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ABSTRACT
Approximate nearest neighbor search (ANNS) is a fundamental

problem in vector databases and AI infrastructures. Recent graph-

based ANNS algorithms have achieved high search accuracy with

practical efficiency. Despite the advancements, these algorithms

still face performance bottlenecks in production, due to the random

memory access patterns of graph-based search and the high compu-

tational overheads of vector distance. In addition, the performance

of a graph-based ANNS algorithm is highly sensitive to parameters,

while selecting the optimal parameters is cost-prohibitive, e.g., man-

ual tuning requires repeatedly re-building the index. This paper

introduces VSAG, an open-source framework that aims to enhance

the in production performance of graph-based ANNS algorithms.

VSAG has been deployed at scale in the services of Ant Group, and

it incorporates three key optimizations: (i) efficient memory access:
it reduces L3 cache misses with pre-fetching and cache-friendly

vector organization; (ii) automated parameter tuning: it automat-

ically selects performance-optimal parameters without requiring

index rebuilding; (iii) efficient distance computation: it leverages
modern hardware, scalar quantization, and smartly switches to

low-precision representation to dramatically reduce the distance

computation costs. We evaluate VSAG on real-world datasets. The

experimental results show that VSAG achieves the state-of-the-art

performance and provides up to 4× speedup over HNSWlib (an

industry-standard library) while ensuring the same accuracy.

PVLDB Reference Format:
Xiaoyao Zhong, Haotian Li, Jiabao Jin, Mingyu Yang, Deming Chu,

Xiangyu Wang, Zhitao Shen, Wei Jia, George Gu, Yi Xie, Xuemin Lin, Heng

Tao Shen, Jingkuan Song, Peng Cheng. VSAG: An Optimized Search

Framework for Graph-based Approximate Nearest Neighbor Search.

PVLDB, 18(12): 5017 - 5030, 2025.

doi:10.14778/3750601.3750624

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/antgroup/vsag.

1 INTRODUCTION
At Ant Group [1], we have observed an increasing demand to man-

age large-scale high-dimensional vectors across different depart-

ments. This demand is fueled by two factors. First, the advent of

Retrieval-Augmented Generation (RAG) for large language mod-

els (LLMs) [22, 36] requires vector search to address issues such

as hallucinations and outdated information. Second, the explosive

growth of unstructured data (e.g., documents, images, and videos),

requires efficient analysis and storagemethods. Many systems trans-

form these unstructured data into embedding vectors for efficient

retrieval, e.g., Alipay’s facial-recognition payment [2], Google’s

image search [24], and YouTube’s video search [57].

Approximate nearest neighbor search (ANNS) is the foundation

for these AI and LLM applications. Due to the curse of dimension-

ality [27], exact nearest neighbor search becomes prohibitively

expensive as dimensionality grows. ANNS, however, trades off a

small degree of accuracy for a substantial boost in efficiency, estab-

lishing itself as the gold standard for large-scale vector retrieval.

Recently, graph-based ANNS algorithms (e.g., HNSW [40] and

VAMANA [29]) successfully balance high recall with practical

runtime performance. These methods typically construct a graph,

where each node is a vector and each edge connects nearby vector

pairs. During a query, an approximate 𝑘-nearest neighbor search

starts from a random node and greedily moves closer to the query

vector 𝑥𝑞 , thereby retrieving its 𝑘 nearest neighbors.

Despite their success, existing graph-based ANNS solutions

still face considerable performance challenges. First, they incur
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Table 1: Comparison to Existing Algorithms (GIST1M).
Metric IVFPQFS [4] HNSW [40] VSAG (this work)

Memory Footprint 3.8G 4.0G 4.5G

Recall@10 (QPS=2000) 84.57% 59.46% 89.80%

QPS (Recall@10=90%) 1195 511.9 2167.3

Distance Computation Cost 0.71ms 1.62ms 0.1ms

L3 Cache Miss Rate 13.98% 94.46% 39.23%

Parameter Tuning Cost >20h >60h 2.92h

Parameter Tuning manual manual auto

random memory-access overhead, since graph traversals with ar-

bitrary jumps often lead to frequent cache misses and elevated

costs. Second, repeated distance computations across candidate vec-
tors can dominate total runtime, especially when vectors are high-

dimensional. Finally, performance is highly sensitive to parameter
settings (e.g., maximum node degree and candidate pool size), yet

adjusting these parameters generally requires rebuilding the index,

which can take hours or even days. We use a small example from

our experiments to illustrate these issues:

Modern production systems [34, 51] typically employ vector

quantization to reduce the distance computation cost. Therefore,

we set our baseline as HNSW with SQ4 quantization [61]. We

conduct 1,000 vector queries on the GIST1M. In what follows, we

report the performance limitations of graph-based ANNS algo-

rithms, using the experimental evidence of the baseline: (i) high
memory access cost: each query needs over 2,959 random vector

accesses (total 1.4MB), causing a 67.42% L3 cache miss rate. The

memory-access operations consume 63.02% of the search time. (ii)
high parameter tuning cost: if we use the optimal parameters instead

of the manually selected values, the QPS can increase from 1,530 to

2,182, by 42.6%. However, brute-force tuning of parameters takes

more than 60 hours, which is prohibitively expensive. (iii) high
distance computation cost: distance computations still take 26.12%

of the search time despite using SQ4 quantization.

Contributions. This paper presents VSAG, an open-source frame-

work for enhancing the in-production efficiency of graph-based

ANNS algorithms. The optimizations of VSAG are in three-fold. (i)
Efficient Memory Access: during graph-based search, it pre-fetches

the neighbor vectors, and creates a continuous copy of the neighbor

vectors for some vertices. This cache-friendly design can reduce L3

cache misses. (ii) Automated Parameter Tuning: VSAG can automat-

ically tune parameters for environment (e.g., prefetch depth), index

(e.g., max degree of graph), and query (e.g., candidate size). Suppose

there are 3 index parameters and 5 choices for each parameter. The

tuned index parameters of VSAG offer similar performance to that

of brute-force tuning, which needs to enumerate all 5
3
combina-

tions of parameters leading to a total tuning time of 5
3
times of

index construction time. On the contrast, the tuning cost of VSAG
is only 2-3 times of index construction time. (iii) Efficient Distance
Computation: VSAG provides various approximate distance tech-

niques, such as scalar quantization. All distance computation is

well optimized with modern hardware, and a selective re-ranking

strategy is used to ensure retrieval accuracy.

Table 1 compares the performance of VSAG with existing works

on GIST1M. The results show that VSAG alleviates the performance

challenges in memory access, parameter tuning, and distance com-

putation, thus providing higher QPS with the same recall rate.

In summary, we make the following contributions:

Table 2: Symbols and Descriptions.

Symbol Description
𝐷 the base dataset

𝐺 the graph index

𝐿 the labels of edges

𝜏𝑙 , 𝜏ℎ the distance function with low precision and high precision

𝑥, 𝑥𝑏 , 𝑥𝑞 , 𝑥𝑛 a normal, base, query, and neighbor vector

𝑁𝑁𝑘 (𝑥 ), 𝐴𝑁𝑁𝑘 (𝑥 ) the 𝑘 nearest and approximate 𝑘 nearest neighbors of 𝑥
𝑒𝑓𝑠 , 𝑒 𝑓𝑐 the candidate pool size in search and construction phase

𝛼𝑠 , 𝛼𝑐 the pruning rate used in search and construction phase

𝑚𝑠 ,𝑚𝑐 the maximum degree of graph used in search and construction phase

𝜔 prefetch stride

𝜈 prefetch depth

𝛿 redundancy ratio

1. We enhance the memory access of VSAG in §3. The L3 cache

miss rate of VSAG is much less than that of other graph-based

ANNS works.

2. We propose automatic parameter tuning for VSAG in §4. It

automatically selects performance-optimal parameters that are

comparable to grid search without requiring index rebuilding.

3. We accelerate VSAG in distance computation in §5. Compared

with other graph-based ANNS works, VSAG requires much less

time for distance computation.

4. We evaluate the algorithms on real datasets with sizes up to 100

million vectors in §6. The results show that VSAG can achieve

the SOTA performance and outperform HNSWlib by up to 4×
in QPS under the same recall guarantee.

2 OVERVIEW OF VSAG FRAMEWORK
This section provides an overview of our VSAG framework, which

includes memory access optimization, automatic parameter tuning,

and distance computation optimization. As shown in Figure 1, VSAG
integrates these optimizations into different phases of the search

process. First, the PRS manages the storage of vector data and graph

indexes. It stores low-precision quantized codes of vectors alongside

high-precision original vectors to support distance computation

optimization. This redundant storage is also utilized to balance

resource usage and reduce memory access costs. Second, during

each hop of the search process when exploring a vector, we employ

Deterministic Access Greedy Search to accelerate memory access

by minimizing cache misses. Finally, the visited results are pushed

into a heap. We apply Selective Re-rank to combine low- and high-

precision distances, ensuring effective search performance. The

search process then pops the nearest unfinished point from the

heap and proceeds to the next hop. Throughout the entire life-cycle

of the index, VSAG uses a smart auto-tuner to select parameters that

deliver the best search performance across varying environments

and retrieval requirements. We will now detail the three main

optimizations used in VSAG. The symbols used in this paper are

listed in Table 2.

2.1 Memory Access Optimization
Deterministic Access. Distance computations for neighboring

vectors often incur random memory access patterns in graph-based

algorithms, leading to significant cache misses. VSAG addresses

this by integrating software prefetching [6] (i.e., _mm_prefetch)
through a Deterministic Access strategy (see §3.2.1). VSAG strategi-

cally inserts prefetch instructions during and before critical compu-

tations, proactively loading target data into L3/higher-level caches.

5018



𝑥!	 𝑥#	 𝑥$	𝑥%	 𝑥&	 𝑥'	 𝑥(	𝑥)	 𝑥%*	𝑥+	

Q Code (e.g., SQ-4) …… Q Code (e.g., SQ-4)

Computing Prefetching

Async Prefetch During Computing

Only Prefetch Valid Neighbors

𝑥!	 𝑥#	 𝑥$	𝑥%	 𝑥&	 𝑥'	 𝑥(	𝑥)	 𝑥%*	𝑥+	

Stride Prefetch

Redundant
Storage

Redundant 
Neighbors

Original
Vector

PRS Deterministic Access Greedy Search

Distance

Distance 
Threshold 

Precision Filter 

Selective
Re-rank

Pop Heap and Visit

Flat
Storage

Result
Push
Heap

Self-Tuned
Parameters

p Environment-level
p Query-level
p Index-level

Quantized Code

Q Code Norm

Metric Transform

Code
Layout

Id𝛿 = 0.5

Figure 1: The Search Framework of VSAG.

This prefetch-pipeline overlap ensures data availability before sub-

sequent computation phases begin, effectively mitigating cache

miss penalties. Furthermore, the VSAG framework effectively miti-

gates suboptimal prefetch operations through batch processing and

reordering of the access sequence.

PRS. VSAG introduces a Partial Redundant Storage (PRS) design
(see §3.3), which provides a flexible and high-performance storage

foundation to optimize both distance computations and memory

access while balancing storage and computational resource usage.

In production environments constrained by fixed hardware config-

urations, such as 4C16G (i.e., equipped with 4 CPU cores and 16GB

of memory) and 2C8G (i.e., equipped with 2 CPU cores and 8GB

of memory), most algorithms frequently exhibit resource utiliza-

tion imbalances between computational and memory subsystems.

During computational processes, CPUs frequently encounter idle

cycles caused by cache misses, which hinders their ability to achieve

optimal utilization, and thereby limits the system’s QPS.

To address this challenge, the PRS framework Redundantly Stor-
ing Vectors (see §3.3.2) that embeds compressed neighbor vectors

at each graph node. This architectural design enables batched dis-

tance computations while leveraging more efficientHardware-based
Prefetch [11] (see §3.3.1) tomaintain high cache hit rates. By incorpo-

rating advanced quantization methods [21, 31], PRS achieves high

vector storage compression ratios, thereby maintaining acceptable

storage overhead despite data redundancy.

Balance of Resources. In particular, the system uses a parameter

called the redundancy ratio 𝛿 to control the Balance of Computa-
tional Efficiency and Memory Utilization (see §3.3.3). In compute-

bound scenarios with high-throughput demands, VSAG adaptively

increases the redundancy ratio to mitigate cache contention, thus

minimizing CPU idle cycles during memory access while preserv-

ing storage efficiency. In contrast, in memory-constrained low-

throughput scenarios, the framework strategically reduces redun-

dancy ratio to optimize the index-memory footprint. Undermemory-

constrained conditions, this optimization enables deployment on

reduced instance tiers, thereby curtailing compute wastage.

2.2 Automatic Parameter Tuning
VSAG addresses parameter selection complexity through a tri-

partite classification system with specialized optimization strate-

gies: environment-level, query-level, and index-level parameters.

Environment-level parameters (e.g., prefetch stride 𝜔) exclusively

influence query-per-second (QPS) performance without recall rate

impacts, thus incurring the lowest tuning overhead. Query-level

parameters (e.g., candidate set size 𝑒 𝑓𝑠 [41]) exhibit moderate tun-

ing costs by jointly affecting QPS and recall, requiring adjustment

based on query vector distributions. Index-level parameters (e.g.,

maximum degree𝑚𝑐 [41]) demand the highest tuning investment

due to their tripartite impact on QPS, recall, and index construction

time – parameter validation necessitates multiple index rebuilds.

• Environment-level Parameters (see §4.2): VSAG employs a grid

search to identify optimal configurations for peak QPS perfor-

mance through systematic parameter space exploration.

• Query-level Parameters (see §4.3):VSAG implementsmulti-granular

tuning strategies, including fine-grained adaptive optimization
that dynamically adjusts parameters based on real-time query

difficulty assessments.

• Index-level Parameters (see §4.4): VSAG introduces a novel mask-

based index compression technique that encodes multiple pa-

rameter configurations into an unified index structure. During

searches, edge-label filtering dynamically emulates various con-

struction parameters, thereby reducing index-level parameters

to query-level equivalents while keeping a single physical index.

2.3 Distance Computation Optimization
Distance computation is a main overhead in vector retrieval, and

its cost increases significantly with the growth of vector dimen-

sions. Quantization methods (see §5.2) can effectively accelerate

distance computation. For example, under identical instruction set

architectures, AVX512 [28] can process 4× as many INT8 data per
instruction compared to FLOAT32 values. However, naive quanti-

zation approaches often result in significant accuracy degradation.

VSAG uses Selective Re-rank (see §5.3) to improve efficiency with-

out sacrificing the search accuracy. Furthermore, specific distance

metrics (i.e., euclidean distance) can be strategically decomposed
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Figure 2: Passive Memory Access and Software-based Prefetch.

and precomputed, effectively reducing the number of required in-

structions during actual search operations.

3 MEMORY ACCESS OPTIMIZATION
Graph-based algorithms suffer from random memory access pat-

terns that incur frequent cache misses. The fundamental strategy

for mitigating cache-related latency lies in effectively utilizing vec-

tor computation intervals to prefetch upcoming memory requests

into cache. In VSAG, three primary optimization strategies emerge

for maximizing cache utilization efficiency:

• Leveraging software prefetching to improve cache hit rates.

• Optimizing search patterns to enhance the effectiveness of soft-

ware prefetching.

• Optimizing the memory layout of indexes to efficiently utilize

hardware prefetching.

3.1 Software-based Prefetch: Making Random
Memory Accesses Logically Continuous

As shown in Figure 2, when computing vector distances, the vector

is loaded sequentially from a segment of memory. The CPU fetches

data from memory in units of cache lines [50]. Consequently, mul-

tiple consecutive cache fetch operations are triggered for a single

distance computation.

Example 1. Take standard 64-byte cache line architectures as
an example. The 960-dimensional vector of GIST1M stored as float32
format necessitates 960 × 4/64 = 60 cache line memory transactions,
demonstrating significant pressure on memory subsystems.

This passive caching mechanism creates operational inefficien-

cies by extensively fetching data only upon cache misses, resulting

in synchronous execution bottlenecks. As illustrated in Figure 2, the

orange timeline shows how the regular ANNS algorithm serializes

the computation and memory access phases: Each cache line fill

(analogous to blocking I/O) stalls computation until completion. The

accumulated latency from successive cache line transfers introduces

a significant constant factor in complexity analysis, particularly in

memory-bound scenarios with poor data locality.

Software-based Prefetch.ModernCPUs support software prefetch

instructions, which can asynchronously load data into different

levels of the cache [6]. By leveraging the prefetch instruction to

preload data, we can achieve a near-sequential memory access

pattern from the CPU level. This indicates that data is preloaded
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Figure 3: Three Different Prefetching Strategies

into the cache before the CPU requires it, thereby preventing dis-

ruptions in the computational flow caused by random memory

address loads. More specifically, prior to computing the distance

for the current neighbor, the vector for the next neighbor can be

prefetched. As detailed in Figure 2, the green flow represents the use

of prefetching. From the perspective of the CPU, the majority of dis-

tance computations make use of data that has already been cached.

Furthermore, because prefetching operates asynchronously, it does

not obstruct ongoing computations. The synergy of asynchronous

prefetching and immediate data access optimizes the utilization

of CPU computational resources, thereby substantially enhancing

search performance.

3.2 Deterministic Access Greedy Search:
Advanced Prefetch Validity

In §3.1, the software-based prefetch mechanism initiates the fetch-

ing of next-neighbor vector upon completion of each neighbor com-

putation. However, this method results in redundant operations

because previously visited neighbors that do not require distance

computations still generate prefetch time cost. Example 2 illustrates

the inherent limitations of previous prefetch schemes:

Example 2. In Figure 3(a), 𝑥2 and 𝑥3 have already been visited,
and the distances do not need to be recomputed. This renders the
previous prefetching of these vectors ineffective. Additionally, when
computing 𝑥4, the prefetch may also fail due to the prefetching gap
being too short.

In this section, we present two dedicated strategies to address

the aforementioned prefetching challenges.

3.2.1 Deterministic Access. In contrast to prefetching during edge

access checks, VSAG exclusively prefetches only those edges that

have not been accessed. The mechanism begins by batch-processing

all neighbor nodes to determine their access status. Following

this, unvisited neighbors are logically grouped, and prefetching

is performed collectively. This strategic approach ensures that each

prefetchedmemory address corresponds exclusively to computation-

essential data, thereby enhancing prefetching efficiency and mini-

mizing redundant memory operations.

3.2.2 Stride Prefetch. Batch processing ensures that each prefetch

retrieves data intended for future use. However, prefetch effective-

ness varies due to the asynchronous nature of prefetching and the

absence of a callback mechanism to confirm prefetch completion.
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Algorithm 1: Deterministic Access Greedy Search

Input: graph𝐺 , labels 𝐿, base dataset 𝐷 , initial nodes 𝐼 , query

point 𝑥𝑞 , low- and high- precision distance functions 𝜏𝑙 and

𝜏ℎ , search parameters 𝑘 , 𝑒 𝑓𝑠 ,𝑚𝑠 , 𝛼𝑠 , 𝜔 , 𝜈

Output: 𝐴𝑁𝑁𝑘 (𝑥𝑞 ) and their high-precision distances𝑇

1 candidate pool𝐶 ← maximum-heap with size of 𝑒 𝑓𝑠

2 visited set𝑉 ← ∅
3 insert (𝑥𝑖 , 𝜏𝑙 (𝑥𝑖 , 𝑥𝑞 ) ), ∀𝑥𝑖 ∈ 𝐼 into𝐶
4 while𝐶 has un-expended nodes do
5 𝑥𝑖 ← closest un-expended nodes in𝐶

6 𝑁 ← empty list

7 for 𝑗 ∈ 𝐺𝑖 do
// Only retrieve Id(i.e., 𝑥 𝑗 .𝑖𝑑 = 𝑗)

8 if 𝑗 ∉ 𝑉 and 𝐿𝑗 ≤ 𝛼𝑠 and |𝑁 | <𝑚𝑠 then
9 𝑁 ← 𝑁 ∪ { 𝑗 }

10 𝑉 ← 𝑉 ∪ { 𝑗 }

11 for 𝑘 ∈ [0,𝑚𝑖𝑛 (𝜔, |𝑁 | ) ) do
12 prefetch 𝜈 cache lines start from 𝐷𝑁𝑘

13 for 𝑘 ∈ [0, |𝑁 | ) do
14 if 𝑘 +𝜔 < |𝑁 | then
15 prefetch 𝜈 cache lines start from 𝐷𝑁𝑘+𝜔

16 𝑥 𝑗 ← 𝐷𝑁𝑘
// Memory Access

17 insert (𝑥 𝑗 , 𝜏𝑙 (𝑥 𝑗 , 𝑥𝑞 ) ) into𝐶 and keep |𝐶 | ≤ 𝑒 𝑓𝑠

18 𝐴𝑁𝑁𝑘 (𝑥𝑞 ),𝑇 ← selective re-rank𝐶 with 𝜏𝑙 and 𝜏ℎ

19 return 𝐴𝑁𝑁𝑘 (𝑥𝑞 ),𝑇

Optimal performance occurs when the required data reside in the

cache precisely when the computation flow demands it. Premature

prefetching risks cache eviction, while delayed prefetching negates

performance gains. This necessitates balancing prefetch timing

with computation duration. To address this, stride prefetching dy-

namically aligns hardware computation throughput with software

prefetching rates, maximizing prefetch utility. The key parameter,

the prefetch stride𝜔 [49], determines how many computation steps

occur before each prefetch. Adjusting 𝜔 is crucial, and in §4.2, we

propose an automated strategy to select its optimal value.

Example 3. As detailed in Figure 3(b), the adjusted pattern demon-
strates that during batch processing, the Deterministic Access strat-
egy eliminates the need to access 𝑥2 and 𝑥3. Consequently, the search
logic progresses from 𝑥1 directly to 𝑥4. This sequence modification
enables the prefetch mechanism to target 𝑥4 while computing 𝑥1. Fig-
ure 3(c) further reveals the temporal characteristics of asynchronous
prefetching: The data loading process requires two vector computation
cycles to populate the cache line. When computation for 𝑥1 initiates,
only the 𝑥4 vector can be prefetched. After the computations of 𝑥1 and
𝑥4, the Stride Prefetch strategy ensures timely cache population of
𝑥6 data, which is immediately available for subsequent computation.

DeterministicAccessGreedy Search.The cache-optimized search

algorithm is formalized in Algorithm 1. The graph index 𝐺 con-

stitutes an oriented graph that maintains base vectors along with

their neighbors. The labels 𝐿 of edges in 𝐺 are used for automatic

index-level parameters tuning (see §4). We use 𝐺𝑖 and 𝐿𝑖 to indi-

cate the out-edges and labels of 𝑥𝑖 . The low- and high-precision

distance functions 𝜏𝑙 and 𝜏ℎ are used to accelerate distance compu-

tation while maintaining search accuracy, and they are employed

in the selective re-ranking process (see §5). The complete algorithm

explanation is provided in Appendix A of our report [60].

3.3 PRS: Flexible Storage Layout Boosting
Search Performance

While incorporating well-designed prefetch patterns into search

processes can theoretically improve performance, the inherent lim-
itations of Software-based Prefetch prevent guaranteed mem-

ory availability for all required vectors. This phenomenon can

be attributed to multiple fundamental constraints: (a) Prefetch in-

structions remain advisory operations rather than mandatory com-

mands. Even when optimal prefetch patterns are implemented,

their actual execution cannot be assured. (b) Cache line contention

represents another critical challenge. In multi-process environ-

ments, aggressive prefetch strategies may induce L3 cache pol-

lution through premature data loading. (c) The intrinsic cost dispar-

ity between prefetch mechanisms further compounds these issues.

Software-based prefetching intrinsically carries higher operational

costs and demonstrates inferior efficiency compared to hardware-

implemented alternatives.

3.3.1 Hardware-based Prefetch. Hardware-based prefetching re-

lies on hardware mechanisms that adaptively learn from cache

miss events to predict memory access patterns. The system em-

ploys a training buffer that dynamically identifies recurring data

access sequences to automatically prefetch anticipated data into the

cache hierarchy. Compared to software-controlled prefetching, this

hardware approach demonstrates better runtime efficiency while

functioning transparently at the architectural level. The training

mechanism shows particular effectiveness for Sequential Memory
Access patterns [9], where it can rapidly detect and exploit sequen-

tial memory access characteristics. This optimization proves partic-

ularly beneficial for space-partitioned index structures like inverted

file-based index [32], where vectors belonging to the same partition

maintain contiguous storage allocation. Conversely, graph-based

indexing architectures exhibit irregular access patterns with poor

spatial locality, resulting in inefficient Random Memory Access [9].
The inherent randomness of access sequences prevents the training

buffer from establishing effective pattern recognition models.

3.3.2 Redundantly Storing Vectors. VSAG integrates the benefits

of space-partitioned indexes into graph-based indexing algorithms

through redundant vector storage. By co-locating neighbor lists

with their corresponding vectors within each node’s data structure,

it achieves Sequential Memory Access. This design ensures that

neighbor retrieval operations only require sequential access within

contiguous memory regions, thereby fully leveraging hardware

prefetching [11] capabilities.

Example 4. As illustrated in Figure 1, consider 10 vectors stored
contiguously in memory. Even when accessing 𝑥1 through 𝑥5 where 𝑥2
and 𝑥3 are not immediately required, hardware prefetchers can still
proactively load 𝑥4 into cache. This behavior stems from the memory
locality created by storing adjacent vectors (𝑥1 to 𝑥5) in consecutive
memory addresses. The consistent memory layout and predictable
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Figure 4: Adjust Redundant Ratio 𝛿

access patterns effectively compensate for software-based prefetching
inefficiencies through hardware optimizations.

3.3.3 Balance of Computational Efficiency and Memory Utiliza-
tion. To address the computational-memory resource imbalance

caused by fixed instance specifications (e.g., 4C16G, 2C8G) in indus-

trial applications, we propose PRS to take advantage of hardware

prefetching to reduce CPU idle time. A dynamically tunable re-
dundancy ratio 𝛿 controls the proportion of redundantly stored

neighbor vectors in graph indexes, balancing prefetch efficiency

and CPU utilization. When 𝛿 = 1, full redundancy maximizes hard-

ware prefetch benefits, achieving peak CPU utilization at the cost of

higher memory consumption. In contrast, 𝛿 = 0 eliminates redun-

dancy to minimize memory usage but sacrifices prefetch efficiency.

This flexibility enables workload-aware resource optimization as

shown in Example 5.

Example 5. For high-throughput/high-recall scenarios (Fig. 4 (a)),
increasing 𝛿 = 1 prioritizes CPU efficiency to meet demanding targets
with fewer compute resources. In memory-constrained environments
with moderate throughput requirements (Fig. 4 (b)), reducing 𝛿 = 0

alleviates memory pressure while allowing instance downsizing (e.g.,
4C16G to 2C8G), which maintains service quality through controlled
compute scaling and reduces infrastructure costs.

4 AUTOMATIC PARAMETER TUNING
4.1 Parameter Classification
We observe that specific parameters in the retrieval process exert a

significant influence [56] on the search performance (e.g., prefetch

depth 𝜈 , construction ef 𝑒 𝑓𝑐 , search ef 𝑒 𝑓𝑠 , and candidate pool size

𝑚𝑐 ). These parameters can be systematically categorized into three

distinct types for discussion: Environment-Level Parameters (ELPs),

Query-Level Parameters (QLPs), and Index-Level Parameters (ILPs).

ELPs primarily affect the efficiency (QPS) of the retrieval process

and are directly related to the retrieval environment (e.g., prefetch

stride 𝜔 , prefetch depth 𝜈). Most of these parameters are associated

with the execution speed of system instructions rather than the

operational flow of the algorithm. For instance, prefetch-related pa-

rameters mainly influence the timing of asynchronous operations.

QLPs inherently influence both retrieval efficiency (QPS) and ef-

fectiveness (Recall) simultaneously. These parameters operate on

prebuilt indexes and can be dynamically configured during the re-

trieval phase (e.g., search parameter 𝑒 𝑓𝑠 , selective reranking strate-

gies). In particular, efficiency and effectiveness exhibit an inherent

trade-off: For a static index configuration, achieving higher QPS

inevitably reduces Recall performance.

ILPs define an index’s core structure and performance. Tuning

the construction-related parameters (e.g.,𝑚𝑐 , 𝛼𝑐 ) requires rebuild-

ing indexes. It is a process far more costly than adjusting QLPs

or EIPs. Crucially, ILPs impact both efficiency and effectiveness

simultaneously.

Hardness. The complexity of tuning these three parameter cate-

gories shows a progressive increase. ELPs focus solely on algo-

rithmic efficiency, resulting in a straightforward single-objective

optimization problem. In contrast, QLPs require balancing both effi-

ciency and effectiveness criteria, thereby forming a multi-objective

optimization challenge. The most demanding category, ILPs, ne-

cessitates substantial index construction time in addition to the

aforementioned factors, leading to exponentially higher tuning

expenditures. In subsequent sections, we present customized opti-

mization strategies for each parameter category.

4.2 Search-based Automatic ELPs Tuner
The proposed algorithm utilizes multiple ELPs that exhibit substan-

tial variance in optimal configurations in different testing environ-

ments and methodologies, as demonstrated by our comprehensive

experimental analysis (see §6). As elaborated in §3.2.2, the stride

prefetch mechanism operates through two crucial parameters: the

prefetch stride𝜔 and the prefetch depth 𝜈 . The parameter𝜔 governs

the prefetch timing based on the dynamic relationship between

the CPU computational speed and the prefetch latency within spe-

cific deployment environments. In particular, smaller 𝜔 values are

required to initiate earlier prefetching when faced with faster com-

putation speeds or slower prefetch latencies. Meanwhile, the 𝜈

parameter is primarily determined by the CPU’s native prefetch

patterns combined with vector dimensionality characteristics.

These environment-sensitive parameters exclusively influence

algorithmic efficiency metrics (e.g., QPS) while maintaining consis-

tent effectiveness outcomes (e.g., Recall), thereby enabling indepen-

dent optimization distinct from core algorithmic logic. The VSAG
tuning framework implements an optimized three-step procedure:

1. Conduct an exhaustive grid search for all combinations of

environment-dependent parameter.

2. Evaluate performance metrics using sampled base vectors.

3. Select parameter configurations that maximize retrieval speed

while maintaining operational stability.

4.3 Fine-Grained Automatic QLPs Tuner
Observation. There are significant differences in the parameters

required for different queries to achieve the target recall rate, with a

highly skewed distribution. Specifically, 99% of queries can achieve

the target recall rate with small query parameters, while 1% of

queries require much larger parameters. Experimental results show

that assigning personalized optimal retrieval parameters to each

query can improve retrieval performance by 3–5 times.

To address the observation of QLPs, we propose a Decision
Model for query difficulty classification, enabling personalized

parameter tuning while maintaining computational efficiency. We

introduce a learning-based adaptive parameter selection framework

through a GBDT classifier [10] with early termination capabilities,

demonstrating superior performance in fixed-recall scenarios. The
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model architecture addresses two critical constraints: discrimina-

tive power and computational efficiency. Our feature engineering

process yields the following optimal feature set:

• Cardinality of scanned points

• Distribution of distances among current top-5 candidates

• Temporal distance progression in recent top-5 results

• Relative distance differentials between top-K candidates and

optimal solution

The candidate size is initially set to a relatively large value (e.g.,

𝑒 𝑓𝑠 = 300). During the search process, after traversing certain hops

in the graph, we employ the decision tree along with the current

features to determine whether the candidate size should be reduced,

which effectively prevents overly simple queries from undergoing

extensive and unnecessary search process.

4.4 Labeling-based Automatic ILPs Tuner
Impact of ILPs. The retrieval efficiency and effectiveness of graph-

based indexes are fundamentally determined by their structural

properties. Modifications to ILPs (e.g., maximum degree𝑚𝑐 [30, 41],

pruning rate 𝛼𝑐 [30]) induce concurrent alterations in both graph

topology and search dynamics [55], creating non-linear interactions

between retrieval speed and accuracy. Rebuilding the index while

tuning ILPs is computationally expensive(typically taking 2-3 hours

per parameter configuration for million-scale datasets).

4.4.1 Compression-Based Construction Framework. We empirically

observe that indexes constructed with varying ILPs exhibit substan-

tial edge overlap. As formalized in Theorem 4.1, when maintaining

a fixed pruning rate 𝛼 , a graph built with lower maximum degree

𝑚𝑐 constitutes a strict subgraph of its higher-degree counterpart.

Theorem 4.1. (Maximum Degree-Induced Subgraph Hierarchy)
Let 𝐺𝑎 and 𝐺𝑏 denote indexes constructed with maximum degrees
𝑚𝑐 = 𝑎 and𝑚𝑐 = 𝑏 respectively, under identical initialization condi-
tions and fixed 𝛼 . Given equivalent greedy search outcomes ANN𝑘 (𝑥)
for all points 𝑥 under both configurations, then 𝑎 < 𝑏 =⇒ 𝐺𝑎 ⊂ 𝐺𝑏

where ∀(𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐸 (𝐺𝑎), (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐸 (𝐺𝑏 ).

Proof. Please refer to Appendix B of our report [60]. □

The lifecycle of the index in VSAG is divided into three distinct
phases: building, tuning, and searching. In contrast, traditional

indexing frameworks typically consist of only two phases: building

and searching. They select edges to construct the index structure

using a set of fixed index-level parameters. The reason behind our
design is that we believe it is insufficient to rely solely on the raw
data for selecting edges during the construction phase. These param-

eters may need to be dynamically adjusted based on varying user

requirements and query complexities.

VSAG employs an index compression strategy that constructs the

index once using relaxed ILPs while labeling edges with specific

ILPs. Then, VSAG can dynamically select edges by leveraging la-

bels, shifting the edge selection process from the index construction

phase to the tuning phase. It enables adaptive edge selectionwithout

index reconstruction. Thus, it achieves equivalent search perfor-

mance to maintaining multiple indexes with different parameter

configurations, while incurring only the overhead of construct-

ing a single index. The parameter labeling mechanism maintains

Algorithm 2: Prune-based Labeling

Input: base points 𝑥𝑖 , approximate nearest neighbors ANN𝑘 (𝑥𝑖 )
and related distances𝑇𝑖 sorted by distance in ascending

order, pruning rates 𝐴 sorted in ascending order, maximum

degree𝑚𝑐 , reverse insertion position 𝑟

Output: neighbors list𝐺𝑖 and labels list 𝐿𝑖 of point 𝑥𝑖

1 initialize neighbors list𝐺𝑖,𝑟 : ← ANN𝑘 (𝑥𝑖 )𝑟 :
2 initialize neighbors labels list 𝐿𝑖,𝑟 : with 0

3 𝑐𝑜𝑢𝑛𝑡 ← 𝑟

4 foreach 𝛼𝑐 ∈ 𝐴 and 𝑐𝑜𝑢𝑛𝑡 <𝑚𝑐 do
5 foreach 𝑗 ∈ 𝐺𝑖,𝑟 : and 𝑐𝑜𝑢𝑛𝑡 <𝑚𝑐 do
6 if 𝐿𝑖,𝑗 ≠ 0 then
7 continue

8 𝑖𝑠_𝑝𝑟𝑢𝑛𝑒𝑑 ← False

9 foreach 𝑥𝑘 ∈ 𝐺𝑖,0:𝑗 do
10 if 0 < 𝐿𝑖,𝑘 ≤ 𝛼𝑐 and 𝛼𝑐 · 𝜏 (𝑥 𝑗 , 𝑥𝑘 ) ≤ 𝑇𝑖,𝑗 then
11 𝑖𝑠_𝑝𝑟𝑢𝑛𝑒𝑑 ← True

12 break

13 if not is_pruned then
14 𝐿𝑖,𝑗 ← 𝛼𝑐

15 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

16 shrink |𝐺𝑖 | ≤ 𝑚𝑐 and |𝐿𝑖 | ≤ 𝑚𝑐 by removing 𝑥 𝑗 𝑠.𝑡 . 𝐿𝑖,𝑗 = 0

17 return𝐺𝑖 , 𝐿𝑖

topological flexibility while enhancing storage efficiency through a

compressed index representation. Due to space limitations, please

refer to Appendix B of our report [60] for the detailed construc-

tion algorithm of VSAG. Then, we illustrate the labeling algorithm,

which assigns label to each edge.

Prune-based Labeling Algorithm. The pruning strategy of VSAG
is shown in Algorithm 2. First, ANN𝑘 (𝑥𝑖 ) and their distances 𝑇𝑖
are sorted in ascending order of distance, and the pruning rates 𝐴

are also sorted in ascending order. The reverse insertion position 𝑟

indicates whether this pruning process occurs during the insertion

of a reverse edge. We initialize the out-edges of 𝑥𝑖 by 𝐴𝑁𝑁𝑘 (𝑥𝑖 )𝑟 :
(Line 1). Each edge is then assigned a label of 0 (Line 2). Note that

when 𝑟 > 0, it indicates that the current pruning occurs during the

reverse edge addition phase, and only the labels of edges within the

interval [𝑟 : |𝐺𝑖 |] need to be updated. Otherwise, all labels should be
updated. We use 𝑐𝑜𝑢𝑛𝑡 to record the number of neighbors that have

non-zero labels (Line 3). When count = 𝑟 , it means we have already

collected all the neighbors we need. At this point, the algorithm

should terminate (Lines 4-5).

Next, each 𝛼𝑐 is examined in ascending order (Line 4). For each

unlabeled neighbor 𝑥 𝑗 (Lines 5-7), neighbor𝑥𝑘 with smaller distance

is used to make pruning decision (Lines 8-9). The pruning decision

requires satisfying two conditions (Lines 10-12): (a) The neighbor

𝑥𝑘 exists in the graph constructed with the 𝛼𝑐 (i.e., 0 < 𝐿𝑖,𝑘 ≤ 𝛼𝑐 ).

(b) The pruning condition is satisfied (i.e., 𝛼𝑐 ·𝜏 (𝑥 𝑗 , 𝑥𝑘 ) ≤ 𝜏 (𝑥𝑖 , 𝑥 𝑗 )).
Here, we accelerate the computation of 𝜏 (𝑥𝑖 , 𝑥 𝑗 ) by using the cached
result 𝑇𝑖, 𝑗 . If no neighbor can prune 𝑥 𝑗 with 𝛼𝑐 , it is assigned the

label 𝐿𝑖, 𝑗 ← 𝛼𝑐 (Lines 13-15). Finally, the algorithm returns the

neighbor set 𝐺𝑖 and labels set 𝐿𝑖 of 𝑥𝑖 (Lines 16-17).
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Figure 5: Runtime Adjust ILPs (𝑚𝑐 and 𝛼𝑐 ) by Tuning𝑚𝑠 and 𝛼𝑠

Building upon the parameter analysis of𝑚𝑐 , we formally estab-

lish the subgraph inclusion property for graphs constructed with

varying pruning rates 𝛼𝑐 in Algorithm 2 through Theorem 4.2.

Theorem 4.2. (Subgraph Inclusion Property with Varying Prun-
ing Rate 𝛼𝑐 ) Fix all ILPs except 𝛼𝑐 , and let 𝐺𝑎 and 𝐺𝑏 be indexes
constructed by Algorithm 3 in our report [60] using pruning rates
𝛼𝑐 = 𝑎 and 𝛼𝑐 = 𝑏 respectively, where 𝑎 < 𝑏. Suppose that for every
data point 𝑥𝑖 , the finite-sized approximate nearest neighbor (ANN)
sets ANN𝑘 (𝑥𝑖 ) retrieved during construction remain identical under
both 𝛼𝑐 values. Then 𝐺𝑎 forms a subgraph of 𝐺𝑏 , i.e., all edges in 𝐺𝑎

satisfy (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐸 (𝐺𝑏 ).

Proof. Please refer to Appendix C.2 of our report [60]. □

This theorem reveals a monotonic relationship between pruning

rates and graph connectivity. When reducing 𝛼𝑐 , any edge pruned

under this stricter parameter setting would necessarily be elimi-

nated under larger 𝛼𝑐 values. Then, we can characterize each edge

by its preservation threshold 𝛼𝑒 : the minimal pruning rate required

to retain the edge during construction. Consequently, all graph in-

dexes constructed with pruning rates 𝛼𝑐 ≥ 𝛼𝑒 will contain this edge.

This threshold-based perspective permits efficient compression of

multiple parameterized graph structures into a unified index, where

edges are annotated with their respective 𝛼𝑒 values.

Example 6. As shown in Figure 5, we illustrate the state of the
labeled graph generated by Algorithm 2 and the runtime edge selection
process. Suppose that during the greedy search in the graph using
Algorithm 1, we need to explore the in-hop base point 𝑥𝑖 (Line 5 of
Algorithm 1). The node 𝑥𝑖 has 5 neighbors sorted by distance 𝑇𝑖, 𝑗 in
ascending order (i.e., 𝑥1, . . . , 𝑥5). The distances are 𝑇𝑖,1, . . . ,𝑇𝑖,5, and
the corresponding labels are 𝐿𝑖,1, . . . , 𝐿𝑖,5.

Given a relaxed ILP with𝑚𝑠 = 3 and 𝛼𝑠 = 1.2, we visit the neigh-
bors of 𝑥𝑖 in ascending order of distance. We then filter out neighbors
that do not satisfy the pruning condition (Line 8 of Algorithm 1):
• 𝑥2 is filtered out because 𝐿𝑖,2 = 1.4 > 𝛼𝑠 .

• 𝑥5 is filtered out because we have found𝑚𝑠 = 3 valid neighbors.
Thus, in this search hop, we will visit 𝑥1, 𝑥3, and 𝑥4. As proven

in Theorem 4.2 and Theorem 4.1, the search process is equivalent to
searching in a graph constructed with𝑚𝑐 = 3 and 𝛼𝑐 = 1.2. In other
words, we can dynamically adjust the ILPs (i.e., 𝑚𝑐 , 𝛼𝑐 ) by tuning
the relaxed QLPs (i.e.,𝑚𝑠 , 𝛼𝑠 ). This approach saves significant costs
associated with rebuilding the graph.

Please refer to Appendix D of our report [60] for details of tuning
ILPs after VSAG is constructed with labels.

5 DISTANCE COMPUTATION ACCELERATION
Recent studies [20, 53, 54] illustrate that the exact distance com-

putation takes the majority of the time cost of graph-based ANNS.

Approximate distance techniques, such as scalar quantization, can

accelerate this process at the cost of reduced search accuracy. VSAG
adopt a two-stage approach that first performs an approximate

distance search followed by exact distance re-ranking. §5.1 ana-

lyzes the distance computation scheme, with subsequent sections

detailing optimization strategies for VSAG component.

5.1 Distance Computation Cost Analysis
VSAG employs low-precision vectors during graph traversal opera-

tions while reserving precise distance computations exclusively for

final result reranking. The dual-precision architecture effectively

minimizes distance computation operations (DCO) [53] overhead

while preserving search accuracy through precision-aware hierar-

chical processing.

If we only consider the cost incurred by distance computation,

the total distance computation cost can be expressed as follows:

𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡𝑙𝑝 + 𝑐𝑜𝑠𝑡ℎ𝑝 = 𝑛𝑙𝑝 · 𝑡𝑙𝑝 + 𝑛ℎ𝑝 · 𝑡ℎ𝑝
Here, distance computation cost 𝑐𝑜𝑠𝑡 consists of two compo-

nents: the computation cost for low-precision vectors 𝑐𝑜𝑠𝑡𝑙𝑝 and

the computation cost for high-precision vectors 𝑐𝑜𝑠𝑡ℎ𝑝 . Each com-

ponent is determined by the number of distance computations (𝑛𝑙𝑝
or 𝑛ℎ𝑝 ) and the cost of a single distance computation (𝑡𝑙𝑝 or 𝑡ℎ𝑝 ).

The optimization of𝑛𝑙𝑝 is closely related to the specific algorithm

workflow, while 𝑡ℎ𝑝 is primarily determined by the computational

cost of FLOAT32 vector operations - both of which remain relatively

constant. Consequently, the VSAG framework focuses primarily on

optimizing the parameters 𝑡𝑙𝑝 and 𝑛ℎ𝑝 .

VSAG optimizes the overall cost in three ways:

• The combination of quantization techniques, hardware instruc-

tion set SIMD, and memory-efficient storage (§5.2) achieves ex-

ponential reduction in low-precision distance computation (𝑡𝑙𝑝 ).

• Enhanced quantization precision by parameter optimization

(Appendix G of our report [60]) mitigates candidate inflation

from precision loss, achieving sublinear growth in required low-

precision computations (𝑛ℎ𝑝 ).

• Selective re-ranking with dynamic thresholding (§5.3) establishes

an accuracy-efficiency equilibrium, restricting high-precision

validation (𝑛ℎ𝑝 ) to a logarithmically scaled candidate subset.

5.2 Minimizing Low-Precision Computation
Overhead

SIMD and Quantization Methods.Modern CPUs employ SIMD
instruction sets (SSE/AVX/AVX512) to accelerate distance compu-

tations through vectorized operations. These instructions process

128-bit, 256-bit, or 512-bit data chunks in parallel, with vector com-

pression techniques enabling simultaneous processing of multiple

vectors. For example, AVX512 can compute one distance for 16-

dimensional FLOAT32 vectors per instruction, but when compress-

ing vectors to 128 bits, it achieves 4x acceleration by processing four
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Table 3: Dataset Statistics.

Dataset Dim #Base #Query Type

GIST1M 960 1,000,000 1,000 Image

SIFT1M 128 1,000,000 10,000 Image

TINY 384 5,000,000 1,000 Image

GLOVE-100 100 1,183,514 10,000 Text

WORD2VEC 300 1,000,000 1,000 Text

OPENAI 1536 999,000 1,000 Text

ANT-INTERNET 768 9,991,307 1,000 Text

MSMARCO 1024 113,519,750 1,000 Text

vector pairs concurrently. Product Quantization (PQ) [31] enables

high compression ratios for batch processing through SIMD-loaded
lookup tables. While PQ-Fast Scan [4] excels in partition-based

searches through block-wise computation, its effectiveness dimin-

ishes in graph-based searches due to random vector storage pat-

terns and inability to filter visited nodes, resulting in wasted SIMD
bandwidth. In contrast, Scalar Quantization (SQ) [61] proves more

suitable for graph algorithms by directly compressing vector dimen-

sions (e.g., FLOAT32→ INT8/INT4) without requiring lookup tables.
As demonstrated in VSAG, SQ achieves the optimal balance between

compression ratio and precision preservation while fully utilizing

SIMD acceleration capabilities, making it particularly effective for

memory-bound graph traversals.

Distance Decomposition. VSAG optimizes Euclidean distance

computations by decoupling static and dynamic components. The

system precomputes and caches invariant vector norms during

database indexing, then combines them with real-time dot product

computations during queries. This decomposition reduces opera-

tional complexity while preserving mathematical equivalence, as

shown by the reformulated Euclidean distance:

∥𝑥𝑏 − 𝑥𝑞 ∥2 = ∥𝑥𝑏 ∥2 + ∥𝑥𝑞 ∥2 − 2𝑥𝑏 · 𝑥𝑞,
The computational optimization strategy can be summarized

as follows: Only the Inner Product term 𝑥𝑏 · 𝑥𝑞 requires real-time

computation during search operations, while the squared query

norm ∥𝑥𝑞 ∥2 can be pre-computed offline before initiating the search

process. By storing just one additional FLOAT32 value per database

vector 𝑥𝑏 (specifically the precomputed | |𝑥𝑏 | |2), we can effectively

transform the computationally expensive Euclidean distance com-

putation into an equivalent inner product operation. This space-

time tradeoff reduces the subtraction CPU instruction in distance

computation, which saves one CPU clock cycle.

5.3 Selective Re-rank
Quantization methods can significantly enhance retrieval efficiency,

but quantization errors may lead to substantial recall rate degra-

dation. While re-ranking with full-precision vectors can mitigate

this performance loss. However, applying exhaustive re-ranking to

all candidates is inefficient. The VSAG framework addresses this

challenge through selective re-ranking, effectively compensating

for approximation errors in distance computation without com-

promising system performance. A straightforward approach is to

select only the candidates with small low-precision distances for

re-ranking. The optimal number of candidates requiring re-ranking

varies significantly depending on query characteristics, quantiza-

tion error distribution, and search requirement 𝑘 . To address this

dynamic requirement, VSAG implements DDC [53] scheme that

Table 4: Parameter Settings of Algorithms.
Algorithm Construction Parameter Settings

VSAG maximum_degree ∈ {8, 12, 16, 24, 32, 36, 48, 64}
pruning_rate ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}

hnswlib, hnsw(faiss) maximum_degree ∈ {4, 8, 12, 16, 24, 36, 48, 64, 96}
candidate_pool_size ∈ {500}

nndescent pruning_prob ∈ {0.0, 1.0}
leaf_size ∈ {24, 36, 48}
n_neighbors ∈ {10, 20, 40, 60}
pruning_degree_multiplier ∈ {0.5, 0.75, 1.0, 1.5, 2.0, 3.0}

faiss-ivf, faiss-ivfpqfs n_clusters ∈ {32, 64, 128, 256, 512, 1024, 2048, 4096, 8192}

scann n_leaves ∈ {100, 600, 1000, 1500, 2000}
avq_threshold ∈ {0.15, 0.2, 0.55}
dims_per_block ∈ {1, 2, 3, 4}

can automatically adapt re-ranking scope based on error-distance

correlation analysis.

6 EXPERIMENTAL STUDY
6.1 Experimental Setting
Datasets.Table 3 presents the datasets used in our experiments, and

they are widely adopted in existing works [5] and benchmarks [19].

For each dataset, we report the vector dimensions (Dim), the number

of base vectors (#Base), the number of query vectors (#Query), and

the dataset type (Type). All vectors are stored in float32 format.

Algorithms. We compare VSAG with three graph-based methods

(hnswlib, hnsw(faiss), nndescent) and three partition-based methods

(faiss-ivf, faiss-ivfpqfs, scann). All methods are widely adopted in

industry, and Faiss is the most popular vector search library.

• hnswlib [39]: the most popular graph-based index.

• hnsw(faiss) [34]: the HNSW implementation in Faiss.

• nndescent [13]: a graph-based index that achieves efficient index

construction by iteratively merging the neighbors of base vectors.

• faiss-ivf [34]: the most popular partition-based method.

• faiss-ivfpqfs. [4]: an IVF implementation with PQ (Product Quan-

tization) [32] and FastScan [4] optimizations.

• scann. [26]: The partition-based method developed by Google,

which is highly optimized for Maximum Inner Product Search

(MIPS) through anisotropic vector quantization.

Performance Metrics.We evaluate algorithms with Recall Rate
and Queries Per Second (QPS) [30, 41]. The recall rate is defined as

the percentage of actual KNNs among the vectors retrieved by the

algorithm, i.e., Recall@𝑘 =
|ANN𝑘 (𝑥𝑞 )∩NN𝑘 (𝑥𝑞 ) |

𝑘
. If not specified,

the QPS is the queries per second when 𝑘 = 10. Each algorithm is

evaluated on a dedicated single core.

Parameters. Table 4 reports the parameter configurations of algo-

rithms. Unless otherwise specified, we report the best performance

of an algorithm among all combinations of parameter settings.

Environment. The experiments are conducted on a server with an

Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz and 512GB mem-

ory, except that Section 6.2 is evaluated on an AWS r6i.16xlarge
machine with hyperthreading disabled, and Section 6.3 is evalu-

ated on a server with 4 AMD EPYC 7T83 64-Core Processors and

2TB memory. We implement VSAG in C++, and compile it with g++

10.2.1, -Ofast flag, and AVX-512 instructions enabled. For baselines,
we use the implementations from the official Docker images.
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Figure 6: Overall Performance.
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Figure 7: Performance Comparison on Large-Scale Datasets

6.2 Overall Performance
Figure 6 evaluates the recall (Recall@10 and Recall@100) vs. QPS

performance of algorithms. We report the best performance of an

algorithm under all possible parameter settings. Across all datasets,

VSAG can achieve higher QPS with the same recall rate. In addition,

VSAG can provide a higher QPS increase on high-dimensional vec-

tor datasets, such as GIST1M and OPENAI. In particular, VSAG
outperforms hnswlib by 226% in QPS on GIST1M when fixing

𝑅𝑒𝑐𝑎𝑙𝑙@10 = 90%, it also provides ∼400% higher QPS than hn-
swlib on OPENAI when fixing 𝑅𝑒𝑐𝑎𝑙𝑙@10 = 80%. The reason is that

VSAG adopts quantization methods, which can provide significant

QPS increase without sacrificing the search accuracy, and they are

especially effective for high-dimensional data [21].

6.3 Scalability Performance
As shown in Figure 7, we present the performance comparison

of VSAG with four baselines is on two large-scale datasets: ANT-

INTERNET(∼10M) andMSMARCO(∼100M). Here, ANT-INTERNET

is an internal text dataset from Ant Group. We made our best effort

to construct the well-tuned indexes for the MSMARCO dataset

using 256 threads. The performance of hnsw (faiss) is similar to

that of hnswlib, while the performance of faiss-ivf is significantly

worse than that of faiss-ivfpqfs. Additionally, nndescent failed to

complete index construction within two days on the MSMARCO

dataset. As a result, we do not include these methods in the results.

For faiss-ivfpqfs, we followed the META-FAISS guidebook to

tune its parameters. To strike a balance between construction time

and performance, we use 1 million centroids and employed PQ

with 256 × 4 bits. For the other algorithms, we use the parameters

highlighted in bold in Table 4.

For VSAG, the construction process took 15.37 hours with a

memory footprint of 463GB on the MSMARCO dataset. As the

results shown, at Recall@10=99% VSAG achieves a significant im-

provement in QPS compared to hnswlib (increased from 180 to

467), which is a 2.59× performance boost. Similarly, on the ANT-

INTERNET dataset, at Recall@10=96% VSAG demonstrates a re-

markable enhancement in QPS rising from 659 to 1421, which is

2.15× QPS of hnswlib.

6.4 Ablation Study
6.4.1 Cache Miss Analysis. Table 5 conduct ablation tests to in-

vestigate the effectiveness of VSAG’s strategies (see §3,§4 and§5).
We use GIST1M and SIFT1M datasets, and set𝑚𝑐 = 36, 𝛼𝑐 = 1.0

for VSAG. The strategies are incremental, i.e., the strategy 𝑘 row

reports the performance of the baseline with strategies 1..𝑘 .

Strategy 1 uses quantization methods, and it improves QPS while

ensuring the same recall rates. Specifically, the QPS on GIST1M

increases from 510 to 1272 (149% growth), and the QPS on SIFT1M
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Table 5: Ablation Study of VSAG’s Strategies.

Strategy

Recall@10 QPS L3 Cache Load L3 Cache Miss Rate L1 Cache Miss Rate

GIST1M SIFT1M GIST1M SIFT1M GIST1M SIFT1M GIST1M SIFT1M GIST1M SIFT1M

Baseline 90.7% 99.7% 510 1695 198M 112M 93.89% 77.88% 39.37% 17.55%

Above + 1.Quantization 89.8% 98.4% 1272 2881 125M 79M 67.42% 52.09% 19.44% 11.56%

Above + 2. Software-based Prefetch 89.8% 98.4% 1490 3332 120M 53M 71.71% 53.86% 16.98% 9.58%

Above + 3. Stride Prefetch 89.8% 98.4% 1517 3565 118M 50M 64.57% 19.26% 17.18% 9.66%

Above + 4. ELPs Auto Tuner 89.8% 98.4% 2052 4946 43M 49M 45.88% 32.65% 16.44% 10.11%

Above + 5. Deterministic Access 89.8% 98.4% 2167 5027 65M 72M 39.23% 20.98% 15.43% 9.91%

Above + 6. PRS (𝛿 = 0.5) 89.8% 98.4% 2255 4668 55M 63M 55.75% 50.74% 15.20% 10.17%

Above + 7. PRS (𝛿 = 1) 89.8% 98.4% 2377 4640 46M 55M 71.62% 74.73% 14.69% 9.26%

Baseline
1. Quantization

2. Software-based Prefetch
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Figure 8: Performance of VSAG’s Strategies.

increases from 1695 to 2881 (69% growth). This is because quantiza-

tion can significantly reduce the cost of distance computation.

Strategies 2-5 optimize memory access. As a result, the L3 cache
miss rate reduces from 93.89% to 39.23% on GIST1M, and from

77.88% to 20.98% on SIFT1M. Such a drop in cache miss rate leads to

a 70% QPS increase on GIST1M , and a 74% QPS increase on SIFT1M.

This is because L3 cache loads are the dominate cost in the search

time after using quantization methods.

Strategies 6-7 use PRS to balance memory and CPU usage. When

𝛿 increase, VSAG would allocates more memory, and the L3 cache

load of will decrease. For example, the L3 cache load decrease

by 41% on GIST1M, and by 30% on SIFT1M. On GIST1M dataset,

VSAG’s QPS increases from 2167 to 2337, as memory pressure is the

performance bottleneck. However, on SIFT1M dataset, VSAG’s QPS
on GIST1M decreases from 5027 to 4640, because CPU pressure

outweighs memory pressure on this dataset. We can decide whether

to use PRS based on the workload of memory and CPU.

6.4.2 Performance. Figure 8 illustrates the cumulative performance

gaps under varying numbers of optimization strategies. For each

strategy, varying 𝑒 𝑓𝑠 from 10 to 100 yields specific Recall@10 and

QPS values. For example, the top-left point in the Baseline corre-

sponds to 𝑒 𝑓𝑠 = 10, while the bottom-right point corresponds to

𝑒 𝑓𝑠 = 100. The strategies contributing most to QPS improvements

are 1. Quantization and 4. ELPs Auto Tuner. The former drastically

reduces distance computation overhead, while the latter signifi-

cantly enhances the prefetch effectiveness in 3. Stride Prefetch.

However, applying only 3. Stride Prefetch shows minimal differ-

ence compared to 2. Software-based Prefetch, as prefetch efficiency

heavily depends on environment-level parameters 𝜔 and 𝜈 .

6.5 Evaluation of ILPs Auto-Tuner

Auto Tuned Result
All Running Cases

Random Picked Config A
Random Picked Config B

0.30 0.45 0.60 0.75 0.90
Recall@10

104

QP
S

(a) GIST1M

0.30 0.45 0.60 0.75
Recall@10

104

QP
S

(b) GLOVE-100

Figure 9: Performance of Auto-Tuned ILPs.

6.5.1 Tuning Cost. As shown in Table 6, we present the time con-

sumption of VSAG across different phases on the SIFT1M and

GIST1Mdatasets, varying index-level parameters𝑚𝑐 ∈ (8, 16, 24, 32)
and 𝛼𝑐 ∈ (1.0, 1.2, 1.4, 1.6, 1.8, 2.0). Here, we report the total time

for 1,000 queries at Recall@10 = 99%. During the offline phase,

the tuning of ILP (i.e., 68s) and ELP (i.e., 10s) takes the longest

time, as it involves adjusting a large number of parameters and

performing actual searches to select the optimal parameters. How-

ever, the total time spent on all tuning (i.e., 128s) processes is still

significantly lower than the time required for building index (i.e.,

5998s). In contrast, hnswlib requires over 30 hours to repeatedly

construct indexes with different ILP during its tuning process. In

the online phase, the tuning of QLP introduces only 0.001s overhead

because the decision tree only relies on a small number of features.

This overhead is almost negligible compared to the search cost (i.e.,

0.217s). Even when including the tuning overhead of QLP, VSAG’s
overall search cost remains lower than that of hnswlib (i.e., 0.37s).

6.5.2 Tuning Performance. Beyond tuning costs, we also demon-

strate the performance of the ILPs auto tuned index. As shown in

Figure 9, we randomly selected two index-level parameter configu-

rations (A and B) as baselines and plotted the performance of all

parameter combinations in running cases. VSAG exhibits signifi-

cant performance gains over these baselines. For example, on the

GIST1M dataset at a fixed QPS of 2500, the worst-case Recall@10

among all running cases is 62%, while the tuned index achieves

Recall@10=88%, representing a 26% (absolute) improvement. At

a fixed Recall@10=70%, the worst-case QPS is 2000, while VSAG
achieves 4000 QPS - an improvement of 100%. Similar trends hold

for the GLOVE-100 dataset: maximum Recall@10 improvements

exceed 15% at fixed QPS of 500, and QPS improves from around

4000 to 7000 (over 75% gain) at a fixed recall rate of 60%.
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Table 6: Time Cost Breakdown in Each Phase.

Dataset Algorithm Offline Construction and Tuning Phase Online Search Phase (1,000 queries)
Build Index ILP Tuning ELP Tuning QLP Training QLP Tuning Search with Query

SIFT1M

VSAG 5998.564s 68.185s 10.293s 50.768s ∼0.001s 0.217s

hnswlib 30.79 hours (18×) - 0.370s

GIST1M

VSAG 11085.626s 119.813s 25.397s 149.467s ∼0.001s 1.587s

hnswlib 61.64 hours (19×) - 4.807s

6.6 Evaluation of QLPs Auto-Tuner
Table 7 evaluates the QLPs tuning result on GIST1M and SIFT1M,

under a recall guarantee of 94% and 97%. The baseline method (i.e.,

FIX ) manually selects the smallest 𝑒 𝑓𝑠 that ensures the target recall.

In contrast, VSAG employs a decision tree classification approach

to divide queries into two categories: (1) Simple queries, which

can converge to the target accuracy with a smaller 𝑒 𝑓𝑠 value and

incur lower computational cost. For these queries, an appropriate

𝑒 𝑓𝑠 can help improve retrieval speed. (2) Complex queries, which

require larger 𝑒 𝑓𝑠 values to achieve the desired accuracy. For these

queries, an appropriate 𝑒 𝑓𝑠 can help improve retrieval precision.

For both types of queries, the QLPs Auto-Tuner can intelligently

selects the required 𝑒 𝑓𝑠 , leading to over a 5% increase in QPS when

recall thresholds equal 94% and 97%, respectively.

7 CASE STUDY
In Ant Group, vector retrieval capabilities are provided through a

distributed vector database system, which is designed to support

real-time queries with highly availability and high scalability. For

storage, the vector database system splits the billion-level dataset

into subsets managed by the LSM-Tree structure [25], and each

subset is referred to as a segment. Our VSAG library focuses solely

on indexing and retrieval performance. Therefore, when VSAG is

integrated into a vector database, we separately construct a VSAG
index for each segment. Then, for a coming query, it is executed

on indexes on Segments in parallel, and the vector database system

merges the results from segments as the final result.

For the deployment of the vector database system, we use query

nodes to manage the segments. Here, a query node refers to a server

that responds to online requests. To minimize the impact of query

node failures and avoid prolonged recovery times, the size and

number of segments maintained by a single distributed node are

limited. As data volume grows, scalability is achieved by adding

more nodes horizontally. This approach is also widely adopted in

vector databases such as Milvus [25] and Vald [48].

For example, in an image search scenario involving approxi-

mately 10 billion images in Ant Group, each image is embedded

into a 512-dimensional vector and stored in a distributed vector

database cluster. The cluster is configured such that each segment

contains approximately 10 million rows of data. Each query node

can host up to 4 segments, and each query node is deployed on

an machine instance with a 16-core CPU and 80GB memory. The

entire cluster consists of approximately 400 such machine instances.

By using the VSAG index, the average latency in this scenario is

reduced from 3.0ms to 1.1ms per segment, and the upper limit

of QPS throughput is increased by 2.65×, compared to using the

open-source hnswlib algorithm.

Table 7: Comparison of Tuning Performance of QLPs

Method Metric
GIST1M SIFT1M

94% 97% 94% 97%

FIX
Recall@10 94.64% 97.49% 94.54% 97.61%

QPS 1469 902 4027 2834

VSAG (Ours)
Recall@10 94.71% 97.58% 94.63% 97.66%

QPS 1534 967 4050 2912

8 RELATEDWORK
Themainstreammethods for vector retrieval can be divided into two

categories: space partitioning-based and graph-based. Graph-based

algorithms [7, 15, 16, 29, 37, 38, 40, 42, 55] can ensure high recall

with practical efficiency, e.g., HNSW [40], NSG [17], VAMANA [29],

and 𝜏-MNG [43]. These methods build a proximity graph where

each node is a base vector and edges connect pairs of nearby vectors.

During a vector search, they greedily move towards the query

vector to identify its nearest neighbors. Our VSAG framework can

adapt to graph-based algorithms mentioned above, to improve the

performance in production.

Space partitioning-based methods (e.g., IVFADC [4, 8, 14, 52])

group similar vectors into subspaceswith K-means [4, 35] or Locality-

Sensitive Hashing (LSH) [12, 18, 23, 44, 46, 59]. During the search

process, they traverse some vector subspaces to find the nearest

neighbors. These methods can achieve high cache hit rates due to

the continuous organization of vectors, but they suffer from a low

recall issue. In comparison, graph-based ANNS algorithms (e.g.,

VSAG and HNSW) usually achieve a higher QPS under the same

recall. Note that the technique of VSAG cannot be applied to space

partitioning-based algorithms.

9 CONCLUSION
In this work, we present VSAG, an open-source framework for

ANNS that can be applied to most of the graph-based indexes.

VSAG employs software-based prefetch, deterministic access greedy

search, and PRS to significantly reduce the cache miss rate. VSAG
has a three-level parameter tuning mechanism that automatically

adjusts different parameters based on their tuning complexity.VSAG
combines quantization and selective re-ranking to integrate low-

and high-precision distance computations. Experiments on real-

world datasets demonstrate that VSAG outperforms baselines.
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