
Design and Modular Verification of
Distributed Transactions in MongoDB

William Schultz
MongoDB Research
New York, New York

william.schultz@mongodb.com

Murat Demirbas
MongoDB Research
New York, New York

murat.demirbas@mongodb.com

ABSTRACT

MongoDB’s distributed multi-document transactions protocol was

designed and developed incrementally, building on WiredTiger, an

existing single node multi-version storage engine that provided

snapshot isolated key-value storage. This layered approach required

meticulous management of concurrency control and timestamping

mechanisms across system layers, complicated by intricate compo-

nent interactions and a large evolving codebase. In this paper, we

describe our experience using modular formal speci�cation tech-

niques to address this challenge. Our approach formally speci�es

the distributed transactions protocol and its interface with the un-

derlying storage layer, allowing us to verify high level protocol

properties while also formalizing the contract between these two

components. This modular approach also enables an automated,

model-based veri�cation technique for testing conformance of the

WiredTiger storage implementation to this interface. We use an ex-

plicit state model checker to automatically generate test cases from

our storage model, which are then executed against the storage im-

plementation, ensuring the implementation matches the interface

relied upon by the transactions protocol. Our work highlights the

value of formal modeling not only for verifying high-level protocol

correctness but also for precisely de�ning and validating interac-

tions with lower-level system components in an automated way.

Beyond verifying key isolation properties, our speci�cation also en-

abled us to formally analyze permissiveness–how well the protocol

maximizes concurrency within a given isolation level–a property

not previously examined.

PVLDB Reference Format:

William Schultz and Murat Demirbas. Design and Modular Veri�cation of

Distributed Transactions in MongoDB. PVLDB, 18(12): 5045 - 5058, 2025.

doi:10.14778/3750601.3750626

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/mongodb-labs/vldb25-dist-txns.

1 INTRODUCTION

Distributed databases are now standard in modern cloud storage

systems and applications [26, 49, 55, 63]. They distribute data across

multiple machines, and ensure high availability, scalability, and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750626

durability. To support traditional ACID semantics, these systems

provide the ability to run distributed transactions at various isola-

tion levels.

Although transaction isolation has been extensively-studied

from both theoretical and practical perspectives [3, 6, 22], transac-

tion implementations still vary in their semantics and in the validity

of their correctness guarantees [27, 29, 41]. In distributed databases,

these complexities are compounded by concurrency, fault tolerance,

and other distributed systems concerns [10, 14, 48, 49]. Thus, it has

become increasingly valuable to formally characterize and verify

the semantics of these protocols for both designers and users of

systems relying on these protocols.

MongoDB is a popular document-oriented distributed database

that supports fault tolerance via replication and horizontal scala-

bility by sharding [44]. MongoDB evolved its support for atomic,

multi-document transactions over several years. At the single node

level, it utilizes the WiredTiger storage engine, which provides mul-

tiversion, snapshot-isolated transactional key-value storage. This

subsequently served as the foundation for initial development of

transactions within a single replica set. Distributed transactions

then extended this model across shards, requiring synchronization

between multiple replica set shards and storage engine instances.

This incremental, modular design made the interaction and man-

agement of concurrency control mechanisms between layers of the

system complicated but crucial to overall protocol correctness.

In this paper, we describe our experience using formal, modular

speci�cation techniques to formalize and verify the design of Mon-

goDB’s distributed transaction protocol. We developed a formal

speci�cation of the protocol in TLA+ [35] and a framework for

validating its isolation guarantees, allowing us to gain con�dence

in the protocol as well as its interaction with underlying system

components. We developed our speci�cation using a modular tech-

nique, which allowed us to formalize the interactions between the

distributed transactions protocol and the storage layer at each shard.

A key challenge was managing transaction timestamps and concur-

rency control across system layers, speci�cally for the complicated

yet critical interactions between the protocol and storage layer. To

address this, we de�ned an independent abstract model of the stor-

age layer that operates in synchronous composition with the overall

distributed transactions protocol speci�cation. This provides a pre-

cise, formal characterization of the storage layer interface relied

upon by the distributed transactions protocol.

Leveraging our formal model of the storage layer, we also applied

a model-based veri�cation [54] technique to verify conformance

between the storage implementation and our abstract storage layer

model. We use the TLC explicit-state model checker [59] to generate

a set of test case behaviors that exhaustively cover reachable states

5045

https://doi.org/10.14778/3750601.3750626
https://github.com/mongodb-labs/vldb25-dist-txns
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750626
https://www.acm.org/publications/policies/artifact-review-and-badging-current

of our model, verifying conformance of the storage engine imple-

mentation to these behaviors of the abstract model. Our model-

based testing approach demonstrates the bene�ts of a compact

abstract model in providing diverse, formal characterization of the

API without the need for a large corpus of manually written test

cases.

Beyond correctness, our transactions protocol speci�cation also

enabled us to formally analyze permissiveness [23], the extent to

which a protocol maximizes concurrency within a given isolation

level. This analysis revealed opportunities to improve concurrency

in both the protocol design and implementation. More broadly, this

illustrates how formal speci�cations can not only verify correctness,

but also guide optimizations to enhance system performance.

Our experience suggests that formal methods are essential for

verifying transactional correctness, given the inherent complexity

of distributed transactions. Yet they are rarely employed in database

system development, where correctness often relies on informal

intuition and testing. Our formal speci�cation of MongoDB’s trans-

actions protocol clari�ed the contracts between system components

(e.g., concurrency control, storage, metadata management) by ex-

plicitly de�ning their invariants. This not only strengthened con�-

dence in correctness and isolation guarantees but also simpli�ed

design, development, and testing.

We make our TLA+ speci�cations and test-case generation code

available at [46]. Our repository also provides a link to a web-based

tool [43] for interactive exploration of the behaviors of our TLA+

transactions speci�cations.

To summarize, we make the following contributions:

• We present the design of MongoDB’s distributed, multi-

document transactions protocol and its various isolation

guarantees.

• We present our modular technique for formally specifying

the distributed transactions protocol in TLA+, and present

results from model checking its isolation and permissive-

ness properties.

• We present our technique for using modular speci�cation

and model-based test-case generation to automatically ver-

ify conformance between the storage layer speci�cation (as

relied on by distributed transactions) and implementation.

2 BACKGROUND

MongoDB is a document-oriented database that represents data

as JSON-like objects, stored in a binary format called BSON. A

MongoDB database consists of collections, where a collection is

a set of documents, and each document is uniquely identi�ed by

a primary key. MongoDB utilizes the WiredTiger storage engine

[56], which is a transactional key-value store that manages access

to local durable storage. While MongoDB provides an expressive

query language for searching and manipulating documents in a

collection, in this paper we primarily treat documents as single

objects accessed through their unique keys.

Figure 1 illustrates the architecture of a distributed MongoDB

cluster. To provide fault tolerance, MongoDB employs replica sets,

which are groups of replicated database nodes running a Raft-like

consensus protocol [63]. In each replica set, a single primary server

�;84=C1 �;84=C2

Router 1 . . . Router n

Shard 1 (replica set)

Primary

KV Storage

Secondary

. . .

Shard = (replica set)

Primary

KV Storage

Secondary

Figure 1: General architecture of a sharded cluster in Mon-

goDB. Data is partitioned horizontally into shards, each of

which consists of a replica set, which provides fault tolerance

via a Raft-based replication group. Clients can connect to

any router, and routers coordinate transaction operations

across multiple shards.

handles all write operations and records them in the oplog, a sequen-

tial log of operations with monotonically increasing timestamps

(optime). Secondary servers replicate the primary’s oplog operations

and apply them locally to maintain their database state. Secondary

servers may optionally process reads from clients, but only pri-

mary servers can process writes. Each replica set node interfaces

with its local WiredTiger storage engine [56], which provides local

snapshot isolated key-value storage.

For horizontal scalability, MongoDB supports sharding, which

partitions a database across multiple shards, each running as a fault-

tolerant replica set. In a sharded cluster, designated router processes

serve as proxies to handle incoming operations from clients and

route these to the appropriate shards.

For all database operations, MongoDB also provides the ability

for clients to specify the durability and consistency guarantees

of those operations, read concern and write concern. For standard

operations in a replica set, these can determine both durability

and recency guarantees of the data read or written, and provide a

wide variety of tunable consistency levels [44]. For example, client

writes run at majority write concern ensure that upon a successful

response to the client, these writes will be committed (i.e. durable)

in the Raft-based replica set consensus group.

Cluster-Wide Logical Timestamps. MongoDB sharded clusters im-

plement their own variant of hybrid logical clocks [33, 53], which

serve as a timestamping mechanism for causally consistent opera-

tions. Each replica set shard of a cluster maintains a local, mono-

tonic timestamp, which aligns with the optime used by the oplog.

This timestamp is advanced on new writes to the replica set, and

is propagated along messages between nodes of the cluster, and

5046

updated on receipt according to standard Lamport timestamp con-

ditions [34]. These timestamps are used both for causally consistent

client operations as well as for cluster-wide, consistent snapshot

reads.

Snapshot Isolation. We reason about our transactions protocol us-

ing the formal, client-centric framework of [14], which formalizes

the intuitive notions behind snapshot isolation and other levels

precisely. At a high level, snapshot isolation requires that all reads

from a transaction observe a consistent snapshot of data, and that

concurrent transactions that write to con�icting keys are prevented

from both committing. Formally, isolation is de�ned over a set of

committed transactions T . For transactions T to satisfy a given

isolation level, there must exist a totally ordered execution 4 of

T such that each transaction in T satis�es an associated commit

test de�ned for the isolation level. An execution is simply a total

ordering of the transactions in T , associated with a set of read

states, which are the states the database passes through if it were

to execute these transactions in the order prescribed by 4 . In this

model, snapshot isolation is de�ned by the satisfaction of the Com-

plete and NoConflict isolation commit tests. The former states

that every read in a transaction) reads from some unique read

state B , and the latter states that no concurrent transaction wrote

to a con�icting key in the intervening period after this read state B

was created and) committed.

3 DISTRIBUTED TRANSACTIONS PROTOCOL

MongoDB implements a distributed, multi-document transaction

protocol that provides snapshot isolation for transactions issued by

clients in a conversational manner. The protocol utilizes causally

consistent timestamps across the cluster for managing ordering and

visibility between transactions, and executes a two-phase commit

based protocol for ensuring atomic commit across shards. The

distributed transactions protocol is layered on top of snapshot-

isolated key-value storage nodes that exists at each replica set shard,

to correctly implement distributed transactions that are atomic and

appropriately isolated across shards.

We begin by providing an overview of the protocol’s behavior

and how it operates at snapshot isolation in Section 3.1 and 3.2,

followed by a discussion of additional protocol optimizations and

details in Sections 3.3, 3.4, and 3.5, and then present a discussion of

its isolation guarantees in Section 3.6. There we also discuss how

the protocol can operate at weaker isolation levels than snapshot,

and how this maps to the read concern settings of a transaction.

3.1 Overview

The main logical participants of the protocol consist of client, router,

and shard roles. Routers, of which there may be several, handle

incoming transaction operations issued to them by clients. Routers

forward transaction operations to shards in an interactive fashion,

and individual shards are responsible for executing transaction

operations as they receive them, reporting their responses back

to a router. Note that each shard is a replica set, whose leader

receives and processes transaction operations locally. If errors or

con�icts occur at local shards (e.g. due to a write con�ict), this is

also reported back to the router, which can initiate a global abort

process.

After issuing the last operation of a transaction, if all operations

have completed successfully, a client may issue a commit operation,

prompting the router to initiate a two-phase commit procedure

across all participant shards. The router does this by handing o�

responsibility to a coordinator shard, which coordinates the two-

phase commit process across all participant shards. Note that this

hando� occurs since we do not provide high-availability at the

router i.e. high availability is provided at each replica set shard. In

some special cases, e.g. for read-only or single shard transactions,

a full two-phase commit procedure can be bypassed, allowing the

router to send commit operations directly to each shard (discussed

further in Section 3.3).

Once it has assumed control from the router, the coordinator

shard then sends prepare messages to all participant shards that

were involved in the transaction, waits for a�rmative responses

from all shards, and then makes a decision to commit the transac-

tion, sending out a message indicating this to all shards, which can

then individually commit the transaction on that shard. Two-phase

commit messages are then exchanged between coordinator and

participant shards to drive the transaction to commit.

3.2 Timestamp Semantics

CB' . . . A (:) . . . F (:, E) . . . CBB
%

CB�

Start Prepare Commit

Transaction reads (Ĩ)

and/or writes (ĭ)

Reads blocked

g CBĩ
Č
on : ∈ ĭ

Figure 2: Timeline showing the relationship between trans-

action timestamps on a shard B. The read timestamp CB' is

chosen when the transaction begins, followed by operations

of the transaction, executing reads on keys A and writes to

keys F . The prepare timestamp CBB
%
is then chosen at each

shard B, and �nally the commit timestamp CB� which must

be greater than all prepare timestamps.

Timestamps are used in the sharded transaction protocol to

manage ordering and visibility of transactions across the cluster

i.e. for global transaction read timestamps, and for prepare and

commit timestamps in the two-phase commit protocol. As part of

the global, cluster-wide timestamp mechanism, each replica set

shard B maintains a latest timestamp value, 2;DBC4A)BB , which is

incremented on each write operation to the shard, and propagated

between shards, routers, and clients.

When a transaction)8 begins on a router, that router selects a

read timestamp (CB') for the transaction, which determines the set

of committed transactions that transaction)8 will observe. Routers

may select any read timestamp within a range of current timestamp

history, though the implementation selects timestampsmore strictly

e.g. based on the latest known cluster timestamp. Choosing read

timestamps too far in the past increases the likelihood of con�icts

or lack of retained history at some shards, increasing the likelihood

of abort. The read timestamp CB' chosen by the router is used for

all local transaction reads at that shard.

5047

In the lifetime of transaction)8 , the next chosen timestamp is the

prepare timestamp (CBB
%
), which is chosen separately at each shard B

upon receipt and successful processing of a prepare command from

the transaction coordinator. The prepare timestamp CBB
%
chosen at

any shard must be g CB' , and will also be chosen > 2;DBC4A)BB at

the time of receiving the ?A4?0A4 , based on the standard logical

timestamp maintenance rules. The prepare timestamp a�ects the

visibility semantics of ongoing, concurrent transactions once the

transaction has entered the prepared state. Namely, any transaction

)9 that has started at a read timestamp g CBB
%
on shard B and attempts

to read a key : that was written by)8 will be blocked until)8
has committed or aborted. This is required since the �nal commit

timestamp for)8 is unknown until commit, determining the �nal

visibility of the transaction.

The commit timestamp (CB�) is the �nal timestamp chosen in

the lifetime of a transaction, and is picked by the coordinator after

receiving successful responses from all prepared participant shards.

The coordinator aggregates the prepare timestamps CBB
%
from all

shards B ∈ (ℎ0A3 , and chooses a commit timestamp CB� such that

CB� g <0G ({CBB% : B ∈ (ℎ0A3})

The commit timestamp is the timestamp at which the transaction

becomes visible to other transactions, and it is forwarded to all

participant shards upon the coordinator’s decision to commit. Each

shard individually commits, making the transaction’s writes visible

at this timestamp.

3.2.1 Timestamping Invariants. For correctness of snapshot isola-

tion, there must exist some global, total order on transactions that

de�nes the states of the system at any point in time, and the states

which transactions read from. Transaction commit timestamps

serve as the mechanism for de�ning this ordering of transactions

in some timestamp history.

It must also be the case, though, that every transaction reads

from some state consistent with a unique point in this timestamp

ordered history. So, both read and commit timestamps must satisfy

certain key conditions. To guarantee this, we must ensure that such

a transaction reading at a timestamp CB' observes a state consistent

with the timestamp history i.e. it must read a state that re�ects

the e�ect of commits earlier than CB' , and no transactions must

commit into the past of CB' in the (real-time) future. In other words,

all earlier commit timestamps for transactions that write to these

keys are, in some sense, “resolved" i.e. no future transactions will

commit at those timestamps.

In MongoDB’s distributed transactions protocol, no centralized

timestamp assignment mechanism is used, but the above invariants

must be upheld. First, it must be ensured that any assigned commit

timestamp is greater than any previous read or commit timestamp

used in the past (w.r.t dependent transactions). The prepare phase

of two-phase commit serves as part of this timestamp assignment

protocol. That is, each shard is checked during the prepare phase

for a timestamp newer than any read or commit timestamp known

about on that shard, which is returned as the prepare timestamp.

Once this timestamp is computed on di�erent shards and returned,

we need to pick a commit timestamp consistent with all of these,

which we can do by choosing the maximum of all returned prepare

timestamps. In addition to this prepare timestamp computation

procedure, for correctness we also must ensure that on each shard,

concurrently running transactions do not read at timestamps that

may end up behind the commit timestamps of transactions that

commit in the (real-time) future. In the distributed protocol, we

don’t know the commit timestamp that will be used for a transaction

until the prepare phase completes. So, each prepare operation at a

timestamp CB% can be viewed as a reservation of all timestamps g

CB% (w.r.t a given key), since we don’t know where in the timestamp

history a future commit will be placed, though we do know it will

be placed somewhere after the prepare timestamp. Thus, future

reads at such timestamps must block until the commit timestamp

is known.

3.3 2PC Bypass Optimizations

There are some cases where the full two-phase distributed commit

protocol can be bypassed. Speci�cally for

• Read-only transactions.

• Transactions whose writes target only a single shard.

which we refer to as non-prepared transactions. If a transaction is

read-only, upon initiating commit, the router will send commit mes-

sages directly to all shards involved. For a read-write transaction

that touches only a single shard, the router can similarly send com-

mit messages directly to that shard. For a transaction that touches

multiple shards but only writes to a single shard, the router �rst

sends commit messages to all read-only shards, and then forwards

the commit message to the single shard that executed the write.

The selection and assignment of timestamps for non-prepared

transactions also di�ers from transactions that go through the pre-

pare phase. Speci�cally, their read timestamps are chosen in the

same manner as for prepared transactions, but their commit times-

tamps are not chosen by the coordinator, and instead are assigned

locally by the shard at the time of commit on that shard. Non-

prepared transactions write to at most a single shard, so there is no

need to coordinate selection of a commit timestamp based on aggre-

gation multiple prepare timestamps. The only requirement for the

chosen commit timestamp CB� at a local shard B is that it is selected

as > 2;DBC4A)BB at the time of commit, and that 2;DBC4A)BB is ad-

vanced on that shard to something g CB� , so that future transactions

are ordered correctly with respect to this committed transaction.

3.4 Speculative Majority and Durability

When transactions begin at a replica set shard in MongoDB, they

are always opened at a “local" timestamped snapshot on the node,

meaning that the timestamp at which the transaction begins may

not represent a majority committed (i.e. durable) timestamp within

the replica set for that shard. This is tolerable since, at commit, in

order for a transaction to commit successfully, it will require the

majority commit of the transaction’s read timestamp before return-

ing to the client indicating that a speci�ed isolation guarantee can

be provided. We refer to this as speculative majority behavior of

transactions, as discussed in [44], and is similar to other pipelining

optimizations in distributed transactions [49]. This helps prevent

potential extra aborts from concurrent transactions that would

otherwise need to all start at an earlier, majority committed times-

tamp that may cause more con�icts based on the read and commit

timestamps of these transactions.

5048

Related, throughout the execution of a transaction, the protocol

does not require a majority commit of any writes performed at

each replica set shard. These writes are not necessarily persisted

or replicated on any shard replicas until a transaction is prepared,

at which time a prepare oplog entry is written to the oplog of the

primary at each shard, which contains a sequence of all updates

performed by the transaction. In order for a prepare to complete

successfully at a shard, this log entry must be made durable in

the shard replica set, so it must be committed at w:majority. This

is the �rst inter-replica round trip cost that is forced during the

lifecycle of the transaction. Note also that once a transaction has

been prepared and majority committed, it is guaranteed to be able

to commit.

If a transaction is prepared on some nodes in a replica set but

did not complete successfully, the prepare will necessarily fail on

that shard, and can either be retried, or that prepared transaction

will be cleaned up during recovery process on a new primary.

3.5 Router Recovery and Failover

Throughout their execution, transactions will execute via a single

router process, which forward the transaction operations to the

appropriate shards. Routers are stateless, however, so if the router

handling client operations for a transaction fails, the transaction

may be left in-progress on some shards. To account for this case, a

recovery procedure is implemented by associating a recovery shard

with a transaction, which is chosen by the router upon initiation of

the transaction and this recovery information is propagated back to

clients in transaction operation responses. If the original router has

failed or become unreachable, a client can attempt to learn of the

commit status of the transaction by sending along a recovery shard

token to a new router. This router will then forward a message to

the recovery shard in an attempt to join an ongoing commit process

by the coordinator, if one is still ongoing.

Recall also that each shard operates as a Raft-based replica set. If

the leader crashes or loses its primary status (say due to a network

partition or timeout), the replica set will elect a new leader. If this

occurs before the transaction is prepared on a shard, then it will

be aborted on that shard. Since no updates have been committed,

the abort is straightforward and inexpensive. Given that primary

failures are rare, occasional transaction aborts due to leader failure

are an acceptable cost.

If the leader of a shard fails after sending an a�rmative prepare

response to the coordinator, that shard’s newly elected leader must

recover the state of the prepared transaction upon assuming its

role as leader, and it may also need to determine the transaction’s

outcome. It contacts the coordinator shard to learn whether the

transaction was committed or aborted and �nalizes it accordingly. If

the failure occurs at the coordinator shard, the new leader, since the

coordinating leader makes prepare phase outcome durable through

Raft replication, the overtaking leader can recover the outcome and

conclude the transaction.

3.6 Isolation Guarantees

The strongest isolation level provided by the transactions protocol

in MongoDB is snapshot isolation [9]. Transactions can also be

run at a lower isolation level, which provides a variant of read

committed semantics. These two isolation guarantees are mapped

to the transaction read and write concern settings of a transaction

as follows:

• {A2 : B=0?Bℎ>C,F :<09>A8C~} ↦→ Snapshot Isolation.

• {A2 :<09>A8C~,F :<09>A8C~} ↦→ Read Committed.

In general, for transactions that commit atF :<09>A8C~, isola-

tion is ultimately determined by the behavior on the read concern

side. That is, on the read side, there are two semantically distinct

cases, each determined by whether or not a transaction reads from

a globally consistent timestamp across shards.

For B=0?Bℎ>C read concern, this is the case, and the global trans-

action timestamp used is chosen by the router. At this read concern,

snapshot isolation is then enforce by the combination of local write-

write con�ict checking locally at each shard, and ensuring that

reads block appropriately against prepared writes, to ensure atomic

visibility of writes across shards. For weaker read concerns (i.e.

<09>A8C~ or ;>20; read concern), no uniform read timestamp is

used across shards, so the snapshots opened at each shard may

not be opened at a consistent global snapshot. For transactions

of this type, there is no globally consistent timestamp chosen by

the router at the beginning of the transaction. Instead, each shard,

when receiving the �rst operation for a transaction, chooses a local

snapshot timestamp based on its local state, meaning that there

may be no consistent read timestamp across the cluster for such

a transaction. Note that since each transaction executes against a

snapshot-isolated store at each shard, the protocol provides some

isolation guarantees but weaker than full snapshot isolation. Cur-

rently, this is considered as a variant of a read committed isolation

guarantee, though, in practice, the isolation guarantee may be some-

what stronger than this. We discuss this isolation guarantee in some

additional detail in Section 4.5.

4 MODULAR SPECIFICATION

To formalize and verify the properties and guarantees of the dis-

tributed transactions protocol, we developed a formal speci�cation

of its behavior using a modular speci�cation technique. This ap-

proach allowed us to check the high level isolation properties of

the protocol while also formalizing the boundary between the dis-

tributed transactions protocol and the underlying storage engine

layer at each shard. De�ning an independent abstract model of

the storage layer also enabled us to separately apply model-based

conformance checking, which we discuss further in Section 5.

Our approach is unique in that it models distributed transactions

at a level close to the algorithm while also incorporating interac-

tions with peripheral components at di�erent system layers. By

explicitly specifying the boundaries between modules, our tech-

nique supports compositional reasoning about di�erent system

layers. All of our speci�cations and associated code can be found

at [46].

4.1 TLA+

Our protocol speci�cation is written in TLA+ [35], a formal speci�-

cation language for modeling concurrent and distributed systems

that has been used widely in industry [12, 37, 45]. In TLA+, a system

or protocol is formally described as an abstract, non-deterministic

state machine, by de�ning an initial state predicate and a transition

5049

"D;C8(ℎ0A3)G=

'>DC4A1 . . . '>DC4AĤ

(ℎ0A3ĩ1 || (C>A064ĩ1 . . . (ℎ0A3ĩĤ || (C>A064ĩĤ

'>DC4A

∃A ∈ '>DC4A, B ∈ (ℎ0A3, C83 ∈)G�3, CB ∈)8<4BC0<?B, >? ∈ $?B :

(RouterTxnStart(A, C83, CB)

(RouterTxnOp(A, C83, >?)

(RouterTxnCoordinateCommit(A, B, C83)

(RouterTxnCommitReadOnly(A, B, C83)

(RouterTxnCommitSingleShard(A, B, C83)

(ℎ0A3

∃B, C ∈ (ℎ0A3, C83 ∈)G�3, : ∈ 4~, E ∈ +0;D4 :

(ShardTxnStart(B, C83)

(ShardTxnRead(B, C83, :, E)

(ShardTxnWrite(B, C83, :)

(ShardTxnPrepare(B, C83)

(ShardTxnCommit(B, C83)

(ShardTxnAbort(B, C83)

(ShardTxnCoordinateCommit(B, C83)

(ShardTxnCoordinatorRecvCommitVote(B, C83, C)

(ShardTxnCoordinatorDecideCommit(B, C83)

(C>A064

∃C83 ∈)G�3, CB ∈)8<4BC0<?B, : ∈ 4~, E ∈ +0;D4 :

(Start(C83, CB)

(Read(C83, :, E)

(Write(C83, :, E)

(Remove(C83, :)

(Prepare(C83, CB)

(Commit(C83, CB)

(CommitPrepared(C83, CB)

(Abort(C83)

Figure 3: High level overview of our"D;C8(ℎ0A3)G= transactions speci�cation, showing each logical component. Actions of the

(ℎ0A3 component compose synchronously (indicated by | |) with corresponding, lower level actions of the (C>A064 model, while

actions of the '>DC4A and (ℎ0A3 interact asynchronously.

relation over a set of state variables. The former is a logical predicate

that de�nes the set of possible initial states of the system, and the

latter is a logical relation over pairs of system states that de�nes

the set of allowable system state transitions.

Typically, concurrent systems in TLA+ are speci�ed as a logical

disjunction of protocol actions, each of which describes a set of pos-

sible system transitions. An action is then expressed a conjunction

of a guard and a update predicate, which describe, respectively, the

logical precondition for an action to be taken and the modi�cation

to the system state that occurs as a result of the action. For example,

for a state variable G , a simple action such as (G > 0) ' (G ′ = G + 1)

expresses an action that increments G by 1 in any state where G is

positive (G ′ denotes the value of G in the state after a transition is

taken). A behavior of a system is any sequence of states starting

from an initial state and where every transition in that behavior

satis�es the transition relation. Thus, a system can be semantically

viewed as its set of reachable behaviors.

4.2 Speci�cation Overview

Our TLA+ speci�cation models the high-level distributed transac-

tions protocol while also modeling its interface to the underlying

storage layer of each shard in a MongoDB cluster. The overall spec-

i�cation, which we refer to as"D;C8(ℎ0A3)G=, consists of approx-

imately 571 lines of TLA+ code, not including the storage engine

model ((C>A064), which is discussed in more detail below in Section

4.3. This also does not include the de�nitions used for the client-

centric isolation model, which was originally developed in [47].

An outline of the speci�cation’s overall architecture is shown in

Figure 3.

The speci�cation de�nes a set of abstract (ℎ0A3 and '>DC4A iden-

ti�ers, along with abstract)G�3 , 4~, and+0;D4 sets, each of which

can be instantiated as a �nite set of logically unique, opaque identi-

�ers. Also speci�ed is a �nite set of)8<4BC0<?B , which de�nes the

set of possible timestamps used by a transaction for reading, prepar-

ing, or committing. The protocol speci�cation also de�nes a global

catalog mapping C : 4~ → (ℎ0A3 , which de�nes a static function

mapping keys to shards. This is used to model the placement of

keys in a collection on shards in a sharded cluster, and is used to

determine the shard that a transaction will be routed to when it

issues an operation on a key. In general, this mapping may change

over time (e.g. when chunks of a collection are migrated between

shards), but for our model we assumed a �xed catalog mapping to

enable initial veri�cation of protocol correctness.

The speci�cation contains a collection of 14 logical actions, 5 of

which are associated with actions of a router A ∈ '>DC4A , and 9 of

which are associated with actions of a shard B ∈ (ℎ0A3 , and which

can be seen summarized in Figure 3. There are 25 state variables, 7 of

which are dedicated to the (C>A064 layer model, and 18 of which are

used for the distributed transactions layer of"D;C8(ℎ0A3)G=. The

variables of the"D;C8(ℎ0A3)G= speci�cation are logically separated

into those maintained at each router process, and those maintained

at each shard. Some variables are also used for modeling network

communication e.g., a Bℎ0A3)G='4@B variable maintains a sequence

of incoming transaction operations at each shard, which is used to

5050

Transaction C83 on shard B reads value E from key : .

ShardTxnRead(B, C83, :, E) ≜

Guard




' C83 ∈ (shardTxns[B] \ shardPreparedTxns[B])

' shardTxnReqs[B] [C83] ≠ ïð New op on RPC queue.

'Head(shardTxnReqs[B] [C83]) .op = '403

'Head(shardTxnReqs[B] [C83]) .k = :

Update




' shardOps′ = Record op in shard history.

[shardOps EXCEPT ![B] [C83] =

shardOps[B] [C83] ◦ ïrOp(:, v) ð]

' shardTxnReqs′ = [shardTxnReqs EXCEPT

![B] [C83] = Tail(shardTxnReqs[B] [C83])]

Composition

{
' Storage(B)!Read(C83, :, E)

' Storage(B)!Status(C83) ≠ PrepareCon�ict

Figure 4: Example of a shard read transaction action, show-

ing its synchronous composition with the underlying stor-

age layer action (C>A064 (B)!'403 highlighted. Our model also

represent transaction error responses from the API via

(C>A064 (B)!(C0CDB (C83), which can be checked from the higher

level model.

model RPC communication between routers and shards. Each shard

maintains details about the status of each ongoing and prepared

transaction with Bℎ0A3)G=B and Bℎ0A3%A4?0A43)G=B variables, and

records the history of transaction operations that have occurred at

that shard so far in a Bℎ0A3$?B array.

Router actions (shown in the '>DC4A component of Figure 3) are

concerned with the starting of a transaction and selection of a read

timestamp, and forwarding read or write operations to correspond-

ing shards based on the catalog mapping. Shard actions (shown

in the (ℎ0A3 component of Figure 3) are related to the processing

of operations received from a router, and handling the lifecycle

of two-phase commit operations. An example of a shard action

for performing a transaction read is shown in Figure 4. As shown

there, the action includes a guard which de�nes the logical pre-

conditions for the action to be taken. This includes checking that

the transaction is active and not prepared (conjunct 1), and for the

existence of a new request on the incoming Bℎ0A3)G='4@B queue

of the '403 operation type for key : (conjuncts 2-4). In the action’s

update, it appends a new read operation to the Bℎ0A3$?B history

array and dequeues the incoming operation from Bℎ0A3)G='4@B .

This is followed by the composition with the underlying (C>A064

action, which is explained further in Section 4.3.

Note that we model the storage system at each shard by abstract-

ing it into a single log model, which we discuss further below in

Section 4.3. Since the Raft-based replication protocol in a shard is

well studied and tested and validated [63], this abstraction helps us

keep the state-space size manageable for model checking without

loss of interesting behavioral coverage.

4.3 Storage Layer Model

A key aspect of the distributed transactions protocol is its interac-

tionwith the underlying storage engine layer at each shard, which is

provided by a WiredTiger instance at each MongoDB shard replica.

The semantics of this storage engine interface is relied upon by the

distributed transactions protocol that runs across shards and is key

to the overall correctness of the protocol.

As part of our transactions protocol speci�cation, we formal-

ized this storage layer interface boundary in a way that enables

both veri�cation of the high level distributed transactions protocol

and use as an independent abstract model of the underlying stor-

age engine behavior, which we examine further in Section 5. The

subset of the storage engine API modeled for the distributed trans-

actions protocol is summarized in the (C>A064 module in Figure 3,

and a logically separate instance of this storage engine module is

present on each shard. The full (C>A064 speci�cation is approxi-

mately 332 lines of TLA+ code, consisting of 8 protocol actions and

7 state variables, related to logging committed transactions (;>6)

and tracking data and metadata about actively running transactions

(CG=(=0?Bℎ>CB, CG=(C0CDB , etc.). Generally, the storage layer API re-

lates to the starting, committing, and preparing of transactions at

speci�ed timestamps, and reading or writing a given storage engine

key.

Developing an abstract reference model of storage API behavior

allowed us to capture the semantics of a complex storage implemen-

tation in a concise manner e.g., as shown in an action example in

Figure 6. This shows the read behavior as modeled in our abstract

storage speci�cation, which encodes the essential semantics of a

basic, versioned read operation as well as the semantics of prepare

con�ict blocking as discussed in Section 3.6. In Section 5, we discuss

further how we used this model for automated test case genera-

tion to verify that the underlying WiredTiger API implementation

conformed to the interface represented in our model.

4.3.1 Compositional Semantics. Note that the (C>A064 model be-

haves in synchronous composition with the distributed transactions

protocol at each shard. That is, a shard transaction action within the

"D;C8(ℎ0A3)G= speci�cation (as illustrated in Figure 3), it occurs

atomically on both the shard process ((ℎ0A3Bğ) and the underlying

storage instance ((C>A064Bğ) synchronously, assuming the precon-

ditions for actions on both state machines are met. For example,

the (ℎ0A3)G='403 action de�nition shown in Figure 4 consists of

both the higher level sharded transactions details (i.e. its guard and

update conditions), and its composition with the '403 action of the

lower level (C>A064 component (shown in more detail in Figure 6).

Note that TLA+ does not directly provide �rst class mechanisms

for representing this type of composition, so we developed our

speci�cations in a way that enabled expressing this type of compo-

sitional structure. More concretely, in the formalism of TLA+, one

can consider a system or component as de�ned by a set of variables

and a set of logical actions, where di�erent components can be

composed together in various ways [2]. For example, composing

two components asynchronously corresponds to a natural model

of interleaving concurrency, where any action of any component

can be taken independently at any time. Composing two compo-

nents synchronously (which matches the semantics of our (ℎ0A3

and (C>A064 interactions) essentially requires them to behave in

“lockstep” i.e. any system action must execute on both components

atomically, satisfying the guard and updates of both, independent

5051

Has a distinct, prepared transaction written : behind your timestamp.

PrepareCon�ict(C83, :) ≜

∃C Ġ ∈ TxId :

' C Ġ ≠ C83

' C Ġ ∈ ActiveTransactions

' txnSnapshots[C Ġ] .prepared

' : ∈ txnSnapshots[C Ġ] .writeSet

' txnSnapshots[C Ġ] .prepareTs f txnSnapshots[C83] .ts

Figure 5: Example of prepare con�ict semantics modeled

in our abstract (C>A064 model. Used to determine if a read

operation on a key must block against an ongoing prepared

transaction that has written to the same key.

Transaction C83 reads key : .

Read(C83, :, E) ≜

' C83 ∈ ActiveTransactions \ PreparedTransactions

' ¬txnSnapshots[C83] [“aborted”]

' E = TxnRead(C83, :)

' (' ¬PrepareCon�ict(C83, :) Successful read.

' E ≠ NoValue

' txnStatus′ = [txnStatus EXCEPT ![C83] = Ok]
)

('¬PrepareCon�ict(C83, :) Key not found.

' E = NoValue

' txnStatus′ = [txnStatus EXCEPT ![C83] = NotFound]

(' PrepareCon�ict(C83, :) Read blocked on a prepared transaction.

' txnStatus′ = [txnStatus EXCEPT ![C83] = PrepareCon�ict]

Figure 6: Example of an action de�nition of a read oper-

ation on the our abstract storage interface model (C>A064

speci�ed in TLA+. The)G='403 operator (omitted) performs

a snapshot read on the underlying key-value data, and the

%A4?0A4�>=5 ;82C operator checks if the read is blocked against

a prepared transaction, as shown in Figure 5.

components. Modeling systems formally in this compositional man-

ner enables modular reasoning about their independent behavior,

and a way formalize the interface contracts between components.

4.4 Checking Isolation

Weverify the transaction isolation properties of our"D;C8(ℎ0A3)G=

protocol speci�cation using a formalization of the client-centric,

state-based isolation model outlined in [14, 47]. The formalization

of client-centric isolation in our model de�nes isolation correctness

over a set of committed transactions T . For a given set of commit-

ted transactions, satisfaction of an isolation level corresponds to the

existence of an execution (i.e. a total order of those transactions),

that satis�es a speci�ed commit test for each transaction.

We verify these isolation guarantees using the TLCmodel checker

[59], for �nite instantiations of the constant parameters of the

model. The results of our veri�cation e�orts can be seen in Table 1.

This type of �nite model checking does not provide a formal proof

of protocol correctness, but provides guaranteed coverage for small

models, which provide con�dence in the general correctness of the

protocol.

To verify isolation in this model, a history of transaction opera-

tions is maintained at each shard, which is added to a global history

of committed operations (>?B) for a transaction once the transac-

tion commits at that shard. This global >?B structure for checking

isolation is simply a map from)G�3 to sequences of transaction

read or write operations and the operation result (e.g. for reads).

We check varying con�gurations of the model, verifying both snap-

shot isolation and weaker, read committed isolation guarantees. In

our models, the constant parameters 4~, (ℎ0A3 , and)G�3 are all

instantiated as �nite sets, and are declared as symmetric [11]. In

addition, we also impose an initial state constraint that restricts the

catalog mapping to avoid placing all keys on a single shard, as well

as a limitation on the maximum number of operations performed

per transaction, de�ned as"0G$?B .

Although we check small models, we still found these to be

e�ective in their ability to capture deep semantic edge cases of

the protocol. For example, when removing a key, necessary de-

tail related to prepared transaction reads that was absent in an

initial version of the model (discussed further in Section 5.2), the

model checker is able to generate a 27-step counterexample leading

to a snapshot isolation violation, with just 2 transactions and 2

operations per transaction, in a few minutes.

4.5 Permissiveness

For the models we check, we also measure permissiveness, a �ner-

grained transaction isolation property [23]. Essentially, permissive-

ness provides one mechanism to quantify the amount of concur-

rency allowed by a protocol for a �xed isolation level. For example,

some protocols may choose to implement weaker isolation levels by

providing a stronger isolation level, but this may be unnecessarily

restrictive and a traditional, binary notion of isolation property

satisfaction cannot capture these distinctions.

We initially explored permissiveness in order to explore the ef-

fect of weakening certain storage layer semantics on the higher

level isolation guarantees of the distributed transactions protocol.

For example, there are con�guration parameters at the storage layer

related to whether reads must block on prepared transactions (re-

ferred to as �6=>A4%A4?0A4), as discussed in Section 3.2. This prepare

blocking behavior is a requirement for snapshot isolated transac-

tions in our protocol, but we examined the possibility of weakening

this requirement to allow for more permissive implementations of

weaker isolation levels (e.g. read committed).

To concretely measure permissiveness for a given model, we

consider the full reachable set of states S, and from this compute

S>?B , which is a projection of S obtained by projecting away all

state variables except >?B , the global history variable of commit-

ted transaction operations as discussed above in Section 4.4. The

cardinality |S>?B | then serves as our permissiveness metric, by

essentially counting the number of unique, allowed committed

schedules over any possible reachable behavior of a system. Note

that this metric is computed over the full, �nite state space of a

system, rather than as a property over a single system behavior.

This provides a formal mechanism to compare two protocol de-

signs at a �ner-grained level even if they are expected to satisfy the

5052

Model IgnorePrepare States Depth Time |S>?B | Invariant

(ℎ0A3 = {B1, B2} 4~ = {:1, :2})G�3 = {C1, C2}

)8<4BC0<? = {1 . . . 3} "0G$?B = 2 '� =<09>A8C~

True 2,132,765 35 46s 388 ReadCommitted

False 1,967,907 35 42s 378 ReadCommitted

(ℎ0A3 = {B1, B2} 4~ = {:1, :2})G�3 = {C1, C2}

)8<4BC0<? = {1 . . . 3} "0G$?B = 2 '� = B=0?Bℎ>C
False 8,454,961 35 3m 20s SnapshotIsolation

Table 1: Veri�cation results for checking isolation guarantees of our distributed transactions formal speci�cation. All results

declare the union of (ℎ0A3 , 4~, and)G�3B as a symmetry set. Permissiveness metric shown as |S>?B |.

same isolation level, and is re�ected in the results shown in Table 1.

There we report, next to each model of shared isolation level, the

permissiveness metric |S>?B |. For example, of the two models that

both satisfy read committed isolation, when weakening the pre-

pare blocking behavior, this model is more permissive (allows more

unique schedules in |S>?B |), with 388 unique schedules permitted,

versus 378 in the model that does not weaken the prepare blocking

behavior. If we had only checked isolation for these models, this

�ner-grained distinction between variants would not be evident.

We plan to explore this in future as a means to further char-

acterize performance and drive potential protocol optimization

opportunities. This is also a unique feature of protocol analysis

enabled by formalizing and checking a speci�cation of the transac-

tions protocol.

5 MODEL-BASED VERIFICATION

Decomposing the distributed transactions protocol and storage

layer in our speci�cation (as discussed in Section 4.3) helped clarify

the formal interface between them, but verifying that our storage

layer speci�cation accurately re�ected the storage implementation

remained challenging. There are subtle aspects of how the storage

engine managed timestamps and concurrency that directly impact

the correctness of the transactions protocol, motivating the need

for a precise characterization of storage engine API semantics.

To address this, we coupled our storage layer speci�cation more

tightly with the WiredTiger storage layer implementation by using

an automated, model-based veri�cation approach [54]. We utilized

the TLC model checker [59] to drive exploration of our high level

model, and from this automatically generate test cases to check

conformance of the storage engine implementation. This technique

allowed our speci�cation to serve both as a formalization of the in-

terface between components and as a mechanism for automatically

checking that the implementation matches this formally de�ned

interface.

5.1 Test Case Generation

Our storage layer speci�cation, as shown in Figure 3 and discussed

in Section 4.3, is a sub-component of the overall "D;C8(ℎ0A3)G=

distributed transactions protocol speci�cation, and consists of ap-

proximately 332 lines of TLA+ code. The goal of our model-based

veri�cation approach was to ensure that the behavior exhibited by

the underlying WiredTiger storage implementation [56] conforms

to the behavior of this abstract speci�cation.

One general approach is to formulate this as a type of re�ne-

ment or trace validation problem i.e. by checking that every state

transition of the low level model corresponds to some valid state

Storage TLA+ Speci�cation

TLC Model Checker

Test Generation

Compute %0Cℎ�>E4A (�)

�4=4A0C4)4BCB (P)

WiredTiger Test Runner

Conformance ✓ Divergent C ∈ T :

ĩ1

ĩ2ĩ3

ĩ4ĩ5

�

Start(Ī1, Īĩ = 1)Start(Ī1, Īĩ = 2)

Write(Ī1, ġ1, Ĭ2)
Read(Ī1, ġ1,§)

Reachable graph�

Covering paths P

Test cases T

ĩ1 ĩ1

ĩ2ĩ3

ĩ4ĩ5

T

Start(Ī1, Īĩ = 2) Start(Ī1, Īĩ = 1)

Write(Ī1, ġ1, Ĭ2)Read(Ī1, ġ1,§)

Figure 7: High level summary of test case generation work-

�ow for our storage layer model using the TLC model

checker.

transition of the higher level model, possibly under some de�ned

re�nement mapping [1, 16, 19]. In our case, we were interested

in ensuring that the observable behavior of the storage API was

conformant, so we aimed to check something slightly more relaxed.

We simply aim to verify that for traces of the model where transi-

tions represent API calls, the observed/returned values match. For

example, for all operations, that the return status matches between

model and implementation, and any return values match (e.g. for

the result of read operations).

Using the TLC explicit state model checker [59] allows us to

generate a complete graph of reachable model states for our storage

model. TLC can do this e�ciently by computing a breadth �rst

exploration of the reachable state space, checking for enabled model

actions from any current state. Direct state-based exploration is not

possible in general for many program implementations, so, in order

to drive implementation testing from a model, we aim to generate

some set of traces (executions) for covering reachable states i.e. we

use a path-based testing approach using model state coverage to

drive test case diversity.

Ideally, given a computed, �nite reachable state graph � , we

would like to generate a minimal path covering of � which is then

converted to a set of test case behaviors. That is, generate a set of

5053

paths P such that every state in� exists in some path in P, and that

P is minimal in some sense. Computing minimum path coverings

of arbitrary directed graphs is in general NP-hard, but for directed

acyclic graphs, there exist e�cient approaches [38]. For our use

case, we implemented an approximate, greedy approach that may

be suboptimal but provided adequate performance for our use case.

We also take advantage of symmetry reduction of the state space

when possible [11], aided by the native support of this feature in the

TLC model checker. Speci�cally, if we consider the full reachable

state graph as � and the graph reduced under symmetry as �f ,

when we select paths to compute a covering, we choose paths from

� , but terminate once our set of paths cover all states in �f . That

is, if we generate a set of paths that cover all states up to symmetry

reduction, we consider this as su�cient, which can signi�cantly

reduce the number of adequate covering paths needed.

We implement the above functionality in a Python-based tool

which makes use of a modi�ed version of the TLC model checker

for generating state graphs in the appropriate format. The general

work�ow of our tool shown in Figure 7, and its implementation

code can be found at [46]. TLC model checking is �rst run for the

storage speci�cation and a speci�ed model con�guration, generat-

ing the reachable state graph� in a structured format. Each edge in

this generated graph is annotated with the TLA+ speci�cation ac-

tion and parameter values of that transition, which are used when

converting paths in this graph to concrete test cases. A Python

script then processes this generated graph to compute the path

covering P and convert each covering path into a separate unit test

case (shown in the Test Generation module of Figure 7). Our path

covering computation uses a third-party graph processing library

[24] to �rst convert the reachable state graph� to a directed acyclic

graph, and then compute paths from the initial state to each node

in the graph. We then greedily select paths from this set until we

have covered all states in� (or, equivalently,�f if we are applying

symmetry reduction). Once we have generated each covering path,

we convert each edge along the path into its corresponding call on

theWiredTiger API (based on the action and parameter values), and

generate a unit test code �le with appropriate embedded assertions.

For example, after each operation, the generated test asserts that

the error status for each transaction matches between the model

and the implementation, and, for read operations, that the observed

value matches the expected value from the model.

5.2 Results and Discussion

The largest model that we checked for conformance and associ-

ated metrics are summarized in Table 2. All computation for our

experiments is performed on an Amazon EC2 m6g.2xlarge instance

with 8 vCPUs and 32 GiB memory, on Ubuntu 22.04. Generation of

the underlying state graph is performed by the TLC model checker,

using 8 parallel workers, while processing of the state graph to

generate test cases is done by a single thread in Python. Execution

of the generated tests is then performed against the WiredTiger

storage engine using 8 parallel worker threads.

Even for a relatively small model (e.g. 2 transactions), the state

space can grow rapidly, and full, path-based coverage can become

costly. Generally, this is due to the large number of possible in-

terleavings of transaction operations, with varying parameters

Model

 4~B = {:1, :2}

)G�3B = {C1, C2}

)8<4BC0<? = {1 . . . 3}

States 490,360

States (symmetry) 132,981

Tests 87,143

Mean Depth 15

State graph generation (TLC) 1m 11s

Test Generation 29m 10s

Test Execution 13m 49s

Conformance ✓

Table 2: Model-based test case generation statistics for largest

conformance checking con�guration. Mean Depth shows the

average length over all generated test case behaviors.

(e.g. prepared v.s. non-prepared, di�erent timestamp values, etc.).

Symmetry reduction aids in this, but we believe that path-based

coverage mechanisms are also somewhat ine�cient since many

paths may cover redundant states, and only di�er by a small num-

ber of unique states covered. To exercise increasingly larger model

parameters, we believe randomized or approximate sampling of the

covering paths is a feasible approach [25, 40]. In general, we can

only check conformance between our model and implementation

for �nite model instances, so these conformance checks do not

provide a formal proof of conformance between our model and

implementation, but are a strong foundational guarantee.

During initial speci�cation development, we also clari�ed subtle

behaviors of the storage engine semantics that were uncovered by

by model-implementation divergences that required subsequent

updates to our model. As one notable example, we clari�ed a par-

ticular edge case behavior of transaction semantics involving con-

current, prepared transactions. Speci�cally, due to the distributed

nature of transaction timestamp selection, it is possible for commit

timestamps to be chosen behind the read timestamp of an active

transaction. Consider the history of events on a shard B that is a

participant in concurrent transactions)1 and)2 shown in Figure 8.

Due to the interleaving of these transactions, it is possible that

the commit timestamp of)1 was chosen before)2 was started at

timestamp 3, but at an earlier timestamp than)2 reads at. In a non-

distributed timestamp assignment mechanism, commits that occur

later in real time would be assigned commit timestamps higher

than any current read timestamps, but with distributed timestamp

assignment this is not always enforced. So, since)1 commits into

the “past” of)2’s history, it must be visible to it, even though it was

not present in the snapshot of)2 when it began in real time. Thus,

the read of)2 of : should return the e�ect of)1’s write.

In an initial version of our model we assumed it was su�cient for

each transaction to store a static snapshot of data which is recorded

at the time the transaction starts, and which is used for all of the

transaction’s reads as it executes. This scenario breaks that assump-

tion, however, since a transaction’s snapshot at a given timestamp

may, in fact, be updated “after” (in real time) the transaction started.

So, this needs to be taken into account in the read behavior for

transactions in the model. Clarifying this subtle behavior was valu-

able since it is a case that does not directly occur in single instance

5054

Transaction)1 Transaction)2
BC0AC (CB' = 0)

FA8C4 (:, E =)1)

?A4?0A4 (CB% = 1)

BC0AC (CB' = 3)

2><<8C (CB� = 2)

A403 (:)

Figure 8: Example history of events on a shard B that is a

participant in concurrent transactions)1 and)2, where)1
commits in real time at a timestamp behind)2’s read times-

tamp.

or replica set deployments of MongoDB. This case was unique to

the use of prepared, distributed transactions and their mechanism

for timestamp selection.

Overall, we found that formalizing a model of the storage API

was useful for both veri�cation and conformance testing via test

generation, but also for precisely characterizing and understanding

the semantics of the storage layer for external consumers of the API,

the distributed transactions protocol being the notable example. The

set of behaviors that are allowed or disallowed in the API and their

semantics is often a source of discussion and misunderstanding in

development. Ad hoc unit tests can be written to verify a given

behavior or edge case, but these are often not a comprehensive

representation of API behavior, and can only be understood in

isolation.

We also explored extensions to our storage model that included

a wider array of API operations, including details related to setting

durability related checkpoint timestamps, rolling back the storage

engine to a timestamped checkpoint, and checking other more

�ne-grained, timestamp related properties. Although they are not

directly related to the interface relied upon by distributed trans-

actions, they are valuable aspects of the API to formalize and test

further. Similarly, we do not test concurrently executing clients in

our model-based testing approach, but we view this as a valuable

and feasible extension. For example, we could consider running sev-

eral, isolated parallel threads that execute traces generated from our

model, on di�erent transactions and di�erent keys. Moreover, we

could incorporate linearizability checking for concurrent, con�ict-

ing workloads using our models as a sequential reference spec [4].

6 RELATED WORK

Distributed Transactions. There has been a wide range of work

on building and optimizing transactions in distributed database sys-

tems in recent decades. Spanner [13] was one of the earliest modern

systems to provide an implementation of distributed, ACID trans-

actions. It provided strict serializability for one-shot transactions,

coupling this with the use of tightly synchronized atomic clocks.

Percolator [42] and Megastore [5] were also precursors to this work.

More recently, there have been several open source variants largely

derived from the architecture of Spanner, including CockroachDB

[49], Yugabyte [60] and TiDB [26], all which implement various

forms of transactions with di�ering sets of optimizations or modi�-

cations. Relying on timestamping for concurrency control, these

distributed SQL databases must ensure consistent timestamp man-

agement across layers within a single node, including transaction

coordination, concurrency control, and storage. If not managed

well, transactions can see anomalies or experience unnecessary

delays, aborts and retries.

Calvin [52] introduced a deterministic approach to scheduling

distributed transactions, eliminating the need and cost of two-phase

commit by preordering transactions to avoid con�icts at runtime.

However, this requires advanced knowledge of transaction read-

/write sets, restricting the system to non-conversational (one-shot)

transactions. These ideas have been productionized into the Fau-

naDB distributed database [21]. More recently, Chardonnay [20]

builds on similar principles to optimize transaction processing for

single datacenter deployments with fast two-phase commit.

An alternative line of research focused on optimizing transac-

tions by re�ning the underlying consensus protocols within shards,

tailoring them to the transaction protocols running on top. Notable

examples include MDCC [32], which explores multi-datacenter con-

sistency, ROCOCO [36], which reduces coordination overhead for

distributed transactions, and TAPIR [61], which eliminates the need

for traditional consensus and ordering in some cases to improve

performance.

Isolation. Isolation semantics in distributed databases are subtle

and intricate, balancing consistency, concurrency, and performance.

MongoDB on a single node provides transactions with strong snap-

shot isolation, which ensures transactions observe all transactions

whose commits precede its start in real time, thanks to WiredTiger.

Distributed MongoDB transactions instead satisfy session snapshot

isolation, which only requires a transaction to observe all trans-

actions that precede it within its session. As another relaxation,

Walter [48] introduced Parallel Snapshot Isolation (PSI), which en-

sures consistent snapshots and transaction ordering within a site

while enforcing causal ordering across sites and preventing write-

write con�icts. By allowing di�erent sites to have di�erent com-

mit orderings, PSI relaxes the strict total ordering requirements of

strong snapshot isolation, allowing for improved performance in

distributed deployments.

There have been a variety of attempts to formally de�ne transac-

tion isolation over many years, going back to an attempt to improve

on standard ANSI SQL de�nitions [3, 7]. Recent attempts try to

formulate isolation in a client-centric manner, e.g. [14], and also in

an abstract framework that takes advantage of the atomic visibility

property of most widely used isolation levels [10]. The conformance

between isolation de�nitions in these various formalisms and the

semantics provided by real systems can still be opaque and di�cult

to understand, though, with a variety of anomalies discovered in

well-known and mature database systems [8, 15, 27, 28].

Also, the notion of permissiveness of a transaction system appears

to have been previously explored in the context of transactional

memory systems [23], but we are not aware of prior work that

explicitly explored this issue in the context of distributed database

transaction protocols.

5055

Testing and Veri�cation. There have been several tools developed

in recent years to aid in automatic and online veri�cation of data-

base isolation and consistency levels. The Elle isolation checker

[30] was developed as a part of the Jepsen testing suite, and the

Viper snapshot isolation checker [62], and also Cobra [50] also

provide new e�cient algorithms for black-box isolation checking.

Hermitage [31] was also an attempt at providing standard test suites

to characterize the isolation levels provided by various database

systems. Recent work [39] reviewed the transactional consistency

protocols at MongoDB and argued that they satisfy snapshot iso-

lation. In our work, we provide formal TLA+ speci�cation for the

transaction protocols, and use model checking and test-case gener-

ation to validate the correctness of the protocols.

The domain of model-based testing has also been well explored,

applied in various domains and styles. For example, previous ef-

forts have used a similar approach to ours to directly use a model

checker to drive test case generation for hardware veri�cation [58].

This ranges from online, dynamic approaches to testing to static

test case generation [16, 51]. The P language [17, 18] has also been

applied in similar domains, for both modeling systems at a high

level and generating executable systems code from these models.

The MODIST tool [57] is another example of an attempt at com-

bining model checking concepts with running distributed systems

implementations, but implements its approaches directly at the

system implementation layer, with no explicit abstract model.

We found our approach unique in its application to the dis-

tributed transactions domain, its use of a compositional approach

for both high level protocol veri�cation and low level conformance

checking.

7 CONCLUSIONS AND FUTUREWORK

In this work, we presented a formal, modular speci�cation of Mon-

goDB’s distributed transactions protocol and used it to verify iso-

lation properties. We also leveraged the modular structure of our

speci�cation in a model-based veri�cation strategy to ensure con-

formance between the storage layer model and the underlying

storage engine implementation.

Based on our experience, we argue that using formal methods is

essential to verify transactional correctness. Distributed transac-

tions are inherently complex due to handling concurrency, version

control, and cross-layer interactions. Yet, the database community

often builds these protocols without a formal model, relying on in-

formal reasoning and ad hoc testing. We �nd that a formal speci�ca-

tion clari�es the contracts between system components–query pro-

cessing, concurrency control, storage, and metadata management–

by explicitly stating their invariants. This clarity simpli�es both

design and development and supports automated test-case genera-

tion.

Formal modeling helped us gain con�dence in the protocol’s cor-

rectness, but we also see it as a foundation for further exploration. A

promising direction is using veri�cation and modeling techniques

to assess whether an application behaves correctly under a given

isolation level. This could reduce the burden on users, who often

struggle with the opaque and intricate relationship between isola-

tion level semantics and application-level correctness.

In future work we aim to develop better formal characteriza-

tions of weaker, non-snapshot isolation levels in our system and

explore how they can be leveraged for performance and correctness

tradeo�s. Additionally, we plan to extend ourmodel to capture inter-

actions with dynamic catalog operations, such as key redistribution

across shards concurrent with running transactions.

REFERENCES
[1] Martín Abadi and Leslie Lamport. 1991. The Existence of Re�nement Mappings.

Theor. Comput. Sci. 82, 2 (May 1991), 253–284. https://doi.org/10.1016/0304-
3975(91)90224-P

[2] Martín Abadi and Leslie Lamport. 1995. Conjoining speci�cations. ACM Trans.
Program. Lang. Syst. 17, 3 (May 1995), 507–535. https://doi.org/10.1145/203095.
201069

[3] A. Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Imple-
mentations for Distributed Transactions. Technical Report. USA.

[4] Anish Athalye. 2017. Porcupine: A fast linearizability checker in Go. https:
//github.com/anishathalye/porcupine.

[5] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. In Conference on Innovative Data Systems Research (CIDR) (Asilomar,
California). 223–234.

[6] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A critique of ANSI SQL isolation levels. In Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data (San Jose,
California, USA) (SIGMOD ’95). Association for Computing Machinery, New
York, NY, USA, 1–10. https://doi.org/10.1145/223784.223785

[7] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A critique of ANSI SQL isolation levels. SIGMOD Rec. 24, 2 (May
1995), 1–10. https://doi.org/10.1145/568271.223785

[8] Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and
Akash Lal. 2021. MonkeyDB: E�ectively Testing Correctness under Weak Iso-
lation Levels. Proceedings of the ACM on Programming Languages 5, OOPSLA
(2021), 1–27.

[9] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2009. Serializable Isolation
for Snapshot Databases. ACM Trans. Database Syst. 34, 4, Article 20 (Dec. 2009),
42 pages. https://doi.org/10.1145/1620585.1620587

[10] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework
for Transactional Consistency Models with Atomic Visibility. In 26th Interna-
tional Conference on Concurrency Theory (CONCUR 2015) (Leibniz International
Proceedings in Informatics (LIPIcs)), Luca Aceto and David de Frutos Escrig (Eds.),
Vol. 42. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
58–71. https://doi.org/10.4230/LIPIcs.CONCUR.2015.58

[11] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. 1998. Symmetry reductions
in model checking. In Computer Aided Veri�cation, Alan J. Hu and Moshe Y. Vardi
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 147–158.

[12] Con�uent. 2018. Hardening Kafka Replication. Online. https://www.con�uent.
io/kafka-summit-sf18/hardening-kafka-replication/ Accessed: 2025-01-14.

[13] James C. Corbett, Je�rey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s globally-distributed
database. In Proceedings of the 10th USENIX Conference on Operating Systems De-
sign and Implementation (Hollywood, CA, USA) (OSDI’12). USENIX Association,
USA, 251–264.

[14] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is
Believing: A Client-Centric Speci�cation of Database Isolation. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (Washington, DC,
USA) (PODC ’17). Association for Computing Machinery, New York, NY, USA,
73–82. https://doi.org/10.1145/3087801.3087802

[15] Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and
Dan Ye. 2022. Di�erentially testing database transactions for fun and pro�t. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–12.

[16] A. Jesse Jiryu Davis, Max Hirschhorn, and Judah Schvimer. 2020. eXtreme
Modelling in Practice. Proc. VLDB Endow. 13, 9 (May 2020), 1346–1358. https:
//doi.org/10.14778/3397230.3397233

[17] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and
Damien Zu�erey. 2013. P: safe asynchronous event-driven programming. SIG-
PLAN Not. 48, 6 (June 2013), 321–332. https://doi.org/10.1145/2499370.2462184

[18] Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia. 2018.
Compositional programming and testing of dynamic distributed systems. Proc.

5056

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/203095.201069
https://doi.org/10.1145/203095.201069
https://github.com/anishathalye/porcupine
https://github.com/anishathalye/porcupine
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/568271.223785
https://doi.org/10.1145/1620585.1620587
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://www.confluent.io/kafka-summit-sf18/hardening-kafka-replication/
https://www.confluent.io/kafka-summit-sf18/hardening-kafka-replication/
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.14778/3397230.3397233
https://doi.org/10.14778/3397230.3397233
https://doi.org/10.1145/2499370.2462184

ACM Program. Lang. 2, OOPSLA, Article 159 (Oct. 2018), 30 pages. https:
//doi.org/10.1145/3276529

[19] Star Dorminey. 2020. Kayfabe: Model-based Program Testing with TLC. In
TLA+ Conference. https://conf.tlapl.us/2020/11-Star_Dorminey-Kayfabe_Model_
based_program_testing_with_TLC.pdf

[20] Tamer Eldeeb, Xincheng Xie, Philip A. Bernstein, Asaf Cidon, and Junfeng Yang.
2023. Chardonnay: Fast and General Datacenter Transactions for On-Disk
Databases. In 17th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 23). USENIX Association, Boston, MA, 343–360. https:
//www.usenix.org/conference/osdi23/presentation/eldeeb

[21] Fauna. 2025. Fauna: Distributed Serverless Database. https://fauna.com/
Accessed: 2025-03-11.

[22] Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. 2004. A read-only transaction
anomaly under snapshot isolation. SIGMOD Rec. 33, 3 (Sept. 2004), 12–14. https:
//doi.org/10.1145/1031570.1031573

[23] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. 2008. Permissiveness
in Transactional Memories. In Distributed Computing, Gadi Taubenfeld (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 305–319.

[24] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[25] Pei Hsin Ho, Thomas Shiple, Kevin Harer, James Kukula, Robert Damiano, Valeria
Bertacco, Jerry Taylor, and Jiang Long. 2000. Smart simulation using collaborative
formal and simulation engines. In Proceedings of the 2000 IEEE/ACM International
Conference on Computer-Aided Design (San Jose, California) (ICCAD ’00). IEEE
Press, 120–126.

[26] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, WanWei, Cong Liu, Jian Zhang, Jianjun Li,
XuelianWu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron,
Liquan Pei, and Xin Tang. 2020. TiDB: a Raft-based HTAP database. Proc. VLDB
Endow. 13, 12 (Aug. 2020), 3072–3084. https://doi.org/10.14778/3415478.3415535

[27] Jepsen. 2024. Jepsen: MySQL 8.0.34. https://jepsen.io/analyses/mysql-8.0.34
Accessed: 2024-11-15.

[28] Kyle Kingsbury. 2019. Jepsen: FaunaDB 2.5.4. https://jepsen.io/analyses/faunadb-
2.5.4 Accessed: 2024-02-04.

[29] Kyle Kingsbury. 2024. Jepsen 15: What Even Are Transactions? https://www.
youtube.com/watch?v=ecZp6cWhDjg Accessed: 2025-02-04.

[30] Kyle Kingsbury and Peter Alvaro. 2020. Elle: inferring isolation anomalies
from experimental observations. Proc. VLDB Endow. 14, 3 (Nov. 2020), 268–280.
https://doi.org/10.14778/3430915.3430918

[31] Martin Kleppmann. 2014. Hermitage: Testing the I in ACID. https://martin.
kleppmann.com/2014/11/25/hermitage-testing-the-i-in-acid.html Accessed:
2025-02-04.

[32] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
2013. MDCC: multi-data center consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems (Prague, Czech Republic) (EuroSys
’13). Association for Computing Machinery, New York, NY, USA, 113–126. https:
//doi.org/10.1145/2465351.2465363

[33] Sandeep S. Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and
Marcelo Leone. 2014. Logical Physical Clocks. In Principles of Distributed Systems,
Marcos K. Aguilera, Leonardo Querzoni, and Marc Shapiro (Eds.). Springer
International Publishing, Cham, 17–32.

[34] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/
359545.359563

[35] Leslie Lamport, John Matthews, Mark Tuttle, and Yuan Yu. 2002. Specifying and
verifying systems with TLA+. In Proceedings of the 10thWorkshop on ACM SIGOPS
European Workshop (Saint-Emilion, France) (EW 10). Association for Computing
Machinery, New York, NY, USA, 45–48. https://doi.org/10.1145/1133373.1133382

[36] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting
More Concurrency from Distributed Transactions. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broom�eld, CO, 479–494. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/mu

[37] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeu�. 2015. How Amazon web services uses formal methods.
Commun. ACM 58, 4 (March 2015), 66–73. https://doi.org/10.1145/2699417

[38] S.C. Ntafos and S.L. Hakimi. 1979. On Path Cover Problems in Digraphs and
Applications to Program Testing. IEEE Transactions on Software Engineering SE-5,
5 (1979), 520–529. https://doi.org/10.1109/TSE.1979.234213

[39] Hongrong Ouyang, Hengfeng Wei, Yu Huang, Haixiang Li, and Anqun Pan. 2021.
Verifying transactional consistency of mongodb. arXiv preprint arXiv:2111.14946
(2021).

[40] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: domain-speci�c fuzzing with waypoints. Proc.
ACM Program. Lang. 3, OOPSLA, Article 174 (Oct. 2019), 29 pages. https:
//doi.org/10.1145/3360600

[41] Andrew Pavlo. 2017. What Are We Doing With Our Lives? Nobody Cares
About Our Concurrency Control Research. In Proceedings of the 2017 ACM In-
ternational Conference on Management of Data (Chicago, Illinois, USA) (SIG-
MOD ’17). Association for Computing Machinery, New York, NY, USA, 3.
https://doi.org/10.1145/3035918.3056096

[42] Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing us-
ing distributed transactions and noti�cations. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI’10). USENIX Association, USA, 251–264.

[43] William Schultz. 2024. Spectacle: Interactive, web-based tool for exploring,
visualizing, and sharing formal speci�cations in TLA+. https://github.com/
will62794/spectacle.

[44] William Schultz, Tess Avitabile, and Alyson Cabral. 2019. Tunable consistency
in MongoDB. Proc. VLDB Endow. 12, 12 (Aug. 2019), 2071–2081. https://doi.org/
10.14778/3352063.3352125

[45] William Schultz, Ian Dardik, and Stavros Tripakis. 2022. Formal veri�cation of a
distributed dynamic recon�guration protocol. In Proceedings of the 11th ACM
SIGPLAN International Conference on Certi�ed Programs and Proofs (Philadelphia,
PA, USA) (CPP 2022). Association for Computing Machinery, New York, NY, USA,
143–152. https://doi.org/10.1145/3497775.3503688

[46] William Schultz and Murat Demirbas. 2025. MongoDB distributed transactions
protocol speci�cations. https://github.com/mongodb-labs/vldb25-dist-txns.

[47] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. 2021. Automated Validation
of State-Based Client-Centric Isolation with TLA +. In Software Engineering and
Formal Methods. SEFM 2020 Collocated Workshops - ASYDE, CIFMA, and CoSim-
CPS, 2020, Revised Selected Papers (Lecture Notes in Computer Science (including
subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioinformat-
ics)), Loek Cleophas and Mieke Massink (Eds.), Vol. Cham. Springer Science and
Business Media Deutschland GmbH, 43–57. https://doi.org/10.1007/978-3-030-
67220-1_4 Publisher Copyright: © 2021, Springer Nature Switzerland AG.; 2nd
International Workshop on Automated and Veri�able Software System Develop-
ment, ASYDE 2020, 2nd International Workshop on Cognition: Interdisciplinary
Foundations, Models and Applications, CIFMA 2020 and 4th International Work-
shop on Formal Co-Simulation of Cyber-Physical Systems, CoSim-CPS 2020
collocated with the 18th International Conference on Software Engineering and
Formal Methods, SEFM 2020 ; Conference date: 14-09-2020 Through 15-09-2020.

[48] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transac-
tional storage for geo-replicated systems. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (Cascais, Portugal) (SOSP
’11). Association for Computing Machinery, New York, NY, USA, 385–400.
https://doi.org/10.1145/2043556.2043592

[49] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Ja�ray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1493–1509. https://doi.org/10.1145/3318464.3386134

[50] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Wal�sh. 2020. Cobra:
Making Transactional Key-Value Stores Veri�ably Serializable. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 63–80. https://www.usenix.org/conference/osdi20/presentation/tan

[51] Ruize Tang, Xudong Sun, Yu Huang, Yuyang Wei, Lingzhi Ouyang, and Xi-
aoxing Ma. 2024. SandTable: Scalable Distributed System Model Checking
with Speci�cation-Level State Exploration. In Proceedings of the Nineteenth Eu-
ropean Conference on Computer Systems (Athens, Greece) (EuroSys ’24). As-
sociation for Computing Machinery, New York, NY, USA, 736–753. https:
//doi.org/10.1145/3627703.3650077

[52] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. 2012. Calvin: fast distributed transactions for par-
titioned database systems. In Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data (Scottsdale, Arizona, USA) (SIG-
MOD ’12). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/2213836.2213838

[53] Misha Tyulenev, Andy Schwerin, Asya Kamsky, Randolph Tan, Alyson Cabral,
and JackMulrow. 2019. Implementation of Cluster-wide Logical Clock and Causal
Consistency in MongoDB. In Proceedings of the 2019 International Conference on
Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for
Computing Machinery, New York, NY, USA, 636–650. https://doi.org/10.1145/
3299869.3314049

[54] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A tax-
onomy of model-based testing approaches. Software Testing, Veri�ca-
tion and Reliability 22, 5 (2012), 297–312. https://doi.org/10.1002/stvr.456
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.456

[55] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corey, Kamal Gupta,
Murali Brahmadesam, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice,
Tengiz Kharatishvilli, and Xiaofeng Bao. 2018. Amazon Aurora: On Avoiding

5057

https://doi.org/10.1145/3276529
https://doi.org/10.1145/3276529
https://conf.tlapl.us/2020/11-Star_Dorminey-Kayfabe_Model_based_program_testing_with_TLC.pdf
https://conf.tlapl.us/2020/11-Star_Dorminey-Kayfabe_Model_based_program_testing_with_TLC.pdf
https://www.usenix.org/conference/osdi23/presentation/eldeeb
https://www.usenix.org/conference/osdi23/presentation/eldeeb
https://fauna.com/
https://doi.org/10.1145/1031570.1031573
https://doi.org/10.1145/1031570.1031573
https://doi.org/10.14778/3415478.3415535
https://jepsen.io/analyses/mysql-8.0.34
https://jepsen.io/analyses/faunadb-2.5.4
https://jepsen.io/analyses/faunadb-2.5.4
https://www.youtube.com/watch?v=ecZp6cWhDjg
https://www.youtube.com/watch?v=ecZp6cWhDjg
https://doi.org/10.14778/3430915.3430918
https://martin.kleppmann.com/2014/11/25/hermitage-testing-the-i-in-acid.html
https://martin.kleppmann.com/2014/11/25/hermitage-testing-the-i-in-acid.html
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/1133373.1133382
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/mu
https://doi.org/10.1145/2699417
https://doi.org/10.1109/TSE.1979.234213
https://doi.org/10.1145/3360600
https://doi.org/10.1145/3360600
https://doi.org/10.1145/3035918.3056096
https://github.com/will62794/spectacle
https://github.com/will62794/spectacle
https://doi.org/10.14778/3352063.3352125
https://doi.org/10.14778/3352063.3352125
https://doi.org/10.1145/3497775.3503688
https://github.com/mongodb-labs/vldb25-dist-txns
https://doi.org/10.1007/978-3-030-67220-1_4
https://doi.org/10.1007/978-3-030-67220-1_4
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/3318464.3386134
https://www.usenix.org/conference/osdi20/presentation/tan
https://doi.org/10.1145/3627703.3650077
https://doi.org/10.1145/3627703.3650077
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/3299869.3314049
https://doi.org/10.1145/3299869.3314049
https://doi.org/10.1002/stvr.456
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.456

Distributed Consensus for I/Os, Commits, and Membership Changes. In Proceed-
ings of the 2018 International Conference on Management of Data (Houston, TX,
USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA,
789–796. https://doi.org/10.1145/3183713.3196937

[56] WiredTiger. 2024. WiredTiger. https://github.com/wiredtiger/wiredtiger
[57] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang

Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST:
Transparent Model Checking of Unmodi�ed Distributed Systems. In 6th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 09). USENIX
Association, Boston, MA. https://www.usenix.org/conference/nsdi-09/modist-
transparent-model-checking-unmodi�ed-distributed-systems

[58] Yuan Yu. 2002. Using formal speci�cations to monitor and guide simulation: Ver-
ifying the cache coherence engine of the Alpha 21364 microprocessor. In Proceed-
ings of the 3rd IEEE International Workshop on Microprocessor Test and Veri�cation
(MTV ’02) (proceedings of the 3rd ieee international workshop on microproces-
sor test and veri�cation (mtv ’02) ed.). Institute of Electrical and Electronics
Engineers, Inc. https://www.microsoft.com/en-us/research/publication/using-
formal-speci�cations-to-monitor-and-guide-simulation-verifying-the-cache-
coherence-engine-of-the-alpha-21364-microprocessor/

[59] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model Checking TLA+
Speci�cations. In Correct Hardware Design and Veri�cation Methods, Laurence
Pierre and Thomas Kropf (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
54–66.

[60] Yugabyte. 2025. YugabyteDB - Distributed SQL Database. https://github.com/
yugabyte/yugabyte-db Accessed: 2025-03-13.

[61] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan R. K. Ports. 2015. Building consistent transactions with inconsistent
replication. In Proceedings of the 25th Symposium on Operating Systems Principles
(Monterey, California) (SOSP ’15). Association for Computing Machinery, New
York, NY, USA, 263–278. https://doi.org/10.1145/2815400.2815404

[62] Jian Zhang, Ye Ji, ShuaiMu, and Cheng Tan. 2023. Viper: A Fast Snapshot Isolation
Checker. In Proceedings of the Eighteenth European Conference on Computer
Systems (Rome, Italy) (EuroSys ’23). Association for Computing Machinery, New
York, NY, USA, 654–671. https://doi.org/10.1145/3552326.3567492

[63] Siyuan Zhou and Shuai Mu. 2021. Fault-Tolerant Replication with Pull-Based
Consensus in MongoDB. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). USENIX Association, 687–703. https:
//www.usenix.org/conference/nsdi21/presentation/zhou

5058

https://doi.org/10.1145/3183713.3196937
https://github.com/wiredtiger/wiredtiger
https://www.usenix.org/conference/nsdi-09/modist-transparent-model-checking-unmodified-distributed-systems
https://www.usenix.org/conference/nsdi-09/modist-transparent-model-checking-unmodified-distributed-systems
https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://www.microsoft.com/en-us/research/publication/using-formal-specifications-to-monitor-and-guide-simulation-verifying-the-cache-coherence-engine-of-the-alpha-21364-microprocessor/
https://github.com/yugabyte/yugabyte-db
https://github.com/yugabyte/yugabyte-db
https://doi.org/10.1145/2815400.2815404
https://doi.org/10.1145/3552326.3567492
https://www.usenix.org/conference/nsdi21/presentation/zhou
https://www.usenix.org/conference/nsdi21/presentation/zhou

	Abstract
	1 Introduction
	2 Background
	3 Distributed Transactions Protocol
	3.1 Overview
	3.2 Timestamp Semantics
	3.3 2PC Bypass Optimizations
	3.4 Speculative Majority and Durability
	3.5 Router Recovery and Failover
	3.6 Isolation Guarantees

	4 Modular Specification
	4.1 TLA+
	4.2 Specification Overview
	4.3 Storage Layer Model
	4.4 Checking Isolation
	4.5 Permissiveness

	5 Model-Based Verification
	5.1 Test Case Generation
	5.2 Results and Discussion

	6 Related Work
	7 Conclusions and Future Work
	References

