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ABSTRACT
In large-scale industrial recommendation systems, model check-
points are instrumental in maintaining training goodput and nu-
merical correctness during system failures and job preemptions.
The increasing prevalence of multi-terabyte models has rendered
frequent regular model checkpoints impractical, resulting in sub-
stantial lost progress when recovering from failures. As model sizes
continue to grow, researchers and practitioners are compelled to in-
vestigate more e!cient and scalable solutions. This paper presents
DECK, a novel approach to delta model checkpointing designed
for real-world industrial systems. Speci"cally, DECK focuses on
extracting delta states with near-zero overhead, staging and stream-
ing delta checkpoints without interrupting the training process, and
merging delta checkpoints in an optimal and decoupled manner.
Experimental results demonstrate that DECK achieves a 12-fold in-
crease in checkpoint frequency while maintaining negligible impact
on training throughput, thereby attaining state-of-the-art (SOTA)
production performance.
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1 INTRODUCTION
Modern recommendation systems [6, 14–16, 24, 25] deployed in
industrial settings operate at unprecedented scales, processing vast
volumes of data across distributed computational infrastructure to
serve billions of users worldwide. These systems rely on increas-
ingly complex machine learning models that have grown from
gigabytes [5] to multiple terabytes in size [9, 13, 23]. As these
models expand in complexity and scale, they present signi"cant
challenges for traditional training resilience mechanisms, partic-
ularly in the domain of model checkpointing which functions as
the primary safeguard against various forms of system disruptions,
including hardware failures, data anomaly, and job preemptions
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that occur during resource reallocation. Without e#ective check-
pointing strategies, such interruptions can result in substantial loss
of computational work, negatively impacting operational e!ciency
and recommendation quality.

The conventional approach to model checkpointing involves
periodically saving the complete model state to persistent storage.
While this methodology provides comprehensive recovery capabili-
ties, it becomes increasingly burdensome as model sizes surpass ter-
abyte thresholds. The time required to serialize, transfer, and persist
these massive model states introduces signi"cant training ine!cien-
cies and creates operational bottlenecks. In Large Language Model
(LLM) training environments [2, 20], system architects have imple-
mented rapid in-memory checkpointing solutions [21] to maintain
or enhance checkpointing frequency. However, these methodolo-
gies typically prove incompatible with recommendation systems
due to fundamentally di#erent resource allocation pro"les. Speci"-
cally, recommendation systems typically rely on massive, sparse
embedding tables alongside much smaller, compute-intensive lay-
ers to handle high workloads at low cost [11, 13, 23, 27]. In such
environments, CPU memory and even SSD storage are heavily con-
strained by concurrent components managing these embeddings,
leaving in-memory checkpoints impractical. As a consequence,
practitioners usually extend checkpoint intervals to maximize e#ec-
tive training throughput, thereby increasing system vulnerability
to progress losses when failure occurs.

This growing tension between checkpoint frequency and train-
ing throughput has emerged as a critical challenge in industrial
recommendation systems. The ideal solution would enable frequent
checkpointing to minimize potential work loss while simultane-
ously maintaining high training throughput. However, conven-
tional approaches force an undesirable trade-o# between these
objectives, leading to sub-optimal training e!ciency and resilience.
In response to these challenges, we present DECK, a production-
grade checkpointing solution speci"cally designed to address the
requirements of industrial-scale recommendation systems. DECK
introduces a fundamentally di#erent approach to checkpoint mod-
els through three key innovations:

• "Zero-Cost" Delta Tracking: DECK implements specialized
mechanisms to extract only the modi"ed portions of model
state with near-zero computational overhead, dramatically
reducing the volume of checkpoints.

• Multi-Layer Staging: Through advanced staging and stream-
ing techniques, DECK enables checkpoint operations to
proceed concurrently with ongoing training with little in-
terference, e#ectively minimizing training interruptions
associated with checkpoint procedures.
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Figure 1: Simpli!ed DLRM Forward Pass

• Optimal Hierarchical Delta Merging: DECK incorporates
dedicated merging components to consolidate delta states
into fewer and smaller "les, balancing resource utilization
and recovery e!ciency through decoupled checkpointing
and consolidation agents.

These innovations collectively enable DECK to achieve signif-
icantly higher checkpoint frequency while maintaining negligi-
ble impact on training throughput. The implementation of DECK
consists of various optimizations throughout the stack, ranging
from customized CUDA kernels to extensible adapters and compo-
nents built on top of TorchRec [7]. Our experimental evaluation
conducted on production infrastructure demonstrates that DECK
permits a 12x increase in checkpoint frequency compared to prior
arts, signi"cantly reducing potential work loss during recovery.
This performance improvement establishes DECK as the current
industrial state-of-the-art solution for checkpoint management in
large-scale recommendation systems.

The remainder of this paper is organized as follows: Section 2
introduces contexts for industrial recommendation systems. Sec-
tion 3 details the architecture and technical components of the
DECK framework. Section 4 reveals implementation decisions tai-
lored for real-world use cases. Section 5 presents our experimental
methodology and evaluation results. Section 6 reviews related work
in model checkpointing and resilience strategies. Finally, Section 7
summarizes our contributions and concludes the paper.

2 BACKGROUND
This section provides contexts for industry-scale recommendation
systems and key observations that motivate our design.

2.1 Industrial Scale Recommendation Systems
Recommendation systems are one of the largest software systems
built to date [23], and a signi"cant portion of datacenter capacity is
dedicated to training and serving of recommendation models [6].

2.1.1 Deep Learning-based Recommendation Models. Modern rec-
ommendation models [23, 24] contain two major components: a

collection of embedding tables and dense networks. Embedding ta-
bles are the core of recommenders, as they convert discrete entities
(e.g., users, movies, books) into continuous representations.

Industry-scale recommendation models are characterized by
these huge embedding tables with trillions of parameters [3, 6, 10,
11, 13, 14, 27]. As a result, the state-of-the-art often uses a hybrid
strategy to train these models in a distributed, synchronous manner:
the embedding tables are sharded by a combination of rows and
columns to di#erent ranks [7, 12, 15], where inputs and embedding
results are communicated across GPUs (see below); on the other
hand, dense components are synchronized via distributed data
parallel (DDP) [8] or fully sharded data parallel (FSDP) [28] due to
their relatively small sizes. Therefore, most challenges in e!cient
training of modern recommendation models stem from e!cient
handling of embedding tables, which will be the focus of this paper.

2.1.2 Training Flow. Figure 1 illustrates a simpli"ed $ow of Deep
Learning Recommendation Model (DLRM) forward pass running
on a cluster of two ranks, where a rank is a logical concept that
usually exclusively maps to one GPU device. In this example, the
embedding table is sharded in a row-wise manner, where rank 0

owns embedding values for row [0, 1, 2, 3], and rank 1 owns [4,

5, 6, 7]. Each rank independently loads its own input batch, where
each batch contains multiple samples. Each sample consists of a
variable number of $oat features, embedding values, embedding
IDs, weights, etc. To simplify the presentation, Figure 1 only keeps
the embedding IDs, as those IDs are the main components that in-
teract with the embedding table. Each rank "rst removes duplicated
IDs locally and then routes IDs to the corresponding rank to lookup
embedding values using an AllToAll communication operator. This
AllToAll essentially transposes IDs from a rank-major form (Local
IDs) into shard-major form (Remote IDs). Upon receiving the IDs,
each rank further de-duplicates global IDs from all ranks and re-
trieves corresponding values from its local embedding table shard.
After that, another AllToAll routes the embedding values back to the
original ranks requesting corresponding IDs, and those embedding
will pass through DNN layers to generate "nal predictions.
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(a) Updated User ID (b) Updated Post ID (c) Dedup User ID (d) Dedup Post ID

Figure 2: Unique Percentage and Dedup Cost vs User History Sequence Length

(a) Updated User ID (b) Updated Post ID (c) Dedup User ID (d) Dedup Post ID

Figure 3: Unique Percentage and Dedup Cost vs Embedding Table Size

2.2 Model Checkpointing
Large-scale distributed training inherently requires faster recovery,
which demands frequent checkpointing. However, due to the sheer
size of the models, frequent checkpoints of recommendation models
incur prohibitively high cost. Fortunately, as we show empirically,
full checkpointing at short intervals is unnecessary, due to a unique
access pattern in the recommendation models.

2.2.1 Sparsity in Embedding Table Access Pa!ern. In contrast to
dense networks, where all parameters are updated during each
training iteration, embedding tables exhibit a sparse access pattern.
Since embedding tables contain millions [5] to billions [3, 9, 11, 13,
23, 26, 27] of rows but each training sample accesses up to a few
hundred on average, each iteration updates only a tiny fraction of
the table. This sparsity is further ampli"ed by the skewed distri-
bution of item popularity. To demonstrate this, we conducted an
empirical analysis using real-world data and production models.
These models typically generate a full model checkpoint every 40 to
60 minutes. The models comprise multiple embedding tables, with
the user table and item table being signi"cantly larger than the rest
combined. Figure 2 (a) and (b) illustrate the percentage of updated
rows during training within various time intervals and for di#erent
maximum user history lengths, where the user history contains
items the user has engaged recently. The results show that even
with a user history length of 2048, the training process updates less
than 5% of the entire user table after 30 minutes. In contrast, the
item table sees more frequent updates, with approximately 50% of
the rows being updated within 30 minutes at the same user history
length. This disparity is driven by the inherent nature of recom-
mendation systems, where users typically engage with many items
over time. Nevertheless, the "ndings suggest that it is still possi-
ble to increase checkpoint frequency without incurring additional

communication or storage overhead, even for the item table, by
only checkpointing the modi!ed entries (delta).

Figure 3 (a) and (b) illustrates the percentage change across vari-
ous embedding table hash sizes, utilizing a "xed user history length
of 1024. IDs that exceed the hash size are mapped back to the valid
range through modulo operations. The percentage of updated post
IDs demonstrates a consistent pattern, where larger hash sizes re-
sult in fewer collisions, consequently requiring more unique IDs
observed. An intriguing observation emerges regarding the trend
of unique user IDs, which exhibits a contrary directional pattern
when varying sequence length versus varying hash size. This phe-
nomenon can be attributed to the longer processing time required
for each iteration when utilizing long user histories. Consequently,
within a constant time interval, longer sequence lengths result in
fewer completed iterations, which in turn leads to a reduction in
the number of updated user IDs.

We note that this observation is not unique to our setting, as var-
ious prior works [6, 14] have adopted delta checkpointing to reduce
checkpoint footprints that take advantage of the access pattern.
However, existing approaches still incur signi"cant overhead due
to additional copies of states as basis for comparison, resulting in
longer checkpoint loading and saving time, and quality implications
from the need to tune hyperparameters that dictate what and when
gets checkpointed. In this paper, we detail how DECK overcomes
these challenges to minimize checkpoint overheads to deliver full
"delity checkpointing for industry-scale recommendation.

2.2.2 Storage Reliability. The checkpointing process involves writ-
ing trainer states and lineage metadata to persistent storage. In
practice, checkpointing mechanisms and storage systems [19] are
developed and maintained by separate teams, interfacing through
distributed "le system APIs with con"gurable replication levels and
read/write checksums. Default API success rates typically range
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from 99.99% to 99.999%. For use cases requiring higher reliabil-
ity, storage con"gurations can be adjusted to include additional
replicas and checksums. Since storage reliability is orthogonal to
the checkpointing mechanism, the remainder of this paper skips
reliability-related considerations.

3 SYSTEM DESIGN
A robust checkpointing mechanism must function as a faithful
representation of the training state, enabling seamless resumption
from system failures. Furthermore, frequent checkpoint generation
is typically desired to minimize progress loss. An optimal check-
pointing solution should address three critical requirements:

• Keep training throughput intact, which calls for e!cient
parallel maintenance of checkpoint states alongside the
primary training process.

• Minimize training interruption during checkpoint persis-
tence operations, requiring prompt release of critical com-
putation and storage resources.

• Recover rapidly from failures, i.e., checkpoints can be loaded
with high e!ciency.

This section introduces DECK, an architecture leveraging "Zero-
Cost" Delta Tracking, Multi-Layer Staging, and Optimized Hierarchi-
cal DeltaMerging techniques to satisfy these essential requirements.

3.1 "Zero-Cost" Delta Tracking
A naive approach to implementing delta checkpoints involves main-
taining a complete replica of the embedding tables from the previous
checkpoint, computing the di#erence with the most recent version,
and then extracting non-zero rows to construct the content for a
delta checkpoint. However, given that even a single local shard of
the embedding table can far exceed the capacity of an accelerator’s
High Bandwidth Memory (HBM), these tables typically reside on
UVM and only move fractions of the full shard in an on-demand
fashion. Consequently, computing the delta requires either utilizing
CPU resources or processing in a chunked fashion on HBM, both
of which incur signi"cant memory overhead and execution latency.
To mitigate these challenges, DECK employs an optimized strategy
that amortizes computations and e#ectively hides them by over-
lapping with blocking communications during embedding lookup
operations. Simultaneously, DECK maintains only the minimum
possible states required to recover the delta content in a lossless
manner, thereby minimizing storage requirements.

As illustrated in Figure 2 and Figure 3, each training iteration
in DLRM modi"es merely a tiny fraction of rows from the entire
embedding table. Within a 5 minute window, only less than 15% of
the rows are updated. Keeping a set of unique indices of touched
rows would be su!cient to faithfully represent the delta content.
This approach signi"cantly reduces the memory requirements and
computational overhead associated with tracking all rows.

To extract row indices, we "rst compare di#erent locations to
insert tracking logic. As discussed in Section 2.1.1, sharded em-
bedding lookup operations e#ectively perform a distributed trans-
pose across all ranks, shu%ing input indices from rank-major to
shard-major. This process relies on AllToAll communication to route
lookup indices from the rank that loads the input batch (i.e., local

form in Figure 1) to the rank that owns the embedding shard (re-
mote form). While tracking in the local form can be decoupled from
sharded embedding table design and implementation, it may result
in duplicated global indices being tracked across ranks, necessi-
tating additional computations and communications to eliminate
these duplicates in a distributed manner. In contrast, tracking in
the remote form requires custom design for speci"c sharded em-
bedding implementations, but the tracked IDs are readily usable
for constructing delta checkpoint contents. To minimize computa-
tion and memory overhead, DECK employs tracking in the remote
form. The engineering cost of implementing specialized tracking
logic is typically manageable, as platforms like PyTorch provide
a rich set of hooks for installing custom functions to extract in-
ternal states. Section 4.2 will further elaborate on how we restrict
implementation-speci"c customization to adopters and generalize
the remaining components in DECK.

The tracked indices represent the embedding rows that are ac-
cessed during the forward iteration, where gradients will be gener-
ated accordingly in the backward iteration. Although it is possible
that gradients for some rows may be zero, DECK does not further
"lter out these rows for three reasons. Firstly, the use of nonzero

operators is computationally expensive and requires device-to-host
synchronizations, which can signi"cantly impact performance. By
avoiding these operators, DECK can achieve substantial computa-
tional e!ciency gains. Secondly, if embedding tables are column-
wise sharded, the decision to "lter out zero-gradient rows could
diverge across di#erent ranks, necessitating additional communi-
cation to determine the global set of nonzero rows. Thirdly, even
without explicit "ltering, the number of touched rows typically falls
within a reasonable threshold in most use cases, allowing the train-
ing job to a#ordably store all the indices in HBM. For instance, a
5TB embedding table with 256 columns and FP16 precision requires
only approximately 300MB of HBM space to store updated row
indices for a 30-minute delta frequency. If storing indices in HBM
becomes an issue, it is always possible to o%oad them to UVM.
Therefore, DECK directly tracks all touched indices.

In addition to storage considerations, tracking deltas also incurs
additional computational overhead to remove duplicated indices.
To quantify this overhead, we utilize CUDA events to measure the
execution time of cat and unique PyTorch operators on tracked in-
dices. Figure 2 (c)(d) and Figure 3 (c)(d) illustrate the results, where
removing duplicated user indices and post indices takes up to 0.7ms
and 13ms, respectively. The cost increases with the total number of
tracked indices throughout the iterations, as the delta from the latest
iteration must be compared with a larger set of indices. Although
the computational cost is non-trivial, these computations are o#
the critical path of the forward and backward passes. Consequently,
we can reorder them to overlap with exposed communications,
such as the AllToAll operation that shu%es the embedding lookup
outputs. This communication is blocking, because subsequent com-
putations depends on the communication results, which forces a
bubble in the main CUDA compute stream. As long as the length
of the exposed communications can overshadow de-duplication
computations, tracking unique row indices is e#ectively free. Sec-
tion 5.2 presents detailed measurements from real-world production
training jobs.
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Figure 4: Multi-Layer Staging

With zero-cost tracking, whenever the system needs to generate
a delta checkpoint, DECK just need to perform one embedding
lookup on local shard to retrieve updated rows using the tracked
indices, which only takes a few milliseconds.

3.2 Multi-Layer Staging
Although checkpointing delta states can substantially reduce com-
munication and storage overhead, the sheer size of multi-terabyte
models implies that even a 10% delta can result in checkpoints of
hundreds of gigabytes, which may require several minutes to write
to remote persistent storage. If the trainer frequently generates
delta checkpoints, synchronously writing them to remote storage
can signi"cantly diminish system throughput. A straightforward al-
ternative is to save checkpoints in an asynchronous manner. Given
that HBM is a limited resource, practitioners typically maximize its
use to enhance training e!ciency. Consequently, retaining delta
checkpoints in HBM is not feasible, which calls for separate staging
storage solutions. Modern GPU servers are often equipped with
ample CPU memory and SSD storage, which can facilitate the stag-
ing process. However, utilizing these storage options introduces
additional challenges. CPU memory is typically already burdened
by UVM embedding tables and model publishing processes, even
before asynchronous checkpoints are enabled. Although SSDs o#er
plenty of space, writing large volumes of data into SSD can rapidly
reduce their lifespan. Furthermore, techniques like GPUDirect are
not universally available, meaning that SSD o%oading still requires
data to be copied to CPU memory "rst. To address these challenges,
DECK employs multi-layer staging to optimize for the following
four objectives:

• Minimize training pause duration by expeditiously o%oad-
ing delta checkpoints out of HBM to create enough space
for the next training iteration.

• Restrict CPU memory usage during o%oading to avoid re-
source contention with other memory-intensive processes
on the server.

• Optimize the e#ective SSD write volume to promote hard-
ware longevity.

• Maximize network bandwidth utilization to stream check-
points to remote persistent storage.

The solution involves segmenting a delta checkpoint into multi-
ple chunks, which are then sequentially written to CPU memory,
SSD, and remote persistent storage in a pipelined fashion. This
approach allows for overlapping communications between the var-
ious storage media. To limit CPU memory usage, DECK prefetches
only one chunk ahead into CPU memory relative to the SSD. Conse-
quently, training can only resume once the delta checkpoints have

been completely o%oaded to the SSD, making the pause duration
dependent on the SSD’s write speed. Each SSD can support writing
speeds of up to several gigabytes per second. In a 128-GPU training
cluster, the aggregate bandwidth can easily reach 100GB/s, allow-
ing delta checkpoints to be o%oaded to the SSD in mere seconds,
thereby ensuring a relatively short pause duration. Once a chunk is
stored on the SSD, it is queued for streaming to remote persistent
storage, which involves bringing the chunk back into CPU memory
for network communication. Similarly, this process also prefetches
at most one chunk in advance. A notable advantage of this approach
is that the peak CPUmemory consumption remains invariant to the
model size. Instead, it is deterministically governed by the chunk
size, which ensures that no more than four chunks are resident in
CPU memory at any given time. This characteristic is exempli"ed
in Figure 4, where concurrent communications across disparate
storage media are represented by red arrows, with the thickness
of each arrow denoting the corresponding channel bandwidth. By
virtue of this design, DECK successfully decouples CPU memory
usage frommodel size, thereby minimizing memory footprint while
concurrently optimizing network bandwidth utilization.

The aforementioned multi-layer staging solution satis"es three
out of the four objectives, leaving only the optimization of SSD
write volume to be addressed. Two orthogonal approaches can be
employed to achieve this goal: mitigating physical write ampli"ca-
tion and reducing logical write content. Physical write ampli"cation
arises from the Program/Erase (P/E) cycle of SSDs, which is a fun-
damental operation for SSDs and determines their lifespan. When
new data needs to be stored, the SSD controller writes the data
to a new, blank location on the $ash memory. The old data in the
previous location is marked as invalid and will need to be erased
before that location can be written to again. The P/E cycle operates
at a granularity de"ned by a large page size. Consequently, if the
delta checkpoint’s chunk does not align with this page size, each
P/E cycle will inevitably refresh underutilized pages, resulting in
unnecessary physical write ampli"cations. To prevent underutilized
pages during P/E cycles, DECK ensures that each chunk is sized
identically to the P/E page, thereby minimizing write ampli"cation
and optimizing SSD endurance.

Logical volume reduction can be achieved by circumventing
the SSD and transmitting chunks out of order, thereby enabling
direct in-memory streaming to remote storage. In the example
illustrated in Figure 4, chunk C0 can bypass the SSD and write
directly to persistent storage. After C0 is "nished, the next in-
memory chunk can also skip the SSD as well and so on. All chunks
o%oaded to the SSD will be communicated to persistent storage
after those that bypassed SSD. However, due to the signi"cant speed
gap between CPU memory and network, the SSD will only bypass a
negligible percentage of chunks. Consequently, this SSD-bypassing
technique is not adopted in production environments to reduce
system complexity.

3.3 Optimal Hierarchical Delta Merging
Zero-cost delta tracking is an e#ective approach to minimizing lost
progress during failures. However, the process of loading check-
points can become signi"cantly more expensive when the trainer
needs to merge the latest full checkpoint with all subsequent delta
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Figure 5: Hierarchical Merging

checkpoints. For instance, if a training job generates a full check-
point every 4 hours and a delta checkpoint every 5 minutes, in
the worst-case scenario, the trainer would need to merge 47 delta
checkpoints into the full checkpoint upon resuming from a failure,
resulting in substantial delays.

A natural solution to mitigate this issue is to perform delta check-
point merging in parallel with the training process, thereby reduc-
ing both the number and the total size of pending delta checkpoints.
This merging process can be executed on CPUs without occupy-
ing valuable GPU resources. For jobs with relatively light CPU
workloads, trainers can spawn merging processes in-place on the
same server. In cases where the trainer’s CPU resources are already
heavily utilized for tasks such as monitoring, input data loading,
model publishing, and hosting large embedding tables in UVM, it
is more suitable to allocate a small group of auxiliary CPU servers
speci"cally for merging. The cost of these additional CPU servers
should be negligible compared to the cost of GPU servers.

We propose the Hierarchical Merging Algorithm, where merging
is conducted at a "xed but con"gurable stride 𝐿 . After the merger
process sees 𝐿 consecutive delta checkpoints in layer 𝑀 , it will merge
them into a larger merged delta in layer 𝑀 + 1. Figure 5 illustrates an
example where 𝐿 = 2. In this example, the trainer process produces
one new delta checkpoint at "xed time intervals. Solid lines high-
light the dependency lineage of the delta checkpoints. One merged
checkpoint is generated every 𝐿 = 2 delta checkpoints. At step 4,
after merging D3 and D4, the merger has accumulated 𝐿 = 2 delta
checkpoints at layer 1, and hence it will further merge it with M1

to create the "nal M2 that represents the "rst 4 delta checkpoints.
After that, M1 can be deleted, and M2’s lineage dependency directly
points to the original full checkpoint F0, as M2 covers all the changes
since then. A proper value of stride 𝐿 can be derived from dupli-
cation ratio 𝑁 and relative merging velocity 𝑂 , where 𝑁 indicates
the ratio of duplicated rows from two equal-sized consecutive delta
checkpoints and 𝑂 the ratio of delta merging speed over delta pro-
ducing speed. Suppose the trainer produces one delta checkpoint
every 5 minutes and it takes the merger 1 minute to process it, then
the relative merging velocity 𝑂 = 5. Under this setup, merging 𝐿
consecutive delta checkpoints results in a merged checkpoint with
relative size (2 → 𝑁)log 𝐿 . The overall input volume of the merger

process surpasses the the total volume of original delta checkpoints,
because the merger also produced merged deltas. The total volume
of merged checkpoints across all layers needs to stay below 𝑂 times
the delta producing speed. Hence, we have the following condition.

↑)︄
𝑀=1

(2 → 𝑁)𝑀 log 𝐿
𝐿𝑀

< 𝑂 (1)

In Inequality 1, both 𝑁 and 𝑂 can be measured empirically and 𝐿
can then be determined based on that.

Although the aforementioned design e#ectively reduces both
the number and the volume of delta checkpoints, the size of pend-
ing deltas will continue to increase with the number of merging
layers. In the worst-case scenario, the collective volume of merged
checkpoints in each layer can approach the size of full checkpoints,
ultimately leading to a substantial loading overhead. To mitigate
this issue, the merger can be designed to create a full checkpoint
every 𝑃 steps, thereby truncating the lineage graph and preventing
the inde"nite growth of delta checkpoint lineages. The value of 𝑃
can be dynamically determined based on the total volume of living
delta checkpoints, allowing for adaptability in response to chang-
ing system conditions. Alternatively, for more predictable system
behavior, 𝑃 can be computed ahead of time using a predetermined
equation:

log𝐿 𝑁)︄
𝑀=1

(↓𝑃
𝐿𝑀
↔ → ↓ 𝑃

𝐿𝑀+1
↔𝐿) (2 → 𝑁)𝑀 log 𝐿 < 𝑄 (2)

where the term in the "rst parentheses computes the number
of living merged checkpoints in layer 𝑀 and 𝑄 denotes the upper
bound of relative volume compared to an original delta checkpoint
before the merger creates a full checkpoint.

4 IMPLEMENTATION
In this section, we present the technical implementation speci"cs
of DECK, encompassing several key components. First, we elab-
orate on the CUDA kernel optimizations engineered to facilitate
expeditious state tracking. Additionally, we discuss the extensible
APIs designed to accommodate diverse sharded embedding table
variants. Finally, we detail our checkpoint lineage management sys-
tem, which provides robust protection against both system failures
and data corruption incidents.

4.1 Optimized CUDA Kernels
A critical function in delta tracking involves de-duplicating tracked
indices accumulated across training iterations for all embedding
tables. A naive implementation would sequentially process each
table with independent unique operations, resulting in substantial
computational overhead, particularly for architectures with many
embedding tables and large tracked indices set. To e!ciently over-
lap ID de-duplication with AllToAll communications, maintaining
consistent ID unique computation costs for diverse model architec-
tures becomes essential. Therefore, we propose specialized acceler-
ated CUDA kernels to supersede the naive approach. The optimal
design of these unique acceleration mechanisms involves several
technical considerations dependent on speci"c model requirements:
(a) preservation of original indices ordering post-deduplication; (b)
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(a) Vary number of tables under "xed total indices (b) Vary number of indices per tables under "xed table cont

Figure 6: Speedup of jagged_unique Kernels with Respect to Naive Loop-Unique

necessity of inverse indices for original indices and state recon-
struction; and (c) e!cacy across diverse model scales and table
quantities.

Implementation strategies include both sorting and hashing
methodologies, each o#ering distinct advantages under varying
data dimensions and application requirements. The sorting-based
approach preserves sequence ordering after de-duplication and
demonstrates superior performance for smaller indices collections,
though it exhibits signi"cant performance degradation with larger
input sizes. To comprehensively address diverse data scales and ap-
plication scenarios, we have developed two CUDA kernels based on
sorting and hashing paradigms respectively. Both implementations
perform unique operations on aggregated and jagged ID tensors in a
single computational pass, eliminating the ine!ciencies of sequen-
tial table-by-table de-duplication. The sorting-based kernel employs
parallel and stable radix sort algorithms, while the hashing-based
kernel utilizes hash partitioning techniques with optimized mem-
ory locality to mitigate performance deterioration when processing
extensive indices collections.

• Radix sorting based approach: we "rst employ device-
wide parallel radix sort to batch sort the jagged indices
tensor, and then develop a custom jagged $agging kernel
to identify the location of "rst occurrence of each index,
followed by a parallel compaction operation to pick out all
unique indices. Radix sort and compaction are implemented
using high-performance device-wide primitives provided
by the CUB library [17]. Given that the looped unique im-
plementation also relies on radix sorting, this approach can
ensure output order matches the naive approach.

• Partitioned hashing based approach: For smaller input
size, we construct a hash set in global memory and use
hashing to pick out the unique indices. For larger input
size where data transfer would become a performance bot-
tleneck, we hash partition the input indices into smaller
partitions to increase locality, and then construct a hash set

in either global memory or shared memory depending on
the size of each partition. Note that hash collision would
cause two unique indices colliding onto the same hash value,
resulting in mis-deduplication. As such, concurrent hash
map data structure provided by cuCollections library [18]
that can resolve hash collision via linear probing is used
to ensure output correctness. However, the hashing pro-
cess disrupts the index sequence order, which could break
ordering parity compared to the naive solution.

Figure 6 (a) illustrates the speedup of the two jagged_unique ker-
nels with respect to naive looped unique across various table num-
bers given "xed total input size of 5M, 10M, 20M and 40M respec-
tively. We can observe that the radix sorting-based kernel exhibits
signi"cant acceleration with large number of tables where the in-
dices size per table is on the order of thousands. Conversely, it
falls short at large input sizes per table, even showing worse per-
formance than the baseline. Figure 6 (b) depicts the speedup in
terms of indices size per table under di#erent table number. From
both "gures, we can see that partitioned hashing based approach
consistently delivers 2X-4X performance boost compared to the
baseline under various conditions. In contrast, the speedup of the
radix sort-based approach is highly sensitive to the input size per
table. Therefore, we rely on partitioned hashing based kernel for
subsequent experiments.

4.2 Extensible Tracker
As elaborated in Section 2.1.2, tracking in a remote form requires
specializations depending on the implementations of distributed
embedding tables. Consequently, it is imperative to make DECK
extensible to accommodate a diverse range of use cases. Based on
the design of DECK, it is evident that it requires two primary types
of input:

• The indices of updated rows in the current iteration;
• Timing signals for executing computations to eliminate

duplicate indices.
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Figure 7: Custom Delta Tracker

The former ensures correctness, while the latter enhances perfor-
mance. To facilitate this, we encapsulate these functionalities within
an adapter API, wherein a new use case only needs to implement
two registration methods that interface with the track and compact

functions, respectively. The track function takes as arguments the
Fully Quali"ed Name (FQN) of the embedding submodule, indices
of updated rows, and any custom states. It stores these arguments in
a memory-e!cient format. The compact function informs DECK of
the appropriate timing to execute computations (i.e., jagged_unique
in Section 4.1) to e#ectively remove duplicate indices and states.
For instance, in the context of the sharded embedding table in
TorchRec, the track method is con"gured as a pre-forward hook on
the local Embedding nn.Module, while the compact method is triggered
immediately following the invocation of AllToAll communication
for lookup results.

Figure 7 illustrates the foundational components of the extensi-
ble tracker. The trainer operates on a package comprising multiple
elements, among which the model instance, publisher process, and
checkpoint processor are pertinent to DECK. The trainer shares
the model instance with DECK, enabling DECK to apply a cus-
tomized adapter that installs track and compact hooks as needed.
This setup allows DECK to e!ciently monitor updated row indices.
In production online training systems, a concurrent publisher pro-
cess typically streams model delta states to inference machines.
Although publishing is beyond the scope of this paper, it is note-
worthy that both the publisher and checkpointer utilize the same
model instance and operate on the same device. DECK must en-
sure that its delta states are accessible to both, even if these two
tenants retrieve delta states at varying intervals. In Figure 7, the
trainer publishes every three minutes and generates checkpoints
every "ve minutes. To prevent redundant state maintenance, DECK
responds to requests from both tenants using the same storage,
segmenting tracked states to ensure it can serve all tenants with
the correct granularity. Figure 8 exempli"es this, showing that com-
paction is applied only within each segment. In the worst-case
scenario, where each segment contains entirely duplicated states,
DECK retains at most N copies of states, where N is the number of
tenants. Fortunately, in all observed use cases, there are only up
to two tenants, making the upperbound increase in delta state size
manageable.

In our observations of existing use cases, DECK has been able to
accommodate to the storage of tracked indices within HBM. How-
ever, as embedding tables continue to evolve, potentially featuring

Figure 8: Dual Tenancy Example

Figure 9: Lineage Graph

fewer columns and more rows or dynamic columns with collision-
free rows, it is possible that storing all indices in HBM may no
longer be feasible. To address this potential limitation, DECK has
been designed with an extensible StateStore architecture, allowing
for the incorporation of additional memory resources such as CPU
memory and SSDs in future implementations. This modular de-
sign enables DECK to adapt to changing requirements and ensure
e!cient storage and management of tracked indices.

4.3 Lineage Graph
In Section 3.3, we brie$y explored the maintenance of lineages for
delta checkpoints, merged checkpoints, and full checkpoints to facil-
itate expedited failure recovery. In practical online training systems,
failures are not solely attributed to system and software errors. A
more complex challenge arises from data corruption, which can
result from various factors, including silent errors in data logging
systems, malicious attacks, or data outliers that violate inherent
model assumptions. Unlike system or software errors, which typi-
cally lead to immediate crashes, data corruptions are often identi"ed
with considerable delay, usually through the observation of model
quality regressions. When such an error is detected, it is imperative
for the model to revert swiftly to a much earlier state, where data
corruption is presumed absent. To accommodate such scenarios,
maintaining lineage only up to the latest full checkpoint is inade-
quate. Instead, the system must also preserve past full checkpoints
at relatively broad time intervals. Figure 9 illustrates this concept.
The lineage graph comprises two segments: the red segments rep-
resent active checkpoints for rapid failure recovery, the dark grey
segments denote active full checkpoints for addressing data cor-
ruption. The light grey segments indicate purged checkpoints from
previous active lineage graphs. This approach enables the lineage
system to support both types of recovery e#ectively.

5 EVALUATION
In this section, we conduct a comprehensive performance analysis
of the DECK architecture. Initially, we decompose the system to
evaluate each constituent component described in Section 3, analyz-
ing their individual contributions to overall e!ciency. Subsequently,
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Figure 10: Tracking Overhead

we execute end-to-end experiments utilizing real production in-
frastructure, models, and datasets to quantitatively assess DECK’s
performance characteristics under authentic operational conditions.

5.1 Experiment Setup
The experiments detailed in this section utilize up to 160 H100
GPUs, each with 94GB of memory, to host the training jobs for
production HSTU [23] models. Each training machine is equipped
with 8 GPUs, 2 TB of CPU memory, and 8 SSDs, each providing
4 TB of storage. Within each server, all GPUs are interconnected
via NVSwitch, while di#erent servers are linked using 8 200Gbps
In"niBand connections. Communication between HBM and the
CPU is facilitated through PCIe 5.0.

The experiments in Section 5.2 are conducted using real produc-
tion hardware, model implementations, data, and synthetic model
con"gurations to accurately assess tracking latency across vari-
ous setups. We deliberately avoid limiting ourselves to existing
model con"gurations, as these con"gurations evolve rapidly due to
changes in data volume and continuous improvements in system
e!ciency. In this way, we ensure that the experiments encompass
a range of plausible con"gurations to verify that the tracker oper-
ates e!ciently for both current and potential future workloads. In
Sections 5.3 and 5.4, the focus is on evaluating the performance of
individual components of DECK, namely checkpoint staging and
delta merging. These experiments are conducted on real production
hardware and model implementations, using synthetic model con-
"gurations and input data that accurately re$ect real-world tra!c
patterns. Section 5.5 assesses DECK using entirely authentic pro-
duction tra!c to evaluate end-to-end overhead and performance
improvements. Latencies associated with CUDA operations are
measured using CUDAEvents.

5.2 Tracking Cost
DECK internally maintains a dynamic set of unique indices. To min-
imize the size of the tracked states, DECK employs an aggressive
strategy to eliminate duplicate indices in each iteration through
its compact function. The e!ciency of this compact function is there-
fore critical. We measure the compact latency on CUDA GPU across
various user engagement history sequence lengths and embedding
table hash sizes con"gurations.

Figure 10 (a) presents the results of the "nal compact invoca-
tion at the end of a 30-minute interval, utilizing di#erent sequence
lengths. The implementation of customized CUDA kernels has re-
sulted in signi"cant speed enhancements for the compact functions.

Compared to the baseline curves using torch.cat and torch.unique

operations shown in Figure 2, the optimized kernels achieved ap-
proximately a 4.5x speed increase, reducing the compaction time
from 13ms to 2.9ms. This latency is already below 2% of the per-
iteration time for majority of the production models. To further
mitigate this minor overhead, DECK overlaps the compaction pro-
cess with the AllToAll communication of distributed embedding
table outputs, whose latency is also depicted in Figure 10 (a). It
is evident that the compact computation overhead can be entirely
masked by the communication overhead. Although the compaction
time increases with sequence length, it remains well below the
communication time, which also increases with sequence length.
The communication time does not increase proportionally with
sequence length due to two factors:

• Variable sequence lengths introduce slight load imbalances
across ranks, causing part of the communication time to be
spent waiting for stragglers;

• Models typically perform sampling on input sequences be-
fore embedding table lookup to enhance e!ciency.

Despite these factors, even if the communication overhead does
not increase at all, DECK should still be capable of supporting
sequences at least 8 times longer without incurring additional costs
based on the measured data.

Figure 10 (b) evaluates the same set of metrics by varying the
embedding table hash size. The results rea!rm that DECK can
indeed achieve zero-cost tracking in terms of computations. An
interesting observation is that although all three sets of experiments
employed the same sequence length, the AllToAll communication
time still increases steadily. This is likely because a larger hash size
results in fewer index collisions, leading to a greater number of
unique indices per iteration, which in turn results in more expensive
communications.

5.3 Staging Overhead
In this section, we evaluate the performance of our checkpoint stag-
ing methodology. The primary objective of staging is to minimize
training interruptions by expediting the checkpoint process. We
distinguish between two critical temporal metrics: staging time
and total uploading time. The former represents the interval until
a checkpoint copy is secured in non-HBM storage, allowing train-
ing to resume, while the latter encompasses the complete transfer
to remote persistent storage. Our experimental analysis examines
CPU staging and SSD staging as separate implementations.

To isolate staging performance, we conducted experiments with-
out delta checkpointing optimizations, using standard full embed-
ding tables as input parameters. Figure 11 (a) presents performance
measurements across varying embedding table hash sizes. The
baseline (leftmost gray bar) represents conventional synchronous
uploading of the entire embedding table to remote persistent stor-
age. As anticipated, synchronous upload duration correlates lin-
early with embedding table size due to communication bandwidth
constraints.

The implementation of staging technology substantially reduces
training interruption time by a factor of 3-4, with variation depend-
ing on whether SSD or CPU memory serves as the destination.
We observed that when embedding table shards exceed 20 billion
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Figure 11: Staging Overhead

rows (approximately 60GB per GPU, i.e., 480GB per host), the stag-
ing process triggers CPU Out-Of-Memory errors. Despite the total
staging requirement per server being well under CPU memory
capacity, available CPU memory remains insu!cient due to con-
current resource demands from other system components such as
publisher services and UVM embedding tables as elaborated in Sec-
tion 3.2. Theoretically, CPU memory o%oading should demonstrate
signi"cantly superior performance compared to SSD storage, given
that the HBM-to-CPU communication channel o#ers bandwidth
exceeding SSD transfer rates by more than an order of magnitude.
However, our current CPU o%oading implementation was not fully
optimized due to its limited applicability caused on CPU memory
hungry nature.

Figure 11 (b) illustrates the latencymetrics associatedwith saving
embedding tables totaling 5 billion hash size entries. The experi-
mental results con"rm similar latency reductions as observed in
our previous assessment. However, an unexpected phenomenon
emerges regarding total uploading duration: the measured time suf-
fers from signi"cant variability and follows a non-intuitive pattern,
initially increasing and subsequently decreasing as the number of
tables increases.

We hypothesize that this anomalous behavior stems from net-
work resource contention with concurrent jobs running in the
same physical cluster. The training infrastructure incorporates dual
network architectures: a backend network utilizing In"niband tech-
nology dedicated to inter-trainer communications, and a frontend
network that facilitates connectivity between the training clus-
ter and auxiliary systems including remote storage infrastructure,
monitoring platforms, and checkpoint repositories. Therefore, con-
current communications within the same job or from other jobs
in the same cluster could compete for bandwidth with checkpoint
uploading, which could lead to large latency variances.

Since the pause duration is determined solely by staging latency
rather than total uploading time, these upload duration $uctua-
tions do not signi"cantly impact training e!ciency, provided they
do not extend substantially enough to interfere with subsequent
checkpoint upload operations.

5.4 Merging Cost
This section examines two distinct merging operations essential to
our delta checkpointing architecture: (1) consolidate delta check-
points into the most recent full checkpoint during training resump-
tion and (2) combining delta checkpoints into merged checkpoints

on CPU servers. The "rst operation quanti"es the additional recov-
ery latency introduced by our approach before training can resume,
while the second determines CPU resource requirements to process
delta checkpoints generated by GPU-based training clusters.

Figure 12 presents latency measurements for merging delta
checkpoints into full checkpoints across various con"gurations.
In sub-"gure (a), we utilize a 10GB full checkpoint shard and 1GB
delta checkpoint shards. The horizontal axis represents varying
delta quantities, while the vertical axis decomposes the associated
latency components. Our "ndings indicate that merging a single
delta introduces minimal overhead, whereas merging "ve or more
deltas begins to introduce non-trivial delays. However, considering
that delta checkpointing reduces potential work loss from approxi-
mately 30 minutes to only 2-3 minutes, the additional 30-second
merging overhead represents an acceptable performance trade-o#.

In Figure 12 (b), we maintain a constant 10GB full checkpoint
shard while varying the relative delta sizes. Results demonstrate
that our current implementation processes larger but fewer deltas
more e!ciently than smaller but moremore deltas.We attribute this
to implementation limitations rather than fundamental algorith-
mic constraints and anticipate that optimized CUDA kernels could
achieve comparable performance across both scenarios, as network
communication remains the primary bottleneck. Figure 12 (c) ex-
periments measuring the cost of consolidating a 10GB embedding
table shard and 1GB delta shards across di#erent numbers of ta-
bles, which reveals that table count does not signi"cantly impact
merging performance.

Figure 13 illustrates delta merging overhead on CPU servers
using identical con"gurations to Figure 12. In most scenarios, CPU-
based merging requires only marginally more time than GPU-based
merging, remaining well below delta generation rates. For the 25%
delta case shown in the "gure, each CPU server can e#ectively
process checkpoints from approximately 15 GPUs when generating
deltas at 5-minute intervals. Notably, loading operations consis-
tently execute faster on CPU compared to CUDA environments as
the latter requires an additional host-to-device memory transfer to
make checkpoint values available to CUDA operations.

5.5 E"ective Training Time
This section presents an assessment of DECK’s end-to-end e!-
ciency in real production deployments. The primary objective of
DECK is to increase checkpoint frequency while simultaneously
minimizing adverse e#ects on training throughput. To quantita-
tively evaluate DECK’s e!cacy in achieving this objective, we
conduct a comparative analysis between DECK’s staging latency
and TorchRec [7] sharded full model checkpointing methodologies.
To isolate the e#ects of delta tracking and multi-layer staging (MLS),
we evaluated two con"gurations: DECK+TorchRec, which enables
only delta tracking on top of TorchRec, and DECK+MLS, which
includes all DECK features.

Figure 14 illustrates the performance results obtained from exper-
iments conducted using a 5TB production model distributed across
160 94GB H100 GPUs, with each GPU managing a 32GB UVM em-
bedding table shard. The model employs HSTU with Stochastic
Length [23], which downsamples UIH items based on UIH length
before embedding table lookup operations. The hyperparameter 𝑅
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Figure 12: Delta Merging Overhead

Figure 13: Merge on CUDA vs Merge on CPU

(a) Stochastic Length 𝑅 = 1.7

(b) Stochastic Length 𝑅 = 1.3

Figure 14: Overall DECK Overhead

controls the downsampling probability, where smaller values result
in more aggressive downsampling and hence fewer updated rows
every iteration. For the majority of use cases we have seen so far,

the value of 𝑅 falls in range [1.3, 1.7]. The leftmost data point indi-
cates that synchronous full checkpointing requires 131.4 seconds to
complete. Given that these full model checkpoints are generated at
50-minute intervals, the checkpointing process consumes approx-
imately 4.4% of overall training throughput. Our analysis reveals
that individual delta checkpointing overhead follows a positive
correlation with generation interval duration, as longer intervals
result in more unique row modi"cations. However, the impact on
training throughput demonstrates an inverse relationship, as fewer
checkpoint operations are performed within a speci"ed time period.
When implementing delta checkpoints at 20-minute intervals (rep-
resenting a 2.5x increase in checkpoint frequency), the throughput
reduction decreases to only 1.6%, calculated as 19.3 seconds divided
by 1,200 seconds. Most notably, even with the highest frequency
con"guration of 5-minute delta checkpoint intervals depicted in the
"gure, the impact on training throughput remains at only 3.6% and
3.0% respectively with DECK+MLS, which outperforms TorchRec’s
sharded full checkpointing methodologies but delivers a 10x reduc-
tion in potential progress loss during recovery scenarios.

Figure 15 shows the E#ective Training Time (ETT) across dif-
ferent checkpoint intervals for 𝑅 = 1.7 and 𝑅 = 1.3. ETT measures
the percentage of time spent on processing training data, exclud-
ing checkpoint-related pauses. Checkpoint intervals are typically
chosen o%ine based on trainer overhead, network bandwidth bud-
get, and storage capacity constraints, usually ranging from 40 to
60 minutes. The grey dashed line at 96.3% represents the highest
production ETT we have seen using sharded full checkpoints every
60 minutes without DECK. With DECK enabled, the ETT exceeds
96.4% while reducing progress loss by 12x. While it’s possible to
eliminate the remaining 3.6% staging overhead, e.g., by making
staging asynchronous and tracking delta during staging as auxil-
iary deltas, DECK already surpasses the highest existing ETT with
sharded full checkpoints. Given that 3.6% is minor and can be out-
weighed by typical system noise, further optimizing staging may
not justify the added engineering complexity.

In practice, while workloads $uctuate, especially during online
training, DECK’s overhead remains relatively stable for two key
reasons: UIH length variations are mitigated by techniques like
Stochastic Length [23] where sequences with longer history has a
higher downsample probability, and $uctuations in request volume
are absorbed by elastic training (i.e., spatially) or tra!c backlog
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Figure 15: E"ective Training Time

systems (i.e., temporally). As a result, per-GPU checkpoint overhead
stays relatively consistent over time. More intuitively, training sys-
tems usually aim to maximize per-GPU throughput, which depends
primarily on hardware and software e!ciency. DECK’s staging
and merging overhead scales with this per-GPU throughput and
is largely independent of workload dynamics, because the delta
size of a local embedding table shard is determined by how many
tokens the corresponding GPU processes per time unit.

6 RELATEDWORK
Deep Learning-based Recommendation Models Recent re-
search on dense recommendationmodel scaling and scaling laws [23,
24] can shift the relative sparse to dense network ratio, however,
the sparse components continue to dominate in terms of weight
sizes [9, 11, 13]. Further, from a modeling perspective, scaling up
both dense and sparse networks will yield the best model quality,
future proo"ng DECK. Additionally, many of DECK’s components,
including staging and merging, are highly applicable to e!cient
checkpointing of other parts of the model.
Hierarchical CheckpointsMemory hierarchy is used in indus-
trial recommenders for checkpointing.While not directly applicable
to the recommendation setting where no redundant CPU memory
is available for checkpointing, advancements have been made in in-
memory checkpoints for LLMs for fast failure recovery. In particular,
Gemini [21] proposed an optimal placement strategy for maximiz-
ing probability of failure recovery and a "ne-grained, pipelined
approach to transfer checkpoints and reduce interference between
checkpointing and training. In AIBox [27] and [26], Baidu adopts
a multi-level, HBM-CPU-SSD hierarchy for embedding storage,
with novel hashing methods, compression algorithms, managed
caches and multi-stage pipelines to minimize latency from lower-
tier storage. OpenEmbedding [26] introduces persistent memory to
the hierarchy, and uses a co-designed cache replacement strategy
with the checkpoint process to minimize checkpointing overheads.
Similarly, DECK uses a chunked and asynchronous method to hide
checkpoint transfer overheads in SSDs.
Delta Checkpoints DECK improves upon prior arts from mul-
tiple aspects, including drastically reduced tracking and storage
overheads as well as transparency in deployments.

Compared to Check-N-Run [6], DECK does not require an em-
pirical model to determine whether a di#erential or a baseline
checkpoint should be taken. Compared to QuickUpdate [14], DECK
has no quality implications and more ubiquity as it does not use
speci"c optimizer state to approximate model delta and can be ap-
plied to all optimizers. Unlike both Check-N-Run and QuickUpdate,

DECK incurs virtually no tracking overheads and minimum storage
overheads as it only need to remember the changed row IDs, not a
snapshot of model state as the basis of calculating delta.
Checkpoint Pruning DECK can work with orthogonal selective
checkpoint techniques to further reduce checkpoint storage over-
heads while maintaining low tracking performance: for example, to
support optimizer-state guided selective checkpointing, the delta
tracker can "lter IDs out based on the current momentum of the
optimizer states of the embedding tables.
Checkpoint Compression and Quantization Checkpoint foot-
prints can be further reduced using both standard compression
algorithm [4] and quantization approaches onmodel weights [1], es-
pecially when used in synergy with quantized communication [22],
as they can simultaneously reduce both network bandwidth and
remote storage requirements for checkpoints.
Alternatives toDelta Tracking In speci"c caseswhere the AllToAll
paradigm is not used for ID distribution, e!cient data tracking is
still possible by tapping into the data service. For example, the
(distributed) data loader has a global view that can work in tandem
with embedding table sharding metadata that, upon request, in-
structs the GPU workers which rows of its embedding tables need
to be checkpointed, and this noti"cation can still be hidden as part
of the training process.
Fault Tolerance and Delta Checkpoints One downside of main-
taining multiple delta checkpoints is the restoration of a full check-
point relies on the availability of all delta checkpoints plus the pre-
vious full checkpoint, resulting in fault-tolerance concerns. While
this can bemitigated by using a smaller stride to encourage frequent
consolidation, we acknowledge that it ultimately requires a trade-
o# between availability and storage overheads, and we believe the
bene"ts signi"cantly outweighs the associated risks. DECK’s cur-
rent recovery process in face of missing delta checkpoints involve
immediately requesting a full checkpoint from the GPU workers,
thereby allowing all previous checkpoints to be safely purged.

7 CONCLUSION
This paper presents the design, implementation, and evaluation of
DECK, a high-performance model checkpointing system speci"-
cally tailored for industrial recommendation systems. The system’s
e!ciency is achieved through the synergistic combination of zero-
cost tracking, multi-layer staging, and optimal hierarchical merging
techniques. To further optimize performance, key system compo-
nents are meticulously optimized down to the CUDA kernel level,
ensuring maximum e!ciency. We conduct comprehensive experi-
ments using real-world production clusters, models, and datasets
to validate the e#ectiveness of DECK. Our results demonstrate that
DECK achieves a 12-fold increase in checkpoint frequency while
maintaining comparable training throughput costs, signi"cantly
outperforming conventional checkpointing solutions.
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