average latency breakdown of index query execution. Fig-
ure 1 shows the average latency breakdown of both multi-random
point lookup of the classic B-link tree and DiskANN vector index
search on a 128-core server. The experimental details will be de-
scribed in Section 4. The actual index search execution time only
occupies less than 40% of the overall query time on both indexes
while the sum of the bu!er manager cost, that mainly consists of
the bu!er reference counting cost (i.e., bu!er pin/unpin) and hash
table lookup cost for page-to-bu!er translation, and index page
latching cost reaches over 60%. They are three major factors that
impede the scalability of bu!er pool services during index traversal
on modern many-core hardware.

B-link
 tree index

DiskANN
vector index

0.0%

50.0%

100.0%

page latching
hashing
pin/unpin
search

Figure 1: Average latency breakdown of parallel index query
on the B-link tree and DiskANN vector index

Centralized per-bu!er reference counters. The #rst bottle-
neck of traditional bu!er manager stems from centralized per-bu!er
reference counting which is used to prevent page eviction during
page access. As concurrent queries visit pre#x nodes along the index
search path 1, they update the corresponding shared bu!er refer-
ence counters atomically, resulting in high cache-line contention
and throughput drop.

Shared page latching. A classic DBMS uses shared and ex-
clusive page latches to protect consistency of page content under
concurrent readers and writers. Although shared page latching
allow concurrent readers, its use of compare-and-swap (CAS) oper-
ation on shared latch state, which tries to increment the number
of in-progress readers if there are no writers, can cause repeatable
retries upon CAS failure and excessive cache-line invalidation on
many-core hardware. We observe that concurrent queries acquiring
1For example, B-link tree root and inner nodes, and navigable graphs in the vector
index.

5074

shared page latches on some pre#x index nodes like the B-link tree
root node can result in throughput drop.

Lock-protected and chained hash table.Modern DBMSs rely
on a lock-protected and chained bu!er hash table to translate PIDs
into memory pointers within the bu!er pool, which introduces two
performance ine"ciencies. First, although DBMSs use #ne-grained
per-bucket locking to reduce contention, there still exist locking
overhead and high contention upon chaining collision. Second,
pointer chain traversal may cause many random memory accesses,
resulting in extra CPU cache misses on the index search path.

2.2 Related Work
Reference counting and reclamation. Prior work [2, 4, 6, 7, 17]
proposes per-core reference counting for scalable kernel object
reclamation in the Linux operating system on many-core hardware.
These approaches leverages grace period-based synchronization to
lazily reclaim non-referenced objects. Speci#cally, Refcache [4] de-
vises an epoch-based reclamation mechanism. Each core completes
$ushing its local counter delta to the global reference counter dur-
ing each epoch. Refcache can reclaim an object only if its counter
drops to zero and its value remains unchanged across two epochs.
Leanstore [21] also uses a similar epoch-based technique for page
eviction and bu!er replacement. Such epoch-based approaches face
a non-trivial trade-o!. Setting a small epoch interval value can res-
ult in excessive cache-line invalidation for epoch synchronization
while a large epoch interval value may prevent non-referenced
objects from being timely reclaimed, probably causing the system
to be stuck due to out-of-memory. To avoid frequent cache-line
synchronization, Refcache [4] introduces a delay of 10 milliseconds
to guarantee detecting a zero true counter.

PAYGO [17] leverages Linux CPU preempt_disable()/enable()
functions to devise a space-e"cient and scalable counting approach,
which only counts active objects in per-core hash caches to save
space. Its userspace implementation needs to invoke its kernel-
level PAYGO operations via OS system calls which incur expensive
cost [32, 34, 39].PAYGO cooperates with the Read-Copy-Update
(RCU) [24, 25] technique in Linux to reclaim zero-referenced pages
safely for Linux page cache. Speci#cally, local per-core counter
modi#cation for page referencing is wrapped by RCU read critical
section that disables CPU preemption and page deletion needs to
wait for all cores to experience at least a OS context switch (i.e.,
grace periods) so as to guarantee all read critical sections that
reference the page exited [24, 25]. However, this approach also
introduces a delay before a zero-referenced page can be reused.

Vectorized hash table.Our lookup-optimistic, CPU-cache friendly
and SIMD accelerated hash table design borrows some ideas from
prior works that design vectorized hash table schemes to leverage
SIMD acceleration [1]. A concurrent work [14] proposes a linear-
chained hash scheme for e"cient equi-joins. As the number of
bu!ers is prede#ned when the DBMS starts, we design our new
hash table with a #xed number of slots to hold all page-to-bu!er
translation entries without the need of considering hash table res-
izing as well as complex synchronization with normal operations
during resizing. In cooperating with our scalable and light-weight
bu!er state synchronization, ScaleCache allows optimistic bu!er

hash table lookups with no locking for page-to-bu!er translation
within the bu!er pool.

Other bu!er management designs. Prior work like Kreon
[28, 29] and Tucana [27] proposes to map the entire key-value store
into virtual memory address to eliminate cache lookup cost and to
leverage fast memory-mapped I/O for cache misses. FastMap [30]
and Steroids [26] further optimize memory-mapped I/O perform-
ance. However, these approaches can consume a huge amount of
OS page table memory for mapping a large database into virtual
memory address like vmcache [20].

Due to the bu!ermanagement cost [15], main-memory databases
like H-Store [31], HyPer [18], HANA [33], SQL server Hekaton
[10] and Silo [37, 38] emerged in the database community. Main-
memory databases support out-of-memory workloads by classify-
ing hot/cold tuples and moving cold tuples to disk [9, 12]. Speci#c-
ally, Anti-cache [9] designed for H-Store keeps indexes memory-
resident and maintains a LRU-list for data tuples to facilitate cold
tuple migration, which introduces large metadata memory usage.
In the current big-data era, keeping all indexes memory-resident
is also impracticable. Siberia [12] uses tuple access samples for
hot/cold classi#cation and employs background migration of cold
tuples, which may not be able to respond to some rapidly changing
workloads accurately and timely, leading to poor performance.

3 ARCHITECTURE AND DESIGN OF
SCALECACHE

This section presents the overall architecture and design of Sca-
leCache, a scalable, highly e"cient and production-grade bu!er
management system for disk-based DBMSs.

3.1 Per-group bu!er reference counting
ScaleCache proposes a novel per-group bu!er reference counting
technique that eliminates the #rst multi-core scaling bottleneck of
the DBMS bu!er pool as mentioned in Section 2.

As shown in Figure 3, each bu!er counter in ScaleCache con-
sists of per-group counter slices, each of which lies in a separate
CPU cache-line, so that pinning/unpinning in parallel by threads
belonging to di!erent groups modify di!erent slices and hence does
not cause any CPU cache-line synchronization. In order to reduce
cache-line synchronization cost of pining/unpinning by threads
belonging to the same group, we only organize CPU cores that at
least share the same CPU last level cache (LLC or L3) into the same
group (also called cache group). Since CPU cores sharing the same
last level cache are physically adjacent, hardware-aware grouping
can be implemented by computing the group ID through dividing
the core ID by the number of cores per group, a #xed parameter
given in the con#guration #le. Note that per-core counting is a
special case where each group contains only one core. ScaleCache
leverages the restartable sequence (rseq) provided by the Linux
operating system (OS) to obtain one thread’s running CPU core in
a ultra-fast way. The rseq is a per-thread shared data structure and
the OS scheduler would write the current CPU core ID into it each
time one thread is scheduled. The rseq mechanism demonstrates
a latency of approximately 1 nanosecond on our Huawei Kunpeng
platform, which is orders of magnitude faster than vDSO-based
approaches (~10ns) and getcpu system call overhead (~100ns). This

5075

Linux operating system

Buffer Buffer Buffer
...

DBMS Buffer Pool

Buffer

...
Per-group

buffer counters

<RelationID, PageID>

Buffer load, flush

and replacement

Buffer

Per-thread

rseq

OS schedulerPut CPU ID

Get CPU ID

recheck state after per-group pin

desc desc ... desc

buffer state descs

buffer ID

SIMD Hash

B-link tree

pin buffer

Per-group Latch

...

free page list

lock buffer

Figure 2: The overall architecture of GaussDB-ScaleCache

slice slice slice

slice slice slice

slice slice slice

......

group 0

buffer 0

group m

group 1

buffer 1 buffer n

 per-group
 counter

 per-group
 counter

Figure 3: The memory layout of per-group bu!er counters

nanosecond-scale optimization is critical since if the cost of getting
CPU core ID is larger than data transferring between di!erent cores,
this approach will become counterproductive.

One naive per-group counter memory design is to occupy a
separate CPU cache-line for each slice, which however would lead
to high memory footprint on machines with a large number of
CPU cores, which is common today. In contrast, as shown in Figure
3, ScaleCache organizes the counter slices that correspond to the
same group in a memory-compact way while avoiding false cache-
line sharing between di!erent groups. Speci#cally, we allocate a
continuous memory slice array for each cache group. The size of
each slice array is equal to the number of bu!ers. For each bu!er
counter, ScaleCache can use bu!er ID and group ID to locate the
corresponding bu!er counter slice in the two-dimensional slice
array. In our current implementation, each slice is an unsigned
integer and its size is set to 2 bytes which can support up to 65535

buffer lookup

buffer state is
unlocked?

increment
counter slice

buffer state is
unlocked?

recheck buffer
tag

lock buffer state

sum(slices)== 1?
and buffer is

clean?

unlock buffer
state

assign new
buffer tag

pin buffer

no

no

no

no

pin buffer

 buffer replacementbuffer lookup

Figure 4: The light-weight and optimistic bu!er state syn-
chronization protocol

DBMS thread concurrency while avoiding slice over$ow 2, and we
believe such high thread concurrency is enough in our customer
scenarios as present-day servers now only have up to hundreds of
cores.

Pin and unpin a bu!er. Before (or after) accessing one page
bu!er, one DBMS thread obtains the CPU core ID where it runs
from rseq, calculates its belonging group and then pins (or unpins)
the bu!er by incrementing (decrementing) the corresponding per-
group counter slice atomically. Checking whether a page can be
evicted from the bu!er pool needs to calculate the sum of all its
per-group slices. However, the computation overhead does not

2We limit the max concurrency of GaussDB by setting its max connection con#guration
upon startup.

5076

Algorithm 1: Pin/unpin a bu!er
input :bu!erID
input : isOpPin

1 while true do
2 while bu!erDesc[bu!erID].stateLock == LOCKED

/* read buffer state atomically to check
if it is locked */

3 do
/* loop until lock == 0 */

4 end
5 read coreID from rseq;
6 groupID = CalculateGroupID(coreID);
7 counterSlice = perGroupCounters[groupID][bu!erID];
8 if isOpPin == true then
9 counterSlice.fetch_add(1);

10 else
11 counterSlice.fetch_sub(1);
12 end
13 if bu!erDescState[bu!erID].stateLock != LOCKED then
14 break;
15 else

/* The buffer state is locked during
pinning/unpining, we retry */

16 if isOpPin == true then
17 counterSlice.fetch_sub(1);
18 else
19 counterSlice.fetch_add(1);
20 end
21 end
22 end

in$uence performance because bu!er replacement happens when
no free bu!ers are available during which the slow storage IO
dominates the overall performance even on fast NVMe SSDs (as
will be demonstrated in Section 4).

As shown in Figure 4, ScaleCache proposes a scalable and light-
weight bu!er state synchronization protocol to ensure consistency
between the operation of modifying a per-group counter slice for
bu!er pinning and unpinning and that of calculating the sum of
per-group slices for bu!er replacement which is protected by the
bu!er state lock. The algorithm details and correctness proof will
be described in Subsection 3.3.

Algorithm 1 shows the detailed bu!er pinning and unpinning
pseudocode which is lock-free and CPU cache-line contention-free
3. Speci#cally, to pin or unpin a bu!er, the DBMS thread #rst waits
for the bu!er state to be unlocked by spinning (line 2-4), then tries
to pin/unpin the bu!er by modifying its corresponding per-group
counter slice (line 5-12) and at last rechecks whether the bu!er
state is locked by other threads during the above process (line 13).
If so, the DBMS thread undoes the change and retries the above

3More precisely, it refers that there does not exist expensive cache-line synchronization
across LLCs here.

process (line 15-21). Otherwise, the DBMS thread breaks the loop
(line 14) and has successfully pinned/unpinned the bu!er.

Pin and unpin on di!erent CPU cores. Sometimes, due to
the OS scheduling activities, one thread may pin a bu!er on one
CPU core and unpin the bu!er on another CPU core belonging
to a di!erent group, leading to CPU cache-line synchronization.
However, as the time interval of bu!er pinning and unpinning is
usually very short, which is much smaller than the OS scheduling
interval (10 ms), the probability of such cases is very low.

Even if pinning and unpinning of the same bu!er happen on
di!erent groups, ScaleCache can guarantee correctness as the modi-
#cation of one per-group counter slice is serialized with the calcu-
lation of the sum of all slices in case of bu!er replacement which is
protected by the bu!er state lock as shown in Figure 4. If one thread
T1 calculates the sum of one bu!er’s counter slices and does not
see another thread T2’s pinning e!ect on the bu!er, it would also
not see T2’s unpinning e!ect as T2’s pinning procedure would not
end until T1 unlocks the bu!er state. In such scenarios, over$ow
might occur where one slice counter increments to 1, while an-
other counter becomes 65535 (equivalent to -1 in bit representation
for uint16_t) following a pin and an unpin. However, this is incon-
sequential as the eviction check sums all counters collectively. Since
65535 and -1 are congruent modulo 65536, their sum modulo 65536
will be congruent to zero when represented as a uint16_t value. As
a result, the sum will never over$ow as long as the concurrency of
DBMS does not exceed 65535.

Memory footprint. Each per-group bu!er counter occupies
N * 2 bytes where N is the number of groups. The original bu!er
counter in GaussDB is padded to occupy a separated 64-byte cache-
line to avoid false sharing. When each group contains only one
core (i.e., per-core bu!er counters), ScaleCache performs the best
across all con#gurations theoretically. However, as will be demon-
strated in Section 4, on our 128-core Huawei Kunpeng server, with a
con#guration of each group containing 4 consecutive cores sharing
the same LLC, ScaleCache performs almost the same with that of
per-core bu!er counters on all our experiments while the memory
footprint of our per-group counting is equal to that of traditional
bu!er counter and is 1/4 of per-core counting. Even using per-core
counting, on our 128-core Huawei Kunpeng server, the metadata
space overhead is still reasonable 3% of the bu!er pool size (8 KB
page size in GaussDB).

3.2 Per-group page latch based on copy-on-write
Each index operation, e.g., search, insertion, or deletion, descends
from the root to the leaf nodes and requires acquiring corresponding
read latches on the non-leaf nodes along the traversal path. Besides,
the number of non-leaf nodes of B-link tree is signi#cantly smaller
than that of leaf nodes. As a result, the concurrency contention
on read latches of non-leaf nodes, particularly the root node, will
remain substantially high even under uniform data accesses. A
traditional reader-writer latch is implemented using an atomic
variable to coordinate concurrent access, which is similar to that of
bu!er counters. However, per-group reference counting philosophy
cannot be directly applied to read-write latches. Essentially, this
approach speeds up the reference count modifying operations at
the cost of checking whether the count is zero. While this trade-o!

5077

T1

T2

T3

T4

T5

T6

T7

scheduled out write latch read latch(conventional)read latch(ours)

Figure 5: Example of latch in concurrency.

works in bu!er managers where pin/unpin operations far outpace
reference count checking, it becomes problematic for read-write
latches. Acquiring a write latch may require multiple loop iterations
to verify the distributed reader count, each triggering a CPU cache-
line transfer, which may consequently degrade the overall system
performance, necessitating the use of copy-on-write technology to
eliminate frequent cache-line transfers.

In ScaleCache, the bu!er structure within the bu!er pool is re-
designed with dual partitions: metadata information and data seg-
ments (i.e., bu!er frames for simplicity), each independently man-
aged via the per-group reference counting technology. The eviction
of a bu!er is controlled by metadata information. The operational
rules are as follows:

(1) When allocating a bu!er for a page, both its metadata and
corresponding bu!er frame are allocated and pinned (The
allocation algorithm of bu!er frame will be discussed later).

(2) During bu!er eviction, the associated bu!er frame is expli-
citly unpinned.

(3) Invoking bu!er_pin/bu!er_unpin triggers pin/unpin ex-
clusively for metadata.

(4) Acquiring a read latch records and pins the current bu!er
frame, ensuring subsequent operations utilize this pinned
bu!er frame until the latch is released.

(5) Uponwrite latch acquisition, a new bu!er frame is allocated,
the old data is copied to it, the old segment is unpinned,
and the new segment is pinned for further operations as
illustrated in Figure 6.

This design ensures data observed by threads holding read latches
remains valid (though potentially stale), while read latch acquisition
operates solely through a lightweight per-group reference count
increment, thus enabling scalability on many-core systems.

Allocation of bu!er frames. The allocation of bu!er frames
must account for concurrent write latch acquisitions. When a write
latch is obtained, multiple bu!er frames associated with a bu!er

1

2

Figure 6: Schematic diagram of write latch acquisition.

might remain in use if other threads hold per-group read latches
on the target bu!er without releasing them, preventing the reuse
of older bu!er frames. Consequently, the bu!er frame requirement
slightly exceeds that of bu!ers. Since B-link tree operations can hold
up to 3 write latches simultaneously, this overhead depends solely
on system concurrency. For systems con#gured with a maximum
concurrency of 512, allocating an additional 2,048 bu!er frames
during initialization (including redundancy for background work-
ers) would su"ce. The extra bu!er frames are structured as a FIFO
list. When allocating a new bu!er frame, the candidate selection
follows this order: 1) the bu!er frame whose index matches the
target bu!er’s index; 2) the #rst bu!er frame in the list. For each
candidate bu!er frame, we verify its reference count. If reference
count is not zero, it is reinserted into the bu!er frame list. Other-
wise, the bu!er frame is pinned and assigned as the new bu!er
frame for the target bu!er.

Concurrency correctness proof. We specify the conditions
under which this approach maintains correctness in concurrent
environments. First, we formally de#ne a read-write latch as a
synchronization primitive that adheres to these semantics nomatter
the underlying implementation:

S.1. When a write latch is held, neither read nor write latches
can be acquired by other threads.

S.2. When a read latch is held, additional read latches may be
acquired concurrently while write latch acquisition remains
prohibited.

S.3. A write latch grants exclusive modi#cation rights to its
holder while blocking both read and write access from
other threads until released.

S.4. A read latch prevents concurrent data modi#cation.

Regarding semantics S.1, our synchronization mechanism aligns
with conventional read-write latch implementations by verifying
write latch occupancy prior to read latch acquisition. If a write latch
is detected as held, the read latch acquisition will be blocked until
the write latch is released. Examining Figure 5, thread T1 holds a
write latch, while threads T2 and T3 attempt to acquire our read
latch and conventional read latch respectively. Both T2 and T3
must await T1’s release of the write latch, rendering them unable
to di!erentiate between the latch types during acquisition. This
demonstrates the equivalence of these two latch types regarding
semantics S.1.

5078

Regarding semantics S.2, conventional read latches block write
latch acquisition, whereas our design permits write latch acquisition
regardless of active read latches. While this behavioral discrepancy
appears concerning, our design remains provably correct under
the constraint that a thread never holds more than one latch sim-
ultaneously. Consider Figure 5: T4 holding our read latch coexists
with T5 acquiring/releasing a write latch, a scenario initially sug-
gesting inconsistency. However, comparing T6 (scheduled out after
holding conventional read latch) and T7 (waiting a few time for
write latch), both T4/T6 operate on stale data indistinguishably,
while T5/T7 perform equivalent data updates. Since this potential
inconsistency already exists in conventional implementations yet
remains functionally valid, our latch maintains equivalent correct-
ness guarantees under these boundary conditions. It’s notable that
the latch mechanism may encounter issues if the proposed con-
straint is violated. For instance, when accessing an array structure
containing a data pointer and size #eld where each component is
protected by di!erent latches, data retrieval need acquire both read
latches simultaneously. If a thread obtains an obsolete size value
exceeding the actual capacity of the data pointer’s allocated space,
an out-of-bounds memory access error may occur.

Regarding S.3, our design preserves conventional write latch
semantics without modi#cation. Regarding S.4, while the data seg-
ment remains immutable for threads holding read latches, data
segment related to corresponding bu!er may undergo modi#ca-
tions. However, as established in our S.2 analysis, this behavioral
maintains system correctness.

In conclusion, our design can e!ectively operate in concurrent
environments under the constraint that a thread never holds more
than one latch simultaneously. This constraint aligns naturally
with the B-link tree’s search mechanism. Speci#cally, during search
descending, a thread releases the read latch on the parent node
before acquiring a read latch on the child node, thus never holding
more than one read latch.

At a #rst glance, there may exist two problems: (1) search oper-
ations may read stale data and (2) the child page may be deleted
during decending. However, B-link tree adds a right-sibling link
and high key to each node, which allows search operations to locate
concurrent tree modi#cations [19] with at most one latch simul-
taneously held. For the second problem, any deleted page can be
recycled only after its deletion XID (transaction ID) becomes visible
to all active transactions under the DBMS MVCC (Multi-version
Concurrency Control) mechanism such that all search operations
that follow the downlink to the deleted page have completed.

Crucially, since our method is equivalent to conventional read-
write latches under the above given constraint, we can guarantee
the same concurrency safety for the databases that adopt the B-
link tree index, e.g., PostgreSQL and GaussDB. If no concurrency
issues are observed before adopting our method, we can guarantee
their absence afterward. Our design further e!ectively mitigates
potential concurrency-related performance degradation in B-link
tree traversal operations while maintaining correctness.

It’s notable that our per-group page latch design applies exclus-
ively to non-leaf nodes. For leaf nodes, page data may be returned
to upper operations (e.g., joins and aggs) and used beyond our
control. Upper operation code might rely on the invariance of re-
turned leaf nodes, or might not; to ensure correctness, leaf nodes

must employ conventional read-write latches without further val-
idation. Besides, this design intentionally introduces a read-write
cost trade-o!. While non-leaf nodes endure read contention across
all workloads, leaf nodes bear write pressure in write-intensive
scenarios, so applying our latch design to leaf nodes would con-
sequently degrade write-heavy performance, rendering its adoption
for leaf nodes of limited bene#t.

3.3 Scalable and e"cient page-to-bu!er
translation

To address the ine"ciencies of the traditional page-to-bu!er trans-
lation as mentioned in Section 2, we propose a scalable and highly
e"cient bu!er lookup scheme. ScaleCache adopts a vectorized hash-
ing scheme which uses a cache-friendly block-based bucket layout
and leverages vector instructions (SIMD) to accelerate key lookup.
Each block-based bucket consists of an array of key-value slots
and an array of #ngerprints that stores 8-bits key hash codes of
the slots. The slot key consists of relation ID and page ID and the
slot value stores the allocated bu!er ID for the page. If the slot
is not occupied, both key and value are set to NULL. The array
size is set to 16 so that the #ngerprints can be loaded into a SIMD
vector register to compare the search key’s #ngerprint with them at
once. The number of bu!ers is prede#ned (assuming N) when the
DBMS starts. We allocate N /2 block-based buckets and N /16 over-
$ow block-based buckets for the hash table, so that the hash table
can hold all the page-to-bu!er translation entries without the need
of considering hash table resizing and without the corresponding
synchronization cost. In case of block-based bucket over$ow, we
would keep its chained over$ow buckets in a compact way. That is
if one block bucket becomes sparse due to deletion we would move
used slots from the tail bucket to it. Once the tail over$ow bucket
becomes empty, we would remove it from the chain and put it into
the free over$ow bucket list.

ScaleCache acquires per-bucket lock for hash table inserts and
deletes while allowing optimistic hash table lookups without any
locking. The consistency correctness is guaranteed in cooperating
with our scalable and light-weight bu!er state synchronization that
would retry lookup upon con$icts. And if bu!er lookup returns
NULL due to concurrent modi#cation, the bu!er allocation proced-
ure would #nally #nd the existing entry (Algorithm 3 line 4). Such
situation is rare. The details will be described later.

Fast and optimistic bu!er lookup. As shown in Figure 2, to
access a page, the DBMS #rst looks up its bu!er from the bu!er pool
using its relation ID and page ID as key. For a search key, we #rst
compute its hash code as well as its #ngerprint, locate the bucket,
and load the bucket #ngerprints into a SIMD vector register for slot
#ltering by using SIMD instruction. For each #ngerprint matching
slot, ScaleCache performs the comparison of the search key with its
key. As the probability of 8-bit collisions is very low, there exists
only one matching slot at most time and the time complexity of our
hash table lookup is around O(1). If a key matching slot is found,
we obtain its bu!er ID. Otherwise, we jump to the next over$ow
block-based bucket if the next pointer of the current bucket is not
NULL and then repeat the above process. If no matching slot is
found, ScaleCache starts the bu!er allocation procedure to allocate
a bu!er for the page to be accessed. Our bu!er hashing scheme

5079

Algorithm 2: Lookup a page in the bu!er pool
input : relationID
input :pageID
output :bu!erID

1 while true do
2 key = relationID « SHIFT | pageID;

/* SIMD-based and lock-free hash table lookup
*/

3 slot = SIMDHashTableSearch(key);
4 bu!erID = slot->value;
5 if bu!erID == Invalid then
6 return Invalid;
7 end

/* pin the buffer */
8 PinBu!er(bu!erID);
9 if relationID == bu!erDesc[bu!erID].tag.relationID &&

pageID == bu!erDesc[bu!erID].tag.pageID then
10 break;
11 else

/* The buffer is allocated to another page,
we retry the lookup */

12 UnPinBu!er(bu!erID);
13 end
14 end
15 return bu!erID;

integrates the best of the two worlds, i.e., open-addressing and
chaining, and further leverages SIMD for acceleration.

After the bu!er ID is obtained, ScaleCache reads the CPU core
ID where the current thread runs from rseq. By using the CPU core
ID and bu!er ID, ScaleCache locates the corresponding per-group
counter slice within the two-dimensional counter slice array and
then pins the bu!er by incrementing the slice.

As we do not acquire any locks during the bu!er lookup proced-
ure, the located bu!er may be allocated to another page by other
threads concurrently (i.e., bu!er replacement). Our light-weight and
scalable bu!er state synchronization protocol would resolve such
con$icts. Algorithm 2 shows the detailed bu!er lookup pseudocode
which is lock-free and CPU cache-line contention-free. Given the
relation ID and page ID, the DBMS thread looks up the bu!er ID
from the bu!er hash table (line 2-7). If it is found, the DBMS thread
pins the bu!er (line 8) and then rechecks whether the bu!er state
tag has been changed (line 9). If so, it means this bu!er has been
allocated to another page concurrently, the DBMS thread should
unpin the bu!er and then retry the whole bu!er lookup procedure
(line 11-13). Otherwise, the DBMS thread successfully obtains the
bu!er for page access (line 10).

Bu!er allocation and replacement. Algorithm 3 shows the
bu!er allocation pseudocode. To allocate a free and clean bu!er
to a page, the DBMS thread #rst gets a bu!er from the candidate
bu!er list which is maintained by background threads (line 2) and
pins the bu!er (line 3). Then the DBMS thread tries to insert the
new page-to-bu!er translation entry into the hash table (line 4). If
insertion fails, it means this page has already been allocated a free

Algorithm 3: Allocate a free bu!er to a page
input : relationID, pageID
output :boolean, &res

1 key = relationID « SHIFT | pageID;
2 while bu!erID = GetNextVictimBu!er() do
3 PinBu!er(bu!erID);

/* Increment the buffer counter. */
4 if SIMDHashTableInsert(key, bu!erID, &existingBu!erID)

== false then
/* Another thread has allocated a free

buffer to this page */
5 UnPinBu!er(bu!erID);
6 return false;
7 end
8 LockBu!erState(bu!erID);
9 if Sum(perGroupCounters, bu!erID) == 1 and

bu!erDesc[bu!erID].dirtybit == 0 then
/* assign this free and clean buffer to

the page by modifying buffer desc */
10 bu!erDesc[bu!erID].tag.relationID = relationID;
11 bu!erDesc[bu!erID].tag.pageID = pageID;
12 UnLockBu!erState(bu!erID);
13 break;
14 else

/* this buffer cannot be allocated, retry
another candidate buffer */

15 UnLockBu!erState(bu!erID);
16 SIMDHashTableDelete(key);
17 UnPinBu!er(bu!erID);
18 end
19 end
20 *res = bu!erID;
21 return true;

bu!er by another thread concurrently, and the allocation thread
unpins the bu!er and returns false to notify the caller to look up the
allocated bu!er (line 5-6). If insertion succeeds, the DBMS thread
locks the candidate bu!er state, calculates the sum of its per-group
counter slices and checks whether it is equal to one (meaning it
is only pinned by the current thread) and whether it does cache a
clean page (line 9). If so, ScaleCache allocates this bu!er to the target
page by #lling the target page ID and relation ID into this bu!er’s
state tag (line 10-11). Otherwise, this bu!er cannot be allocated and
the DBMS thread should undo changes and retry other candidate
bu!ers (line 15-17).

In the end, ScaleCache unlocks the bu!er state (line 12). It is
worth noting that ScaleCache would acquire corresponding per-
bucket locks to protect the hash table against concurrent inserts
and deletes and the locking detail is beyond our focus and ignored
from Algorithm 3 for simplicity.

Concurrency correctness proof. The key to the concurrency
correctness of ScaleCache is that the light-weight bu!er state lock-
ing serializes concurrent lookup and replacement on the same bu!er

5080

as shown in Figure 4. We now formally prove the correctness. Given
one page P1 and its allocated bu!er B1, we consider such concur-
rency con$ict situation where one thread (T1) is looking up which
bu!er caches P1 (i.e., B1) while another concurrent thread T2 tries
to allocate B1 to another page P2. After T1 pins B1 successfully,
only two situations may exist: pinning e!ect by T1 (1) has been
seen by T2 or (2) has not been seen by T2 when calculating the
sum of all the slices. For the #rst situation, T2 cannot allocate B1 to
P2 as the sum of the per-group counter would be greater than one.
For the second situation, T1 would pin the bu!er B1 successfully
only after T2 has unlocked the bu!er state. Hence, upon the bu!er
B1 being pinned by T1 successfully, T2 has already changed B1’s
bu!er state tag to record P2 (Algorithm 3:line 10-11). As a result,
T1 would then fail in passing the rechecking of the pinned bu!er’s
state tag (Algorithm 2:line 9) and retry the bu!er lookup procedure
that would #nally return NULL and trigger the bu!er allocation
procedure for P1. Hence, our protocol can guarantee correctness of
ScaleCache no matter which con$ict situation occurs.

4 EVALUATION
We have integrated ScaleCache in Huawei GaussDB, a commercial
high-performance DBMS production. In this section, we experi-
mentally evaluate the performance of ScaleCache against that of the
baseline (GaussDB with the traditional bu!er manager) on the clas-
sic B-link tree lookup and complex DiskANN vector index search
workloads, then quantify the performance contributions of each
of our proposed techniques in this paper. Later we evaluate Sca-
leCache against the baseline on out-of-memory workloads. Lastly,
we evaluate ScaleCache as CPU scaling and introduce a customer
workload.

4.1 Experimental Setup
4.1.1 Hardware. The experiments are conducted on a machine
equipped with two Huawei Kunpeng CPUs, each of which has 64
cores, and running the EulerOS operating system. Each core has
a 128KB of L1 cache and 512KB of L2 cache, with every 32 cores
sharing a 64MB L3 cache. The cache-line size is 64 bytes on this
platform. The underlying physical machine is equipped with 2TB
of DDR4 DRAM and four SSDs, each with a capacity of 7.3TB. If not
explicitly mentioned, the shared bu!er size of the database is set to
150 GB. The database client and server are deployed on di!erent
machines which are connected through a 25 Gbit/s network.

4.1.2 Baseline. Wehave integrated ScaleCache intoHuawei GaussDB,
a commercial high-performance and advanced DBMS. We choose
Huawei GaussDB without ScaleCache as our baseline (referred as
baseline in the following section) for fair comparison. Each group
contains 4 consecutive CPU cores that share the same L3 cache for
our per-group counting in our experiments.

To study the e!ectiveness of each of the techniques proposed in
ScaleCache, we evaluate the following variants of ScaleCache:

• + per-group page latch: it adds the hybrid per-group page
latching technique for the B-link tree index to the baseline.

• + SIMD hash: it further applies our optimistic, CPU cache-
friendly and SIMD-accelerated hashing scheme for page-to-
bu!er translation.

• ScaleCache: it is a full implementation of ScaleCache which
contains all our proposed techniques.

• Ideal: for the DiskANN vector indexing, we implement a
page array in ScaleCache as a substitute for the bu!er hash
table to eliminate the hashing cost, which, we believe, can
represent the theoretically optimal performance. As the
page array approach needs to consume a large amount of
memory, it only serves as a theoretical optimal upper bound
for comparison in our paper.

It is worth noting that we have not yet applied per-group page
latching to the DiskANN vector index and such optimization for
vector index is expected to further improve the vector search per-
formance signi#cantly (as seen in Figure 1) and we leave this as
our future work.

4.1.3 Benchmark. It is important to note that bu!er pool and latch
bottlenecks do not manifest across all workloads. Modern DBMS,
as complex systems, may experience performance constraints in
I/O, network, or other components. Our approach demonstrates
performance improvements speci#cally in scenarios where bu!er
pool e"ciency is critical, including: 1) multi-point random lookups
(e.g., sysbench select in queries), 2) nested-loop join operations (e.g.,
TPC-C stock-level transaction queries, some queries in TPC-H), and
3) vector search workloads (e.g., DiskANN-based searches). While
no performance gains are observed in comprehensive benchmarks
like TPC-C where bottlenecks lie elsewhere (e.g., transaction con-
currency or disk I/O saturation), our method maintains parity with
baseline performance. These special scenario is also important as it
appears in some real production task. These targeted optimizations
address practical production needs where bu!er pool contention
directly impacts system responsiveness.

Multi-random point lookup. We use sysbench to generate
the multi-random point lookup workload that performs 10 random
point lookup at one time by using select in queries, eliminating
multiple network roundtrip between the client and the DBMS and
thus e!ectively stressing the indexing and the bu!er pool layer.

TPC-C.We use TPC-C to generate typical and complex OLTP
workloads using BenchmarkSQL-5.0 and set the number of ware-
houses to 1000. The default con#guration of TPC-C is a write-heavy
workload (around 90% write) where the throughput of GaussDB
is limited by other factors such as the write-ahead logging while
index search only occupies around 15% of the overall time. Hence,
we also use TPC-C to generate read-write and read-only transac-
tional workloads where the ratio of the new-order write transaction
and the stock-level read-only transaction is set to three levels in
our experiments: “20:80” , “50:50” and “0:100” separately. Notably,
the "0:100" con#guration resembles the characteristics of one read-
mostly production workload generated by one of our large #nancial
bank customers, which executes nested-loop joins on indexed tables
and involves excessive B-link tree index lookups like the TPC-C
stock-level transaction.

TPC-H. We use the BenchBase [5, 11] to generate concurrent
TPC-H [36] queries to the DBMS by using 512 threads. Under de-
fault con#gurations (SF is set to 1), TPC-H exhibits observable
performance improvements in bu!er pool-bound queries due to
its deterministic execution pattern where each query runs exactly

5081

once per test iteration. The non-uniform query cost time distribu-
tion (with speci#c queries dominating execution time) allows such
bottlenecks to directly manifest as measurable throughput gains
when bu!er pool contention is alleviated, requiring no parameter
tuning to validate the optimization impact.

DiskANN vector search. We also evaluate the performance of
ScaleCache against the baseline on the complex GaussDB DiskANN
vector index with the SIFT1M dataset. DiskANN [35] is a graph-
based vector index, which may visit many pages for each query,
e!ectively stressing the bu!er manager, i.e., page-to-bu!er transla-
tion and bu!er pinning/unpinning.

4.2 Multi-random point lookup
We #rst use sysbench to generate multi-random point lookup of
B-link tree workload with varying number of client threads. The
dataset size is set to 118 GB. As shown in Figure 7, ScaleCache ex-
hibits near-linear scalability on our 128-core server and improves
the throughput by up to 1.6X compared to the baseline. When
the number of client threads exceeds 100, we can observe that the
throughput of the baseline remains almost unchanged. The through-
put of ScaleCache scales linearly to 128 cores and still increases
greatly until the number of concurrency reaches around 300, which
attributes to our scalable, highly e"cient and practical bu!er pool
design while the traditional bu!er manager su!ers from scaling
bottlenecks and poor CPU cache locality.

In Figure 7, we observe that each of all the optimizations in
this paper (hybrid per-group page latching, SIMD hashing, and
per-group counting) contributes to the performance improvement
signi#cantly. Compared to the baseline, the per-group page latching
technique improves the throughput by 60%. When combined with
our proposed SIMD hashing for page-to-bu!er translation, Scale-
Cache achieves a 15% improvement in addition. Finally, after the
per-group reference counting has eliminated any CPU-cache line
synchronization within the bu!er pool on many-core hardware,
our full implementation achieves a 160% improvement in total. This
breakdown result shows that all of our proposed techniques in this

0 100 200 300 400 500
Concurrency

0

2

4

6

8

Q
PS

1e5 OLTP - select_random_points

MySQL 9.3
PostgreSQL 17.5

Baseline
+ per-group latch

+ SIMD hash
ScaleCache

Figure 7: Throughput (Queries per second) of multi-random
point lookup.

paper can signi#cantly improve the performance of parallel B-link
tree lookups.

Compared to MySQL 9.3 and PostgreSQL 17.5, MySQL’s use of
B+ trees (vs. PostgreSQL/GaussDB’s B-link trees) results in worse
concurrency scaling—performance plateaus earlier as concurrency
increases. While PostgreSQL 17.5 initially outperforms GaussDB
due to optimized B-tree index scans for IN(...) lists, which is intro-
duced in PostgreSQL 17.0, GaussDB signi#cantly surpasses Postgr-
eSQL 17.5 when leveraging ScaleCache. Notably, ScaleCache could
similarly enhance PostgreSQL’s performance because of the same
underlying B-link tree.

4.3 TPC-C
We then evaluate the end-to-end performance of the baseline and
ScaleCache on TPC-C with 580 client threads. Figure 8 shows the
measured tpmTOTAL (total transactions per minute) under di!er-
ent con#gurations.

As shown in Figure 8, ScaleCache outperforms the baseline by
333% under the write-read "0:100" con#guration. Under the "20:80"
and "50:50" of write-read ratio con#gurations, ScaleCache improves
the throughput by 136% and 18%, respectively. With the default
con#guration of TPC-C that is write-heavy, we observe that Sca-
leCache achieves a →3% improvement compared to the baseline as
the index search time only occupies around 15% of the overall time.
We can see that our performance improvement varies with the
write-read ratio. While the primary focus of ScaleCache is on optim-
izing index query performance, the optimizations can still bene#t
write-heavy scenarios. Figure 8 also demonstrates the performance
contributions of each of the optimizations in this paper.

Compared to MySQL 9.3 and PostgreSQL 17.5, GaussDB imple-
ments extensive TPCC-speci#c optimizations (omitted here as non-
core to this paper), resulting in fully outperforming both in TPCC
benchmarks. Under our high-concurrency TPCC testing, MySQL ex-
hibits inferior performance to PostgreSQL and GaussDB, attributing
to the same reason illustrated before. Crucially, we observe a consist-
ent pattern: without ScaleCache, higher stock-level weight correlates
with TPS degradation across all databases. ScaleCache reverses this
trend, demonstrating its exceptional capability in nested-loop join
scenarios.

default 50:50 20:80 0:100
0

1

2

3

M
ea

su
re

d
tp

m
TO

TA
L

1e6

MySQL 9.3
PostgreSQL 17.5
Baseline
+ per-group latch
+ SIMD hash
ScaleCache

Figure 8: TPC-C performance under di!erent con#gurations.

5082

4.4 TPC-H
Figure 9 demonstrates the TPC-H throughput comparison between
ScaleCache and the baseline. As previously noted, speci#c quer-
ies among the 22 TPC-H queries (particularly those containing
nested-loop joins on indexed tables, analogous to TPC-C’s stock-
level transaction pattern) exhibit prolonged execution times. This
latency concentration enables ScaleCache to achieve a 16% overall
throughput improvement through bu!er pool optimization.

0

1000

Q
ue

ri
es

 P
er

 M
in

ut
e

Baseline
ScaleCache

Figure 9: Throughput of TPC-H on ScaleCache compared to
the baseline

4.5 DiskANN
In addition to the B-link tree index, we also evaluate the DiskANN
vector index performance of ScaleCache in comparison to the baseline
on the SIFT1M dataset. Figure 10 shows the latency of parallel in-
dex construction using 64 threads, and the QPS throughput as well
as latency of vector search under 128 client threads. Speci#cally,
ScaleCache reduces the time taken to construct vector index by 18%.
In terms of vector search, ScaleCache improves the throughput by
46% and reduces latency by 33% compared to the baseline, nearly
reaching the theoretical upper bound indicated by the "Ideal". Sca-
leCache accelerates vector search without any modi#cation to the
GaussDB DiskANN vector index, demonstrating that ScaleCache
can speed up complex index searching transparently.

4.6 Per-core vs Per-group counting
As mentioned in Section 3, per-core counting is a special case
that allocates a counter slice for each core. In this section, we
compare two con#gurations of ScaleCache: ScaleCache (per-core
counting) and ScaleCache (per-group counting). Figure 13 presents
the performance comparison of ScaleCache (per-core counting)

create index
0

100

200

co
st

 t
im

e(
s)

search index
0

5000

Q
PS

search index
0

10

20

la
te

nc
y(

m
s)

Baseline
+ SIMD hash

ScaleCache
Ideal

Figure 10: DiskANN vector index performance on SIFT1M,
including the cost time of index construction, the QPS and
latency of vector search.

and ScaleCache (per-group counting) in previous experiments. We
observe that the performance gap is negligible, as cores within
the same group share the same L3 cache, which helps reduce the
cache-line synchronization cost of pinning/unpinning. Additionally,
the communication latency between adjacent cores is very low for
every set of four consecutive cores, as reported in [8].

As shown in Figure 13(a), the randommulti-point lookup through-
put using per-group counting reaches 96%-100% of that achieved
with per-core counting. Both per-group and per-core counting ex-
hibit near-linear scalability. Evaluation of TPC-C shows that the
performance gap between ScaleCache (per-core counting) and Sca-
leCache (per-group counting) is less than 3% across di!erent con-
#gurations, as shown in Figure 13(b). The performance di!erence
is also minor in the DiskANN vector index experiments as shown
in Figure 13(c). As discussed in Section 3, per-group counting (with
4 cores per group) reduces memory consumption to one-quarter of
that required by per-core counting, making it being the same with
the memory consumption of traditional centralized bu!er counting
while largely improving the index query performance.

4.7 Out-of-Memory Evaluation
It is important for a disk-based DBMS to process out-of-memory
workloads gracefully and our optimistic protocol may retry bu!er
lookup procedure upon con$icts with bu!er replacement. Moreover,
our custom latch incurs higher acquisition costs for write opera-
tions, which occur more frequently during intensive bu!er eviction
scenarios. Therefore, we must demonstrate that our approach main-
tains performance stability under such conditions. We evaluate
the performance of ScaleCache compared to the baseline when
the dataset size exceeds the shared bu!er capacity signi#cantly,
which triggers frequent page eviction and bu!er replacement. In

0 100 200 300 400 500
0

2

4

Q
PS

1e5

Baseline
ScaleCache

Figure 11: Throughput of ScaleCache compared to the
baseline on the out-of-memory multi-random point lookup
workload

default 50:50 20:80 0:100
0

2

M
ea

su
re

d
tp

m
TO

TA
L

1e6

Baseline
ScaleCache

Figure 12: Throughput of ScaleCache compared to the
baseline on the out-of-memory TPC-C workload

5083

0 200 400
0

2

4

6

8

Q
PS

1e5 Concurrency

ScaleCache
(per-core)
ScaleCache
(per-group)

(a) Multi-random point lookup throughput

default 50:50 20:80 0:100
0

1

2

3

M
ea

su
re

d
tp

m
TO

TA
L

1e6

ScaleCache
(per-core)
ScaleCache
(per-group)

(b) TPC-C throughput when varyingwrite-read ratio

create index
0

50

100

150

cost time(s)

search index
0

2500

5000

7500

ops

search index
0

5

10

15
latency(ms)

ScaleCache
(per-core)

ScaleCache
(per-group)

(c) DiskANN index performance

Figure 13: Performance evaluation of per-group counting compared to per-core counting

the following experiments, we set the shared bu!er size to 8 GB.
To enforce page eviction, the dataset size is set to 280 GB for the
multi-random point lookup workload. Figure 11 shows that that
ScaleCache can also outperform the baseline by 74%. The percent-
age of improvement is smaller because I/O becomes a bottleneck
when page eviction and load occur frequently. We observe that
nearly 30% of CPU cycles are spent waiting for data to be read from
disk, which reduces the performance gap between the baseline and
ScaleCache. Like the scenario without page eviction, ScaleCache
demonstrates better scalability on many-core hardware.

For TPC-C, the dataset size is around 232 GB. As shown in Fig-
ure 12, the throughput of ScaleCache consistently outperforms the
baseline in the out-of-memory TPC-C workloads. Especially, Scale-
Cache achieves a 3.9X performance improvement compared to the
baseline under the con#guration ’0:100’.

4.8 CPU Scaling Evaluation
We tested performance across di!erent CPU socket con#gurations,
denoting 2-socket (128-core) as 2P and 4-socket (256-core) as 4P.
As shown in Figure 14, GaussDB exhibits performance degradation
as core count increases, attributing to rising inter-core communica-
tion overhead. Conversely, ScaleCache achieves near-linear scaling
on 4P—performance rises proportionally with concurrency up to
256 concurrency (matching 4P’s core count). This demonstrates
ScaleCache ’s superior linear scalability.

4.9 Customer Workload Evaluation
We also evaluated the performance improvement brought by Scale-
Cache on a realistic read-only workload that is produced by one of
our customers, a large insurance company in China. The customer
deployed 9 clusters of GaussDB with a total of 120 TB data. The
read-only workload consists of SQLs that query insurance user
information, car insurance orders and car insurance claims process
progress infromation,etc. In the database perspective, the workload
performs many multi-point index lookups with aggregations and a
few joins, which stresses the bu!er pool signi#cantly as observed in
the perf $ame graph. ScaleCache improves the workload through-
put from 13.5 w tps to 18 w tps on the Huawei Kunpeng server with

0 100 200 300 400 500
Concurrency

0.0

0.5

1.0

Q
PS

1e6 OLTP - select_random_points

Baseline-2P
ScaleCache-2P

Baseline-4P
ScaleCache-4P

Figure 14: Throughput (Queries per second) of multi-random
point lookup with di!erent CPU sockets.

four processors (256 cores) compared to the previous version of
GaussDB, better satisfying the high throughput requirement.

5 CONCLUSION
The bu!er management serves as the cornerstone of modern on-
disk database management systems (DBMS), which however su!ers
from severe performance bottlenecks in index query execution due
to use of centralized bu!er reference counting , lock-protected and
chained hashing for page-to-bu!er translation. In this paper, we
present ScaleCache, a scalable, highly e"cient and production-grade
bu!er management system on modern many-core hardware, which
has been implemented in GaussDB. ScaleCache proposes three ef-
#cient techniques, namely per-group counting, per-group latch
based on copy-on-write, and optimistic, CPU-cache friendly and
SIMD accelerated hashing, to eliminate most cache-line contention
and to improve CPU cache locality. Experimental results show that
ScaleCache exhibits near-linear scalability and can improve index
query throughput of both classic B-link tree index and complex
graph-based vector index signi#cantly.

5084

REFERENCES
[1] Maximilian Böther, Lawrence Benson, Ana Klimovic, and Tilmann Rabl. 2023.

Analyzing Vectorized Hash Tables Across CPU Architectures. Proc. VLDB Endow.
16, 11 (2023), 2755–2768.

[2] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Tappan Morris, and Nickolai Zeldovich. 2010. An
Analysis of Linux Scalability to Many Cores. In 9th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver,
BC, Canada, Proceedings. 1–16.

[3] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. [n.d.].
Cache-Conscious Concurrency Control of Main-Memory Indexes on Shared-
Memory Multiprocessor Systems. In VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy. 181–190.

[4] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2013. RadixVM:
scalable address spaces for multithreaded applications. In Eighth Eurosys Confer-
ence 2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013. 211–224.

[5] CMU. [n.d.]. BenchBase (formerly OLTPBench) is a Multi-DBMS SQL Bench-
marking Framework via JDBC. https://github.com/cmu-db/benchbase

[6] Jonathan Corbet. 2006. The search for fast, scalable counters. https://lwn.net/
Articles/170003/

[7] Jonathan Corbet. 2013. Per-CPU reference counts. https://lwn.net/Articles/
557478/

[8] Rafael Lourenco de Lima Chehab, Antonio Paolillo, Diogo Behrens, Ming Fu,
HermannHärtig, andHaibo Chen. 2021. CLoF: A Compositional Lock Framework
for Multi-level NUMA Systems. In SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-29,
2021. ACM, 851–865.

[9] Justin A. DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stan-
ley B. Zdonik. 2013. Anti-Caching: A New Approach to Database Management
System Architecture. Proc. VLDB Endow. 6, 14 (2013), 1942–1953.

[10] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2013, New York, NY, USA,
June 22-27, 2013. ACM, 1243–1254.

[11] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. PVLDB 7, 4 (2013), 277–288.

[12] Ahmed Eldawy, Justin J. Levandoski, and Per-Åke Larson. 2014. Trekking
Through Siberia: Managing Cold Data in a Memory-Optimized Database. Proc.
VLDB Endow. 7, 11 (2014), 931–942.

[13] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi A. Kuno, Joseph A. Tucek,
Mark Lillibridge, and Alistair C. Veitch. 2014. In-Memory Performance for Big
Data. Proc. VLDB Endow. 8, 1 (2014), 37–48.

[14] Paul Groß, Daniel ten Wolde, and Peter Boncz. 2025. Adaptive Factorization
Using Linear-Chained Hash Tables. In CIDR 2025.

[15] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
2008. OLTP through the looking glass, and what we found there. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, Vancouver, BC, Canada, June 10-12, 2008. ACM, 981–992.

[16] HUAWEI. [n.d.]. Kunpeng 920-6426 - HiSilicon. https://en.wikichip.org/wiki/
hisilicon/kunpeng/920-6426

[17] Seokyong Jung, Jong-Bin Kim, Minsoo Ryu, Sooyong Kang, and Hyungsoo Jung.
2019. Pay Migration Tax to Homeland: Anchor-based Scalable Reference Count-
ing for Multicores. In 17th USENIX Conference on File and Storage Technologies,
FAST 2019, Boston, MA, February 25-28, 2019. USENIX Association, 79–91.

[18] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAPmain
memory database system based on virtual memory snapshots. In Proceedings
of the 27th International Conference on Data Engineering, ICDE 2011, April 11-16,
2011, Hannover, Germany. IEEE Computer Society, 195–206.

[19] Philip L. Lehman and S. Bing Yao. 1981. E"cient Locking for Concurrent Opera-
tions on B-Trees. ACM Trans. Database Syst. 6, 4 (1981), 650–670.

[20] Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Christian
Dietrich. 2023. Virtual-Memory Assisted Bu!er Management. Proc. ACM Manag.
Data 1, 1 (2023), 7:1–7:25.

[21] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In 34th IEEE

International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19,
2018. 185–196.

[22] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and E"cient General-Purpose Synchronization Method.
IEEE Data Eng. Bull. 42, 1 (2019), 73–84.

[23] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016.
The ART of practical synchronization. In Proceedings of the 12th International
Workshop on Data Management on New Hardware, DaMoN 2016, San Francisco,
CA, USA, June 27, 2016. ACM, 3:1–3:8.

[24] Paul McKenney. 2019. The RCU API, 2019 edition. https://lwn.net/Articles/
777036/

[25] Paul E. McKenney, Joel Fernandes, Silas Boyd-Wickizer, and Jonathan Walpole.
2020. RCU Usage In the Linux Kernel: Eighteen Years Later. ACM SIGOPS Oper.
Syst. Rev. 54, 1 (2020), 47–63.

[26] Anastasios Papagiannis, Manolis Marazakis, and Angelos Bilas. 2021. Memory-
mapped I/O on steroids. In EuroSys ’21: Sixteenth European Conference on Com-
puter Systems, Online Event, United Kingdom, April 26-28, 2021. ACM, 277–293.

[27] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos
Bilas. 2016. Tucana: Design and Implementation of a Fast and E"cient Scale-up
Key-value Store. In Proceedings of the 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016. USENIX Association, 537–
550.

[28] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos
Bilas. 2018. An E"cient Memory-Mapped Key-Value Store for Flash Storage. In
Proceedings of the ACM Symposium on Cloud Computing, SoCC 2018, Carlsbad,
CA, USA, October 11-13, 2018. ACM, 490–502.

[29] Anastasios Papagiannis, Giorgos Saloustros, Giorgos Xanthakis, Giorgos
Kalaentzis, Pilar González-Férez, and Angelos Bilas. 2021. Kreon: An E"cient
Memory-Mapped Key-Value Store for Flash Storage. ACM Trans. Storage 17, 1
(2021), 7:1–7:32.

[30] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Manolis Maraza-
kis, and Angelos Bilas. 2020. Optimizing Memory-mapped I/O for Fast Storage
Devices. In Proceedings of the 2020 USENIX Annual Technical Conference, USENIX
ATC 2020, July 15-17, 2020. USENIX Association, 813–827.

[31] Andrew Pavlo. 2014. On Scalable Transaction Execution in Partitioned Main
Memory Database Management Systems. Ph.D. Dissertation. Brown University,
USA.

[32] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krish-
namurthy, Thomas E. Anderson, and Timothy Roscoe. 2014. Arrakis: The Op-
erating System is the Control Plane. In 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’14, Broom"eld, CO, USA, October 6-8,
2014. USENIX Association, 1–16.

[33] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,
and Christof Bornhövd. 2012. E"cient transaction processing in SAP HANA
database: the end of a column store myth. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ,
USA, May 20-24, 2012. ACM, 731–742.

[34] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Schedul-
ing with Exception-Less System Calls. In 9th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC,
Canada, Proceedings. USENIX Association, 33–46.

[35] Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Krish-
naswamy, and Harsha Simhadri. 2019. DiskANN: Fast Accurate Billion-point
Nearest Neighbor Search on a Single Node. In NeurIPS 2019.

[36] TPCH. [n.d.]. TPC-H is a Decision Support Benchmark. http://www.tpc.org/
tpch/

[37] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
November 3-6, 2013. ACM, 18–32.

[38] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast
Databases with Fast Durability and Recovery Through Multicore Parallelism. In
11th USENIX Symposium on Operating Systems Design and Implementation, OSDI
’14, Broom"eld, CO, USA, October 6-8, 2014. USENIX Association, 465–477.

[39] Zhe Zhou, Yanxiang Bi, Junpeng Wan, Yangfan Zhou, and Zhou Li. 2023. User-
space Bypass: Accelerating Syscall-intensive Applications. In 17th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2023, Boston, MA,
USA, July 10-12, 2023. USENIX Association, 33–49.

5085

https://github.com/cmu-db/benchbase
https://lwn.net/Articles/170003/
https://lwn.net/Articles/170003/
https://lwn.net/Articles/557478/
https://lwn.net/Articles/557478/
https://en.wikichip.org/wiki/hisilicon/kunpeng/920-6426
https://en.wikichip.org/wiki/hisilicon/kunpeng/920-6426
https://lwn.net/Articles/777036/
https://lwn.net/Articles/777036/
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Background
	2.1 The bottlenecks of traditional buffer management
	2.2 Related Work

	3 Architecture and Design of ScaleCache
	3.1 Per-group buffer reference counting
	3.2 Per-group page latch based on copy-on-write
	3.3 Scalable and efficient page-to-buffer translation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Multi-random point lookup
	4.3 TPC-C
	4.4 TPC-H
	4.5 DiskANN
	4.6 Per-core vs Per-group counting
	4.7 Out-of-Memory Evaluation
	4.8 CPU Scaling Evaluation
	4.9 Customer Workload Evaluation

	5 Conclusion
	References

