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ABSTRACT

Vector databases are widely used as a fundamental tool for address-

ing the weaknesses of large language model (LLM) applications,

speci�cally hallucinations and the high cost of inference. However,

existing vector databases either cater to niche applications with low-

latency in-memory search, or o�er sophisticated data management

capabilities but at the cost of low performance.

To address these limitations, we propose GaussDB-Vector, a

high-performance, real-time persistent vector database that excels

in low-latency scalable search, real-time inserts and deletes, high

availability, large-scale distributed search, and hybrid scalar-vector

�ltered search capabilities. These features are primarily achieved

through an innovative storage architecture designed for a graph-

based vector index, optimized for I/O operations and adaptable

across various dataset sizes and dimensions, complemented by

novel bu�ering strategies to further reduce I/O burdens. GaussDB-

Vector supports product quantization, parallel search, and hard-

ware acceleration via SIMD, GPUs, and NPUs in order to further ac-

celerate queries. Experimental results show that GaussDB-Vector

outperforms competitive baselines by a factor of 1 to 5 times.
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1 INTRODUCTION

Large language models (LLM) are the foundation for modern AI

applications. For example, intelligent Q&A systems such as Chat-

GPT use LLMs to generate answers according to user prompts, and

intelligent agents use LLMs to generate actions that can be taken

to accomplish certain tasks. But LLM-based tools face two main

challenges, hallucinations and expensive inference cost. To address
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these challenges, a popular approach is to use a vector database to

serve as "long-term memory". For example, retrieval-augmented

generation (RAG) [26] can reduce hallucinations by using a vec-

tor database populated with knowledge embeddings to make LLM

answers more controllable and explainable. To reduce inference

cost, semantic memory [12, 16] caches various stages of inference

in embedding form inside a vector database to be retrieved later

for future queries without invoking the LLM. To support these use

cases, the vector database must e�ciently store and search up to

billions of embeddings while supporting features like frequent up-

dates, high user concurrency, distributed search, high availability,

user isolation, and hybrid scalar-vector �ltered search.

This need for a high-performance feature-rich vector database

has led to a number of commercial vector database systems, such

as Milvus [35], PGVector[6] and ElasticSearch[2]. Milvus is de-

signed for large-scale web applications. Data is organized inside

segments of an LSM tree [30], and a search index is built for each

segment. Milvus can persist segments onto the �le system and load

them into memory during search. However, Milvus su�ers from

(1) high query latency as it must search every segment and then

merge the results; (2) expensive updates due to index rebuild when

merging and splitting segments; (3) slow attribute �ltering because

it only supports pre-�ltering (�rst predicates then vectors); (4) low

data freshness as new data is not inserted into indexes immediately.

On the other hand, ElasticSearch is designed for text searching,

and it integrates vector search ability to support semantic search.

Similar to Milvus, ElasticSearch also caches inserted data into

in-memory segments, storing data onto disk when the size of a

segment exceeds a threshold. Data on disk is also organized into

segments, leading to similar drawbacks. PGVector is a vector exten-

sion built on PostgreSQL. Similar vector engines include AlloyDB

(Google) and PASE [37] (Alibaba). PGVector supports IVFFLAT[3]

and HNSW [28], and it works by building index structures over data

pages in PostgreSQL. However, it also has drawbacks: (1) HNSW

consumes more I/Os for search on disk-based systems, and its per-

formance is worse than algorithms like NSG [21] and DiskANN [32];

(2) only single-machine search is supported, making it unable to

scale to datasets with billions of vectors.

To address these limitations, we propose a persistent real-time

vector database system GaussDB-Vector for LLM applications,
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queries, including hybrid search and nested queries. We integrate

new vector types into SQL and expose vector manipulation com-

mands for ease of use. For example, users can create a table with

both vector and ordinary data by using CREATE TABLE; build a vec-

tor index by using CREATE INDEX; and conduct a top-: search using

SELECT· · · ORDER BY· · · LIMIT K. With the help of the SQL en-

gine, GaussDB-Vector is able to apply rewrite rules and cost-based

optimization to accelerate query processing. For example, the opti-

mizer selects sequence scan if the selectivity of a predicate is large;

otherwise index scan is used. On top of the standard SQL inter-

face, GaussDB-Vector also supports SDKs for other programming

languages that can be used to develop database clients.

Storage Management. In order to reduce data fragmentation and

increase the e�ciency of concurrent I/O, GaussDB-Vector adopts

page-based storage management. Vector data is a special type of

�xed length array, and it is stored in a row-based storage format

with other relational columns. GaussDB-Vector supports building

vector indexes to reduce the vector search I/O cost. Each vector

index is a structured �le containing vector IDs and their locations

in the data �les. The index can be organized as an inverted list

or a graph. In order to reduce the number of random page visits,

GaussDB-Vector clusters closest vectors into physically contiguous

data blocks. Moreover, the logical structures of the vector indexes

are designed to reduce I/O and improve cache locality of hot data.

GaussDB-Vector supports data sharding according to both the

scalar column and the vector column to support high scalability on

large-scale datasets. For graph-based indexes, GaussDB-Vector also

optimizes the edge pruning algorithm to reduce index construction

time. The details of ANN indexing are described in Section 3.

Hardware Acceleration. Vector search queries depend on many

compute-bound operators, including clustering, quantization, simi-

larity computations, etc. GaussDB-Vector optimizes these imple-

mentation for machines with Ascend/Kunpeng CPUs. On Kunpeng

CPUs, parallel �oat instructions can be carried out using SIMD

capability, where multiple �oat numbers are calculated in one in-

struction cycle. Kunpeng CPUs have more cores than other CPUs

of the same grade, and thus thread parallelism is a vital approach to

reducing latency of vector queries. GaussDB-Vector also supports

parallel vector index construction and search, and selects the de-

gree of parallelism and balances the load automatically. On Ascend

NPUs, GaussDB-Vector supports batching vectors into matrices,

synchronizing data in a uni�ed memory space between the CPU

and NPU to accelerate computations using NPU tensor cores.

2.2 SQL Interface

GaussDB-Vector extends SQL to support vector search. Below, we

present some typical usage examples.

Data De�nition Language (DDL). The DDL can be used to de�ne

vector table schemas and build indexes on vectors and scalars. As

vector index construction can take several hours for trillions of data

items, users can add the CONCURRENTLY keyword to avoid blocking

other business applications, which builds the index using a data

snapshot and then incrementally updates it based on the delta data.

Data Manipulation Language (DML). The DML can be used

for querying and manipulating vector data. Users can orchestrate

di�erent operations using standard SQL. For simplicity, we use

<cos>,<euc> and <ham> to denote operators of Cosine distance,

Euclidean distance and Hamming distance respectively.

1 -- DDL: create a vector table

2 CREATE TABLE [schema_name.]vectortab

3 (id int, vec floatvector(128), doc text)

4 WITH (ORIENTATION={ROW|COL})

5 [PARTITION BY {

6 {RANGE (partition_key)} |

7 {RANGE (partition_key)} |

8 {LIST|HASH (partition_key)}];

9 -- create a vector index

10 CREATE INDEX [CONCURRENTLY][IF NOT EXISTS]

11 [[schema_name.]vectoridx]

12 ON table_name [USING {IVF|VAMANA}]

13 ({{column_name {L2|Cosine|IP|Hamming}}

14 [LOCAL]

15 [WITH ({storage_parameter=value} [, ...])]

16 [{VISIBLE|INVISIBLE}]

17 [WHERE predicate];

18 -- alter parameters of index

19 ALTER INDEX vectoridx

20 SET(storage_parameter=value);

21 -- rebuild the index

22 REINDEX [CONCURRENTLY] vectoridx;

1 -- DML: copy vector data from csv file

2 COPY t1 FROM 'floatvector.csv' CSV HEADER;

3 -- insert vector into table

4 INSERT INTO t1 VALUES

5 (9711839, '[30,12,12,25]');

6 -- update vector data

7 UPDATE t1

8 SET repr = '[30,12,12,25]'

9 WHERE id = 1;

10 -- top-k search (Cosine)

11 SELECT id, repr <cos> '[1,1,3,2]' as s

12 FROM t1 ORDER BY s LIMIT 2;

13 -- range search (Cosine)

14 SELECT id, repr <cos> '[1,1,3,2]' as s

15 FROM t1 WHERE s < 0.8;

16 -- delete vector from table

17 DELETE FROM t1 WHERE id = 1;

3 VECTOR INDEXING

Vector indexing reorganizes vector data into index �les in order to

accelerate ANN search, and it is the core part of a vector database.

Various ANN indexing algorithms have been proposed, and they

can be classi�ed as IVF-based methods [19], hashing-based meth-

ods [18], graph-based methods [10, 11, 13, 36] and quantization-

based methods [20, 24, 25]. IVF-based methods and graph-based

methods can shape the index according to the data distribution

and have better accuracy on top-k search, thus GaussDB-Vector

focuses on IVF and Vamana graph [32] as basic algorithms for ANN

indexing. Based on these two algorithms, GaussDB-Vector adopts

product quantization to further accelerate the search, and it also

supports real-time updates.
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Figure 2: Structure of IVF Index

3.1 IVF-based Index

An IVF-based index splits the high-dimensional vector space by

clustering, and then locates the data from clusters with nearest cen-

troids. IVF-based indexes are popular for their small data expansion

and sequential data access characteristics. IVF-based indexes are es-

pecially suitable for data sizes in the millions, and they are fast and

easy to maintain. In this section, we describe the implementation

details for the IVF-based index in GaussDB-Vector.

Index Structure. GaussDB-Vector uses two-layer clustering for

the IVF index in order to balance the load of clusters. As Figure 2

shows, the index is composed of a sequence of linked pages, or-

ganized logically as a three-layer tree structure. The metapage is

the �rst page in the index �le, and it stores the con�guration and

statistics of the index, including the number of clusters in the upper

two layers, number of vectors, whether the index is compressed,

and whether the index uses product quantization. Following this

page are the �rst-layer clustering pages, containing centroids and

start positions of secondary-layer clusters. Each secondary-layer

cluster page contains the centroid and start point of full data in this

sub-cluster.

In order to accelerate distance computing and reduce the space

overhead, ANN search engines can take advantage of product quan-

tization (PQ) techniques. PQ splits each of the vectors into segments,

and each segment is represented by the closest centroid. If the index

uses PQ, then GaussDB-Vector will build a PQ table structure ac-

cording to the distribution of data and store it before the data pages.

The data pages then store PQ codes instead of full vectors in order

to reduce storage and distance computing cost. When the query

computes the distance of two vectors, it �nds the centroids and

computes sum of distances between centroids. GaussDB-Vector

adopts PQ-ADC [24] to increase the precision of product quantiza-

tion, PQ-ADC only quantizes the data in the index, and the query

vector remains unchanged. On the other hand if PQ is not used,

data pages directly follow the cluster pages, and all the indexed

data is stored in the data pages. Each tuple in a data page contains

vector data and the corresponding tuple ID in the heap table. The

vector is used to select nearest neighbors by distance, and the tuple

ID is used to locate the row tuple in the original table.

IndexConstruction.During index construction, GaussDB-Vector

�rst collects a set of vectors from heap table into memory by us-

ing reservoir sampling and then conducts :-means clustering on

the samples, constructing cluster pages according to the results.

GaussDB-Vector then scans all the vectors in the table and labels

each vector with the ID of its nearest cluster (centroid), then sorts

all the vectors by label. Next GaussDB-Vector builds data pages for

each cluster according to the sorted vectors while also updating the

information in the cluster pages. Building data pages in sorted order

results in clusters that are stored contiguously, allowing search to

be optimized by batch processing and data prefetching.

Vector Top-: Search.When a top-: query comes, the query vec-

tor is �rst compared against the centroids in the �rst-layer cluster

pages to �nd # nearest clusters, along with" nearest sub-clusters

from each cluster. In our evaluation, we observed that setting # ×"
to cover 5–10% of the dataset proves e�ective in achieving high

recall with minimal latency. Therefore, we set N and M as
√
10% of

total number of �rst/second layer buckets respectively by default (at

least 1). Then, GaussDB-Vector scans the candidate vector set, Vę ,

consisting of vectors from the
ÍĊ
ğ=1"ğ sub-clusters, and computes

distances to each candidate vector. Next, GaussDB-Vector conducts

binary sort on these vectors according to distance to the query. The

binary sort iteratively picks a vector with distance X and removes

vectors from Vę with distances greater than X , stopping once |Vę |
is less than 2: GaussDB-Vector then fetches the corresponding

rows from the table in the order of distances for vectors in Vę and

checks their visibility. If a row is not visible (based on transactions),

GaussDB-Vector scans the next row. If there are not enough visible

rows, GaussDB-Vector sorts and scans the next partition of candi-

date vectors (resulting from the binary sort). In this way, the sorting

complexity should be O(|Vę |+ 1
2
|Vę |+ 1

4
|Vę |+ 1

8
|Vę |+· · ·+ 1

2Ĥ
|Vę |),

which is O(2|Vę |) when = is in�nite, and the total top-: fetching

complexity is O(2|Vę | +: +#ğĤĬğĩğĘĢě ), where #ğĤĬğĩğĘĢě is the num-

ber of rows being lazy deleted. Since the term |Vę | often dominates

over other two terms, we simplify it as $ ( |Vę |). The full sorting
complexity is $ ( |Vę |;>6( |Vę |)) for any query. This mechanism al-

lows GaussDB-Vector to handle invalid entries appearing in the

candidate set due to situations such as asynchronous deletion and

multi-attribute �ltering.

Vector Insert. For an insert query, GaussDB-Vector compares

distances between centroids of clusters to �nd the nearest cluster.

It then obtains the insert block ID that points to the last data page

corresponding to the nearest cluster from the cluster page and

appends the context ID (ctid) of the query vector to this page. The

ctid gives the location of the vector in the heap table. If the last

page is full, GaussDB-Vector tries to insert the vector into the next

page and then updates the insert block ID upon success. But if the

last page is full and it is also the last valid page, GaussDB-Vector

requests a sequence of recycled pages from the free space manager

(FSM) or creates new pages from the �le system.

Vector Delete. For vector delete, GaussDB-Vector �rst identi�es

the target row based on the query, then locates the cluster contain-

ing the corresponding vector by �nding the cluster with centroid

nearest to the vector. The vector is then marked for deletion by

setting a deletion �ag. In order to achieve low latency, physical

removal is conducted during asynchronous batch cleanup.
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Figure 3: Structure of Graph-Based Index

Vector Vacuum. GaussDB-Vector relies on a vacuum operation

to do space vacuum and batch cleanup of index �les and tables. The

vacuum operation is executed automatically when the number of

tuples marked for deletion exceeds 10% of the table. For the IVF-

based index, the vacuum operation scans all clusters one by one.

For each cluster, GaussDB-Vector acquires new pages from FSM

or �le system, adds a shared lock on the data pages in this cluster,

and then copies the undeleted vectors in this cluster to the new

pages sequentially. Then, GaussDB-Vector adds an exclusive lock

on the secondary cluster page and updates the start/insert block

ID. Once all vectors have been copied, GaussDB-Vector releases

all the locks and puts the replaced data pages for the cluster into

FSM. This procedure is executed iteratively until all clusters have

been processed. In this way, only update/insert queries on certain

clusters are blocked by vacuum, and only for a short period of time.

3.2 Graph-based Index

Graph-based indexes have the advantage of fast and accurate ap-

proximation for di�erent data distributions. GaussDB-Vector adopts

Vamana graph [32] as the basic algorithm. Vamana graph is a di-

rected monotonic relative neighborhood graph which guarantees

a search complexity close to logarithmic time, and Vamana graph

restricts the maximal out-degree for each node to ease management

on the disk. Compared to NSG [21], Simhadri et. al. [32] show that

adding a soft coe�cient to the distance when pruning edges brings

bene�ts to the performance. Aditi et. al. [22] propose methods for

data modi�cation and show that the soft coe�cient can make the

performance of Vamana graph stable, even after 40% of the data

is deleted. Based on these previous works, GaussDB-Vector judi-

ciously implements the structure of Vamana graph in terms of page

design for reducing I/O cost, lock management for supporting high

concurrency, and bu�er management for reducing query latency.

GaussDB-Vector proposes a two-phase neighbor pruning method

to further reduce the overhead of vector insert and graph construc-

tion. Next we introduce the details of the graph-based index.

Index Structure. GaussDB-Vector builds and stores the graph

structure in the blocks of index �les. The �rst page in the index �les

is the metapage, and it stores metadata about the index including

vector dimension, storage method, object size, start locations of

di�erence page types, product quantization con�gurations, and

locks for the current index. Following the metapage, the PQTable

page stores the centroids of each PQ segment along with distances

of all centroid pairs in each segment. The main components of the

graph-based index are the nodes, edges, and PQ codes.

GaussDB-Vector designs three structures for adapting to di�er-

ent scenarios. (1) If the vector dimension is not very large, GaussDB-

Vector stores all data associated with a single vector (i.e. its PQ

code and neighbor codes, etc.) together in one page. When a query

navigates the graph index, it can easily get the PQ code of the cur-

rent vector as well as all the PQ codes of the neighbors by reading

a single page, thereby reducing overhead of I/O. For example in

Figure 3, the threshold value of 130 dimensions is calculated as-

suming 96 neighbors, 6-byte tuple IDs, 4-byte �oat vector values,

96-byte PQ codes (maximum), and 8*1024 bytes of space per page.

(2) If the dimension of vectors is larger, the neighbor codes are too

large to be put on one page. GaussDB-Vector moves the PQ codes

out to a separate zone to avoid redundancy, and the data page only

stores the tuple IDs of each neighbor. Even so, as the total size of

PQ codes for all the vectors is small compared to the index, they

can easily be cached in memory. Therefore, this structure is still

very e�cient even though GaussDB-Vector needs to read multiple

PQ code pages for getting the neighbors. For example in Figure 3,

the threshold value of 1565 dimensions is calculated using the same

assumptions as before. (3) Users can also select a compression mode

for the index structure if the data volume is very large (e.g. 1 bil-

lion vectors on one machine) or the dimension is very high (e.g.

2048). In this structure, GaussDB-Vector separates nodes and edges

completely and each of them can be compactly arranged. If PQ is

enabled for a query, the raw vectors can be dropped from the index

to further reduce storage cost.

Index Construction. To quickly build the graph-based index,

GaussDB-Vector clusters the vectors intoNĝ overlapped groups so

that each vector belongs to its two nearest clusters. For each group,

GaussDB-Vector constructs a small graph with only half the maxi-

mum out-degrees of the full graph. In this way, the index can be

built in memory to avoid frequent data swaps, and global connectiv-

ity can also be maintained as each vector belongs to two subgraphs.

The index construction procedure is shown in Algorithm 1.

Each subgraph is constructed by incrementally inserting vectors

into a randomly initialized graph, as shown in Algorithm 2. In

this way, early inserted nodes can retain some longer edges to

reduce the radius of the graph. The insertion operation relies on

vector search and neighbor pruning to keep the neighbors close and

maximize the edge angle (this feature is proposed by MRNG [21]).

For vector search, Algorithm 4 shows the greedy search procedure.

Given a query vector, a root node is retrieved from the min-heap

representing the closest vector so far to the query, and then the

distances between its unvisited neighbors and the query vector are

computed. Next, these neighbors are inserted into the min-heap.

The min-heap has a limited size so that nodes far away from the

query are gradually evicted. This process continues until there are

no more unvisited nodes. Note that duplicate vectors are linked

into one node, and only the main node participates in neighbor

selection. This greatly improves the quality of the graph because
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Algorithm 1: BuildGraphIndex

Input: A column of vector data in table S, number of

segments for PQ (Ħħ , number of clusters in each PQ

segment �Ħħ , number of subgraphs #ĝ

Output: A graph-structured index G.

1 G ← initialize an empty graph structure on the disk ;

2 %& ← calculate PQ table on S ;

3 G ← calculate PQ code for each node ;

4 (0<?;4 ← sample from S;
5 �4=CA>83B ← cluster (0<?;4 into #ĝ clusters ;

6 for ( 8 ← 0; 8 < #ĝ ; 8 ← 8 + 1 )

7 GĩīĘ ← ∅;
8 foreach ( E ∈ S )

9 83B ← calculate the nearest two centroid ids ;

10 if 8 ∈ 83B then

11 GĩīĘ ← GĩīĘ ∪ {E} ;
12 GĩīĘ ← Call BuildSubgraph() to build the Vamana

graph with 48 out-degree on vectors in GĩīĘ ;

13 G ← G ∪ GĩīĘ ² Merge the in-memory subgraph into

on-disk index with 96 out-degree for each node ;

14 return G ;

Algorithm 2: BuildSubgraph

Input: A column of vector data in this subgraph S.
Output: An in-memory Vamana graph G.

1 G ← initialize an in-memory regular graph ;

2 parallelly foreach( E ∈ S )

3 G ← insert E in G ;

4 return G ;

having too many duplicate neighbors can create cliques, leading to

local minima traps that result in low recall during searches.

The total cost consists of subgraph construction, which for each

subgraph is proportional to |( |/|#ĝ | times the insertion complexity,

along with the overhead of the partitioning phase (Algorithm 1

lines 2–5). For this phase in particular, the exact cost depends on

the number of PQ segments and clusters in each segment, but in

general is linear with respect to |( |.
Vector Top-k Search. ANN search on the graph-based index fol-

lows the procedure in Algorithm 4, returning results from the can-

didate set. However, as the index is stored on disk, the search query

needs several random I/Os to get the candidates and their neigh-

bors. As the size of the shared bu�er is limited, only the data that

will be frequently visited is worth caching. Based on this principal,

GaussDB-Vector caches nodes and edges visited in the �rst two

steps when searching, along with the PQ table and codes, while

other data is fetched from disk. GaussDB-Vector also optimizes

SSD read speed by fetching neighbors using multiple I/O threads.

Speci�cally, the default value of"ĝĨėĦℎ is 128. If the total number

of data rows is smaller than 128, the candidate set will decrease to

the number of rows automatically. If we cannot get enough results

(:-NN vectors) from candidate set due to invisible or �ltered rows,

Algorithm 3: VectorInsert

Input: An in-memory graph G, a query vector E .

Output: An in-memory graph with query vector G.
1 ?>>; ← get candidates list by searching query E from G ;

2 U ← 1.2 ;

3 N(E) ← ∅ ;

4 D ← {38BC0=24 (:, E) |: ∈ ?>>;} ;
5 for ( U ′ ← 1.0;U ′ f U ' |N (E) | < 346A44;U ′ ← U ′ ∗ 1.2 )
6 foreach ( : ∈ ($') (?>>;, 0B24=38=6) )
7 3ġġ ′ ←"8=(38BC0=24 (:, :′) |:′ ∈ N (E)) ;
8 if �ġĬ f 3ġġ ′ ∗ U ′ then
9 N(E) ← N(E) ∪ {:} ² As k is closer to v than to

any existing neighbor of v, v connects to k ;

10 G ← set neighbors N(E) ;
11 foreach ( ? ∈ N (E) )
12 foreach ( ?′ ∈ ($') (N (?), 34B24=38=6) )
13 if �ĦĦ′ f �ĦĬ then

14 break;

15 if 38BC0=24 (E, ?′) < �ĦĦ′ ∗ U then

16 N(?) ← N(?) − ?′ + E ² As p’ is closer to v

than to p, p connects to v instead ;

17 G ← set neighbors N(?) ;
18 break;

19 return G ;

Algorithm 4: VectorSearch

Input: In-memory graph G, query E , candidate size"ĝĨėĦℎ .

Output: A set of vectors C visited when searching.

1 C ← ∅ ;

2 H ← a min-heap with size"ĝĨėĦℎ with the �xed start

point in the graph G ;

3 ? ← pop a node from H ;

4 C ← C ∪ {?} ;
5 while ? is valid do

6 N(?) ← unvisited neighbors of p ;

7 foreach ( ?′ ∈ N (?) )
8 H ← insert ?′ and its distance to ? ;

9 ? ← pop a node from H ;

10 C ← C ∪ {?} ;
11 return C ;

GaussDB-Vector will double the candidate size"ĝĨėĦℎ and search

more candidates starting from the existing candidates.

Vector Insert.Given a vector to insert, the candidate set is obtained

by searching the graph for the nearest neighbors, and then selecting

some of the nodes in the candidate set to keep as the neighbors of

the vector, as shown in Algorithm 3. The aim of neighbor selection

is to �nd the nodes whose distance to the vector is smaller than the

distances to the other kept neighbors of the vector. Vamana [32]

introduces a relaxation coe�cient to keep more connections, and

this can enhance the overall connectivity of the graph. Additionally,

in order to make the vector reachable by existing nodes, GaussDB-

Vector tries to add the vector as a neighbor of each of its neighbors.
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4.1 Hybrid Index Structure

The scalar values are organized as a balanced tree structure that

can be searched in O(;>6(=)) time. Just like a b-tree in a relational

database, each node in the hybrid index occupies one page, and

it also supports data updates by using INSERT, SPLIT, and ROTATE

operations. In each root and middle node, a pointer linking the

metapage of a vector subindex is arranged at the beginning, and

a series of scalar division values and pointers linking to the next

level are staggered and tightly arranged. In each leaf node, all the

scalar values are tightly arranged, and each of the scalar values is

linked to a vector and ctid in the heap table.

4.2 Hybrid Search

In the hybrid index, all the root and middle nodes have vector

subindexes. When a query searches a node where the scalar pred-

icate selects more than 50% of the data, the query can search for

the answer from the vector subindex directly. Thus the query does

not have to scan all the leaf data and individually rank the vectors.

However, the leaf nodes themselves do not have vector subindexes.

This is because a leaf node will not contain many tuples (less than

100 in general), and sequence scan is fast enough for small amount

of data. Therefore, queries with small selectivities can quickly lo-

cate the scalar data and get the answer by sorting a small number

of vectors, and queries with high selectivities can search the answer

from a vector subindex with the minimal super-set of selected data.

4.3 Hybrid Data Update

An update query may involve insert, delete or both. Data delete is

cheap because the deleted vector only needs to be marked as dead

instead of removing it immediately. But data insert may trigger node

splitting or rotating if the inserted page is full. Splitting happens

when one node is full and the neighbors are also full. It creates a new

node with half of the values, then inserts a pointer to the new node

into the parent node. Rotating happens when the inserted node is

full but neighbors still have space. For example in the bottom of

Figure 4, the last middle node is full, but the left still has one free

space, and thus 75 is moved down to the middle node and 90 moved

up to the root node so that 95 can be inserted successfully. Rotating

causes update operations in the last middle node and the root node

along with an insert operation in the left middle node.

Node modi�cation dominates the cost of data update in the

hybrid index, especially for nodes with vector subindexes. This is

also one of the reasons why vector subindexes are not built on the

leaf nodes (the leaf node is highly likely to be split frequently). For

the vector subindexes, the splitting and merging cost is higher for

the graph-based index than for the IVF index. For the IVF index, the

distribution of vectors does not change after node splitting/merging

in most cases, and each bucket can be evenly split. But sometimes,

di�erent ranges of scalar values correspond to di�erent vector

distributions (even if the ranges are close to each other) so that

the IVF index needs to be rebuilt over the new nodes. Likewise for

the graph-based index, deleting half of the data in one subindex

when splitting degrades the quality of the index, and GaussDB-

Vector overcomes this by rebuilding on each of the new nodes. A

graph-based index is only used in the root node or middle nodes

containing more than 10 million vectors so that the construction

cost can be compensated by the search performance gain.

Figure 5: Data is inserted into the nearest node, and query

will be sent to multiple near nodes.

In summary, the design of the hybrid index involves a tradeo�

between search performance and update e�ciency. Having more

vector indexes on a greater number of scalar index nodes improves

search performance but reduces update e�ciency. GaussDB-Vector

achieves a balance between search and updates by selectively build-

ing di�erent types of vector indexes based on the node type and

the volume of data associated with each node.

5 DISTRIBUTED VECTOR SEARCH
The two-tier architecture of GaussDB-Vector enables it to e�-

ciently manage and scale large volumes of vectors. It supports

billions of vectors on individual data nodes and can be expanded to

handle trillions of vectors by adding more machines. In this section,

we detail the methods used for distributing vectors and routing

queries across the data nodes.

Data Sharding. In GaussDB-Vector, all the data is distributed by

distance. Vectors are split into 2 clusters, with each cluster corre-

sponding to one of the 2 data nodes. The centroid of each cluster

is stored in a coordinate node. As Figure 5 shows, the distribution

status has 4 types. In the RANDOM phase, the centroids information

is invalid, and inserted vectors are randomly distributed to the data

nodes. After the volume of data reaches a threshold (e.g. 50,000),

GaussDB-Vector starts the FULL REDISTRIBUTING phase. In this

phase, GaussDB-Vector clusters the data and moves the tuples to

the corresponding data nodes. During this phase, clustering blocks

data update queries for a short time, and search queries are still

sent to all data nodes. After the centroids are decided, new vectors

are inserted into the nearest data nodes, and old vectors are moved

in the background. When the status becomes CLUSTERED, search

queries are sent to close clusters, increasing the throughput. Data

updates may cause the distribution to shift, degrading the quality

of the clustering. GaussDB-Vector supports periodic incremental

redistribution. In the background, GaussDB-Vector samples data

from each data node and computes centroids for each data node.

GaussDB-Vector then relabels each vector, and if the ratio of shifted

vectors exceeds a threshold (e.g. 10%), GaussDB-Vectorwill update

the centroids and start redistribution in the background.

Query Routing. One of the challenges in distributed vector search

is determining how many data nodes each search query should be
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sent to. If too few data nodes are searched, the recall of the ANN

search will be very low. Conversely, if too many data nodes are

involved, the performance will be suboptimal. We can estimate the

cardinality of each data node for search queries [33], and when

users do ANALYZE for distributed tables, GaussDB-Vector trains

a cardinality model for each data node using a small data sam-

ple, and the models are stored in the coordinate node. For range

queries, the query vector and distance threshold are used to directly

estimate the cardinalities of each data node, allowing the query

to be sent to only those data nodes with large cardinalities. For

top-: queries, cardinality estimation of each data node is more

complicated. GaussDB-Vector uses binary search on distances to

�nd the threshold where the sum of all estimated cardinalities on

data nodes exceeds : , and then queries are sent to those nodes

with high contributions. For hybrid queries with a scalar �lter con-

dition, selectivity of the �lter condition is considered during the

cardinality estimation. However, cardinality estimation errors are

unavoidable, even with sophisticated models. We �nd that error

propagation across various query types showed that query vec-

tors near a cluster centroid (i.e., assigned to a single machine in

our distributed architecture) were least likely to su�er accuracy

degradation. In contrast, queries with vectors near inter-cluster

boundaries experienced the most signi�cant performance decline.

To address this issue, GaussDB-Vector additionally selects clusters

whose centroids’ distance to the query vector is equal to or less than

the maximum distance among currently selected cluster centers.

6 HARDWARE ACCELERATION
GaussDB-Vector can improve vector search performance by uti-

lizing specialized hardware like NPUs or GPUs, which are capable

of calculating distances for batches of vector pairs. To utilize new

hardware, the distance computation between two sets of vectors

is transformed into basic matrix operations by using the formula

� (G,~) = G2 − 2 · (G × ~Đ ) + ~2, where G2 is a self sum-product of

rows of G that can be precomputed when loading each vector into

an index. Note that a fairly large matrix is needed to fully utilize

the parallelism of NPUs.

Using NPUs/GPUs can signi�cantly accelerate vector index con-

struction and searching. For the IVF-based index, GaussDB-Vector

uses NPUs to conduct data clustering. It computes distances of

vectors to centroids in the NPU and labels the vectors according to

their closest centroids, and then it sends vectors in the same cluster

to the NPU to re�ne the centroid. After clustering is completed,

the centroids are �xed, and vectors are labeled in batch accord-

ing to their distances to centroids computed in the NPU. For the

graph-based index, GaussDB-Vector builds a graph-based index by

inserting each vector into a random graph in parallel, as mentioned

in Section 3. For each inserted vector, we �nd the candidate set

and select edges for it and its neighbors, and the performance bot-

tleneck is distance computations during edge pruning. Therefore,

we accumulate the inserted vectors, candidate sets closest to the

vectors, and the neighbors of vectors in the candidate sets, and

compute the distances in the NPU. Based on the distance table, we

run the neighbor selection algorithm for each node.

GaussDB-Vector also supports using SIMD, available in main-

stream CPUs, to accelerate distance computing for single vector

pairs by folding the vectors into segments.

Table 1: Datasets

dataset #rows #dims #cols scalar ndv distance

SIFT 10M 128 1 / Euclidean

GIST 1M 960 1 / Euclidean

HUAWEINet 15M 1024 1 / Cosine

SIFT-H 10M 128 2 1M Euclidean

GIST-H 1M 960 2 500K Euclidean

HUAWEINet-H 10M 1024 2 1M Cosine

SIFT-10B 10B 128 1 / Euclidean

7 EXPERIMENTS
7.1 Experimental Settings

In this section, we conduct experiments for testing vector search

performance (see Section 7.2), hybrid search performance (see Sec-

tion 7.3), scalability on large scale datasets (see Section 7.4) and

acceleration by using heterogeneous hardware (see Section 7.6).

Datasets.We use three basic datasets with representative dimen-

sions (128, 960, and 1,024). SIFT contains a collection of image em-

beddings generated using the SIFT algorithm [27]. GIST contains

vectors describing the GIST features of images [29]. HUAWEINet is

a collection of embedding vectors for documents in the telecom-

munication �eld provided by Huawei. We extend each dataset by

adding an ID column that is a biased integer column with duplicates

and a large range of distinct values, and we test hybrid search on

these datasets. We extend SIFT to SIFT-10B to test the scalability

of distributed GaussDB-Vector. Table 1 shows the details.

Baselines.We take three well-known and widely-used ANN sys-

tems, ElasticSearch, Milvus, and PGVector, as baselines. In or-

der to ensure fairness of comparison, we only test the standalone

versions of these systems. ElasticSearch is a NoSQL ANN sys-

tem. It supports very comprehensive document and vector simi-

larity retrieval features, stores semi-structured data (like JSON),

and supports near real-time ANN query processing. Milvus is a

storage-compute disaggregated system. It is also a vector-native

ANN system, and all the data is organized as vector index struc-

tures. PGVector is an extension of PostgreSQL to support vector

data storage, computing, and searching. Both GaussDB-Vector and

PGVector are relational vector databases and support real-time

ANN query processing. Additionally, we use HNSW indexes for

all baselines, as HNSW performs the best on these datasets among

all indexes supported by these systems. We build a graph-based

index for single vector searching queries, and hybrid index for

multi-column searching queries in GaussDB-Vector. And the de-

fault value for size of probing candidate set is 128. The index sizes of

GaussDB-Vector are 9GB for 10M SIFT, 8.6 TB for 10B SIFT-10B,

and 35GB for 10M HUAWEINet. These are comparable to the index

sizes of the baseline systems, Milvus and ElasticSearch.

Hardware Environment. We conduct experiments on clusters

of 40 machines. Each machine is equipped with 72 Intel 3.00GHz

CPU cores, 64GB memory and 2TB of disk, connected by 10 Gigabit

Ethernet. One machine also contains eight Ascend-920B type NPUs.

7.2 Vector Query Performance
Concurrent Execution. We compared query latency, recall, and

throughput across the three datasets with an increased number of

connections. We set the concurrency to 50 to ensure that the num-

ber of cores wouldn’t become a bottleneck. Figure 7 and Figure 8
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