
Magnus: A Holistic Approach to Data Management for
Large-Scale Machine Learning Workloads

Jun Song†
ByteDance Inc.

Jingyi Ding†∥
Zhejiang University

Irshad Kandy
ByteDance Inc.

Yanghao Lin
ByteDance Inc.

Zhongjia Wei
ByteDance Inc.

Zilong Zhou
ByteDance Inc.

Zhiwei Peng
ByteDance Inc.

Jixi Shan
ByteDance Inc.

Hongyue Mao
ByteDance Inc.

Xiuqi Huang‡∥
Zhejiang University

Xun Song
ByteDance Inc.

Cheng Chen
ByteDance Inc.

Yanjia Li
ByteDance Inc.

Tianhao Yang
ByteDance Inc.

Wei Jia
ByteDance Inc.

Xiaohong Dong
ByteDance Inc.

Kang Lei
ByteDance Inc.

Rui Shi
ByteDance Inc.

Pengwei Zhao
ByteDance Inc.

Wei Chen∥
Zhejiang University

ABSTRACT
Machine learning (ML) has become a cornerstone of key applica-
tions at ByteDance. As model complexity and data volumes surge,
data management for large-scale ML workloads faces substantial
challenges, particularly with recent advances in large recommen-
dation models (LRMs) and large multimodal models (LMMs). Tradi-
tional approaches exhibit limitations in storage efficiency, metadata
scalability, update mechanisms, and integration with ML frame-
works. To address these challenges, we propose Magnus, a holis-
tic data management system built upon Apache Iceberg. Magnus
integrates innovative optimizations across resource-efficient stor-
age formats optimized for large wide tables and multimodal data,
built-in support for vector and inverted indexes to accelerate data
retrieval, scalable metadata planning with Git-like branching and
tagging capabilities, and high-performance update/upsert based on
lightweight merge-on-read (MOR) strategies. Additionally, Magnus
provides native support and specialized enhancement for LRM and
LMM training workloads. Experimental results demonstrate signif-
icant performance gains in real-world ML scenarios. Magnus has
been deployed at ByteDance for over five years, enabling robust
and efficient data infrastructure for large-scale ML workloads.

PVLDB Reference Format:
Jun Song, Jingyi Ding, Irshad Kandy, Yanghao Lin, Zhongjia Wei, Zilong
Zhou, Zhiwei Peng, Jixi Shan, Hongyue Mao, Xiuqi Huang, Xun Song,
Cheng Chen, Yanjia Li, Tianhao Yang, Wei Jia, Xiaohong Dong, Kang Lei,
Rui Shi, Pengwei Zhao, and Wei Chen. Magnus: A Holistic Approach to
Data Management for Large-Scale Machine Learning Workloads. PVLDB,
18(12): 4964 - 4977, 2025.
doi:10.14778/3750601.3750620

†Co-first authors: wuyixin.yx@bytedance.com, dingjy@zju.edu.cn. ‡Corresponding
author: huangxiuqi@zju.edu.cn. ∥State Key Lab of CAD&CG, Zhejiang University.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750620

1 INTRODUCTION
Machine learning (ML) has been widely adopted at ByteDance, sup-
porting key applications such as search, recommendation, and ad-
vertising [27, 33, 42]. As these applications evolve to meet the deep-
ening of precise and personalized demands, ML workloads have
grown rapidly in both scale and complexity [29, 49, 50]. ByteDance
has actively explored large models to address these evolving needs.
Consequently, modern ML workloads at ByteDance encompass not
only classical ML models but also large recommendation models
(LRMs) [13] that capture intricate user behavior sequences and large
multimodal models (LMMs) [17, 22, 47] that learn from diverse data
modalities, including text, images, audio, and video.

The exponential growth of model scale and the expanding range
of business applications have placed significant demands on data
infrastructure. ML workloads require efficient management of mas-
sive training data. Currently, ByteDance’s offline training data has
reached the EB level, with a daily growth of PB. This massive
amount of data is not only fundamental to model training but also
plays a crucial role in feature engineering and model optimizations.
However, the simultaneous surge in data volume and model com-
plexity presents significant challenges for efficient data storage and
accelerating data access. A holistic data management approach is
essential to support large-scale ML workloads.

Limitations. Traditional data management approaches often
store ML training data directly in distributed file systems [4] or
object storage [1], but these solutions face performance bottlenecks
at scale. For instance, data is stored as individual files without
unified table-level organization, and metadata operations become
time-consuming with the proliferation of files. Moreover, the lack
of update and upsert operations limits consistent data management
and complicates iterative model development. To address some
of these problems, open-source data lake table formats, such as
Apache Hudi [5], Apache Iceberg [6], and Delta Lake [10] intro-
duce transactional guarantees, schema evolution, upsert/update
support, and integration with diverse compute engines. Since 2020,
ByteDance has explored adopting these table formats into inter-
nal training data infrastructure. However, while these solutions
improve certain aspects of data management, they still fall short in

4964

https://doi.org/10.14778/3750601.3750620
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750620


the face of ByteDance’s large-scale, complex ML workloads. Key
limitations include suboptimal resource utilization, lack of Git-like
branch capabilities, inadequate read/write performance, and in-
sufficient integration with training frameworks. Furthermore, the
growth of large models amplifies the need for advanced ML data
management, particularly for handling diverse data modalities.

Challenges. To fully meet the demands of large-scale ML work-
loads at ByteDance, we outline four key challenges that must be
overcome to establish an effective data management system.

① Resource-Friendly Storage Formats. At ByteDance, we manage
EB-scale data storage, with massive computational resources en-
gaged in reading and writing data daily for data processing and
training. However, popular columnar formats such as Parquet [8]
suffer from storage and computing efficiency issues when handling
large data, particularly for wide tables with tens of thousands of
columns or multimodal data including images and videos. More
resource-friendly storage formats are required to mitigate overhead.

② Efficient Big Metadata Management. Planning is an essential
step in data reading pipelines, responsible for reading, parsing, and
processing metadata to obtain file lists. As training data grows in
size, metadata becomes big metadata [18]. Existing metadata plan-
ning approaches like Iceberg struggle with such metadata volumes,
particularly when the metadata includes redundant information.
Additionally, isolated experiments are needed for feature research.
While Iceberg provides basic snapshot-based branching and tagging
functions, ML workloads require enhanced metadata for advanced
cross-branch data merging and rebasing capabilities.

③ Lightweight MOR Update and Upsert. Many ML scenarios in-
volve frequent data modifications, such as adding new columns
in feature engineering, updating advertising conversion data from
postbacks, or refreshing multimodal annotation data. Copy-on-
Write (COW) and Merge-on-Read (MOR) are two common strate-
gies for data updates. Since COW introduces high writing over-
head, which can compromise data timeliness, MOR is preferred at
ByteDance. However, MOR strategies of open-source data lakes
such as Iceberg often struggle to meet the read and write efficiency
requirements under these ML use cases.

④ Large Model Training Support. Increasingly diverse large-scale
ML scenarios introduce unique requirements for data management
and model training. In LRM training, for instance, training samples
shift from chronological ordering to grouping by user behavior.
Similarly, LMM training involves additional complexities due to
its reliance on numerous multimodal data sources. Data manage-
ment optimizations for large model training are essential to reduce
resource consumption and maximize training throughput.

Key Technologies & Contributions. To address these chal-
lenges, we propose Magnus, a data management system based on
the open-source Apache Iceberg, to accelerate large-scale ML work-
loads through a series of innovative designs and implements. We
summarize the main contributions as follows:
• We introduce columnar Krypton format and Blob format to

enhance storage efficiency. Additionally, we integrate inverted
indexes and vector indexes directly into the Magnus tables, avoid-
ing data movement to external search systems. (Sec. 3)

• By eliminating redundant fields, sorting by partitions, and con-
structing indexes of manifest files, we significantly improve the

efficiency of large data planning. Besides, Magnus enhances Ice-
berg’s branching and tagging with merge and rebase operations,
enabling flexible version control for feature analysis. (Sec. 4)

• We implement a column-level update and a primary key driven
upsert based on MOR strategies, while also achieving optimized
read performance through native engine enhancements and
data reorganization. (Sec. 5)

• To support ByteDance’s internal large-scale ML workloads, we
carry out targeted adaptations for LRM and LMM training sce-
narios, applying a dual-table design and a sharding mechanism,
respectively. (Sec. 6)

• We experimentally evaluate the storage efficiency, memory foot-
print, and read/write performance of Magnus. By comparing the
performance under production datasets and environments, veri-
fying Magnus’s effectiveness large-scale ML scenarios. (Sec. 7)

2 SYSTEM OVERVIEW
Magnus is a unified data management system designed to address
the diverse data-related needs in large-scale ML scenarios. As il-
lustrated in Fig. 1, it bridges heterogeneous bottom-layer storage
systems (e.g., HDFS, object storage) and various upper-layer ML
scenarios (e.g., data ingestion, insight, engineering, and model train-
ing). By encapsulating storage backends through a standardized
SDK, Magnus abstracts underlying storage complexities and ensures
cross-platform compatibility. Magnus primarily contains Magnus Ta-
ble, Global Lake Service and Multi-Engine Support, each providing
specialized functionalities for data storage and processing.

Figure 1: Magnus Architecture

Magnus Table. As the core of Magnus, it unifies both internal and
external data through two types of tables:
• Inner table: Includes non-primary key tables supporting stan-

dard operations like append and update, and primary key tables
enforcing unique key constraints to enable upsert.

• Registered table: Allows for easy integration of external data
sources into the Magnus, eliminating data transformation.
Each Magnus Table provides standardized management over for-

mats, indexes, and metadata, ensuring data consistency.
• Format: Natively supports open columnar formats such as Par-

quet, along with proprietaryML-optimized formats like Krypton

4965



Table 1: Integrated Frameworks and Supported Scenarios of Magnus

Scenario Engine/Framework Function Description

Data Ingestion &
Data Engineering

Flink [3] Magnus integrates with Flink to provide unified offline data management from message queues. Flink consumes data from
message queues in real-time and writes to Magnus via streaming inserts/upserts.

Spark [9, 46] Magnus integrates with Spark to support efficient large-scale batch writing and offline data processing, including read/insert/up-
date/upsert operations. Magnus also enables convenient registration and unified management of external data files.

Ray [2] Magnus integrates with Ray to offer complex DAG orchestration and heterogeneous resource scheduling for large models,
supporting multimodal data management and read/insert/update/upsert operations.

Data Insight Krypton [14] Magnus integrates with Krypton to utilize SQL for data analysis, mining, and visualization, featuring high-performance OLAP
and full-text retrieval (including inverted and vector indexes).

Model Training
Primus [40] Magnus integrates with the self-developed Primus framework, which reads training samples from Magnus tables and supplies

data to training frameworks such as PyTorch and TensorFlow for LRM training.

BytedStreaming Magnus integrates with BytedStreaming, an internal framework optimized and customized based on open-source Streaming[44],
providing flexible and efficient data loading and sharding for LMM pretraining.

format and Blob format. While Parquet is the default ingestion
format, non-native formats can be registered directly.

• Index: Employs both primary key indexes and search indexes
(including inverted index and vector index). These indexes, com-
bined with metadata-driven file pruning, enable efficient data
scanning and retrieval through upper-layer engines.

• Metadata: Maintains critical entities like snapshots, branches,
tags, and statistics, supporting granular version control, lineage
tracking, and transactional guarantees.
Magnus Table also introduces an Arrow-based native engine to

optimize in-memory data processing. It standardizes diverse un-
derlying file formats into Apache Arrow memory format, enabling
zero-copy access for upper-layer compute engines and eliminating
the overhead of serialization and format transformation.

Global Lake Service. Magnus offers a unified management service
to support large-scale data governance for ML workloads including:
• Catalog Service: Organizes all data in Magnus into a hierarchical

structure comprising catalog, namespace, and table, enabling
systematic management. It allows users to query data through
a simplified interface using table names and version identifiers.

• Table Management Service: Provides lifecycle management for
tables, supporting version control for historical tracking, role-
based access control for security, audit logging for compliance,
data time-to-live policies for lifecycle automation, and advanced
workflows (e.g., data storage transition, cross-cluster migration).
Multi-Engine Support. Magnus leverages the native engine’s core

library and catalog service client to provide multi-language SDKs
(Java, Python, C++), enabling deep optimization integration with
distributed engines and frameworks, including Flink, Spark, Ray,
Krypton, Primus, and BytedStreaming. On this basis, Magnus sup-
ports ByteDance’s end-to-end ML training pipelines across four
primary scenarios with corresponding functions as listed in Tab. 1.

Fig.2 illustrates the read and write pipelines of Magnus with inte-
grated engines and frameworks. For writes, engines such as Flink,
Spark, or Ray parallelize input into multiple write tasks. Each task is
executed independently by the engine’s executors, which write data
files in supported formats and generate corresponding metadata
through Magnus SDK. Once tasks are completed, the driver collects
metadata and creates a new snapshot. Metadata files are atomically
committed with optimistic concurrency control to prevent conflicts.
For reads, Magnus first loads the current table snapshot to plan and
generate scan tasks. The scan tasks are distributed across executors,
with each retrieving only the relevant columns and records through

Magnus’s optimized native engine. After the data is loaded, upper-
layer engines perform further operations (e.g., filtering, joining,
aggregation) to produce the final output.

Figure 2: Magnus Write and Read Pipelines

3 STORAGE FORMAT AND INDEX
Magnus follows the hierarchical structure and flexible columnar
formats of Iceberg, organizing tables into abstract directory struc-
tures on distributed file systems or cloud object storage. Besides
supporting open-source formats like Parquet, we introduce novel
storage formats, columnar Krypton format [14] and Blob format, to
conserve resources and achieve better performance, particularly in
scenarios involving wide tables and multimodal data. In addition,
we design inverted indexes and vector indexes, enabling simultane-
ous search capabilities within the same training dataset.

3.1 Data Layout
Magnus supports multiple types of inner tables, including primary
key tables and non-primary key tables. Fig. 3 illustrates the data lay-
out of a Magnus table. Each table is stored as a directory containing
the following components:
• Data Directory: Stores all data files, partitioned by user-defined

partition columns (e.g., date) and further divided into buckets
using hashing primary keys. Magnus decouples logical data or-
ganization from underlying file formats for seamless integration
with various formats like Parquet (.parquet) [8] and Krypton
format (.hsap) [14].

• Metadata Directory: Maintains all metadata, including the latest
version number, version-specific metadata files, manifest list
files, and manifest files. Metadata files contain the table schema,
partition specification, and snapshot list. Each snapshot is stored
as a manifest list file, which references multiple manifest files.
A manifest file stores the data file list along with metadata.

4966



Figure 3: Data Layout of A Magnus Table

• Index Directory: Contains index-related information, includ-
ing hfile_index, inverted_index and vector_index. The
hfile_index directory stores HFile index files for primary key
tables, while the inverted_index and vector_index directo-
ries store inverted index and vector index files, respectively.

• Metadata Cache: Stores pre-parsed metadata in binary format,
enhancing metadata parsing efficiency.

3.2 Columnar Formats
Machine learningmodels typically rely on specific features (columns)
for training. Columnar storage formats significantly improve data
loading and preprocessing by allowing reading only the necessary
columns from a file, which is particularly beneficial for large-scale
datasets. Although Apache Parquet is the most widely used colum-
nar format in the industry, it presents limitations for large, wide
tables. A Parquet file is partitioned into row groups, with each
row group stored by columns. Consequently, the metadata size and
memory consumption of Parquet grow linearly with the number
of columns and row groups. Furthermore, before any data can be
read, the metadata must be decoded, which incurs substantial CPU
overhead in large-scale scenarios.

To solve the problems, we integrate an internally developed
columnar format in Krypton [14] with Magnus, which stores data
with much less storage space and memory usage than Parquet. This
format is structurally organized into three primary components:
data region, index region, and file footer. The data region and index
region store data pages and indexes, respectively. The file footer con-
tains meta information about the entire file, including the metadata
of each column. Consequently, Krypton format maintains a single
set of column metadata applicable to all row groups at the file level.
Each row group possesses its own specific row group metadata, con-
taining the number of rows and a pointer to each column’s metadata.
This structure achieves𝑂 (𝑛𝑢𝑚_𝑟𝑜𝑤_𝑔𝑟𝑜𝑢𝑝𝑠+𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠) mem-
ory consumption and much cleaner metadata with the footer rep-
resented using Flatbuffers[23] in memory. In contrast, Parquet con-
structs and maintains a ColumnChunkMetaData for every column
chunk of every row group, which results in 𝑂 (𝑛𝑢𝑚_𝑟𝑜𝑤_𝑔𝑟𝑜𝑢𝑝𝑠 ×
𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠) memory consumption.

3.3 Multimodal Data Blob Format
In LMM training scenarios, vast amounts of images, audio, and video
data must be efficiently stored and retrieved. Traditional columnar
storage formats store multimodal data in columns as binary objects.

However, due to the large size of binary data, individual columns
become extremely large, limiting the number of records that can be
stored in a single file and thereby reducing storage efficiency. Addi-
tionally, video frames are typically extracted as images and stored in
List<Binary> format. During query execution, random access to
sub-items requires reading and decoding the entire List<Binary>,
leading to severe read amplification.

Figure 4: A Blob File Storage Structure Example

Magnus addresses the above challenges using a blob file stor-
age approach. Fig. 4 illustrates the storage structure of blob files.
Multimodal binary data is stored separately in blob files using a
row-based storage format. The columnar storage format is then
used to store only reference metadata, such as the offset and size
of each binary object within the blob file. During data retrieval,
Magnus first obtains data size and offset from the columnar file
and then directly reads the corresponding segment from blob files.
For List<Binary> data, the position information list is first read
from the columnar storage file, sub-items are filtered, and then the
required sub-items are read from the blob file. This design enables
the columnar files to only store reference information, effectively
improving storage efficiency. Moreover, through sub-item filter-
ing and locating based on references of List<Binary>, the read
amplification in image frame extraction is significantly alleviated.

3.4 Primary Key Index
Efficient data update capabilities are crucial for large-scale ML
workloads. Magnus employs a primary key indexing mechanism to
optimize update performance for data ingestion. Fig. 5 illustrates
the update and read processes based on the primary key index.

Figure 5: A Primary Key Index Example

The data writing process consists of two stages: primary key
indexing and data bucketing. A data record’s key is first assigned
to a designated data bucket via the primary key index, and then the
record is written into the bucket file by a corresponding data writer.
Each batch write operation by the computing engine generates a
file in the bucket, with records internally sorted by primary key.

During the reading process, Magnus employs multi-way merging
strategies to consolidate all bucket files based on primary keys. To

4967



solve ordering conflicts caused by updates to the same primary keys,
each written file is assigned a monotonically increasing sequence
number. During MOR, the records with higher sequence numbers
override those with lower ones, ensuring deterministic resolution of
duplicate primary keys. To accommodate diverse use cases, Magnus
supports two primary key indexing mechanisms:
• Hash Index: A local primary key indexing mechanism designed

for scenarios with fixed partitions. It applies a hash function
to compute bucket numbers from primary key values. Each
partition directory (e.g., dt=20250101) is subdivided into bucket
directories (e.g., bucket=0), forming a hierarchical structure.
This method ensures primary key uniqueness within a partition,
but identical keys may exist across different partitions. The
hash-based routing requires no external dependencies, reducing
computational overhead and ensuring superior performance.

• HFile Index: Ensures global primary key uniqueness across the
entire table, particularly useful in dynamic partitioning scenar-
ios. HFile [20], an immutable key-value storage format from
Apache HBase, is leveraged to store mappings between primary
keys and their corresponding buckets. During indexing, the sys-
tem first queries HFile to locate the bucket for a given key. If it
does not exist in HFile, the system computes the bucket number
dynamically and updates the index in HFile.

3.5 Search Index
Multimodal data processing in large model training scenarios ex-
pects a single copy of datasets to support both batch training and
data search functions, including full-text and vector search. Tra-
ditional solutions, such as exporting data to Elasticsearch [35] or
external vector databases, introduce significant storage operational
overhead due to redundancy. In contrast, Magnus integrates inverted
indexing and vector indexing directly into the data lake, enabling
cost-efficient and unified data management.

Index construction is implemented through Spark SQL’s ADD
INDEX statement. The following example demonstrates how to cre-
ate an inverted index on the content column:

ALTER TABLE magnus.default.t0
ADD INDEX content_idx(content INVERTED);

Each index entry is linked to the original dataset via the correspond-
ing row_id, establishing a direct mapping between indexes and the
underlying data records. The generated index files are uniformly
stored in the index directory in Fig.3, maintaining a one-to-one
correspondence with data files. This design simplifies version man-
agement by automatically synchronizing index versions with the
data files, eliminating the need for separate maintenance.

The query process using indexes contains three phases: planning,
task execution, and result aggregation. Here is an example that
performs a full-text search using the inverted index:

select content , score() from magnus.default.t0
where match_any(content , 'compute ')

order by score() limit 10;

During planning, the query engine Krypton [14] partitions the tar-
get table into manageable task splits, each corresponding to one or
more Magnus files. During task execution, splits are encapsulated
into executable units (i.e., tasks) and distributed to worker nodes.
Each task begins by querying the inverted index to retrieve a list
of relevant row_ids and their BM25 scores (for inverted index) or

vector distances (for vector index), filtered by users’ search criteria.
Leveraging the precomputed row_ids-to-data mapping, the task
then directly fetches the corresponding records from the underly-
ing Magnus data files. Finally, during result aggregation, Krypton
collects partial results from all worker nodes and sorts the unified
dataset by BM25 score or vector distance. The top-N entries, ranked
by their semantic similarity to the query, are returned to the client.

4 METADATA MANAGEMENT
The metadata layer plays a pivotal role in Magnus, serving as the
foundation for advanced data analysis and ML training. Magnus
enhances Iceberg metadata to improve the planning performance
on wide tables and support lightweight Git-like branching for data
isolation and storage saving, with advanced features like merging
and rebasing to streamline feature analysis workflows and enhance
dataset versioning and traceability.

4.1 Metadata Planning
Wide-table queries typically select only necessary feature columns
and perform partition scans without additional filters. However,
Iceberg persists min-max statistics for each column of each data file
in the manifest files by default. Our analysis reveals that such redun-
dant statistics account for 70%-80% of manifest file storage space
and parsing overhead, leading to excessive metadata planning la-
tency. To address this, Magnus eliminates redundant metadata such
as lower_bounds and upper_bounds statistics for feature columns
during data ingestion, while retaining critical statistics for the nor-
mal planning procedure.

(a) Original (b) Optimized

Figure 6: Manifest File Structure

Since each ingestion may generate data across all partitions, the
generated entries are randomly distributed within manifest files
from different partitions. Consequently, when planning a scan for
a specific partition, all manifest files in the snapshot must be fully
scanned to filter out non-target partition entries. This results in
planning time approaching the full table scan even when reading
only a single partition. We address this problem by optimizing the
manifest file structure. Before writing a manifest file, we sort its
entries by partition value. Meanwhile, we create sparse indexes
mapping partitions to file offsets, which record the minimum parti-
tion value of each Avro data block and the block’s start offset within

4968



S0 S1 S2

Tag
v1.0

S3

Branch
main

B0 B1 B2

feature-branch
Branch

S0 S1 S2

Tag
v1.0

S3

Branch
main

B0 B1 B2

S3

Branch
main

S4 S0 S1 S2

Tag
v1.0

B0 B1 B2

feature-branch
Branch

(a) Snapshots as nodes, edges as relationships

S0 S1 S2

Tag
v1.0

S3

Branch
main

B0 B1 B2

feature-branch
Branch

S0 S1 S2

Tag
v1.0

S3

Branch
main

B0 B1 B2

S3

Branch
main

S4 S0 S1 S2

Tag
v1.0

B0 B1 B2

feature-branch
Branch

(b) Merging snapshots by a new snapshot S4

S0 S1 S2

Tag
v1.0

S3

Branch
main

B0 B1 B2

feature-branch
Branch

S0 S1 S2

Tag
v1.0

S3

Branch
main

B0 B1 B2

S3

Branch
main

S4 S0 S1 S2

Tag
v1.0

B0 B1 B2

feature-branch
Branch

(c) Rebasing feature-branch to main branch

Figure 7: Metadata Branching and Tagging Design

the file. When querying the manifest entries of a certain partition,
we can skip the blocks that do not contain relevant entries and
terminate reading early within blocks based on certain conditions,
significantly reducing the manifest file parsing overhead.

For instance, consider a table with 1,000 partitions, where each
partition generates a data file during a write operation. The corre-
sponding manifest file is shown in Fig. 6. When querying partition
123, a full scan of the manifest file is required to locate its single
relevant entry. With our optimization, the offsets index reveals that
the minimum partition value in block 1 is 100, while in block 2, it is
200. Therefore, we only need to read block 1. Inside block 1, due to
the ordering of manifest entries, encountering partition 124 within
block 1 indicates that no subsequent records belong to partition
123, allowing for an early termination of the reading process.

4.2 Branching and Tagging
Similar to Iceberg, Magnus supports lightweight branching and tag-
ging operations, allowing users to create new branches or derive
them from existing ones while ensuring snapshot isolation. Fig. 7(a)
illustrates the design of branches through a directed acyclic graph,
where snapshots serve as nodes and directed edges represent par-
ent relationships. However, in typical ML scenarios, experimental
branches often need to integrate validated changes into production
pipelines and synchronize with upstream data updates periodi-
cally—features not natively supported by Iceberg. Magnus further
enhances Git-like branching functionality with two critical exten-
sions tailored to feature analysis workflows: merging and rebasing.
• Brach Merge: Enables integration of experimental branches into

other branches, as shown in Fig. 7(b). When merging a branch,
Magnus identifies all manifest files within the source branch and
incorporates them into a new snapshot on the target branch.
The relative sequence number of the merged manifest files is
preserved, maintaining the temporal order of data updates.

• Branch Rebase: Addresses the challenge of experimental branches
diverging from upstream changes. When rebasing, Magnus picks
all the snapshots in the branch and re-commits them on top of
a new base branch, effectively resetting the branch’s lineage, as
shown in Fig. 7(c). During this process, the sequence numbers
of the rebased snapshots are recalculated to ensure the highest
precedence during MOR.
As a complement to branch management, Magnus employs a

tagging feature to version datasets for reproducible model training.
Tags serve as immutable references to specific snapshots, allowing

teams to track data states across experiments. Additionally, Magnus
integrates commit message logging into write operations, enabling
users to audit data evolution. In Spark and Ray workflows, users
can attach descriptive commit messages to snapshots, which are
stored in the snapshot summary metadata. All these operations
above are implemented purely at the metadata layer, thus avoiding
redundant data rewrites.

5 HIGH-PERFORMANCE READ ANDWRITE
Through carefully designed MOR strategies, Magnus enables effi-
cient column-level updates and primary key table upserts, while
minimizing write amplification. To mitigate the read amplifica-
tion typically associated with MOR operations, Magnus employs
native engine enhancements and data reorganization techniques.
These optimizations make Magnus particularly well-suited for high-
frequency ingestion pipelines, striking a balance between update
efficiency and query performance.

5.1 Column-Level Update
Column-level update means modifying specific columns without
altering or rewriting entire rows, which is critical for optimiz-
ing storage efficiency and reducing I/O overhead. Traditional data
lake frameworks, such as Apache Iceberg, lack native support for
column-level updates, often requiring full-row reads and rewrites
from the underlying data files. This results in significant read am-
plification by retrieving unnecessary data and write amplification
by rewriting unchanged columns, undermining performance.

As shown in Fig. 8, Magnus provides the capability of column-
level updates by implementing two distinct update operations: po-
sition update and equality update.
• Position Update: Targets updated rows by physical location

(file_path,pos), suitable for batch read-modify-write oper-
ations. While flexible for complex updates, concurrent modi-
fications to the same data file may cause transaction conflicts
requiring retries.

• Equality Update: Identifies rows using user-defined equality_
fields (e.g., primary keys), designed for streaming write-only
operations. It employs MOR strategies to resolve concurrent
conflicts, with pre-defined MOR rules required for complex logic
such as concatenating lists from multiple transactions.
During the writing process, updates are staged in separate po-

sition update files or equality update files without modifying the

4969



(a) Position update

(b) Equality update

Figure 8: Examples of Position Update and Equality Update

base data, and sequence numbers are assigned to record commit or-
ders. Besides, to further enhance performance, Magnus sorts records
within each update file by (file_path,pos) or equality_fields
if possible. This enables sort-merge MOR, which is more efficient
than hash-join MOR for unordered update files. These optimiza-
tions eliminate unnecessary data retrieval and significantly reduce
the overhead of column-level updates.

5.2 Primary Key Driven Upsert
Upsert combines insert and update operations, enabling atomic
insertion of new records or modification of existing ones based
on primary key matching. Open-source frameworks like Apache
Iceberg have issues when handling upserts: 1) Streaming upsert
requires partition fields in primary keys, fails to ensure global
uniqueness, and lacks support for column-level updates. 2) Batch
upsert supports global uniqueness, but suffers from high read/write
amplification (due to full-row scans rewrites) and transaction retries
from concurrent data overlaps. To address these limitations, Magnus
proposes a lightweight MOR-based upsert mechanism with conflict-
free concurrency strategies for primary key tables.

The design of the primary key table is pivotal to ensuring data
consistency and efficient upserts. As outlined in Sec. 3.4, the Magnus
primary key tables employ a two-layered partitioning scheme, with
user-defined partitions subdivided into buckets via hash operations
on the primary key. To enforce primary key uniqueness, the system
ensures deterministic routing of upsert records with identical keys
to the same bucket within the same partition. This is achieved
through two complementary indexing mechanisms: Bucket index
(Hash index) and Global index (Hfile index). Within each bucket,
upsert records are stored in sequentially numbered data files that
include all fields. These files are internally sorted by primary key to
optimize read performance and maintain consistency during merge
processes. Sequence numbers enforce temporal ordering, ensuring
newer data files override older ones. Non-null field values within
upsert data files are logically equivalent to update_field values
in equality update files, applying column-level updates to existing
records based on specified MOR strategies.

An upserting process comprises three phases: routing, data writ-
ing, and commit. First, the routing phase determines the target
partition and bucket for each record. For bucket indexing, the des-
tination is computed directly through hashing. For global indexing,
incoming data undergoes a bucket-join operation with the index to
identify matching entries, with unmatched records being mapped
to their respective partitions and incrementally persisted as HFiles.
Next, in the data writing phase, data belonging to identical buckets
is routed to the same worker node to minimize file fragmentation.
Each worker sorts all internal records by primary key before writ-
ing them to data files. Finally, the commit phase is conducted, with
an assigned unique sequence number to guarantee serializability
and consistency. For concurrent upsert operations, Magnus avoids
traditional data-level conflict detection during commits. Instead, it
simply creates a new snapshot for each commit at the metadata
level, with increasing unique sequence numbers to indicate order.
The actual resolution of potential conflicts is deferred to the MOR
phase, where data is merged according to sequence numbers as
well as selective merging strategies, as described in Sec. 5.3.

5.3 Efficient MOR Strategies with Native Engine
Sec. 5.1 and Sec. 5.2 have introduced MOR-based update and upsert
operations, which achieve high-throughput writing, but inevitably
lead to a more complex reading process than COW. In this section,
we elaborate on our efficient reading process involving phased
MOR strategies, as illustrated in Fig. 9. Through carefully designed
merging mechanisms and a series of native engine enhancements
including predicate pushdown and prebuffering, Magnusminimizes
query latency and read amplification.

Figure 9: Optimized Reading Process in Magnus Through
Arrow-based Native Engine

Reading processes in Magnus consist of two phases: 1) planning
for task generation and optimization; 2) scanning for parallel data
retrieval with MOR. During the planning phase, Magnus parses
metadata and determines the file lists required for each executable
task. For non-primary key tables, each data file is matched with
position updates having equal or higher sequence numbers in the
same partition to generate scan tasks. For the primary key tables,
all data files and update files within each bucket are combined into
a single bucket scan task to perform primary key-based merging.

The scanning phase subsequently executes these generated tasks
through parallel processing, physically reading all files in one task
and merging them. MOR of a scan task consists of two stages. The
first stage is file merging that merges all data files and update

4970



files. File merging is performed in two steps. First, each data file
is sort-merged with its corresponding position update files. Next,
the intermediate results are sort-merged based on the primary key
and sequence number. Equality update files are also merged in this
step, using different strategies depending on table characteristics:
sort merging for sorted equality update files in primary key tables,
or hash-join merging in other cases. Rows from all files are finally
collected and grouped by their row identifiers. The row identifier
is the primary key for primary key tables or (file_path, pos) for
non-primary key tables. Within each group, rows are sorted by
sequence number to prioritize earlier writes. The second stage is
row merging which merges the rows with the same identifier in
sequence number order, which produces the final output. When
merging rows, multiple conflict resolution rules are configurable to
accommodate diverse column-level update requirements, including
first-write-win, last-write-win, list-concat, and map-concat.

Magnus further optimizes data reading through its Arrow-based
native engine, with two key techniques including predicate push-
down and prebuffering. Predicate pushdown enhances performance
by eliminating unnecessary data processing. By pushing predicates
down to the native engine, irrelevant data segments can be skipped
to avoid unnecessary I/O and deserialization. For Parquet files, the
native engine identifies and skips row groups that do not contain
any rows satisfying the filtering conditions. Two approaches can
determine whether a row group should be skipped. The first is to
leverage statistical metadata (e.g., min/max values, bloom filters)
stored in the Parquet footer to quickly evaluate filters. The second
is to defer full data materialization by initially reading only the
columns involved in the predicate, enabling early filtering before
accessing the remaining data. Prebuffering complements predicate
filtering by asynchronously prefetching row groups from remote
storage into local memory. This IO-computation parallelism ef-
fectively overlaps data transfer with query processing, thereby
reducing the latency associated with data loading.

5.4 Data Reorganization Mechanisms
Poorly designed schemas and frequent write operations can lead to
fragmented and suboptimal data layouts, severely impacting both
read and write performance. To improve the physical organiza-
tion of data, Magnus introduces data reorganization mechanisms,
primarily including compaction and column reordering.

Frequent column-level updates and upsert operations gener-
ate a growing number of incremental data files and global index
files over time, increasing the burden on MOR. While traditional
compaction strategies—such as those used in Iceberg—attempt to
mitigate this bymerging all files periodically, they often incur signif-
icant resource overhead and operational latency. Magnus provides
two configurable compaction strategies to address the degrada-
tion of read performance and storage efficiency caused by these
fragmented files: major compaction and minor compaction. Major
compaction aggressively merges all incremental files into base data
files, maximizing read performance at the cost of higher resource
consumption. In contrast, minor compaction adopts a cost-efficient
approach that avoids rewriting large historical data files while de-
livering moderate read performance improvements. It is based on

the fact that files with smaller sequence numbers typically repre-
sent previously compacted large base files, while those with larger
sequence numbers correspond to newly generated small delta files.
Thus, this lightweight strategy selectively merges data files and
their associated update files within each bucket that possesses se-
quence numbers exceeding a dynamically determined threshold.
Collectively, by applying these two compaction methods, Magnus
meets the diverse requirements for resource consumption and read-
ing speed in scenarios with different incremental frequencies.

Wide-table workloads in Magnus often involve selecting hun-
dreds to thousands of columns from tens of thousands available.
In columnar formats like Parquet, different column data blocks are
stored at disparate file offsets within row groups. For queries that
randomly select some columns, this layout leads to frequent small-
range random I/O or excessive read amplification when small I/O
requests are coalesced, both of which can become performance bot-
tlenecks. To address this structural inefficiency, Magnus implements
a column affinity optimization mechanism. It continuously collects
column access patterns during query execution and dynamically
reorganizes the column layout based on access frequency. Columns
that are frequently accessed together are physically co-located in
storage to promote sequential I/O and reduce random reads. This
spatial optimization significantly alleviates read amplification and
improves the performance of frequent queries.

6 LARGE MODEL TRAINING SUPPORT
In this section, we elaborate on the application of Magnus in two dis-
tinct large-scale ML training scenarios within our company: LRMs
and LMMs. Specifically, for LRM training, we design a novel dual-
table structure comprising monthly Main tables and Extra tables,
which enables unified user-level feature organization throughout
the training process. Regarding LMM training, Magnus provides
comprehensive support for multimodal data management and en-
hanced data sharding and shuffling strategies.

6.1 LRM Training Support
In traditional deep learning recommendation models, data samples
are organized as time series and read sequentially by time partitions
during training. We observe that samples from the same user across
different timestamps often share substantial common prefixes in
their historical behavior sequences. To mitigate redundancy, we
reorganize the samples by user sequence, aggregating data from the
same user within a defined timeframe for user-level training. User
sequence samples are stored in Magnus primary key tables, with
a redefined primary key _fs_pk = uid:generate_time:uuid. We
consolidate several upstream data sources into a unified table, with
distinct data streams differentiated through the _gr_source fea-
ture column. By redefining the range parameters of partitions, we
enforce the storage volume of each bucket to less than 11 GB while
accommodating the 60 PB global dataset. It enables the computa-
tional reuse of shared behavioral prefixes across different samples,
improving training efficiency by over fivefold.

Furthermore, the user sequences in each event feature exhibit
infrequent updates and a high degree of repetition. To address stor-
age redundancy of user sequence data, we propose a dual-table
structure comprising Main and Extra tables. The Main table stores

4971



Figure 10: Design of Main-Extra Tables

numerical behavioral features (such as click, dislike, and convert)
through monthly partitioning, enabling efficient data retrieval for
training. The Extra Table maintains user sequence features sepa-
rately, preserving only one instance for each user. During model
training, sequence segments within specified (BeginTimeStamp,
EndTimeStamp) ranges are extracted from the Extra table and then
joined with corresponding Main table entries to construct compre-
hensive features, as illustrated in Fig. 10.

To ensure model freshness and data processing efficiency, the
Magnus table undergoes periodic updates and maintenance. User
action sequences are incrementally written into the Main table on
a daily basis, with multiple data files consolidated via MOR during
training. Periodic compaction further optimizes storage. In practice,
historical monthly buckets are typically well-compacted, retaining
only one to two data files per bucket. Actively updated monthly
buckets, which accumulate frequent incremental writes, maintain
15–30 data files depending on compaction frequency. It eliminates
redundant storage of identical user sequence features. Given an
average of 100 samples per user in our production Main tables, the
Main-Extra structure reduces storage needs by approximately 50×.

Based on these designs, we implement a unified framework for
organizing LRM training samples in both offline and online sce-
narios. For offline batch training, samples are organized by users
and trained by month. After model deployment, user historical
behavior sequences are incrementally updated daily to maintain
temporal relevance. In online training, the latest user interactions
are dynamically concatenated with historical sequences stored in
the system, thereby reconstructing complete time-series sample
sequences for real-time model optimization. Additionally, when
introducing new user sequence features or updating existing ones,
the isolated features stored in the Extra Table avoid large-scale
data migrations, minimizing read and write amplification while
improving feature backtracking efficiency.

6.2 LMM Training Support
The pretraining of LMMs requires vast datasets, but accessing them
directly via HDFS paths often leads to organizational difficulties due
to fragmented management. Magnus streamlines dataset manage-
ment by its unified catalog service, which abstracts complex HDFS
paths into a simpler catalog.database.tablename identifier for
easier access. Additionally, Magnus offers cost-saving capabilities
that allow data to migrate seamlessly between different storage
media such as SSDs, HDDs, and object storage, based on usage

and access patterns. It also supports cross-data-center synchro-
nization of table data and robust data access control mechanisms.
These features ensure efficient data management while maintaining
consistency across diverse operations and environments.

At ByteDance, we have developed BytedStreaming based on
Streaming framework[44] to support distributed large model train-
ing. The training data consists of multiple proportionally sampled
datasets, with each dataset containing several proportionally sam-
pled streams. During training, different datasets are processed in-
dependently. For each dataset, sharding is performed first to collect
shards from streams, followed by global shuffling to ensure data ran-
domness. Shards are then evenly partitioned based on the number of
samples and data-reading workers. Each worker applies additional
shuffling before reading the samples.

The sharding and shuffling operations used to be performed
on a combination of HDFS and Redis systems. Users are required
to maintain the metadata of all HDFS files manually, and Parquet
footers need to be cached in Redis for sharding. We replace the
legacy system with Magnus, which autonomously maintains es-
sential metadata for sharding and shuffling without awareness of
HDFS physical files. Specifically, enhanced Magnus metadata pro-
vides an abstraction of streams and shards for BytedStreaming. A
row_group_counts field is added to each data file to record the
number of rows in each row group. Consequently, a table is repre-
sented as a stream, with each row group mapped to a distinct shard.
All shards of the stream can be conveniently obtained through the
planner, and efficiently read by the Arrow-based native engine.

In LMM training, as the number of input datasets increases, the
number of shards processed by each node also increases. Due to the
considerable size of individual shards in multimodal datasets, fre-
quent out-of-memory errors occur during training, and some tasks
even fail to initialize. To mitigate this, we implement row-range
planning in Magnus. Each scan task is assigned to an arbitrary region
of a data file, enabling dynamic file splitting at a finer granularity
based on available node resources and dataset scale. Meanwhile, we
design a multi-tier plan cache to address the computational over-
head introduced by fine-grained planning. It maintains both remote
and local caches to reuse the planning results, achieving compara-
ble startup performance. Moreover, as BytedStreaming retains all
scan task objects (i.e., shards) in memory for global shuffling, finer
sharding granularity significantly increases the number of shards
and thus the memory footprint. We implement Magnus Lite Planner,
which compresses scan task objects while preserving essential con-
texts such as shard identifiers and sample counts for shuffling. The
original objects are reconstructed through the compressed context
later upon data loading, reducing memory footprint by an order of
magnitude without compromising shuffling efficiency.

7 EVALUATION
In this section, we evaluate the performance of Magnus in produc-
tion scenarios, including the efficiency of storage formats, metadata
planning, updates, upserts, and large model training workloads.

7.1 Columnar Format Performance
We evaluate the advantages of Krypton format over Parquet in
terms of storage size and memory usage in a wide-table production

4972



20899 27592 28220 47307 51548
Number of Columns

0

500

1000

1500

2000

2500

St
or

ag
e 

Si
ze

 (G
B

)

Footer Size (Krypton)
Storage Size (Krypton)
Footer Parsing (Krypton)

Footer Size (Parquet)
Storage Size (Parquet)
Footer Parsing (Parquet)

0

500

1000

1500

2000

2500

Fo
ot

er
 P

ar
si

ng
 T

im
e 

(m
s)

(a) Storage Size and Footer Parsing

20899 27592 28220 47307 51548
Number of Columns

0

500

1000

1500

2000

2500

3000

R
ea

d 
M

em
or

y 
(G

B
)

Read Memory (Krypton)
Read Memory (Parquet)
Read Time (Krypton)
Read Time (Parquet)

0

20

40

60

80

100

R
ea

d 
Ti

m
e 

(s
)

(b) Read Performance

20899 27592 28220 47307 51548
Number of Columns

0

1000

2000

3000

4000

5000

6000

7000

W
rit

e 
M

em
or

y 
(G

B
)

Write Memory (Krypton)
Write Memory (Parquet)
Wirte Time (Krypton)
Write Time (Parquet)

0

100

200

300

400

W
rit

e 
Ti

m
e 

(s
)

(c) Write Performance

Figure 11: Comparison of Krypton and Parquet Columnar Formats in Magnus

environment at ByteDance. Five Parquet files of comparable sizes
are randomly selected from CTR table partitions, with each file
containing different numbers of columns ranging from 20,899 to
51,548.We convert these Parquet files into Krypton format, ensuring
consistency in row content and metadata through validation, and
then use these files as datasets. All files are tested under identical
hardware and software configurations.

As is shown in Fig. 11, our format exhibits a notably smaller
storage size (saving over 30%) and reduced memory footprint dur-
ing footer parsing and read/write tasks. These improvements stem
directly from the optimized handling of redundant metadata struc-
tures, which minimizes overhead while preserving data integrity.
Furthermore, this optimization contributes to enhanced read and
write throughput, underscoring the efficiency of Krypton format in
Magnus for large-scale columnar data processing.

7.2 Blob Format Performance
We evaluate Blob format performance for partial access tasks on
List<Binary> objects, such as video frame extraction. Using a 100
GB Magnus table with a List<Binary> column (1024×1 MB binary
elements per list), we measure read performance between Blob and
Parquet when accessing subsets of elements.

1 64 256 512 1024
Number of Elements

0

5

10

R
ea

d 
Ti

m
e 

(s
)

0.6 0.8
1.7

3.6

8.49.0 9.0 9.0 9.0 9.0
Blob Parquet

Figure 12: Blob Format Read Performance

Fig. 12 shows that Blob significantly outperforms Parquet when
reading partial elements. This stems from Blob’s ability to precisely
locate target elements using reference information in data files,
eliminating read amplification. In contrast, Parquet must read entire
lists before filtering desired elements. These results highlight Blob’s
structural advantage for selective access in binary list structures.

7.3 Metadata Planning Performance
To validate the effectiveness of metadata optimization, we compare
the planning phase duration for single-partition queries before and
after optimization under identical hardware conditions. The experi-
ments are conducted on a standalone physical machine equipped
with one CPU core. Three feature tables with more than 40,000
columns in production are randomly selected, containing 48,666,
142,940,771, and 337,074,100 files, respectively, distributed in 1,024
partitions. As shown in Tab.2, results demonstrate significant im-
provements in parsing efficiency. The optimized metadata planning
Magnusmanifest parsing time is 5× to 26× faster than Iceberg, with
greater benefits as the number of files increases. This reduction
confirms the validity of our metadata in accelerating planning.

Table 2: Metadata Planning Performance

Number of Files Iceberg Magnus Improved

48,666 73s 13.9s 5.25×
142,940,771 2615s 137s 19.09×
337,074,100 6111s 234s 26.12×

7.4 Update Performance
We compare the read and write performance of Magnus’s position
and equality update strategies with Iceberg using two tables from
real-world feature engineering under distinct experimental settings:
• Case 1: A small table (1,800 rows, 200 columns, 116 MB) on a

local single-node Spark setup with 1 executor (2 CPU cores).
• Case 2: A large-scale production table (157,598,926 rows, 15,471

columns, 9.4TB) on a distributed Spark cluster with 128 execu-
tors (4 CPU cores each).

For both cases, we first perform a full table scan and then conduct
10 iterations of updates on a specified column. In each iteration, all
rows of the target column are updated with randomly generated
8KB data, and a full table scan is executed afterward. Due to the
severe read amplification of Iceberg MOR under this experimental
setup, we compare with Iceberg COW updates to validate the effec-
tiveness of our optimizations. Comparisons with Iceberg MOR are
conducted later in Sec. 7.5.

4973



(a) Case 1 (Small Table)

(b) Case 2 (Large Table)

Figure 13: Update Performance Comparison

As shown in Fig. 13, Magnus position updates and equality up-
dates demonstrate significantly superior write performance com-
pared to Iceberg COW updates, because Magnus effectively avoids
write amplification via MOR strategies. In terms of read perfor-
mance, both Magnus position and equality updates achieve optimal
efficiency through direct scans, although their read performance
gradually degrades with increasing update iterations due to the
accumulating overhead introduced by MOR. In contrast, Iceberg
maintains stable read performance across iterations by rewriting the
entire table during each update. In practical deployments, Magnus
limits the number of files within a bounded range through com-
pactions, thereby maintaining read performance that can match or
even exceed that of Iceberg’s COW strategy. Comparative analysis
reveals Magnus’s substantial advantage in writing while preserving
read performance comparable to Iceberg COW. The result proves
the effectiveness of Magnus in workloads with frequent updates.

7.5 Upsert Performance
Fig. 14 evaluates the performance of Magnus upsert strategies with
Iceberg upsert using a similar method in the same two cases. We
execute 10 iterations of upserts, each updating 5% of existing records
and inserting 5% of new data. A full table scan follows each upsert.

For the small case (Fig.14(a)), we compare Magnus MOR upserts
with Iceberg MOR upserts. MagnusMOR upserts demonstrate sig-
nificantly superior write performance over Iceberg, because Ice-
berg requires joins before upserts to distinguish inserts and updates,
whereas Magnus defers this differentiation to the read process. More-
over, Iceberg suffers from write amplification by rewriting entire
rows, while Magnus selectively writes only modified column data.
The scan time of both Magnus and Iceberg MOR upserts increases

(a) Case 1 (Small Table)

(b) Case 2 (Large Table)

Figure 14: Upsert Performance Comparison

with upsert iterations, due to the growth in data volume caused by
inserts and the MOR overhead caused by updates. However, the
read latency of Magnus increases at a slower rate, as it reads less
data and benefits from Magnus’s read-oriented optimizations. Col-
lectively, the results confirm the effectiveness of Magnus’s upsert
strategy, which achieves higher write throughput and lower read
latency than Iceberg across all iterations.

In the large case, Iceberg fails to complete MOR upserts within a
reasonable time due to severe performance bottlenecks. As shown
in Fig. 14(b), MagnusMOR upserts achieve significantly better write
performance while maintaining read performance comparable to
Iceberg COW upserts. These results further underscore the scala-
bility and efficiency of Magnus in large-scale upsert workloads.

7.6 LRM Training Performance
We evaluate the effects of Magnus in a production LRM training task
at ByteDance. We compare resource consumption and performance
between two dataset organization strategies: our proposed monthly
Main-Extra tables and the original yearly single-table storage.

Table 3: LRM Training Performance

Yearly Table Monthly Main-Extra Table

Total Storage 60PB 51.88PB
User Sequence 11PB 2.88PB
Replicas 3500 1400
CPU Cores 16 15
Memory Usage 160GB 70GB
Thoughput 180K instance/s 306K instances/s

4974



As summarized in Tab. 3, the Main-Extra tables demonstrate
significant storage efficiency, with the user sequence partition oc-
cupying only 2.88GB, compared to 11GB required by the redundant
user sequences in the yearly table. Furthermore, our monthly user-
level training optimization achieves enhanced read throughput and
reduced memory footprint, without requiring additional computa-
tional resources such as CPU allocation. These results validate that
the Main-Extra tables effectively eliminate data redundancy and
improve resource utilization in LRM training workloads.

7.7 LMM Training Performance
We validate the effectiveness of the proposed LLM optimizations
through a large vision-language model training job that consumes
300 datasets. Evaluations are deployed on two physical machines,
each configured with 118 CPU cores, 2800 GB memory, 8 NVIDIA
H800 GPUs, and 2 data-loading workers per GPU. The baseline
setup employs the Iceberg Planner with row-group-level sharding.

0 1 2 3 4 5 6 7 8 9 10 Time (h)
0

0.5

1

1.5

2

2.5

M
em

or
y 

(T
B

)

First validation loss output

Iceberg (baseline) Magnus (ours)

Figure 15: LMM Training Performance

Fig. 15 compares the performance of Magnus and Iceberg in LMM
training workloads, focusing on three key metrics: job startup time
(from initialization to the first validation loss output), memory foot-
print, and total training duration. By refining planning granularity
to half-row-group level and compressing plan outputs with the
Magnus Lite Planner, our optimized Magnus reduces memory con-
sumption by 40%, cuts startup time from 30 minutes to 15 minutes,
and shortens training duration slightly by 20 minutes. These re-
sults demonstrate the efficiency of applying fine-grained metadata
planning for LMM training using Magnus.

8 RELATED WORK
Several studies [25, 28, 48] have extensively analyzed open-source
data lake table formats like Apache Hudi [5], Apache Iceberg [6],
and Delta Lake [10]. Okolnychyi et al. [36] enhance Apache Ice-
berg and Apache Spark [9] with efficient petabyte-scale row-level
operations. Other data lakes include Deep Lake [26] and StremLake
[43]. BigLake [31], an evolution of BigQuery [24, 34], introduces
BigLake tables to support fine-grained governance enforcement
and performance acceleration. Our work distinguishes itself by in-
troducing substantial enhancements for large-scale ML workloads,
including advanced metadata handling and improved scalability.

Columnar formats like Apache Parquet [8] and Apache ORC
[7] are widely used in data lakes but struggle with wide-table
projections and point queries. Similarly, Doris [19] format lacks
𝑂 (1) access to page-level data. While Meta’s Alpha [12, 51] and
ByteDance’s earlier Bullion [32] format mitigate wide-table issues,
they fall short in point query optimization. Our formats address
both wide-table projection and point query inefficiency, offering a
more effective solution for multimodal ML workloads. Compared

to new formats like Lance [30, 37], Vortex [41] and Nimble [38],
our design achieves better simplicity and performance.

Elasticsearch [35] and Milvus [21] provide search capabilities
but require external indexing and data duplication. Rottnest [45]
advances this by building lightweight indexes directly on data lakes,
but it focuses on general search rather than ML pipeline integration
or multimodal data. Magnus builds inverted and vector indexes in
the data lake, enabling efficient search without additional systems
and streamlining ML data retrieval. While Hudi lacks efficient pri-
mary key sorting for MOR and Iceberg omits native support for
primary key indexes, Magnus implements both HFile indexes and
hash primary key indexes, improving update and query efficiency.

Hudi’s MOR strategy lacks sorting, and Iceberg does not support
column-level updates, limiting write efficiency. For reads, native en-
gines such as Velox [39] and Photon [11] provide high-throughput
data queries, but cannot support custom merging strategies and
lack corresponding optimizations. Magnus enhances both write and
read performance by introducing column-level updates, sort-based
merging, efficient indexing, and Arrow-based native engine with
techniques including predicate pushdown and prebuffering.

Feature stores such as Hopsworks [16] and Databricks feature
store [15] serve ML pipelines by providing a centralized repository
for ML features, but they often lack tight integration with data
lakes and are limited by scalability issues. Magnus unifies data man-
agement and feature storage, supporting LRM and LMM training
with optimized table designs and pipeline integration.

9 CONCLUSION
We present Magnus, a holistic data management system designed
for large-scale ML workloads. It provides a unified framework to
handle massive and multimodal datasets and introduces a series
of optimizations on its table format, including resource-friendly
storage formats, primary key and search indexes, and metadata
enhancement. By enabling lightweight MOR updates and upserts,
along with enhanced native engine support, Magnus significantly
improves read and write performance, especially in ML feature
engineering and model training scenarios. Furthermore, we apply
Magnus to LRM and LMM training through training framework
integration and unique designs, including Main-Extra tables and
fine-grained sharding. In ByteDance’s production environment,
Magnus has been successfully developed and deployed for more
than five years, meeting the challenges of EB-level data scale and
providing solid data management capabilities.

ACKNOWLEDGMENTS
We would like to thank all those who contributed to the design
and development of Magnus, including Han Qian, Kai Xie, Hanqing
Zhao, Yufei Wu, Puke Zhang, Kaiyang Shao, Haoxiang Song, Qian-
ling Li, and Yize Li. We are also grateful to our business partners
across the search, advertising, recommendation and Seed teams
for their valuable support and collaboration. This work was sup-
ported in part by the National Natural Science Foundation of China
(62132017, 62421003), “Pioneer” and “Leading Goose” R&D Pro-
gram of Zhejiang (2024C01167), and ByteDance Research Project
(CT20250218122839). Jingyi Ding participated in this work during
her research internship at ByteDance.

4975



REFERENCES
[1] Amazon. 2025. Amazon S3. https://aws.amazon.com/s3/ An object stor-

age service offering industry-leading scalability, data availability, security, and
performance.

[2] AnyScale. 2025. Ray. https://www.ray.io/ An AI compute engine.
[3] Apache Software Foundation. 2025. Apache Flink. https://flink.apache.org/

A framework and distributed processing engine for stateful computations over
unbounded and bounded data streams.

[4] Apache Software Foundation. 2025. Apache Hadoop. https://hadoop.apache.org/
A framework that allows for the distributed processing of large data sets across
clusters of computers using simple programming models.

[5] Apache Software Foundation. 2025. Apache Hudi. https://hudi.apache.org/ An
open source data lake platform.

[6] Apache Software Foundation. 2025. Apache Iceberg. https://iceberg.apache.org/
The open table format for analytic datasets.

[7] Apache Software Foundation. 2025. Apache ORC. http://orc.apache.org The
smallest, fastest columnar storage for Hadoop workloads.

[8] Apache Software Foundation. 2025. Apache Parquet. https://parquet.apache.org/
An open source, column-oriented data file format designed for efficient data
storage and retrieval.

[9] Apache Software Foundation. 2025. Apache Spark. https://spark.apache.org A
multi-language engine for executing data engineering, data science, and machine
learning on single-node machines or clusters.

[10] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
et al. 2020. Delta Lake: High-Performance ACID Table Storage over Cloud Object
Stores. Proceedings of the VLDB Endowment (VLDB) 13, 12 (2020), 3411–3424.
http://www.vldb.org/pvldb/vol13/p3411-armbrust.pdf

[11] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong,
David Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan John-
son, Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon,
Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel,
Tom van Bussel, Herman Van Hovell, Maryann Xue, Reynold Xin, and Matei
Zaharia. 2022. Photon: A Fast Query Engine for Lakehouse Systems. In In-
ternational Conference on Management of Data (SIGMOD). ACM, 2326–2339.
https://doi.org/10.1145/3514221.3526054

[12] Biswapesh Chattopadhyay, Pedro Pedreira, Sameer Agarwal, Yutian Sun, Suketu
Vakharia, Peng Li, Weiran Liu, and Sundaram Narayanan. 2023. Shared Foun-
dations: Modernizing Meta’s Data Lakehouse. In Conference on Innovative Data
Systems Research (CIDR). www.cidrdb.org. https://www.cidrdb.org/cidr2023/
papers/p77-chattopadhyay.pdf

[13] Junyi Chen, Lu Chi, Bingyue Peng, and Zehuan Yuan. 2024. HLLM: Enhancing
Sequential Recommendations via Hierarchical Large Language Models for Item
and User Modeling. (2024). arXiv:2409.12740 [cs.IR] https://doi.org/10.48550/
arXiv.2409.12740

[14] Jianjun Chen, Rui Shi, Heng Chen, Li Zhang, Ruidong Li, Wei Ding, Liya Fan, Hao
Wang, Mu Xiong, Yuxiang Chen, Benchao Dong, Kuankuan Guo, Yuanjin Lin,
Xiao Liu, Haiyang Shi, Peipei Wang, Zikang Wang, Yemeng Yang, Junda Zhao,
Dongyan Zhou, Zhikai Zuo, and Yuming Liang. 2023. Krypton: Real-time Serving
and Analytical SQL Engine at ByteDance. Proceedings of the VLDB Endowment
(VLDB) 16, 12 (2023), 3528–3542. https://www.vldb.org/pvldb/vol16/p3528-
chen.pdf

[15] Databricks. 2025. Databricks Feature Store. https://www.databricks.com/
product/feature-store The first feature store co-designed with a data platform
and MLOps framework.

[16] Javier de la Rúa Martínez, Fabio Buso, Antonios Kouzoupis, Alexandru A. Or-
menisan, Salman Niazi, Davit Bzhalava, Kenneth Mak, Victor Jouffrey, Mikael
Ronström, Raymond Cunningham, Ralfs Zangis, Dhananjay Mukhedkar, Ayush-
man Khazanchi, Vladimir Vlassov, and Jim Dowling. 2024. The Hopsworks
Feature Store for Machine Learning. In Companion of International Conference on
Management of Data (SIGMOD/PODS). ACM, 135–147. https://doi.org/10.1145/
3626246.3653389

[17] Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, ZeyuWang, Shu
Zhong, Weihao Yu, Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. 2025.
Emerging Properties in UnifiedMultimodal Pretraining. arXiv:2505.14683 [cs.CV]
https://arxiv.org/abs/2505.14683

[18] Pavan Edara and Mosha Pasumansky. 2021. Big Metadata : When Metadata is
Big Data. Proceedings of the VLDB Endowment (VLDB) 14, 12 (2021), 3083–3095.
http://www.vldb.org/pvldb/vol14/p3083-edara.pdf

[19] Apache Software Foundation. 2025. Doris storage file format optimization.
https://doris.apache.org/community/design/doris_storage_optimization/

[20] Apache Software Foundation. 2025. HFile. https://hbase.apache.org/devapidocs/
org/apache/hadoop/hbase/io/hfile/HFile.html File format for hbase.

[21] LF AI & Data Foundation. 2025. Milvus. https://milvus.io/ An open-source
vector database built for GenAI applications. Install with pip, perform high-speed
searches, and scale to tens of billions of vectors with minimal performance loss.

[22] Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong,
Huixia Li, Jiashi Li, Liang Li, Xiaojie Li, Xunsong Li, Yifu Li, Shanchuan Lin, Zhijie

Lin, Jiawei Liu, Shu Liu, Xiaonan Nie, Zhiwu Qing, Yuxi Ren, Li Sun, Zhi Tian,
Rui Wang, Sen Wang, Guoqiang Wei, Guohong Wu, Jie Wu, Ruiqi Xia, Fei Xiao,
Xuefeng Xiao, Jiangqiao Yan, Ceyuan Yang, Jianchao Yang, Runkai Yang, Tao
Yang, Yihang Yang, Zilyu Ye, Xuejiao Zeng, Yan Zeng, Heng Zhang, Yang Zhao,
Xiaozheng Zheng, Peihao Zhu, Jiaxin Zou, and Feilong Zuo. 2025. Seedance 1.0:
Exploring the Boundaries of Video Generation Models. arXiv:2506.09113 [cs.CV]
https://arxiv.org/abs/2506.09113

[23] Google. 2025. FlatBuffers. https://flatbuffers.dev/ An efficient cross platform
serialization library for C++, C#, C, Go, Java, Kotlin, JavaScript, Lobster, Lua,
TypeScript, PHP, Python, Rust and Swift.

[24] Google. 2025. Google BigQuery. https://cloud.google.com/bigquery/ The
autonomous data to AI platform, automating the entire data life cycle, from
ingestion to AI-driven insights.

[25] Rihan Hai, Christos Koutras, Christoph Quix, and Matthias Jarke. 2023. Data
Lakes: A Survey of Functions and Systems. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 35, 12 (2023), 12571–12590. https://doi.org/10.1109/
TKDE.2023.3270101

[26] Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, Fariz Rahman, Hrant
Topchyan, David Isayan, Mark McQuade, Mikayel Harutyunyan, Tatevik
Hakobyan, Ivo Stranic, and Davit Buniatyan. 2022. Deep Lake: A Lakehouse for
Deep Learning. arXiv:2209.10785 [cs.DC] https://arxiv.org/abs/2209.10785

[27] Sebastian Hofstätter, Jiecao Chen, Karthik Raman, and Hamed Zamani. 2023.
FiD-Light: Efficient and Effective Retrieval-Augmented Text Generation. In ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR).
ACM, 1437–1447. https://doi.org/10.1145/3539618.3591687

[28] Paras Jain, Peter Kraft, Conor Power, Tathagata Das, Ion Stoica, andMatei Zaharia.
2023. Analyzing and Comparing Lakehouse Storage Systems. In Conference on
Innovative Data Systems Research (CIDR). www.cidrdb.org. https://www.cidrdb.
org/cidr2023/papers/p92-jain.pdf

[29] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo Jiang,
Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2024.
MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs.
In USENIX Symposium on Networked Systems Design and Implementation (NSDI).
USENIX Association, 745–760. https://www.usenix.org/conference/nsdi24/
presentation/jiang-ziheng

[30] LanceDB. 2025. LanceDB. https://lancedb.com/ A unified data platform designed
for multimodal data and built for enterprise scale.

[31] Justin J. Levandoski, Garrett Casto, Mingge Deng, Rushabh Desai, Pavan Edara,
ThibaudHottelier, Amir Hormati, Anoop Johnson, Jeff Johnson, Dawid Kurzyniec,
Sam McVeety, Prem Ramanathan, Gaurav Saxena, Vidya Shanmugan, and Yuri
Volobuev. 2024. BigLake: BigQuery’s Evolution toward a Multi-Cloud Lakehouse.
In Companion of International Conference on Management of Data (SIGMOD-
/PODS). ACM, 334–346. https://doi.org/10.1145/3626246.3653388

[32] Gang Liao, Ye Liu, Jianjun Chen, and Daniel J. Abadi. 2024. Bullion: A Column
Store for Machine Learning. arXiv:2404.08901 [cs.DB] https://arxiv.org/abs/
2404.08901

[33] Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Da Tang, Bolin
Zhu, Yijie Zhu, Peng Wu, Ke Wang, and Youlong Cheng. 2022. Monolith: Real
Time Recommendation System with Collisionless Embedding Table. 3303 (2022).
https://ceur-ws.org/Vol-3303/paper8.pdf

[34] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min,
Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive SQL
Analysis at Web Scale. Proceedings of the VLDB Endowment (VLDB) 13, 12 (2020),
3461–3472. http://www.vldb.org/pvldb/vol13/p3461-melnik.pdf

[35] Elastic NV. 2025. Elasticsearch. https://www.elastic.co/elasticsearch Free and
open source, distributed, RESTful search engine.

[36] Anton Okolnychyi, Chao Sun, Kazuyuki Tanimura, Russell Spitzer, Ryan Blue,
Szehon Ho, Yufei Gu, Vishwanath Lakkundi, and D. B. Tsai. 2024. Petabyte-Scale
Row-Level Operations in Data Lakehouses. Proceedings of the VLDB Endowment
(VLDB) 17, 12 (2024), 4159–4172. https://www.vldb.org/pvldb/vol17/p4159-
okolnychyi.pdf

[37] Weston Pace, Chang She, Lei Xu, Will Jones, Albert Lockett, Jun Wang, and
Raunak Shah. 2025. Lance: Efficient RandomAccess in Columnar Storage through
Adaptive Structural Encodings. arXiv:2504.15247 [cs.DB] https://arxiv.org/abs/
2504.15247

[38] Meta Platforms. 2025. The Nimble File Format. https://github.com/
facebookincubator/nimble New file format for storage of large columnar datasets.

[39] Meta Platforms. 2025. Velox. https://velox-lib.io/ An open-source composable
execution engine for data systems.

[40] Jixi Shan, Xiuqi Huang, Yang Guo, Hongyue Mao, Ho-Pang Hsu, Hang Cheng,
Can Wang, Jun Song, Rui Shi, Xiaofeng Gao, Jingwei Xu, Shiru Ren, Jiaxiao
Zheng, Hua Huang, Lele Yu, Peng Xu, and Guihai Chen. 2025. Primus: Unified
Training System for Large-Scale Deep Learning Recommendation Models. In
USENIX Annual Technical Conference (ATC). USENIX Association, 905–922. https:

4976

https://aws.amazon.com/s3/
https://www.ray.io/
https://flink.apache.org/
https://hadoop.apache.org/
https://hudi.apache.org/
https://iceberg.apache.org/
http://orc.apache.org
https://parquet.apache.org/
https://spark.apache.org
http://www.vldb.org/pvldb/vol13/p3411-armbrust.pdf
https://doi.org/10.1145/3514221.3526054
https://www.cidrdb.org/cidr2023/papers/p77-chattopadhyay.pdf
https://www.cidrdb.org/cidr2023/papers/p77-chattopadhyay.pdf
https://arxiv.org/abs/2409.12740
https://doi.org/10.48550/arXiv.2409.12740
https://doi.org/10.48550/arXiv.2409.12740
https://www.vldb.org/pvldb/vol16/p3528-chen.pdf
https://www.vldb.org/pvldb/vol16/p3528-chen.pdf
https://www.databricks.com/product/feature-store
https://www.databricks.com/product/feature-store
https://doi.org/10.1145/3626246.3653389
https://doi.org/10.1145/3626246.3653389
https://arxiv.org/abs/2505.14683
https://arxiv.org/abs/2505.14683
http://www.vldb.org/pvldb/vol14/p3083-edara.pdf
https://doris.apache.org/community/design/doris_storage_optimization/
https://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/io/hfile/HFile.html
https://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/io/hfile/HFile.html
https://milvus.io/
https://arxiv.org/abs/2506.09113
https://arxiv.org/abs/2506.09113
https://flatbuffers.dev/
https://cloud.google.com/bigquery/
https://doi.org/10.1109/TKDE.2023.3270101
https://doi.org/10.1109/TKDE.2023.3270101
https://arxiv.org/abs/2209.10785
https://arxiv.org/abs/2209.10785
https://doi.org/10.1145/3539618.3591687
https://www.cidrdb.org/cidr2023/papers/p92-jain.pdf
https://www.cidrdb.org/cidr2023/papers/p92-jain.pdf
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://lancedb.com/
https://doi.org/10.1145/3626246.3653388
https://arxiv.org/abs/2404.08901
https://arxiv.org/abs/2404.08901
https://arxiv.org/abs/2404.08901
https://ceur-ws.org/Vol-3303/paper8.pdf
http://www.vldb.org/pvldb/vol13/p3461-melnik.pdf
https://www.elastic.co/elasticsearch
https://www.vldb.org/pvldb/vol17/p4159-okolnychyi.pdf
https://www.vldb.org/pvldb/vol17/p4159-okolnychyi.pdf
https://arxiv.org/abs/2504.15247
https://arxiv.org/abs/2504.15247
https://arxiv.org/abs/2504.15247
https://github.com/facebookincubator/nimble
https://github.com/facebookincubator/nimble
https://velox-lib.io/
https://www.usenix.org/conference/atc25/presentation/shan-jixi


//www.usenix.org/conference/atc25/presentation/shan-jixi
[41] Spiral. 2025. Vortex. https://github.com/vortex-data/vortex An extensible, state

of the art columnar file format.
[42] Shisong Tang, Qing Li, Dingmin Wang, Ci Gao, Wentao Xiao, Dan Zhao, Yong

Jiang, QianMa, and Aoyang Zhang. 2023. Counterfactual Video Recommendation
for Duration Debiasing. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD). ACM, 4894–4903. https://doi.org/10.1145/3580305.3599797

[43] Xin Tang, Chengliang Chai, Dawei Zhao, Haohai Ma, Yong Zheng, Zhenyong Fan,
Xin Wu, Jiaquan Zhang, Rui Zhang, Duanshun Li, Yi He, Keji Huang, Guangbin
Meng, Yidong Wang, Yuefeng Zhou, Tao Tao, Lirong Jian, Jiwu Shu, Yuping
Wang, Ye Yuan, Guoren Wang, and Guoliang Li. 2024. Separation Is for Better
Reunion: Data Lake Storage at Huawei. In IEEE International Conference on Data
Engineering (ICDE). IEEE, 5142–5155. https://doi.org/10.1109/ICDE60146.2024.
00386

[44] The Mosaic ML Team. 2022. streaming. https://github.com/mosaicml/streaming/
Fast, accurate streaming of training data from cloud storage.

[45] ZihengWang, Sasha Krassovsky, Conor Kennedy, Alex Aiken, Weston Pace, Rain
Jiang, Huayi Zhang, Chenyu Jiang, and Wei Xu. 2025. Rottnest: Indexing Data
Lakes for Search. In IEEE International Conference on Data Engineering (ICDE).
IEEE, 1814–1827. https://doi.org/10.1109/ICDE65448.2025.00139

[46] Yixin Wu, Xiuqi Huang, Zhongjia Wei, Hang Cheng, Chaohui Xin, Zuzhi Chen,
Binbin Chen, Yufei Wu, Hao Wang, Tieying Zhang, Rui Shi, Xiaofeng Gao,
Yuming Liang, Pengwei Zhao, and Guihai Chen. 2024. Towards Resource Ef-
ficiency: Practical Insights into Large-Scale Spark Workloads at ByteDance.
Proceedings of the VLDB Endowment (VLDB) 17, 12 (2024), 3759–3771. https:

//doi.org/10.14778/3685800.3685804
[47] Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and

Mengdi Wang. 2025. MMaDA: Multimodal Large Diffusion Language Models.
arXiv:2505.15809 [cs.CV] https://arxiv.org/abs/2505.15809

[48] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lake-
house: A New Generation of Open Platforms that Unify Data Warehousing and
Advanced Analytics. In Conference on Innovative Data Systems Research (CIDR).
www.cidrdb.org. http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

[49] Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao,
Zhaojie Gong, Fangda Gu, Jiayuan He, Yinghai Lu, and Yu Shi. 2024. Actions
Speak Louder than Words: Trillion-Parameter Sequential Transducers for Gener-
ative Recommendations. In International Conference on Machine Learning (ICML).
PMLR, Article 2414, 26 pages. https://proceedings.mlr.press/v235/zhai24a.html

[50] Buyun Zhang, Liang Luo, Yuxin Chen, Jade Nie, Xi Liu, Shen Li, Yanli Zhao,
Yuchen Hao, Yantao Yao, Ellie Dingqiao Wen, Jongsoo Park, Maxim Naumov,
and Wenlin Chen. 2024. Wukong: Towards a Scaling Law for Large-Scale Rec-
ommendation. In International Conference on Machine Learning (ICML). PMLR,
Article 2455, 14 pages. https://proceedings.mlr.press/v235/zhang24ao.html

[51] Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram
Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean Wu,
Christos Kozyrakis, and Parik Pol. 2022. Understanding Data Storage and Inges-
tion for Large-Scale Deep Recommendation Model Training: Industrial Product.
In IEEE/ACM International Symposium on Computer Architecture (ISCA). ACM,
1042–1057. https://doi.org/10.1145/3470496.3533044

4977

https://www.usenix.org/conference/atc25/presentation/shan-jixi
https://github.com/vortex-data/vortex
https://doi.org/10.1145/3580305.3599797
https://doi.org/10.1109/ICDE60146.2024.00386
https://doi.org/10.1109/ICDE60146.2024.00386
https://github.com/mosaicml/streaming/
https://doi.org/10.1109/ICDE65448.2025.00139
https://doi.org/10.14778/3685800.3685804
https://doi.org/10.14778/3685800.3685804
https://arxiv.org/abs/2505.15809
https://arxiv.org/abs/2505.15809
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://proceedings.mlr.press/v235/zhai24a.html
https://proceedings.mlr.press/v235/zhang24ao.html
https://doi.org/10.1145/3470496.3533044

	Abstract
	1 Introduction
	2 System Overview
	3 Storage Format and Index
	3.1 Data Layout
	3.2 Columnar Formats
	3.3 Multimodal Data Blob Format
	3.4 Primary Key Index
	3.5 Search Index

	4 Metadata Management
	4.1 Metadata Planning
	4.2 Branching and Tagging

	5 High-Performance Read and Write
	5.1 Column-Level Update
	5.2 Primary Key Driven Upsert
	5.3 Efficient MOR Strategies with Native Engine
	5.4 Data Reorganization Mechanisms

	6 Large Model Training Support
	6.1 LRM Training Support
	6.2 LMM Training Support

	7 Evaluation
	7.1 Columnar Format Performance
	7.2 Blob Format Performance
	7.3 Metadata Planning Performance
	7.4 Update Performance
	7.5 Upsert Performance
	7.6 LRM Training Performance
	7.7 LMM Training Performance

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

