Automatic Indexing in Oracle

Sunil Chakkappen
Oracle America Inc.
Redwood City, CA, USA
sunil.chakkappen@oracle.com

Masoomeh Javidi Kishi
Oracle America Inc.
Redwood City, CA, USA
masoomeh.javidi.kishi@oracle.com

Mohamed Zait
Databricks Inc.
San Francisco, CA, USA
mohamed.zait@gmail.com

ABSTRACT

Indexes are one of the important access structures that help im-
prove database performance. This paper provides a methodology
to automate the entire lifecycle of index creation and management
with continuous index tuning based on changing data and work-
load. We present novel ideas that are critical to ensuring automatic
indexing seamlessly works in a production database. Our method-
ology avoids using an expensive clone; yet offers non-intrusive
index operations (candidate isolation and evaluation with Oracle
resource manager ensuring no visible impact to the user workload),
and upon deployment of auto indexes ensures non-disruptive plan
invalidations and timely mitigation of performance regressions.
The proposed approach is unique in that it is incremental and itera-
tive, continually creating beneficial indexes and dropping unused
ones as the workload evolves. The approach even supports indexes
on expressions. It performs careful validation — including comput-
ing overhead of index maintenance incurred during DML while
evaluating potential benefit — and provides accountability for its
actions. Performance regressions are effectively managed using
Oracle’s powerful SQL Plan Management (SPM) framework. For ex-
ample, a new automatic index isn’t dropped in response to a single
statement regressing due to it; SPM instead ensures such regressing
statements revert to well-performing plans even in the presence
of new indexes that continue to benefit other statements. We also
share results of comprehensively evaluating various automatic in-
dexing aspects in publicly available and Oracle customer workloads.
Our experiments show benefit with automatic indexing, especially
in customer workload, with a 15% improvement in performance and
60% space reclamation potential. This automatic indexing feature
is available since Oracle 19¢ and in Oracle Autonomous Database.

PVLDB Reference Format:

Sunil Chakkappen, Shreya Kunjibettu, Daniel McGreer, Masoomeh Javidi
Kishi, Hong Su, Mohamed Ziauddin, Mohamed Zait, Zhan Li, and Yuying
Zhang. Automatic Indexing in Oracle. PVLDB, 18(12): 4924 - 4937, 2025.
doi:10.14778/3750601.3750616

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by

Shreya Kunjibettu
Oracle America Inc.
Redwood City, CA, USA
shreya kunjibettu@oracle.com

Hong Su
Oracle America Inc.
Redwood City, CA, USA
hong.su@oracle.com

Zhan Li
Meta Platforms Inc.
Menlo Park, CA, USA
zhanl@meta.com

4924

Daniel McGreer
Oracle America Inc.
Redwood City, CA, USA
daniel. mcgreer@oracle.com

Mohamed Ziauddin

Oracle America Inc.
Redwood City, CA, USA
mohamed.ziauddin@oracle.com

Yuying Zhang
Google Inc.
Mountain View, CA, USA
yuyingzhang@google.com

1 INTRODUCTION

Indexes remain a critical feature for applications today on large
data sets running millions of SQL statements per day. Using the
right index mix helps minimize the resource utilization (CPU and
I0) when fetching a relatively small amount of data from very large
tables and increases the application response times and throughput.
The task of creating indexes requires intimate knowledge of the
data model, schema design, data distribution and application logic,
as well as some knowledge of the internals of the database system
on top of which the application is implemented (e.g. query opti-
mization, buffer cache management, etc.). No matter how skilled
the people who do the tuning are, they rarely revise the choice of
indexes when changes are made to the data model, application code,
or data distribution because the entire process is labor intensive.
Not only does the lack of follow-up lead to cases of missed chances
to improve system performance, but also can have a negative ef-
fect where indexes become a burden (e.g. maintenance overhead)
without benefit. Furthermore, application customizations might use
generic columns (known as “flex” columns) that are not commonly
used across all customers of the application. They do not have in-
dexes deployed by default from the application vendor, so it is each
customer’s responsibility to manually create them. Automatic index
management helps to avoid these issues.

1.1 Automatic Indexing in Production

Automatic index management should be a full-fledged function
of any modern database system, considering its complexity and
potential impact. Many factors need to be addressed to facilitate au-
tomatic application of indexes across real-world scenarios. It needs
to be aware of essential and relevant database status (e.g. existence
of other physical structures and the currently available resources).
Indexes that can potentially improve SQL statements’ performance
(candidate indexes) must be validated to see if they indeed improve

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750616

https://doi.org/10.14778/3750601.3750616
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750616

customer workloads. Physical structure advisors [11, 12, 13, 23],
such as automatic indexing, clustering, and partitioning are tradi-
tionally first analyzed on a test system/clone. This is to minimize
any negative impact on the production system when those physical
structures are being evaluated for their benefits. Only when the
test workload exhibits overall performance improvements do the
new physical structures get deployed on the production system.
Although safe for the production system, this approach suffers from
two problems: 1) the clone must have the exact same data and ac-
cess structures as the production. The storage cost of maintaining a
clone, especially on large database systems, can be exorbitant. The
computing cost can be also very high if the clone must constantly
be synchronized with the production system. 2) It is technically
challenging to capture the production workload (DMLs and queries)
and replay it on the clone. Typically, only a core set of queries are
selected and run on the clone. This can be insufficient for automatic
indexing, particularly if DML queries are missed. Indexes can cause
overhead on DML activities, leading to global workload regres-
sion even though some queries might benefit from the indexes. For
these reasons, Oracle chose to implement automatic indexing on
the production system directly. This gives the automatic indexing
task full access to the real time data and workload, enabling it to
make the most comprehensive decision (including but not limited
to accounting for DML costs) and minimize index creation delay.

1.2 Challenges and Limitations

The major challenge of having everything run in the production
database is to ensure minimal disruption to user workloads during
automatic indexing actions. To avoid performance regressions, the
index candidate should only be visible to the validation component
but not visible to user queries until verified. No component of the
automatic indexing task should compete with the user workload
for CPU or IO resources. Additionally, automatic indexing should
not disrupt user workload either, e.g. holding up locks resulting in
user query waits or causing large user query compilation spikes.

Many applications rely on expressions in their queries, like UP-
PER(), SUBSTR(), DECODE() etc. Not having support for expression/
function-based indexes would be a key limitation of any automatic
indexing feature.

1.3 Oracle’s Approach

In production systems, we have implemented an always-active
background automatic indexing task that frequently monitors the
application workload, creates indexes that are deemed useful, val-
idates the impact of the indexes on the workload, and decides
whether to keep or revoke the decision to use the indexes based on
performance and resource metrics.

Oracle automatic indexing supports indexes that potentially im-
prove performance of queries containing equality and range pred-
icates, function-based predicates including JSON predicates, and
a combination of predicates involving multiple columns. The opti-
mizer’s capability to track expressions and column groups in the
workload allows automatic indexing to create and suggest indexes
on expressions and group of columns. Automatic indexing compo-
nents, like validation of candidate indexes or dropping of unused
indexes, are agnostic to index types — empowering the task to be

4925

extensible and able to easily incorporate new index types in the
future.

The automatic indexing task is not limited to creating indexes
based on the application workload, but includes all activities related
to indexes, such as disabling (make UNUSABLE), enabling (RE-
BUILD), hiding (make INVISIBLE to optimizer), and dropping. For
example, the index should be automatically dropped if it is unused
past a certain amount of time to clear its maintenance overhead.
It requires no user input for its activities. It also provides various
display options to view a report of its actions. All these index DDLs
could affect user workloads, as they are simultaneously occurring
in the production database, so we make sure to create and verify
indexes in a non-intrusive manner. The creation of new indexes
or dropping of existing indexes can invalidate current optimizer
decisions and execution plans. These decisions and plans are called
shared cursors in Oracle’s terminology. Shared cursors are man-
aged based on the automatic indexing action that just took place
(section 6.2). Automatic indexing could be a resource-intensive pro-
cess, so the task is designed to run in the background by capping
resources under Oracle Database Resource Manager [50]. Since
the task runs in the background with resource control plan, there
would be no/minimal overhead on the workload in terms of latency
or throughput during any stage of the automatic indexing pipeline.

Our automatic indexing task is flexible and designed to be inde-
pendent of workload type, i.e. working well for OLTP workloads
and not imposing any unnecessary side effects — like index main-
tenance overhead during data loads involving bulk inserts — for
OLAP workloads. The latter is achieved through accounting for
DML maintenance cost during validation of a particular index can-
didate before and after rebuilding it (sections 5.3, 6.1.1).

Index validation/verification is done on a per-statement basis.
Index advisors seem to perform better over query-level selection
than workload-level selection [53]. Considering the cost and benefit
of all indexes globally may help reduce the number of indexes, but in
our experiments, we didn’t see many more indexes than what would
have been manually created for optimal performance (exemplified
in section 7.2). Additionally, delineating the start and end times of a
particular workload is not clear. Even with the workload time period
established, if we wait for it to execute entirely and then select best
indexes, we might miss a chance to benefit a top query seen in the
beginning of the workload run. Currently, we deem an index as
beneficial if it improves the statement by a threshold percentage.
There could be cases where an index might not benefit a statement
by enough margin, but still help improve the workload by a lower
percentage and thus not be created. That is the trade-off we chose,
as we saw it more advantageous to benefit TOP resource consuming
queries faster in the workload. Furthermore, if a decision affects
another statement negatively, Oracle’s SPM (section 6.3) will help
avoid any global regression to the workload that could be caused
by automatic indexing.

2 AUTOMATIC INDEXING METHODOLOGY

All automatic indexes are non-unique b-tree indexes, which can
be partitioned or non-partitioned. Indexes are non-unique to pre-
vent any failure of user DML inserting rows with duplicate keys.
Although we could create unique automatic indexes if the indexed

—

SQL Plan ‘
Base Lines
A
Statements
with
performance

Usable,
visible auto [«
indexes

Figure 1: Automatic Indexing Components.

i
w

STS
Capture

Prod

c

ction

o

B
Column

Usage and
Expression
Tracking

Automatic Indexing
Task that performs
complete life cycle < STS and

Column/
management of Expression
indexes Tracking
l Info

Shared

that
regressed [
with Indexes

Cursor
Management

Index
Candidate
Generation

Compilation

Validation

Index
selected by
optimizer

Unusable,
> Invisible Index
candidates

Usable,
visible auto
indexes

Mark indexes in
statements as
visible

sQL
Performance
Verification
through SPA

Statements
using

usable,

invisible <

T (rebuilt)

A

Rebuild
indexes

index

candidates

Statements that
regressed with
indexes

Statements with
performance
improvement

Figure 2: Automatic Indexing Task.

column is declared unique and non-null, the extra work to main-
tain/drop the uniqueness if the constraints on column are later
dropped does not seem worthwhile. In this section we give an
overview of our automatic indexing feature.

The high level idea is while the user workload is running, the
automatic index task is invoked periodically (e.g., every 15 minutes)
and runs with a time limit (e.g., 1 hour). In each iteration, the task
creates a set of candidate indexes in UNUSABLE and INVISIBLE
status based on column, column group and expression usage, which
could be on single or multiple predicate seen in individual queries.
Then it uses the top N past executed user statements to validate if
the candidate indexes are worth rebuilding. The top N statements
could be based on CPU, IO utilization and/or new statements seen
after the previous iteration. Once the task reaches a steady state
(analyzed most of the workload) most runs every next 15 minutes
become a no-op except when the task re-validates some of the
verified statements to see if anything has changed.

The validation of candidate indexes consists of two steps: (1)
compilation (to check whether the optimizer would choose the
candidate indexes); (2) execution (to check the performance of the
SQL statements after rebuilding the candidate indexes). For each
statement, after validation, there are 3 possible outcomes:

4926

(1) The statement improves above a performance threshold:
All the indexes rebuilt for that statement are marked as
VISIBLE, and available to use in the workload.
The statement regressed below a performance threshold:
The regression is avoided in the workload using the SQL
Plan Management (SPM) feature (section 6.3). SQL Plan
baselines (section 6.3) are created for known verified good
performing plans and sub-optimal plans with those auto-
matic indexes are prevented. The performance of the state-
ments is monitored in real time outside of the automatic
indexing task and SQL Plan Baselines are created automati-
cally.
The statement performs within the performance thresholds:
No action will be taken for this statement and the indexes
will remain INVISIBLE.

Finally, the use of all automatic indexes is monitored, and an
index will be dropped if it has not been used for a long time. Auto-
matically created indexes may not be used if:

@

®)

o Application SQLs are removed or changed.

e Data distribution changed.

e Automatically created SQL Plan Baselines prevent all plans
using an automatic index.

Several automatic indexes may be merged into one, and some may
even be dropped, if they have similar column sets or expressions and
if a subset of those indexes is sufficient to give optimal performance.

Figure 1 highlights the key automatic indexing components, and
Figure 2 shows the automatic indexing task in more detail. SQL
Tuning Set (STS) and SQL Performance Analyzer (SPA) [49] men-
tioned in these figures are objects used to facilitate index validation,
and are further defined in sections 5.1 and 6, respectively. The fol-
lowing four sections detail each of the main stages of our automatic
indexing workflow, chronologically.

3 CANDIDATE GENERATION

We track columns, column groups and expressions used in predi-
cates during optimization. The automatic indexing task generates
index candidates based on tracked information in equality pred-
icates, equality joins, range predicates, and predicates involving
expressions (including JSON) on user created schemas. These can-
didate indexes are created in UNUSABLE and INVISIBLE mode.
In this mode, the indexes will have only metadata. They will not
consume any space and are not maintained during DMLs. They will
not be used in user query executions. Statistics for these indexes
are derived based on table and column statistics since the index is
not materialized.

The search space of all index candidates could be quite large
when considering all possible combinations of columns in all tables
of a workload. The following subsections describe column usage and
expression tracking in more detail, and showcase how they, along
with other methods, work to constrain the candidate generation
search space (also outlined in Figure 3).

3.1 Table Skipping

Indexes might not help or be usable for all tables. Oracle’s automatic
indexing does not create index candidates for temp/staging tables
or non-internal tables (i.e. external tables, hybrid tables, etc.). Tables

Initial candidate index search
space

A J

Search space after skipping
tables

!

After usage-based
tracking

After index
merging

Figure 3: Candidate index search space reduction.

with no statistics or stale statistics (which are rare with Oracle’s
automatic statistics management) are also skipped, as statistics
for meta-data only indexes depend on accurate table and column
statistics — the lack of which can result in bad recommendations.
Small tables (e.g. all blocks of the table can be fetched in a single
I0) are excluded as well. In this case, indexes are not very useful
as scanning the table incurs only a single IO and is better than
fetching index blocks which can result in multiple IO0s. Users can
also specify a table exclusion list so automatic indexing does not
consider those tables.

Candidates from any highly DML active tables are automatically
skipped from creation as well. The impact an index can have on
DML activities is further described in section 6.1. A table can be
classified as highly DML active if at least one of two are true: 1)
every week, every row in the table churns through DML changes
at least once (the number of rows undergoing DML changes is
greater than or equal to the current total number of rows in the
table), or 2) the majority of the DMLs on the table are bulk loads
(the number of rows undergoing inserts is greater than or equal to
50% of the current total number of rows in the table). Bulk loads
usually involve large amounts of data and have a global impact. For
example, an application might be written in a way that nightly data
analysis can be only issued after bulk loads have been completed.
Index maintenance overhead on bulk loads can be quite significant,
affecting the application waiting for the load to complete. Hence it
is best to avoid index maintenance during bulk loads.

3.2 Usage-Based Searchspace

As mentioned above, columns, column groups, and expressions are
tracked for those only appearing in predicates. Furthermore, auto-
matic indexing only looks at equality, equality joins, LIKE/range,
and expression predicates. Non- equality predicates apart from
range predicates are typically not used for accessing indexes, and
hence not used by automatic indexing. They are not used by other
areas using column group usage either, so are not tracked. The
resulting index candidate set from this tracking is a small subset
of all indexes possible, i.e. when looking at all combinations of
columns in tables. For example, if there is table t1 in a workload,
with columns c1, ¢2,...c10, but only two queries:

(1) Select count(*) from t1 where c1 = 5 and ¢4 = ‘John’;

4927

(2) Select c4 from t1 where c1 = 2 and ¢5 > 10;

The index candidate pool can be limited to only sets including
c1, c4, and c5. Indexes on the other unused columns will not be
helpful. Column and expression tracking helps to identify index
candidates that might benefit the workload and eliminates those
that will surely not.

3.21 Column and Column Group. Column usage recording occurs
during query optimization. We internally maintain two structures,
one to hold all column usage and the other to hold all column
group usage for a statement. We record this usage at the end of
optimization — accounting for whether a column is part of a column
group or not. Whenever a query is optimized, the columns used in
predicates will be recorded in these internal structures. The columns
or group of columns are identified when we examine predicates for
selectivity estimation. Column usage is tracked from all types of
predicates, while column group usage is tracked only from equality
and range predicates. For example:

Q1: select prod_id, amount_sold from sales s, customers ¢

where s.channel_id = ‘S’ and s.buyer_id = c.customer_id and

s.seller_id = 5001 and s.amount_sold > 50 and s.prod_cost > 100;
Table 1 shows single columns usage tracking for ‘Sales’ table and
Table 2 shows column groups’ tracking for ‘Sales’

We can generate two multi-column index candidates on columns
(channel_id, buyer_id, seller_id, amount_sold) and (channel_id,
buyer_id, seller_id, prod_cost).

An equality predicate (join or non-join) column is considered
part of a column group if there is at least one other equality predi-
cate or range predicate. Indexes are created on a single column if
it’s not included in a group. For columns that are tracked as part of a
group, index candidates will be generated with the concatenation of
the columns while each individual column that is part of a column
group will not have a corresponding candidate generated. Ratio-
nal is, if you have an index on multiple columns, optimizer is not
likely to pick the index on individual columns when the predicates
involve multiple columns. If there is more than one range predi-
cate but no equality predicate, the columns in the range predicates
will not be tracked as part of a group. Instead, multiple individual
candidates will be created on each of the range predicates based
on just column usage (no group). Rationale is, range predicates
on multiple columns cannot be used effectively for scanning leaf
blocks satisfying the predicates. For the example query Q1 above,
if a multi-column index on all equality and range columns (chan-
nel_id, seller_id, amount_sold, prod_cost) is created, predicates on
channel_id, seller_id, and amount_sold can be used to build a key
to access the relevant index rows (referred as access predicates)
satisfying the predicates on channel_id, seller_id, and amount_sold.
The first range predicate after equality can be used as an effective
access predicate. The predicate on prod_cost (filter predicate) will
be mostly evaluated after identifying the index rows satisfying pred-
icates on channel id, seller_id, and amount_sold. Once we have
a range for one column, predicates on subsequent range columns
will not be effective in pruning index leaf blocks. The goal is to
create candidates with columns from access predicates that help
reach index rows directly relevant to the query. Oracle b-tree in-
dex implementation also does not support specifying two range
keys for index scans, but they can be specified for post index filters

Table 1: Tracking column usage based on predicates they appear in.

Table name Column EQ predicates EQ-join predicates Range predicate
Sales channel_id Yes No No
Sales buyer_id No Yes No
Sales seller_id Yes No No
Sales amount_sold No No Yes
Sales prod_cost No No Yes

Table 2: Column Group Tracking.

Table name Equality Columns Range Columns

Sales channel, buyer, seller amount_sold, prod_cost

(note that Oracle supports multiple range keys for bitmap index
scans using AND-OR bitmap logic). Automatic indexing focuses
on improving scans. For the above example, we create two multi-
column candidate indexes on (channel_id, seller_id, amount_sold)
and (channel_id, seller_id, prod_cost). All equality columns are
present in each index as prefix followed by one of the columns of
range. Currently we do not build candidate indexes on columns
from group by, order by etc. Indexes on predicate columns that
select small sets or rows from tables tend to have higher impact on
OLTP query performance than indexes that avoid sorting needed
for group by/order by operations. The cost of sorting is not signifi-
cant if done on small row sets. We also currently do not consider
“covering” indexes that have all columns referenced in the query
and avoid table row fetches. These indexes are usually wide and
have high storage and maintenance costs.

3.2.2 Expression Tracking. Oracle’s automatic indexing also sup-
ports function based indexes to benefit queries having certain ex-
pressions on columns. Certain expressions like upper(), substr(),
decode(), expressions needed for JSON etc. are heavily used by
customers/organizations, hence our motivation to create index can-
didates on commonly used functions. For example:

Q2: select * from employees where empno = 1 and deptno = 2

and upper(ename) = JOHN’ and salary+10 > 100;

A single-column index candidate on the entire expression ‘up-
per(ename)’ will be generated as well along with the multi- column
index candidate (empno, deptno). The ‘addition’ operator is one of
the expressions we do not automatically create a function-based
index for, so ‘salary+10° will not be an index candidate. Expres-
sions are not part of column group tracking explained in section
3.2.1, so the multi-column index candidate [empno, deptno, and
upper(ename)] will not be generated at first, but it may be created
in later automatic indexing iterations through index merging —
further described in section 3.3.

Support for function-based indexes is enabled through expres-
sion tracking — a generally useful feature whose clients are not
restricted to automatic indexing. Expressions are very important
constructs in SQL queries. They could involve simple operators
such as “+”, “*”, or more complicated ones such as PL/SQL functions.
They could appear anywhere in a query including where clause,

4928

select list, group by, having clause, etc. Popular expressions could
appear in multiple queries, and in multiple parts of the same query.
Oracle tracks several aspects of these expressions automatically —
the text of the expression, its average evaluation cost, evaluation
count etc. Tracked expressions come from one or more columns of
the same table. They are identified at compilation time and statistics
like average evaluation cost and count are captured at end of exe-
cuting statement. Expressions that can be considered as automatic
function-based index candidate (i.e. common functions that are
used relatively recently) are flagged as such during tracking. Au-
tomatic indexing candidate generation algorithm will create index
candidates for such flagged expressions.

3.3 Index Merging

If a user workload is large, the number of candidate indexes gen-
erated could also be large, which will increase maintenance cost.
To reduce the number of indexes without losing functionality, we
can merge two index candidates during candidate generation if the
columns in one index are the prefix of the other (i.e. one covers the
other). For example, an index created on column (b) will be merged
by an index created on columns (a, b), assuming the order of a and
b can be exchanged. The new index will be on (b, a), and order of
the columns cannot be changed later. In this case, b has to be in
leading position of the index to cover the cases where the index on
b was useful. For indexes created on columns of equality predicates,
the order of the columns in the index doesn’t matter, but if there is
a column in a range predicate, its position cannot be changed - it
must be put in the end. Rationale is given in section 3.2.

We also drop an existing automatic index i1 if in a later iteration
of automatic indexing, another index i2 is generated that covers il.
The covering index should also have a higher or equal status to the
existing index, i.e. index status UNUSABLE is lower than VALID
which is lower status than VISIBLE. This includes if i1 contains
a function based index column as well. Function-based indexes
are basically indexes on virtual columns created on expressions.
The virtual column will be available after function-based index
creation, and can be tracked like any other column, i.e., it can be
tracked in column group usage as well. Continuing the section
3.2.2 example, the next time Q2 is optimized, the grouping (empno,
deptno, virtual_column_upper_ename) will be recorded and the
next automatic index iteration can create the merged index.

4 INDEX CREATION

We create candidate indexes as UNUSABLE and INVISIBLE indexes.
Indexes created in UNUSABLE state have no storage structures
hence no maintenance cost. Also, the INVISIBLE indexes are not

available to the user workload until verified. Indexes will be created
under the same owner as table owner. By default, it will be created
in the same tablespace as the table resides in. A preference can be
set to create automatic indexes in a predefined tablespace.

Optimizer is invoked in a special mode to consider these UN-
USABLE and INVISIBLE indexes as part of compilation validation
(described in section 5.2). The more accurate index statistics are,
the better index access path decisions the optimizer can make. The
statistics for UNUSABLE indexes are derived since the index itself
is not materialized yet. The number of index keys (NDK) is same as
number of distinct values (NDV) of the column of single column
index. For multi column index, we compute approximate NDV [51]
of column groups by scanning the table and use it as NDK of the
index. If there are n candidate multi column indexes to create for a
statement, we just need to scan the table once. Other index statistics
(leaf_blocks, clustering_factor, etc.) are derived based on NDK.

For partitioned tables, local index will be created if table parti-
tioning column list is a prefix of the index column list; otherwise,
a global non partitioned index will be created. In a local index, all
keys in a particular index partition refer only to rows stored in a
single underlying table partition.

If optimizer picks the candidate indexes and generate plans based
on estimates, automatic indexing will rebuild (materialize) these
indexes. The index segments are created and will inherit all other
storage properties (compression, etc.) of the tablespace it belongs
to. Accurate statistics of these indexes are computed as part of
rebuild. These accurate statistics will then be used for SQL perfor-
mance verification (section 6), remedying any slight inaccuracies
that might have resulted from using derived statistics during compi-
lation validation. In one of our workload environments, for example,
performance verification was done for 62,723 statements. It pro-
duced the same plan for 54,504 of these statements as in compilation
validation using derived statistics, and a different plan for 8,219
statements. This shows that derived statistics were accurate about
87% of the time, generating the same plan as when optimizer had
real index statistics in performance verification — establishing a
high correlation between the derived statistics and actual statistics.

There is a specified space budget that can be consumed by au-
tomatic indexes. Before rebuilding the index, we will check the
current total size of all automatic indexes and the budget. We es-
timate the size of the index and if its addition exceeds the budget,
the index is not rebuilt. If some other indexes are dropped later
(e.g. when an index is not used for extended period), we may have
more space and then we can create and rebuild new indexes. All
this information is logged for diagnosing/informational purposes.

Index rebuild can take considerable amount of time. Automatic
indexing will perform several such index DDL operations. Oracle
has the capability to do these operations “online” and allow other
DML operations on the table while these index DDL operations are
performed. Automatic indexing performs all DDL operations using
the "online” option, avoiding impact to the customer workload.

4.1 Index Pruning

Some workloads have tables with large number of columns and
many statements with multiple filter combinations of these columns
along with various equijoin conditions. Automatic indexing can

4929

create a large number of indexes on these combinations of columns
if they benefit the relevant statements. With the creation of several
automatic indexes, the compilation time will also increase since
the index search space is larger. The optimizer will have to cost
all applicable indexes before choosing the best one. For example,
if a statement s1 has a predicate on a column c1 that is a leading
column index il1(c1, c2, c3), then index i1 may be used for s1 and
will be costed. With a large number of indexes, several such indexes
could be applicable to a single query, and a lot of time could be
spent on optimizer index costing.

Automatic index merging (section 3.3) can reduce the number
of automatic indexes and can reduce the overhead of costing all
these indexes to a certain extent. However, there can still be a large
number of automatic indexes after merging. Hence, we also prune
automatic indexes to be considered by optimizer access path selec-
tion based on their relevance during compilation of SQL statements.
We use a heuristic-based approach to determine the best automatic
indexes in certain categories. Only the best in each of the categories
will be considered for access path selection. One such category is all
statements involving equality predicates. The heuristic is as follows:
For each column referenced in the predicates in the category, if an
index contains leading columns matching the referenced columns,
then derive the number of distinct values of the conjunction of
those columns. The index with the highest number of distinct val-
ues is considered best (most selective index), and costed. The other
indexes with matching columns are not costed. The best indexes in
other categories are found similarly. We have 5 such categories, so
the heuristics try to cost at most 5 indexes. Evaluation section 7.6
shows the positive effect of automatic index pruning on a customer
workload. These heuristics are used for automatically created in-
dexes, but can potentially be used for manually created indexes in
the future.

5 INDEX VALIDATION

For the set of candidate indexes created, we want to know which
of them will be used by the optimizer and if the performance of
the statements improves after creating the indexes. To validate the
indexes, we capture past executed statements from user workloads
in a SQL Tuning Set (STS) [1], described in section 5.1. To find out
whether the optimizer will use the candidate indexes, we use SQL
Plan Analyzer (SPA) [49] to compile the statements in STS and
check if the indexes are used in the plans, as detailed in section 5.2.
We only rebuild the indexes that are used in the plans. REBUILD
changes index status from UNUSABLE (disable) to VALID (enable)
but keeps index mode INVISIBLE.

5.1 Capture SQL Workload

SQL tuning set (STS) [1] is a database object that includes one or
more SQL statements, along with their plans, execution statistics
and execution context. Oracle has an Auto STS created out of the box
and used by many tuning features, including automatic indexing.
SQL statements can be loaded into an STS from different sources;
for Auto STS, it periodically captures the user’s workload from
shared cursor cache. For any statement already existing in the STS,
all the performance metrics in STS will be replaced with the new
values from shared cursor cache. Any statement in STS not executed

within a certain retention period will be purged. Statements that
are similar in nature are also purged more frequently. We use 373
days as the retention period to cover one full year with one week
overlap. This value allows to capture any statements that are run
in the past year. With this retention period, statements and plans
that run on a particular day of the year (for example queries run
from end of the year financial report) are not dropped from STS.
Automatic indexing will not drop indexes built for these statements
as it detects that the indexes are still used by the plans.

5.2 Compilation Validation

The automatics indexing task (and its underlying stages such as
validation) is a repeated task. In each iteration, we are only inter-
ested in the new statements which have not been validated yet. We
also want to put emphasis on expensive/often repeated statements
as opposed to statements that may only get executed once (ad-hoc).
Therefore, we select the statements in the STS that have not been
selected before, rank them based on some metrics (a function of
elapsed time, number of executions, etc.) and choose the top N to
be compiled. As the task is iterative, all statements are bound to
be evaluated at some point. The compilation is done using SQL
Performance Analyzer (SPA) [49] in a special mode where UNUS-
ABLE/INVISIBLE indexes are considered by optimizer. The goal is
to check if these indexes will be picked by optimizer. The candidate
indexes with UNUSABLE status used in the compiled plans are
rebuilt in INVISIBLE mode. Statistics of non- partitioned indexes,
or (sub)partitions of partitioned indexes, are gathered as part of
rebuild. If we rebuild an index that covers an existing index, we
drop the existing index in the next iteration given the existing index
has a lower or equal status as the new index to reduce the total
number of indexes created and save space. The rebuild may not
succeed if doing so exceeds the index space budget allocated. This
usually might happen for statements in later iterations, but by that
time indexes for top N statements would have already been rebuilt
and improved overall system performance.

Initial candidate indexes that are UNUSABLE (meta data only)
and INVISIBLE can be considered as the list of all the potential
indexes needed for the workload. Automatic indexing uses the opti-
mizer to pick the best indexes from this list in a cost-based manner
that can be rebuilt and marked as VISIBLE for the workload. Opti-
mizer uses pruning techniques to reduce the execution plan search
space if it is large due to complex nature of the query with large
number of joins, large number of indexes etc. Using the optimizer
guarantees that we pick relevant indexes that would eventually be
used to execute the SQL in an efficient manner. Internal workings
of the Oracle optimizer is beyond the scope of this paper.

5.3 Maintenance Cost-based Pruning

Automatic indexing accounts for index DML maintenance cost
when verifying indexes (detailed in section 6.1.1). Before that, in
compilation validation itself, it also prunes the indexes used in
compiled plans whose estimated maintenance cost is more than
maximum possible benefit. This is to avoid automatic index rebuild
altogether and save resources if maintenance cost is too high.

We use similar IO costing and execution statistics as in the ver-
ification costing (section 6.1.1) to avoid rebuilding indexes under

4930

Statement skipped from
next verification step, on
to next statement.

If failed due to
lack of space,
drop invisible
rebuilt indexes
not used
recently

No

Rebuild each of
the unusable
indexes in the
plan

Rebuild
succeeds?

'max possible benefit greater than
estimated maintenance cost?

Next rebuild
succeeds?

tatement is
considered for
next veriifcation
step.

Figure 4: Compilation validation workflow.

certain conditions. Oracle has infrastructure to track number of
DMLs (insert, update, delete) for each table. With approximate in-
dex levels and number of DMLs per day, we can compute the buffer
gets/IO needed to maintain the index in a day. We have the perfor-
mance numbers like statement buffer gets per execution without
the candidate index in STS for prior executions of the statement. We
can compute average daily buffer gets for this statement from STS.
By having the new candidate index, the total buffer gets per day
can be brought down to 0 in the best case, i.e. the maximum benefit
possible is the average daily buffer gets for the statement. If the
cost (in terms of buffer gets/IO) of maintaining the new candidate
indexes per day is higher than the average daily buffer gets, rebuild-
ing index will never be cost effective. We avoid rebuilding such
candidate indexes. We only consider buffer gets here as CPU cost
computation with auto indexes (section 6.1.1) needs index rebuild
cost per row, which is not available before rebuilding the indexes.
This pruning occurs right after compilation validation, but before
rebuilding candidate indexes, as captured in the high level workflow
in Figure 4.

For evaluation, in one of our workloads before pruning, we
noticed 24 automatic indexes created and rebuilt, but not marked
VISIBLE. These indexes would be marked UNUSABLE after 1 day if
they didn’t benefit any other statements later in the workload, but
during that 1 day period where they were VALID, they seemed to
cause regression. After pruning, these 24 automatic indexes are now
not even rebuilt, avoiding any maintenance overhead regression.

6 SQL PERFORMANCE VERIFICATION

Compilation validation checks that the optimizer will choose the
candidate automatic indexes. But the performance impact of that
choice is unknown. By executing the statements using SQL Perfor-
mance Analyzer (SPA) [49], we can discern this impact.

SPA enables assessment of system changes’ (e.g. new indexes)
impact on the response time of SQL statements. Once the indexes
are validated and rebuilt after compilation validation, SPA will
execute all the statements that have gone through compilation vali-
dation and picked some UNUSABLE indexes. This SPA execution is
done in a special mode with all rebuilt automatic indexes (not yet
VISIBLE to customer workload) made available to optimizer. This
“execution verification” checks if the new plan with auto indexes is
performing better (or worse) with respect to cpu time, buffer gets,

etc., than the original plan in STS. Based on the outcome of the
performance comparison, the indexes become VISIBLE (if perfor-
mance is better) or remain INVISIBLE (if performance is similar or
worse) as detailed in section 2.

When the statement is executed in SPA, it is run with a time
limit computed as average run time of the statement in the past
plus a threshold. If execution exceeds the run-time limit, it is an
obvious regression so no need to run the statement to completion
and waste resources. This is all done in the background by the
automatic indexing task.

6.1 Index Maintenance

Indexes can cause overhead on DML activities. This can lead to
global workload regression even though some queries might benefit
from the indexes. Our automatic indexing recommends indexes
considering net benefits, i.e., accounting for the cost of maintaining
the created indexes as part of DML along with their benefits. This
means that when a statement is deemed to be improving with
automatic indexes after execution verification by SPA [49], the
overall benefit (cpu time, buffer gets improvement) of the indexes
outweighs overall DML maintenance cost of the indexes.

6.1.1
anism to measure statement query performance gains by automatic
indexes. It compares the average performance metric (cpu_time
and buffer_gets) of the plans of previous executions from STS with
that of the execution metric obtained by running the statement
with automatic indexes using SPA. The difference in these metrics
multiplied by number of executions per day provide average daily
benefit (in terms of cpu_time and buffer_gets) for the statement.
The buffer gets benefit can be easily converted to IO benefit.

The challenge is how to measure index maintenance cost. Run-
ning DML statements in the background execution verification
process, unlike running SELECT queries, can interfere with fore-
ground operations. The alternative of trying out DML queries with
and without the indexes on a clone (an approach used by others
as also mentioned in section 9) would be too expensive, let alone
inconsistent with our current automatic indexing which works
without cloning. We opt for a more lightweight approach with a
proxy for measuring maintenance cost (CPU and IO) rather than
directly executing the DML. Using optimizer cost can also be ruled
out, as optimizer cost for DML statements do not necessarily reflect
the actual cost of maintaining the index. In most cases, the index
maintenance is the last operation in the plan and this operation
cannot be avoided for DMLs and computing cost is not necessary
as there is no other alternative.

To compute daily CPU cost, we get the maintenance cost per row
and multiply it by the number of daily DML changes. Automatic
index candidates are rebuilt if they are used in compilation valida-
tion (section 5.2). We can get the total CPU time from the execution
statistics of INDEX REBUILD operation and compute per row build
cost. Each automatic index’s daily CPU maintenance cost can be
calculated as [the total number of DMLs on a table prorated over a
24-hour window (average daily DML count)] times a DML factor
times the per row build cost of index rebuild. The DML factor is
used to map per row REBUILD cost to per row DML cost. We then

Cost-Benefit Analysis. Execution verification provides a mech-

4931

sum the CPU maintenance costs of all the automatic indexes used
in the statement to get total daily CPU cost.

The total daily index IO cost of an index can be calculated as the
average daily DML count for the table times [the index b- tree level
minus an index level caching factor]. The caching factor indicates
the number of index levels cached and thus not contributing to
index IO cost. We again sum the IO cost of all automatic indexes
used in the statement to get the total daily IO cost.

For each statement, we will mark all its automatic indexes VISI-
BLE to the workload only if their total daily CPU and IO benefit is
greater than the total CPU and IO cost, respectively, in a 24-hour
time window. We noticed performance regression in some DML
statements after enabling auto indexing (AI), without accounting for
DML maintenance cost. For example, CPU time for one of the DMLs
regressed to 154,972 ms compared to baseline 75,524 ms. Buffer gets
also regressed from 7,755K baseline to 15K. With accounting for
DML maintenance costing, we do not see these regressions anymore
in the workload.

6.2 Shared Cursor Management

Oracle stores the optimizer decisions and plans into a structure
called a cursor. All cursors are stored in a shared memory area of
the database server called the Cursor Cache. The goal of caching
cursors in the cursor cache is to avoid compiling the same SQL
statement every time it is executed, and instead use the cached
cursor for subsequent executions of the same statement. However,
cached cursors may not be used, and compilation could happen for
many different reasons. Statistics gathering on database objects,
existence of new available indexes on a table, different NLS setting
parameters, and bind/host variables are some factors that may force
creation of a new cursor. Based on the validity of old cursors, the
compilation can be classified into two categories:

(1) Correctness driven compilation - If no valid old cursor is
available in the system, an immediate compilation must take
place. Invalid old cursor is either non executable or may
lead to wrong results. For example, if an index is dropped,
the old cursor using that index is no longer executable.
Performance driven compilation - In some situations, old
cursors are still valid, but may lead to subpar performance.
For example, a newly created index results in a better per-
forming plan. It is still valid to use the existing cursor with-
out the new index, and not necessary to immediately build
anew cursor.

@

The following two sections describe techniques to avoid compi-
lation and building a new cursor.

6.2.1 Deferred Cursor Invalidation. Automatic indexing creates
new indexes in UNUSABLE and INVISIBLE mode. It does not need
to create a new cursor for this operation as this index is not VIS-
IBLE and cannot be used in the workload. Once the indexes are
marked VISIBLE after index verification, the new indexes can im-
prove query performance. Compiling and generating new cursors
are required to see this improvement. However, if the table for
which a new index is available is used in several statements, and
if the system starts compiling all those statements at once, there
will be a spike in compilation load and system performance can
degrade. For cursors that need performance driven compilation,

we use a deferred invalidation method. The database assigns each
cursor that needs to be compiled a randomly generated time period.
SQLs affected at the same time due to the new index typically have
different time periods. Compilation occurs only if a query accessing
the cursor executes after the period has expired. In this way, the
database diffuses the overhead of compilation over time.

6.2.2 Non-Blocking Compilation. Deferred invalidation evenly dis-
tributes the compilation of several cursors of different statements.
However, when multiple sessions concurrently execute a specific
statement and if it needs to be compiled, only one session will
compile and build a new cursor; all the other sessions must wait
until the new cursor is ready. In highly concurrent systems, this
wait event would be significant. Most of the compilation needed for
automatic indexing is performance driven. In this case, executing an
old cursor without using the new index is still valid. Non-blocking
compilation technique is used to avoid the wait event. The idea is to
further extend the life-time of the cursors that require performance
driven compilation. When multiple sessions concurrently execute
the same statement, one session is appointed to perform the com-
pilation and new cursor creation. Before starting the compilation,
the selected session extends the life span of the old cursor, making
it still shareable by other concurrent sessions. Other sessions will
share the old cursor and will not be blocked by the compilation and
new cursor creation in the selected session.

Non-blocking compilation and deferred cursor invalidation (sec-
tion 6.2.1) are used by other areas that require performance-driven
compilation as well, like statistics gathering, where we do not need
to cursor invalidate and build a new plan.

6.3 SQL Plan Management

SQL Plan Management (SPM) [44, 45] provides a framework to pre-
serve current SQL execution plans amidst system and data changes
while allowing new plans that are verified to have better perfor-
mance. It allows for a controlled evolution and use of better per-
formance plans for a SQL statement. With SPM [44, 45], the op-
timizer automatically manages execution plans and ensures that
only known or verified plans are used. These plans are captured
as SQL Plan Baselines [44, 45]. When a new plan is found for a
statement, it will not be used until it has been verified to perform
better than the Baselines created.

Automatic indexing creates an index and marks it as VISIBLE
after it verifies that the index improves the performance of the
statements. However, if performance verification finds that the
statement has regressed, it will create a SQL Plan Baseline corre-
sponding to plans that performed better without the newly created
automatic indexes. This SQL plan baseline could contain other
automatic indexes verified to improve performance in previous
automatic indexing iterations. Optimizer will only pick plans from
available SQL Plan baselines and avoid the suboptimal plan with
new indexes. Even if these indexes go on to be made VISIBLE for
some other statement later, this statement will not use them, and
instead will execute according to the created SQL plan baselines.

Statement performance is monitored in real time outside of the
automatic indexing task, and SQL Plan Baselines are created as
necessary to prevent regressions for statements not verified by
automatic indexing task yet. Plan Baselines may also be created if

4932

other changes in the system (e.g., data distribution changes) render
an auto index to be unbeneficial and causing regression now.

7 AUTOMATIC INDEXING IN THE FIELD

Automatic indexing feature has been in production for more than 6
years [46]. The following aspects of automatic indexing are evalu-
ated in publicly available and Oracle customer workloads: automatic
indexing performance benefit and identification of unused indexes
in a well-tuned application (NetSuite), automatic indexing with
high DML workload and significance of function-based indexes
in untuned application (Swingbench), automatic indexing in a hy-
brid (Data warehouse + OLTP) workload, resource consumption
of automatic indexing (section 7.4 and 7.5), and effect of automatic
index pruning on compilation time (section 7.6). In sections 7.1-3,
automatic indexing was evaluated as follows:

(1) Run workload and capture performance numbers. This
workload run will use manually created indexes (if any).
This run is to get baseline performance numbers without
any automatically created indexes.

(2) Enable Automatic Indexing.

(3) Rerun the workload after implementing recommendations
from automatic indexing, which includes creation of new in-
dexes and deletion of indexes that are not used by workload.
Get the performance numbers.

(4) Compare performance numbers from 1 and 3.

The experiments were done to evaluate the impact of automatic
indexing on Oracle customer workloads specifically. The goal is to
automatically help improve Oracle customer workload performance
through indexes. There are customers currently deploying auto
indexing in production by default or via phased rollout and continue
to use it. Their identities and evaluation metrics are not disclosed
for confidentiality reasons.

7.1 NetSuite

NetSuite [47] is a unified business management suite, encompass-
ing ERP/Financials, CRM and ecommerce used by more than 37,000
customers. Complex applications like NetSuite are already tuned
with indexes. These indexes are manually created during develop-
ment and maintenance of the application over a long period of time.
As mentioned in section 1, there are cases where manual creation
is insufficient. Indexes being missing usually causes performance
issues, and having experts manually diagnose and add them takes
considerable amount of time and effort. Another issue is that while
new indexes are created over time for different cases, some of the
old available indexes may not be useful anymore. These unused
indexes use some space and will unnecessarily incur maintenance
overhead during DMLs.

Automatic indexing was evaluated using a typical NetSuite data-
base workload to see if it:

e creates additional indexes needed for the workload.
o detects indexes that are not used anymore.

Figures 5a and 5b show some metrics captured from this NetSuite
evaluation. There were about 3600 manually created indexes in the
system. Automatic indexing was creating a small number, 259 (7%)
of additional indexes and marked 59 (2%) of them VISIBLE. The

e S
2%

98%

M Used HUnused

H Manual ®Auto

(a) System indexes. (b) Manual index usage.

Figure 5: NetSuite Evaluation Index Details.

__ 100 1000

E o 8 80

o -~

= g 600

g ® 2 400
=3

& 7 L & 200 .
[}

© Index Type a2

mWithout Al mWith Al Index Type

HWithout Al mWith Al
(c) Performance and index space usage with/without automatic indexing

Figure 6: NetSuite Evaluation Results.

indexes that are INVISIBLE will be dropped automatically. So just
about a 2% increase in the number of indexes in the system as
pictured in Figure 5a helped improve performance of the workload
by 15%, depicted in Figure 6c.

Automatic indexing detected that 81% of those manually created
indexes were not used in the workload and recommended to drop
them (Figure 5b). Users can set a retention period preference for
automatic indexing to drop all indexes unused past the retention
period. This 81% of indexes occupied 60% of the entire index space.
This 60% of index space can be reclaimed by dropping the unused
indexes. These indexes are created at application development stage
to cater to the indexing needs of large set of NetSuite customers who
have different data distributions. Some of these indexes may not be
useful for all customers. Also, these indexes are created over a long
period of time as the application is evolved over years. For example,
the developers may create an index on a set of columns initially
and later create another index that has a superset of columns or
completely different set of columns due to application statement
changes. Automatic indexing can detect new indexes that cover
multiple manually created indexes. It is difficult to detect and drop
indexes that are not helpful due to new indexes or indexes not
needed for the specific customer and evaluate the impact manually.
Automatic indexing helps achieve this automatically, and this space
savings’ potential is highlighted in Figure 6c.

7.2 SwingBench

Swingbench [48] is an OLTP benchmark designed to stress test
Oracle database. Some small customers may not have resources to
tune the application and create necessary indexes. The Swingbench
we used was approximately 3.3GB in size, having 11 total tables, 33
SQL statements, and 27 manually created indexes. Out of the 27, 15
were constraint enforcing indexes and the other 12 were secondary
indexes. To simulate the “untuned” application environment, we

4933

8
56
el
2
34
: I
. in
0
10% 50% 75%
% DMLs

m manual ® 3 auto indexes, no function based index m 4 auto indexes

Figure 7: Manual vs. automatic index Transactions Per Sec.

dropped all those 12 secondary indexes and evaluated automatic
indexing. We also varied percentage of DMLs in the workload. This
evaluation used Oracle Enterprise Linux machines, with Intel Xeon
Processor with 24 CPUs. The experiment was using 50 concurrent
user sessions. In this experiment, automatic indexing created 4
indexes.

Automatic indexing is able to provide better performance with
a small number of indexes. Figure 7 gives the Transactions per
Second (TPS) with manual vs. automatic indexes. The performance
improvement with automatic indexing is higher as the percentage of
DMLs increase in the workload. This is expected since more indexes
incur maintenance cost with DMLs. In this specific experiment, we
found that automatic indexing is creating the same set of 4 indexes
for all the 3 DML percentages. That is, the benefit of these indexes
in queries is higher than the cost of maintenance of these indexes
during DMLs. One of the 4 indexes was a function based index.
Some of the queries benefitted significantly from that function
based index. We collected TPS after manually removing that one
function-based index for 10% and 75% DMLs. TPS dropped by 24%
for former and 40% for latter. Thus, support for function- based
automatic indexes is very important for these kinds of workloads.

7.3 Hybrid Workload

We validated automatic indexing in a database that has a data
warehouse and an OLTP workload (hybrid workload). The purpose
of including the data warehouse workload was to measure the
effectiveness of index maintenance overhead estimation on DML
statements. These workloads have the following characteristics
shown in Table 3. The evaluation was done on Oracle Linux Exadata
X9M 8-node machine, with Intel(R) Xeon(R) Platinum processor.
For the OLTP workload, automatic indexing created additional
5 indexes on top of 234 indexes. Out of 5 new indexes, 2 of them
got rebuilt, out of which 1 got marked VISIBLE. i.e. 2 of them used
in compilation validation and only one of them passed execution
verification. After the auto index is created, buffer gets improved by
about 98% (from 18 to 0.37) and CPU time improved by 15% (from
5.95 to 5.1) in the workload. Figure 8 shows the number of indexes
used before and after automatic indexing created the indexes, and
their corresponding performance numbers (normalized metric unit).

Table 3: Hybrid workload configuration.

DB Size (GB) Tables Manual Indexes SQLs DML

DW (Star schema) 81 47 0 130 10% of the fact table data is loaded in the workload

OLTP 18 355 234 4889 75% of the statements are DMLs
o 20 (1) Default - With all manually created indexes for application.
= (2) NOSindex - Dropping all secondary indexes (manually cre-
@ 15 ated indexes except indexes enforcing constraints).
= 10 (3) AI+NoSIndex - Dropping all secondary indexes and running
g 5 automatic indexing in the background.
= l . The workload consumed 235 GB of memory, and was run on one
E 0 _ node of Oracle Exadata X2-2 for 2 hours. The graph in Figure 9
2 buffer gets cpu time shows the percentage of cpu (every % minute interval) used in the

above configurations. The last 25 minutes of the graph is cropped

B 12 Manual indexes ® 12 Manual + 1 Auto index but shows the same tapering of all three configurations.

Figure 8: Manual vs. automatic index performance.

Al+NoSindex
NoSindex
Default

CPU usage (usr%-+sys%)

CANRARYERAB8RREESRE8 38R RE AR EB g

S8-23 i8R RIS RBEEKEEEST

Elapsed time (half-minute intervals)

Figure 9: CPU usage percentage for 2-hour workload run.

For Data Warehouse (DW) workload, it created 180 UNUSABLE/
INVISIBLE indexes. However, these indexes did not get rebuilt since
the cost of maintaining the indexes during loads came out higher
than the maximum benefit for the statements with the indexes (5.3).
Hence the performance of this workload saw no significant change
before and after automatic indexing. Indexes would benefit if the
DW was 'READ-only’. This experiment demonstrates that auto-
matic indexing works well for hybrid workloads, creating necessary
indexes for OLTP and avoiding them for DW with high loads.

7.4 Oracle Internal Workload

We validated automatic indexing in an internal email app workload
(Beehive) to verify the percentage of CPU used by all processes
(background and foreground) for the following configurations:

4934

CPU usage was high for the first 10 minutes (ramp-up period)
for all configurations. Default configuration was better in CPU
utilization during this time compared to other 2 configurations. Au-
tomatic indexing was able to create, build and validate the indexes
needed by 70th interval (in 35 minutes). The CPU usage is higher
for some intervals during this time for automatic indexing plus
No secondary index configuration due to the CPU usage by the
automatic indexing background process that rebuilds and verifies
the statement. After 35 minutes though, the CPU usage of this
configuration is similar to that of the default case. However, the
no secondary configuration uses more CPU. This indicates that by
this time, automatic indexing created all necessary indexes for the
workload, producing better and efficient performing plans.

After minute 73 (ramp-down time), the workload was not using
many indexes, so CPU usage was similar for all configurations. In
this application, automatic indexing achieved similar performance
as manually created indexes in a short amount of time by consuming
just little more resources early on.

7.5 Automatic Indexing Task Impact

We evaluated automatic indexing’s impact on a workload using the
same SwingBench environment as in section 7.2. We used TPS as a
measure of throughput to see if there is overhead in any stage of
the Al life cycle. The results are captured in Table 4.

We varied 4 different setups to guage any TPS difference. Setup
1 was a baseline run. Setup 2 has an Al task running - Al task/DML
overhead was expected since it would create/rebuild indexes amid
the workload run. Setup 3 was again without any Al task, but with
the indexes created in setup 2. The indexes would be unused but still
valid so their maintenance overhead would be incurred by DMLs.
Setup 3b is with the AI task running again. This was to see the
overhead on DMLs plus any overhead from the task, which should
be negligible as most of the necessary indexes would have been
created in setup 2. Lastly, setup 4 was using the indexes created in
setup 2 to show the overall benefit of Al. As expected, TPS decreases
slightly from setup 1 to 2. The creation of new automatic indexes in
setup 2 seemed to have some effect on DMLs, resulting in lower TPS
in setup 3. 3b’s similarity to 3 indicates that there is no additional
impact from automatic indexing.

Table 4: Worklaod TPS.

No. Setup Description Average TPS
1 No AI Task, No indexes 45.67
2 Al Task, No indexes 44.2
3 No AI Task, setup 2 AI unused 43.79
3b AI Task, setup 2 AI unused 44.31
4 No AI Task, setup 2 AI used 689
1000
800
2 600
=
D 400
= | | |
. El _Hm -
CPU CPU CPU BG BG BGwith
Baseline without with Baseline without pruning
no Al pruning pruning noAl pruning

m Compilation Metrics ® Execution metrics

Figure 10: Pruning Effect on CPU time (min) and Buffer Gets

7.6 Automatic Index Pruning Effect

The effect of automatic index pruning (section 4.1) was evaluated
on a scaled down version of a customer workload by measuring
the total CPU time and Buffer Gets (with automatic indexes) in
the workload with and without the heuristics. The workload had
total size of 25 GB, with 25 tables, 2117 statements, and one table
with 70 columns. Automatic indexing created 68 indexes, with
each index on average containing 3.66 columns. This experiment
was performed on Oracle Enterprise Linux machine with AMD
EPYC Processor. As Figure 10 shows, automatic index pruning
helped reduce compilation time by a factor of six (96 to 15 minutes)
without introducing any regressions - total CPU time and buffer
gets (scaled) also decreased. Baseline compilation numbers were
too low to appear in the graph.

8 RELATED WORK

Automatically selecting indexes for a set of relational database
queries (where the workload pattern is known), is a well- stud-
ied NP complete problem [17, 18, 19, 20, 21]. Most common index
selection methods, especially in industry, solve the problem by se-
lecting the set of indexes that would result in best performance
given an existing, known workload. Contemporary index tuning
techniques, including commercial tools [6, 7, 8, 9, 10, 15, 16, 23,
41, 55], follow this paradigm by relying on “what-if” analysis [43]
to recommend the indexes with the most estimated improvement.
“What-if” calls are one-step validation calls, either in execute or
"no-execute" mode, to the query optimizer to get cost estimates for
a particular index configuration. Existing state-of-the-art physical
tuning tools mainly focus on assisting DBAs. Oracle’s work builds
on past research and existing tools to provide [one of] the first

4935

on-prem industrial strength, self-learning expert system for fully
automated indexing. We have a two-step verification process that
only uses “what-if” execution calls for configurations known to
be picked by the optimizer, thus reducing the number of execu-
tion calls needed to make the best decision. Our validation also
considers index maintenance cost during DMLs, a key limitation
of existing advisors as they cannot handle workloads with Insert-
Update-Deletes well [53].

Microsoft Azure SQL Database also has a fully automated in-
dexing offering [3]. This offering and some others [52] uses a
database copy which behind the scenes, receives customers’ work-
load and provides auto-indexing service, differing from Oracle’s
in-production service (section 1). In Azure, if an index is detected
to regress performance, it will immediately be dropped [3]. Oracle
uses SQL Plan Management (6.3) to selectively use automatically
created indexes in statements only if it improves the statements.
Moreover, to the best of our knowledge, SQL Server does not create
function- based indexes needed for workload automatically like
Oracle. It has capability of creating computed columns [54] though,
on which customers can create manual indexes.

Automatic index selection, and its variants [11, 12, 13], is still
being researched [4, 5, 26], now with machine learning incorpo-
rated. Learned-based index advisors [14, 25, 40, 42] build machine
learning models based on training workloads and use these models
to select indexes and/or estimate index benefits [53]. Most of these
algorithms still use the “what-if” optimizer-based index benefit
estimation for index tuning. Although machine learning alternates
to “what-if” calls/index benefit estimators have been proposed [24,
40, 42], these classification tasks just decide which plan, among two,
has the cheaper execution cost and are mainly designed for query
regression prevention. Moreover, most machine learning methods
need to materialize all the index configurations, meaning training
these models would be expensive and time-consuming. Learning
convergence is also not guaranteed, with prediction quality only
improving over time and initial predictions being mostly arbitrary
and of low quality.

9 CONCLUSION

Oracle automatic indexing [2] is a fully automatic process that
continually optimizes a SQL workload, offering net verified per-
formance improvement. All stages (except workload capture, SQL
Plan Management, Cursor Management) are performed by the au-
tomatic indexing task that runs periodically in the background with
controlled use of resources to not impact normal user workload.
All tuning activities can be monitored via activity reports, requir-
ing minimal human interaction. It is also self-maintained, purging
automatic indexes and any associated tasks, objects, and logs that
have been unused/older than a specified retention period.

ACKNOWLEDGMENTS

We would like to thank members of the Oracle Optimizer, Index-
ing, Partitioning, Auto task, SQL Tuning Set, SQL Performance
Analyzer, Functional Testing and Stress Testing teams for their
contributions to various aspects of the product life cycle. We also
thank Fusion Apps, SAP and NetSuite teams for helping test and
validate automatic indexing.

REFERENCES

[1] Nigel Bayliss. 2020. What is the Automatic SQL Tuning Set? Oracle. Retrieved
Jan 10, 2024 from https://blogs.oracle.com/optimizer/post/what-is-the-
automatic-sql-tuning-set

[2] Arup Nanda. 2021. Automatic indexing with Oracle Database. Oracle.
Retrieved Jan 10, 2024 from
https://www.oracle.com/news/connect/oracle-database-automatic-
indexing.html

[3] Sudipto Das, Miroslav Grbic, Igor llic, Isidora Jovandic, Andrija Jovanovic,
Vivek R. Narasayya, Miodrag Radulovic, Maja Stikic,
Gaoxiang Xu and Surajit Chaudhuri. 2019. Automatically Indexing Millions
of Databases in Microsoft Azure SQL Database. In Proceedings of the 2019
International Conference on Management of Data (Amsterdam, Netherlands)
(SIGMOD ’19). Association for Computing Machinery, New York, NY, USA,
666-679. https: //doi.org/10.1145/3299869.3314035

[4] Sheldon J. Finkelstein, Mario Schkolnick, and Paolo Tiberio. 1988. Physical
Database Design for Relational Databases. ACM Trans. Database Syst. 13, 1
(1988), 91-128. https://doi.org/10.1145/42201.42205

[5] Michael Stonebraker. 1974. The choice of partial inversions and combined
indices. International Journal of Parallel Programming 3, 2 (1974), 167-188.
https://doi.org/10.1007/BF00976642

[6] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server. In VLDB. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 146-155.
http://dl.acm.org/citation.cfm?id=645923.673646

[7] Benoit Dageville, Dinesh Das, Karl Dias, Khaled Yagoub, Mohamed Zait, and
Mohamed Ziauddin. 2004. Automatic SQL Tuning in Oracle 10g. In VLDB.
1098-1109. http://www.vldb.org/conf/2004/IND4P2.PDF

[8] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan
Skelley. 2000. DB2 Advisor: An Optimizer Smart Enough to Recommend Its
Own Indexes. In ICDE. 101-110. https://doi.org/10.
1109/ICDE.2000.839397

[9] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arunprasad P. Marathe,
Vivek R. Narasayya, and Manoj Syamala. 2004. Database Tuning Advisor for
Microsoft SQL Server 2005. In VLDB. 1110-1121.

[10] Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin Ding, Vivek R. Narasayya,
and Manoj Syamala. 2018. Columnstore and B+ tree - Are Hybrid Physical
Designs Important? In SIGMOD. 177-190.
https://doi.org/10.1145/3183713.3190660

[11] Nicolas Bruno and Surajit Chaudhuri. 2007. An Online Approach to Physical
Design Tuning. In ICDE. 826-835.
https://doi.org/10.1109/ICDE.2007.367928

[12] Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis. 2006.
COLT: continuous on-line tuning. In SIGMOD. 793-795.
https://doi.org/10.1145/1142473.1142592

[13] Karl Schnaitter and Neoklis Polyzotis. 2012. Semi-Automatic Index Tuning:
Keeping DBAs in the Loop. PVLDB 5, 5 (2012), 478-489.
https://doi.org/10.14778/2140436.2140444

[14] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C. Mowry, Matthew Perron, lan Quah, Siddharth
Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun
Wu, Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management
Systems. In CIDR. https://www.cidrdb.org/cidr2017/papers/p42-pavlo-
cidr17.pdf

[15] N. Bruno. 2011. Automated Physical Database Design and Tuning. CRC Press,
Inc., Boca Raton, FL, USA, 1st edition.

[16] Pavle Subotic, Herbert Jordan, Lijun Chang, Alan Fekete, and Bernhard
Scholz. 2018. Automatic Index Selection for Large-Scale Datalog
Computation. PVLDB 12, 2 (2018), 143.
https://www.vldb.org/pvldb/vol12/p141-subotic.pdf

[17] D. Comer. 1978. The difficulty of optimum index selection. ACM Trans.
Database Syst., 3(4):440-445.

[18] M. Ip, L. Saxton, and V. Raghavan. 1983. On the selection of an optimal set of
indexes. IEEE Trans. on Software Engineering, SE-9(2):135-143.

[19] M. Schkolnick. 1975. The optimal selection of secondary indices for files.
Information Systems, 1(4):141 - 146.

[20] J. Kratica, I. Ljubic, and D. Tos"ic. 2003. A genetic algorithm for the index
selection problem. In Proc. of EvoWorkshops, pages 280-290, Berlin,
Heidelberg, 2003. Springer-Verlag.

[21] G. Piatetsky-Shapiro. 1983. The Optimal Selection of Secondary Indices is NP-
complete. SIGMOD Rec., 13(2):72-75, Jan. 1983.

[22] Pedro Holanda, Mark Raasveldt, Stefan Manegold, and Hannes Muhleisen.
2019. Progressive Indexes: Indexing for Interactive Data Analysis. PVLDB
12,13, 2366-2377. https://doi.org/10.14778/3358701.3358705

4936

[23] Sanjay Agrawal, Surajit Choudhuri, and Vivek Narasayya. 2000. Automated
Selection of Materialized Views and Indexes for SQL Databases. In
Proceedings of the 26t International Conference on Very Large Databases,
Cairo, Egypt, 496-505. https://www.vldb.org/conf/2000/P496.pdf

[24] Jiachen Shi, Gao Cong, and Xiao-Li Li. 2022. Learned Index Benefits: Machine
Learning Based Index Performance Estimation. PVLDB, 15(13): 3950-3962.
https://dl.acm.org/doi/10.14778/3565838.3565848

[25] A. Sharma, F. M. Schuhknecht, and J. Dittrich. 2018. The Case for Automatic
Database Administration using Deep Reinforcement Learning. arXiv preprint
arXiv:1801.05643

[26] H. Gupta, V. Harinarayan, A. Rajaraman, and]. D. Ullman. 1997. Index
Selection for OLAP. In Data Engineering, 1997. Proceedings. 13th
International Conference on, pages 208-219. IEEE.

[27] S. Idreos, M. L. Kersten, S. Manegold, et al. 2007. Database Cracking. In CIDR,
volume 3, pages 1-8.

[28] G. Graefe and H. Kuno. 2010. Self-selecting, self-tuning, incrementally
optimized indexes. In Proceedings of the 13th International Conference on
Extending Database Technology, pages 371-381. ACM.

[29] F. M. Schuhknecht, A. Jindal, and J. Dittrich. 2013. The Uncracked Pieces in
Database Cracking. PVLDB, 7(2):97-108.
https://people.csail.mit.edu/alekh/papers/p97-schuhknecht.pdf

[30] F. M. Schuhknecht, J. Dittrich, and L. Linden. 2018. Adaptive adaptive
indexing. ICDE.

[31] F. Halim, S. Idreos, P. Karras, and R. H. Yap. 2012. Stochastic Database
Cracking: Towards Robust Adaptive Indexing in Main-Memory Column-
Stores. PVLDB, 5(6):502-513.
https://dl.acm.org/doi/10.14778/2168651.2168652

[32] S.Idreos, S. Manegold, H. Kuno, and G. Graefe. 2011. Merging What's Cracked,
Cracking What's Merged: Adaptive Indexing in Main-Memory Column-
Stores. PVLDB, 4(9):586-597.
https://www.vldb.org/pvldb/vol4/p586-idreos.pdf

[33] S. Idreos, M. L. Kersten, and S. Manegold. 2009. Self-organizing Tuple
Reconstruction in Column-stores. SIGMOD, pages 297-308.

[34] E. Petraki, S. Idreos, and S. Manegold. 2015. Holistic Indexing in Main-
memory Column-stores. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 1153-1166. ACM.

[35] H. Pirk, E. Petraki, S. Idreos, S. Manegold, and M. Kersten. 2014. Database
Cracking: Fancy Scan, not Poor Man’s Sort! In Proceedings of the Tenth
International Workshop on Data Management on New Hardware, page 4.
ACM.

[36] P. Holanda and E. C. de Almeida. 2017. SPST-Index: A Self-Pruning Splay Tree
Index for Caching Database Cracking. In EDBT, pages 458-461.

[37] S.1dreos, M. L. Kersten, and S. Manegold. 2007. Updating a Cracked Database.
In Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, SIGMOD 07, pages 413-424, New York, NY, USA.

[38] I. Haffner, F. M. Schuhknecht, and]. Dittrich. 2018. An Analysis and
Comparison of Database Cracking Kernels. In Proceedings of the 14th
International Workshop on Data Management on New Hardware, DAMON
’18, pages 10:1-10:10, New York, NY, USA. ACM.

[39] E. Teixeira, P. Amora, and J. C. Machado. 2018. Metisidx-from adaptive to
predictive data indexing. In EDBT, pages 485-488.

[40] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. Al Meets Al: Leveraging Query Executions to
Improve Index Recommendations. In Proceedings International Conference
on Management of Data, SIGMOD Amsterdam, The Netherlands, June 30 - July
5,2019. ACM, 1241-1258.

[41] Surajit Chaudhuri and Vivek Narasayya. 2020. Anytime Algorithm of
DatabaseTuning Advisor for Microsoft SQL Server. (June 2020).
https://www.microsoft.com/en-us/research/publication/anytime-
algorithm-of-database-tuning-advisor-for-microsoft-sql-server/

[42] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons
Kemper, and Thomas Neumann. 2015. How Good Are Query Optimizers,
Really? Proc. VLDB Endow. 9, 3 (2015), 204-215.

[43] Surajit Chaudhuri and Vivek Narasayya. 1998. AutoAdmin “What-if’ Index
Analysis Utility. ACM SIGMOD Record, 27(2):367-378.
https://cs.brown.edu/courses/cs227 /archives /2008 /Papers/AutoAdmin
autoadmin conf version.pdf

[44] Nigel Bayliss. 2019. SQL Plan Management in Oracle Database 19c. Oracle
White Paper. https://www.oracle.com/technetwork/database/bi-
datawarehousing/twp-sql-plan-mgmt-19¢-5324207.pdf

[45] Oracle. 2024. Overview of SQL Plan Management. Oracle. Retrieved March 13,
2024 from https://docs.oracle.com/en/database/oracle/oracle-
database/23/tgsql/overview-of-sql-plan-management.html#GUID-
F1C45056-F998-43E5-B362-83F88DA49E58

[46] Oracle. 2024. Autonomous Database. Oracle. Retrieved March 13, 2024 from
https://www.oracle.com/autonomous-database

[47] NetSuite. 2024. The #1 Cloud ERP. Oracle. Retrieved March 15, 2024 from
https://www.netsuite.com

[48] Swingbench. 2024. Swingbench... Swingbench. Retrieved March 13, 2024
from https://www.dominicgiles.com/swingbench.html

[49] Oracle. 2024. Introduction to SQL Performance Analyzer. Oracle. Retrieved
March 14, 2024 from https://docs.oracle.com/en/database/oracle/oracle-
database/19/ratug/introduction-to-sql-performance-analyzer.html#GUID-
860FC707-B281-4D81-8B43-1E3857194A72

[50] Oracle. 2024. Managing Resources with Oracle Database Resource Manager.
Oracle. Retrieved March 18, 2024 from
https://docs.oracle.com/en/database/oracle/oracle-
database/23/admin/managing-resources-with-oracle-database-resource-
manager.html#GUID-2BEF5482-CF97-4A85-BD90-9195E41E74EF

[51] Hong Su, Mohamed Zait, Vladimir Barriere, Joseph Torres, and Andre Menck.
2016. Approximate Aggregates in Oracle 12c. In Proceedings of the 25t ACM
International Conference on Information and Knowledge Management, pages
1603-1612. https://doi.org/10.1145/2983323.2983353

4937

[52] Ritwik Yadav, Satyanarayan R. Valluri and Mohamed. Zait. 2023. AIM: A
practical approach to automated index management for SQL databases. In
IEEE 39th International Conference on Data Engineering (ICDE), pp. 3349-
3362.
doi: 10.1109/ICDE55515.2023.00257

[53] Wei Zhou, Chen Lin, Xuanhe Zhou, and Guoliang Li. 2024. Breaking It Down:
An In-depth Study of Index Advisors. PVLDB, 17(10): 2405 - 2418
doi:10.14778/3675034.3675035

[54] Microsoft. 2022. Indexes on Computed Columns. Microsoft. Retrieved
November 20, 2024 from https://learn.microsoft.com/en-
us/sql/relational-databases/indexes/indexes-on-computed-
columns?view=sql-server-verl6

[55] Sam Idicula and Haoyu Huang. 2023. Overview of the AlloyDB Index Advisor
feature and how to use it. Google. Retrieved November 22, 2024 from
https://cloud.google.com/blog/products/databases/how-the-alloydb-
index-advisor-helps-make-smart-indexes

	Abstract
	1 Introduction
	1.1 Automatic Indexing in Production
	1.2 Challenges and Limitations
	1.3 Oracle's Approach

	2 Automatic Indexing Methodology
	3 Candidate Generation
	3.1 Table Skipping
	3.2 Usage-Based Searchspace
	3.3 Index Merging

	4 Index Creation
	4.1 Index Pruning

	5 Index Validation
	5.1 Capture SQL Workload
	5.2 Compilation Validation
	5.3 Maintenance Cost-based Pruning

	6 SQL Performance Verification
	6.1 Index Maintenance
	6.2 Shared Cursor Management
	6.3 SQL Plan Management

	7 Automatic Indexing in the Field
	7.1 NetSuite
	7.2 SwingBench
	7.3 Hybrid Workload
	7.4 Oracle Internal Workload
	7.5 Automatic Indexing Task Impact
	7.6 Automatic Index Pruning Effect

	8 Related Work
	9 Conclusion
	Acknowledgments

