From FASTER to F2: Evolving Concurrent Key-Value Store
Designs for Large Skewed Workloads

Konstantinos Kanellis*
University of Wisconsin-Madison
Madison, WI
kkanellis@cs.wisc.edu

Ted Hart

Microsoft Research
Redmond, WA
tedhar@microsoft.com

ABSTRACT

Modern large-scale services such as search engines, messaging
platforms, and serverless functions, rely on key-value (KV) stores
to maintain high performance at scale. When such services are
deployed in constrained memory environments, they present chal-
lenging requirements: point operations requiring high throughput,
working sets much larger than main memory, and natural skew
in key access patterns. Traditional KV stores, based on LSM- and
B-Trees, have been widely used to handle such use cases, but they
often suffer from suboptimal use of modern hardware resources.
The FASTER project, developed as a high-performance open-source
KV storage library, has demonstrated remarkable success in both in-
memory and hybrid storage environments. However, when tasked
with serving large skewed workloads, it faced challenges, including
high indexing and compactions overheads, and inefficient manage-
ment of non-overlapping read-hot and write-hot working sets.

In this paper, we introduce F2 (for FASTER v2), an evolution of
FASTER designed to meet the requirements of large skewed work-
loads common in industry applications. F2 adopts a two-tier record-
oriented design to handle larger-than-memory skewed workloads,
along with new concurrent latch-free mechanisms and components
to maximize performance on modern hardware. To realize this de-
sign, F2 tackles key challenges and introduces several innovations,
including new latch-free algorithms for multi-threaded log com-
paction, a two-level hash index to reduce indexing overhead for
cold records, and a read-cache for serving read-hot records. Our
evaluation shows that F2 achieves 2-11.9X better throughput com-
pared to existing KV stores, effectively serving the target workload.
F2 is open-source and available as part of the FASTER project.

PVLDB Reference Format:

Konstantinos Kanellis, Badrish Chandramouli, Ted Hart, and Shivaram
Venkataraman. From FASTER to F2: Evolving Concurrent Key-Value Store
Designs for Large Skewed Workloads. PVLDB, 18(12): 4910 - 4923, 2025.
doi:10.14778/3750601.3750615

“Work started during internship at Microsoft Research.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750615

4910

Badrish Chandramouli

Microsoft Research
Redmond, WA
badrishc@microsoft.com

Shivaram Venkataraman
University of Wisconsin-Madison
Madison, WI
shivaram@cs.wisc.edu

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/microsoft/FASTER/tree/main/cc.

1 INTRODUCTION

Modern large-scale services (search [13], messaging [9], serverless
functions [5]) are heavy users of memory and storage. Real-world
applications require caches and key-value (KV) stores that offer
extremely high throughput at low latencies. Moreover, there is a
strong need to deploy such systems in constrained memory envi-
ronments to reduce the costs of large-scale online services [15, 51].
Many of these services focus on point reads, point updates, and
atomic read-modify-writes as their target storage operations [11].
Around 2017, the FASTER project [11, 12] was started with the
goal of addressing such use cases. FASTER is a key-value storage
library that focuses on the problem of achieving bare-metal thread-
scalable performance. It was built in C# along with a port to C++.
Briefly, FASTER employs a thread-scalable hash index on top of a
hybrid log: a record-oriented storage tier that spans main memory
and secondary storage. FASTER was shown to saturate memory
bandwidth for in-memory workloads, achieving up to 160M ran-
dom read operations per second on a single machine. Further, it was
shown to saturate disk IOPS for disk-oriented workloads, achiev-
ing up to 1M random read operations per second [11]. The project
was open-sourced in 2018 and has, over the years, seen incredible
traction in the research and open-source community, as well as us-
age in real-world industry scenarios. FASTER has around 1 million
downloads on NuGet [40], 6.5k stars on GitHub, and over 570 forks.
We highlight two representative scenarios where the FASTER
library was integrated into real applications. First, we built a new
platform for serverless functions called Netherite [6, 7], which
is a runtime for Microsoft’s Azure Durable Functions: a service
that allows for the deployment of large-scale stateful serverless
applications [8]. In Netherite, FASTER is used to efficiently store,
retrieve, and update the state of individual function invocations.
This state is stored across main memory and Azure storage, and
the active state is brought back to memory on demand. Second,
we integrated FASTER into a streaming service for the purpose of
saving and retrieving state related to large event records in long-
running streaming computations such as temporal joins. Motivated
by these use cases, we sought new application scenarios to both
reduce existing costs and optimize the FASTER design further.

https://doi.org/10.14778/3750601.3750615
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750615
https://github.com/microsoft/FASTER/tree/main/cc
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Based on our survey of a variety of services that depend on point-
based storage access, we make several key workload observations:

o Indexing extremely large state with (1) limited memory and (2)
the availability of multiple storage tiers (such as SSD, hard disks,
and replicated cloud storage) is a common scenario [15, 24, 51].
o A natural skew in key access patterns exists for both reads and
writes operations (e.g., Zipfian), and the working sets do not
entirely fit in-memory (i.e., larger-than-memory) [9, 24, 38].
The read-hot and write-hot working sets may not fully overlap,
necessitating separate treatment for each working set [9, 48].
Disk wearing due to excessive writing is a practical concern, due
to the large amount of data (i.e., TBs) that is being processed [39].

These characteristics apply to use cases such as behavior targeted
advertising [2, 10] in search engines (covered in more detail in
Section 2), where most tracked users of a search engine—such as
those who performed searches in the last 7 days—are inactive at
any given moment. They also hold for use cases such as serverless
functions, where the state of most serverless functions are cold and
unused, but we want high performance for the active functions.
In streaming systems, we may be tracking billions of records in a
temporal join synopsis, but only a small fraction of records may be
active (i.e., being joined to new streaming events) at a given time.

The industry’s go-to storage solution for applications that ac-
cess large skewed workloads has traditionally been Log Structured
Merge (LSM) tree-based systems, such as RocksDB [9], which em-
phasize the judicious use of memory. This is achieved through a
tiered architecture, in which small in-memory components absorb
user updates (i.e., memtable) and maintain index metadata (e.g.,
filters), while large disk components store the actual data (i.e., LSM
levels) [36]. Although this design enables LSM-based systems to
store TBs of data, it comes at a high performance cost. In partic-
ular, LSM-based systems deliver main-memory performance far
below what modern hardware can achieve [1, 11], while their disk-
oriented performance is poor, due to their inability to fully utilize
available bandwidth of NVMe disk devices (i.e., just 35% NVMe SSD
utilization, Section 2.1). Other storage solutions such as B-tree based
systems [30-32, 47] also do not adequately meet the requirements
of these applications, mostly due to their page-oriented design and
large write-amplification (i.e., 25-90X, Section 2.1).

Given the above, a natural question arose: could we use FASTER
to improve the throughput of workloads that exhibit the above charac-
teristics? When we tried to apply the original, unmodified FASTER
design [11], we encountered several practical challenges:

e When memory resources are limited, background compaction
(or garbage collection) in FASTER’s single-log design causes
increased disk writes (as live records are migrated to the tail),
resulting in high disk wear or disruptions in user request pro-
cessing. It also incurs transient memory spikes as candidate live
records need to be tracked in memory during the process.
FASTER’s hash index tracks all live keys in the store and imposes
a fixed 8 bytes per-key memory indexing overhead. For billions
of keys, this leads to a prohibitively large memory footprint.
FASTER effectively keeps write-hot records in memory. However,
when read-hot and write-hot working sets are non-overlapping,
read-hot records are either served from disk or brought into the
log to be later flushed to disk, incurring additional I/O operations.

4911

In this paper, we describe how we have evolved the original
FASTER C++ design to a new compartmentalized architecture that
aims to address all these challenges. The resulting system, F2 (for
FASTER v2), adopts a two-tier log architecture that inherently han-
dles skewed workloads with greater memory-efficiency, and couples
it with high-performance latch-free mechanisms and components
that are necessary to saturate the disk bandwidth of modern NVMe
storage devices.

However, realizing this design in practice required overcoming
key technical challenges. For instance, ensuring that compacting
records across tiers in a CPU- and memory-efficient fashion is
critical, while performing compaction concurrently to other user
operations (like atomic RMWs) in a safe manner is non-trivial. To
this end, we introduce a lookup-based record compaction method
that achieves minimal memory and disk I/O overhead, enabling F2
to handle billion-key scale workloads (Section 5). This compaction
method is based on our new Conditional-Insert primitive, which pre-
vents (older) compacted records from overwriting newer versions
of the same record (i.e., lost-updates), ensuring overall system cor-
rectness, and is multi-threaded, achieving much faster compaction
times. To minimize indexing overhead for cold records, we intro-
duce a concurrent two-level index design that spans both memory
and disk (Section 6). Finally, we augment a dedicated read-cache
that provides immediate access to disk-resident read-hot records
without any additional I/O overhead (Section 7).

This results in a system that (1) maintains low memory overhead
and (2) achieves high performance by exploiting both multi-core
CPUs and NVMe storage devices, and (3) remains disk-friendly
with minimal write amplification. We believe F2 is the first com-
prehensive KV store design to address the practical challenges that
limit hash-based storage systems from handling real-world skewed
larger-than-memory workloads.

We experimentally evaluate F2 on YCSB and real-world Mix-
Graph [9] workloads against several modern key-value stores. We
show that F2 achieves 2-11.9x better throughput compared to ex-
isting state-of-the-art systems (e.g., original FASTER, RocksDB,
SplinterDB, KVell, LeanStore), when memory resources are limited.
We also show that F2 matches or outperforms existing solutions
even when handling less-skewed workloads, e.g., when 90% of op-
erations access 33% of keys.

F2 is written in C++ as an evolution of the FASTER C++ codebase.
It is now available in open-source as part of the FASTER project.l.

2 ISSUES WITH LARGE SKEWED WORKLOADS

We start by describing a representative scenario that we identified
through discussions with real-world platform builders who use
key-value stores, and were considering solutions such as FASTER.

(Targeted Advertising) Search engines perform behavior targeted
advertising [2, 10], for which they store and track per-ad clicks and
impressions as well as per-user sketch of ad activity, in a KV store.
Queries, to retrieve the sketch for a given user or the number of clicks
on a given ad, are point based. Updates are either blind inserts (e.g.,
insert a new ad into the system) or read-modify-writes (e.g., update the
counter or sketch for a given ad or user). The number of users and ads
being actively served may be large, with the aggregate data greater

!https://github.com/microsoft/FASTER/tree/main/cc

https://github.com/microsoft/FASTER/tree/main/cc

@~ FASTER=P— KVell=¥— LeanStore=@- RocksDB=gp- SplinterDB
© 2500

Theoretical max: 580 KIOPS

v1 600) -X-Theoretical max |
& 2000 g
¥
w
]
@
Q
o
4 ~
o s
m 0 @

T T T T T T T T
12 4 6 8 10121416
Number of Threads

Number of RAID-0 Disks
Figure 1: Out-of-memory performance for uniform read-only
workload (30GiB database, 1GiB in-memory buffer), when (a)
increasing the number of threads (left), and (b) increase the
number of NVMe SSD disks in RAID-0 formation (right).

than the amount of memory available. For example, users who have
interacted with the search engine over a 7-day period may constitute
the entire set of tracked users. Further, a long tail of users and ads that
are not actively being read or updated, still need to be available for
immediate queries and updates. Both the read and write sets exhibit
skewness. Finally, the set of users actively browsing and needing a
lookup of their sketches (i.e., the read-hot keys) may be different from
the ads being frequently shown and having their sketches updated
(i.e., the write-hot keys).

This application scenario—and the ones described earlier such
as serverless functions and streaming—exhibit several interesting
workload characteristics. First, point operations and high through-
put are still of paramount importance, and the working sets are
much larger than main memory [23, 38]. Second, the total indexed
data is often an order of magnitude larger than memory, with a
large fraction of data being rarely updated or accessed [9, 48]. Third,
memory is a scarce resource [15, 22, 33, 35, 51], periodic memory
spikes are not acceptable (as services would have to provision for
peak memory), and disk wearing due to excessive writes over the
long term is a practical concern [39]. Finally, there is a natural skew
in key access patterns for both reads and writes [3, 48], but the read
and write working sets do not necessarily overlap.

2.1 Limitations of Existing KV Store Designs

We observe that existing KV stores, including LSM-based designs
and B-tree based ones, do not fully address the requirements of the
aforementioned workloads. We discuss their limitations below.

LSM-Tree-based Designs. Log-structured Merge (LSM) Trees [41]
designs prioritize memory-efficiency, and they can store TBs of
data through their tiered design. However, they fail to fully uti-
lize the available NVMe SSD bandwidth [27]. To empirically show
this, we perform a case study on a system equipped with a 16-core
Intel Xeon CPU and four Samsung NVMe PM9A3 SSDs (detailed
setup in Section 8.1), with a larger-than-memory (i.e., 30GiB with
1GiB in-memory buffer) uniform random read-only workload. As
shown in Figure 1, we measure random read IOPS (4KiB blocks)
for five popular key-values stores, when (a) increasing the number
of threads used (left plot), and (b) when increasing the number of
NVMe SSDs in RAID-0 configuration (right plot). We observe that
both LSM-tree stores, RocksDB and SplinterDB, even when opti-
mized and tuned properly, are not able to saturate I/O bandwidth.

One major factor is the widespread use of filters: given that each
point lookup typically accesses numerous such filters, LSMs waste

4912

SSD/HDD

HybridLog .
Mutable
READ ONLY

BEGIN TAIL

Virtual address space,
Figure 2: FASTER HybridLog and index architecture.

Hash Index
(no keys)

precious CPU cycles that could be used to issue more I/O [15].
Further, the benefits of filters can be diminished if the filters no
longer fit in memory [15]. Prior work has found similar results:
they [27] have shown that despite existing efforts, LSM stores fail
to saturate SSD bandwidth and scale poorly [11] with increasing
number of threads due to write-stalls caused by inefficient data
flow across their components [50].

B-Tree-based Designs. B-Tree based storage designs [30-32] usu-
ally rely on in-memory structures (such as index pages, buffer pools,
mapping table) to index the keys and cache the respective working
set. Due to their CPU-optimized designs, they can achieve (i) linear
thread scalability and (ii) disk IOPS saturation, even for modern
NVMe storage devices.

KVell [31] employs a shared-nothing approach, where each
thread uses a B-tree index to map keys to a page offset on disk.
When memory resources are abundant, KVell saturates most of the
available I/O bandwidth (Figure 1). However, when available mem-
ory is limited, parts of KVell’s index are continuously paged out to
disk [16], leading to high read/write-amplification (i.e., 25-90X) and
low throughput (i.e., 3-10x drop), as shown in our evaluation (Ta-
ble 1). LeanStore [1, 30] employs a B-tree indexing structure along-
side an in-memory buffer manager to support larger-than-memory
workloads. However, due to its page-oriented design, LeanStore per-
formance degrades for skewed workloads. Specifically, given that
hot records can be scattered around all pages, effectively caching
the hot set in-memory is not possible. Perhaps more importantly, we
find that the page-oriented design incurs high write-amplification
(i.e., 30-65X), as for each user update, a disk block write is neces-
sary (Table 1). Bw-Tree [32] uses log-structured writes using delta
records for pages, and as a result incurs similar compaction over-
heads as LSM-Tree-based designs for pages with write-hot records.

3 ORIGINAL FASTER AND LIMITATIONS

We now provide background on the original FASTER design, includ-
ing its components and internal mechanisms, before discussing its
limitations in handling the above class of applications, motivating
the need for evolving the design.

3.1 Design Overview

FASTER [11] is a log-structured, latch-free key-value store that
targets point operations. As shown in Figure 2, it employs a hash
index that chains records stored in a log, which spans both memory
and disk (HybridLog). FASTER uses a lightweight epoch-based
protection framework to facilitate cooperation across threads. Due
to its log-oriented design, a garbage collection process is invoked
periodically to shrink (compact) the log by removing stale tuples.
This is performed using a scan-based compaction process that copies
live records from the beginning of the HybridLog to its tail. As long
as both the working record set and the index fit in memory, FASTER
achieves high performance. Below, we detail its components.

Hash Index. At its core, FASTER consists of a latch-free in-memory
hash table, which is divided into cacheline-sized buckets. Each
bucket entry contains a pointer to a record whose key hashes to
that bucket. Each record points to another record, forming a logical
linked list of records with common significant key hash bits (i.e.,
hash chain). Each bucket entry contains additional bits from the
associated records’ key hash, increasing hashing resolution and
further disambiguating what records the bucket entry points with-
out full key comparisons. A bucket occupies 8 bytes of in-memory
space. FASTER defines four user operations: Read, Upsert, RMW, and
Delete. Latch-free algorithms are used to add/remove entries in
the index and to add records at the hash chain tail.

Hybrid Log. Each record pointed to by the hash table is stored in
a log that spans disk and main memory, called HybridLog. Each
record consists of an 8 byte header, a key, and a value. This header,
among other information, stores a pointer to the previous address,
the log address of the previous record in the hash chain (linked list).
The log itself is divided into three contiguous regions: (1) mutable,
(2) read-only, and (3) stable regions. The mutable and the read-only
regions reside in-memory, while the stable one resides on disk.
Records in the mutable region can be atomically updated in-place.
Records in the read-only and stable regions are immutable, and use
read-copy-updates (RCU) to the tail, adding to the hash chain tail
via a compare-and-swap (CAS) op at the corresponding hash entry,
thus providing linearizability guarantees [4].

This log design allows write-hot records to be accessed and
updated very quickly, while scaling to many threads. As the tail
grows, older log pages need to be flushed to disk and ultimately
evicted from main memory. This is achieved in a latch-free manner
by tracking several increasing addresses, i.e., a BEGIN address that
tracks the first valid address in HybridLog, a TAIL that tracks the
tail of the HybridLog address space, etc.

Epoch Framework. FASTER uses an epoch-based framework [11],
which enables synchronization across threads in a lazy fashion,
without using fine-grained latches. Most of the time, threads per-
form operations independently (e.g., update a record). However,
some system-wide events (e.g., flushing log pages to disk) necessi-
tate thread synchronization, i.e., to avoid accessing invalid memory
regions or stale data. This is achieved using a global epoch counter,
and thread-local ones, where the latter are periodically synced to
the global counter. This mechanism allows actions to be executed
only after all threads have agreed to a common view of the world.
Log Compaction. FASTER employs a scan-based compaction pro-
cess to perform garbage collection. Here, the oldest disk-resident
log records are read from disk and all potentially live records are
stored in a temporary in-memory store. A full scan of the rest of
the log confirms which of these records are indeed live. These live
records are then inserted into the log tail. Finally, the BEGIN address
is moved forward, effectively truncating the log.

3.2 Challenges with Large Skewed Workloads

Single-Log Design Implications. The original FASTER design
uses a single log, which creates new challenges with large skewed
workloads. One such issue is caused by the vast difference in popu-
larity of compacted (cold) vs. in-memory (hot) records. In particular,
during garbage collection (i.e., log compaction), cold records located

4913

—— Throughput Compaction Process

o

3 1000 s P Hl

5% 750 ; N

S2 500

g ¥ 250

= 0 T T T T T T T T
0 50 100 150 200 250 300 350 400

Time (seconds)
Figure 3: FASTER performance over time for a larger-than-
memory RMW YCSB-F workload. Once log size budget is
reached, a log compaction process copies cold tuples to the
tail of the log. Yet, this results in hot tuples to be evicted to
disk (over-and-over), significantly degrading performance.

at the beginning of the log are copied to the log tail. This not only
increases tail contention with incoming user updates (leading to
performance degradation), but also causes hot records (stored in-
memory) to be flushed to disk, increasing write amplification. Notice
that having cold records occupy the in-memory log region reduces
the number of write-hot records that can be in-place updated in the
mutable region. Thus, when log compaction finishes, hot records
are appended to the tail of the log, further increasing the over-
all HybridLog size. This in turn triggers another log compaction
process and, as shown in Figure 3, can lead to a "death spiral" be-
havior, where the system is entirely preoccupied with background
compaction operations rather than serving user requests.

Inspired by LSM-tree based designs, F2 addresses these issues by
introducing a separate log tier that stores write-cold records, elimi-
nating log tail contention and "death spiral” behavior (Section 4). F2
also addresses key technical challenges to support efficient, latch-
free user operations (e.g., RMWs) in this tiered design (Section 5.3).

Inefficient Record Compaction Mechanism. As discussed in
Section 3.1, the original FASTER design employed a scan-based
record compaction process to identify live records and compact
them to its log tail. This scan-based approach has two drawbacks.
First, the original implementation was single-threaded, limiting the
maximum record compaction rate. Second, it requires (i) additional
memory resources (i.e., a temporary memory buffer) to store po-
tentially live records, and (ii) a full scan of the HybridLog to reason
about record liveness. This approach not only led to transient mem-
ory spikes, but also wasted memory and I/O bandwidth resources,
which could have been used instead to cache more hot records
in-memory and perform more user I/O operations, respectively.

F2 solves both problems by introducing a lookup-based com-
paction mechanism, based on our new Conditional-Insert primitive
(Section 5.1). This new compaction process is multi-threaded and
utilizes only minimal memory and disk bandwidth resources to
reason about record liveness (Section 5.2).

Large Indexing Overhead. FASTER’s hash index tracks all keys
in the store and incurs a fixed, per-key memory overhead of 8
bytes. Although this overhead is manageable for small datasets,
when dealing with billions of keys, this leads to a prohibitively
large memory footprint (e.g., 64GiB to index 8 billion records). One
might try to constrain the index size, e.g., by restricting the number
of buckets, yet, this creates too many hash collisions, making point
reads require multiple I/O ops to follow the hash chains on disk.

To address this limitation, F2 introduces a separate two-level
hash index that spans both memory and disk, and can index billions
of (cold) records with minimal memory footprint (Section 6).

SSD/HDD DRAM —
Record Log of //—§;
write-hot keys

Read Read Cache

% Stable

RO Mutable Hot-Log

Index

i

Cold-Log
Index

B Record Log of write-cold keys

Stable

------ > Hot-Cold Records Compaction ----=-> Cold-Cold Records Compaction

Figure 4: F2 Architecture

Suboptimal Handling of Read-Hot Records. In FASTER, write-
hot records are effectively in-place-updated in memory through the
HybridLog design. However, when read- and write-hot working
sets are non-overlapping, read-hot records may get flushed to disk
to make space for write-hot records and vice versa. This leads to
poor performance: reads incur I/O and writes incur tail growth.

To effectively handle both read- and write-hot working sets,
F2 introduces a dedicated in-memory read-cache that provides
immediate access to read-hot records (Section 7).

4 F2 OVERVIEW

F2 is a concurrent, lock-free, key-value store that can serve larger-
than-memory skewed workloads with (1) low memory footprint,
(2) saturation of the available NVMe SSD bandwidth, and (3) mini-
mal disk wear. F2 supports point Reads, Upserts, Deletes (using
tombstone markers), and atomic updates in the form of read-modify-
writes (RMWs). F2’s design also provides linearizable semantics.
Figure 4 depicts F2’s architecture. First, F2 incorporates a log-
structured record store that keeps write-hot keys (i.e., hot log),
alongside its respective hash index (i.e., hot-log index). Second, it
integrates a separate record log for storing write-cold keys (i.e., cold
log), alongside its respective hash index (i.e., cold-log index). Finally,
a read-cache lies between the hot-log index and the hot log, which
maintains a set of disk-resident read-hot records in a separate in-
memory store. F2 automatically places records on the appropriate
component, based on their observed read/write hotness.

4.1 Components Overview

Hot-Log Index. The hot-log index employs a lock-free hash table
design, similar to the one of the original FASTER, that is stored
in memory. Each bucket entry contains a pointer (i.e., address) to
a record, whose key hashes to this entry. However, this record
may now reside in either the hot log or read-cache. Each record
points to a (previous) record (if any) in the hot log, forming a hash
chain. Using this hash chain, F2 accesses records with matching
key, stored in hot log or in read-cache.

Hot Log. The goal of the hot log is to enable write-hot records
to be retrieved and updated promptly, even when many threads
are concurrently operating on the log. Therefore, the hot log is an
instance of FASTER’s HybridLog, which is coupled with the hot-log
index. The hot-log index, indexes only the hot-log (and read-cache)
records, requiring fewer memory resources. Although the organi-
zation of the hot-HybridLog is largely the same (e.g., insertions at
the tail of the log, in-place updates or RCU), we significantly alter
its compaction behavior (as we discuss in Section 5).

Insert

4914

HOT LOG

Update Update

Tail/RO Flush to Disk

Growth
Mutable C/‘ Read-Only Stable
Read Read
~Cold
/)

Update

Read-Cache Cold Log

Cold-Cold

Compaction Update

Figure 5: Lifecycle of a Record in F2

Cold-Log Index. The goal of the cold-log index is to reduce the
memory resources needed to index cold records. It is based upon a
two-level index design, and consists of a (small) in-memory structure
and a (large) on-disk one. The core idea is to group multiple hash
index entries together, to create hash chunks, and then index these
chunks in-memory, while storing the actual chunks on-disk (more
details in Section 6).

Cold Log. The addition of the cold log enables the physical sepa-
ration of write-hot and write-cold records. Cold-log organization
is similar to hot-log, with the exception that (almost) all records
now reside on disk. Accessing a cold-log record requires two I/O
ops: one for retrieving the hash chain from the cold-log index, and
one for reading the actual record from the log. Yet, the cold-log
integration eliminates the contention at the hot-log tail, fixing the
"death-spiral” behavior of the original FASTER design.

Read Cache. While write-hot records reside in the in-memory
part of the hot log, write-cold records do not. This leads to poor
performance for disk-resident read-hot records, as F2 has to perform
one (or more) I/O operations each time this record is requested.
The read-cache allows immediate access to read-hot records, even
if they are stored on disk (more in Section 7).

4.2 Lifecycle of a Record

Figure 5 depicts the lifecycle of a record in F2. The user first in-
serts a record into the store, by creating a new record in the hot
log tail. Initially, the record is created in the mutable region (in-
memory), and any subsequent updates are performed in-place. As
other records are appended to the log, our record eventually moves
to the read-only region. If a user issues an update for this key, we
perform an RCU to append the updated record to the hot log tail.
As long as our record is in-memory (read-only or mutable hot-log
region), read-cache is not used.

When our record has not been updated for a while, it is eventually
flushed to disk (i.e., stable region), as the in-memory regions are
populated with newer records. Here, a user update will result in
RCU to the hot-log mutable region, while a user read will copy the
record to the in-memory read-cache (after being fetched from disk).
This allows future user reads to be served directly from read-cache,
avoiding any extra I/O operations. As long as the user issues reads
for our record, it remains inside the read cache (i.e., write-cold, read-
hot record). Yet, if no reads occur for some time, our read-cached
record is ultimately evicted.

Assuming no further updates, our record ultimately ends up in
the back (i.e., BEGIN) of the hot log. As other records are being

appended, the hot log grows larger, which necessitates moving the
write-cold records from the hot-cold to the cold-log. This is achieved
through a background hot-cold compaction process (green arrow in
Figure 4). During this process, live records from the beginning of
the hot log (i.e., compacted region) are copied to the tail of the cold
log. Once all live records have been copied, the hot log is truncated,
invalidating all records in the compacted region. Note that during
hot-cold compaction, the hot log tail remains intact, and is able to
fully accommodate other incoming user requests.

Once the hot-cold compaction finishes, our record now resides
in the cold log. In fact, because the hot set for a skewed workload
is relatively small, most records end up in the cold-log. The cold
log resides (almost) entirely on disk, as keeping those (write-cold,
read-cold) records in-memory does not bring any benefits. At this
point, a user update request creates a new record to the mutable
region of the hot log, while a read request copies our disk-resident
record into the read cache (causing it to become read-hot write-cold).
Assuming that no such requests take place, our record remains cold,
and eventually arrives at the back (i.e., BEGIN) of the cold-log.

As the cold log is populated with more records, older non-live
records need to be garbage-collected. To do so, we employ another
background process, i.e., cold-cold compaction. This process copies
live cold log-resident records from the back (i.e., BEGIN) of the
cold log to its tail (red arrow in Figure 4). Once all live records
have been copied, we truncate the cold log, completely removing
non-live records from F2. Notice how both hot-cold and cold-cold
compactions copy records to the cold-log tail, avoiding any tail
contention in the hot-log.

4.3 Implementation and Usage

F2 is exposed as an embedded library implemented as part of
the FASTER C++ code-base [26], with around 11k SLOC. As in
the original FASTER implementation, we leverage template meta-
programming to avoid runtime overheads, and employ a large set
of tests to check for correctness under concurrent execution.

F2’s API for performing user operations is identical to the FASTER
one, enabling existing users to seamlessly transition to F2. Given
its more flexible design, F2 provides additional options for users to
configuration, to meet the application (and environment) demands.
Listing 1 describes how one could configure and initialize F2.

While optimally tuning the parameters of any KV store is a chal-
lenging task [28], we provide here some guidelines for configuring
F2. First, to avoid multiple I/O ops when retrieving disk-resident
records, we recommend sizing the hot- (cold-) log indexes based
on the expected number of unique keys for each log. For example,
indexing 1B records, with 125M being hot, requires at least 1GiB
(16M buckets x 64B each) for the hot-log index, and 256MiB (i.e.,
index 28M hash chunks of 256B each using 3.5M buckets) for the
cold-log index. Second, for read-heavy workloads, we recommend
trading-off in-memory hot-log space for read-cache one (and vice
versa). For instance, in Section 8.2 we show that properly setting
(i.e., increasing) the read-cache size can improve F2’s throughput
by 19-27%. Finally, the hot/cold log in-memory organization can
be configured based on suggestions from the original FASTER pa-
per [11] (e.g., set log mutable region to 90% of its in-memory size).

The next three sections cover details of each major component
in F2, starting with the tiered record log in Section 5.

4915

// Define F2Kv instance

using HotIndex = MemHashIndex<Disk>;

using ColdIndex = ColdIndex<Disk>

using F2KvInst = F2Kv<Key, Value, Disk, HotIndex, ColdIndex>;

// Configuration

ReadCacheConfig rc_config { <mem_hlog_sz> }

F2KvInst: :HotIndexConfig hi_config{ <hash_table_sz> };
F2KvInst::ColdIndexConfig ci_config{ <hash_table_sz>, <mem_hlog_sz>};

// Initialize F2Kv

F2KvInst store {
hi_config, <hot_log_mem_sz>, <hot_log_disk_fp>,
ci_config, <cold_log_mem_sz>, <cold_log_disk_fp>,
rc_config };

Listing 1: F2 C++ Initialization Code Example

5 TIERED RECORD LOGS

In F2’s tiered design, live records undergo continuous compactions
through hot-cold and cold-cold compaction processes. With hot
(and cold) logs potentially managing millions (billion) keys, per-
forming log compaction in a CPU-optimized, memory-efficient
manner is of utmost importance.

To this end, we introduce a new primitive, Conditional-Insert (CI),
that is used as a building block for F2’s lookup-based compaction
algorithm and user RMW. Then, we describe how threads perform
record compaction and user operations, emphasizing on correctness
issues under concurrent execution. Finally, we highlight such an
issue that arises when Reads are performed concurrently with cold-
cold compaction, and explain how it is addressed.

5.1 Conditional-Insert Primitive

Our goal is to develop a primitive that can append a record to a log,
only if no other record with a matching key has been appended in
the meantime. In other words, we want to insert this key conditional
on no newer insert happening during the process. More formally,
given a record R, stored in a record log (i.e., source log) and a START
address in the log, CI appends the record to the tail of target record
log (same or different to the source log), only if there exist no
record(s) with a matching key in the (START, TAIL] address range
of the source log. If a record exists in this range, the operation
aborts (i.e., becomes a no-op). Figure 6 depicts these two possible
outcomes (i.e., success, abort). For ease of exposition, we initially
make two assumptions: (1) the source log is the same as the target
log, and (2) the START address matches the log address of R we wish
to append to log tail.

Conditional-Insert is implemented as follows. First, we perform a
lookup at the index of the source log, to find the entry corresponding
to R’s key, and we store a copy of that entry in the operation
context. The index entry contains the log address of the most-
recent record (of this hash chain) in the log. Starting from this
address, we follow this hash chain backwards, possibly issuing read
I/O request(s). If at any point during this backwards search, we
encounter a record that matches our key, we promptly abort (i.e.,
non-live record). Otherwise, we arrive either at the end of the hash
chain or at some address outside the search range (i.e., address <
START), meaning we can now copy R to the target log tail.

Appending R to the log tail must now ensure that no other newer
records with the same key were inserted in the meantime (e.g., by a
concurrent user or compaction operations). Otherwise, it is possible

Conditionally Insert
record R with key K

No new records
with key K in
[START TAIL]

K

BEGIN START addr TAIL

One (or more) new
records with key K
in [START, TAIL]

BEGIN | g7arT TALL

address

K

BEGIN START addr TAIL

Figure 6: Conditional-Insert op and possible outcomes.

that we accidentally overwrite a newer version with an older one
(i.e., lost update anomaly). Hence, we leverage the previously saved
index entry. In particular, we first write the record to the log, and
then perform an index update (using an atomic CAS operation),
expecting that the index entry remained unchanged. If CAS fails,
then newer records were inserted in this hash chain. In this case, we
invalidate our written log record, and restart our search on the hash
chain, but only check the newly-introduced records on the hash
chain. As before, if we encounter a (newer) record with a matching
key, we abort; otherwise we try to update the index entry again.
We repeat the above process, until either succeeding at appending
the record (i.e., record is live), or aborting altogether. This ensures
that in either case, no newer record(s) have been overwritten.

5.2 Lookup-based Compaction

We now describe how we can leverage the CI primitive to make
compactions faster and more memory-efficient. Given a source log
and a (potentially different) target log, lookup-based compaction
process consists of the following phases:

(D Copying phase: Starting from the beginning of the source
log (oldest records), we sequentially scan a fixed [BEGIN, UNTIL]
range. This range represents a specific percentage of the entire log
(e.g., 10%). For each record scanned, we issue a Conditional-Insert
operation. If the record is live, then a copy is atomically created at
the tail of the target log. Note that during this phase, copies of the
same live records may exist in both logs (for hot-cold compaction)
or in both ends of the cold log (for cold-cold compaction).

(2) Truncation phase: Once we process all keys in this source
log region (i.e., all live records have been copied to target log), we
truncate the source log, by atomically setting the BEGIN address to
UNTIL. Then, all hash index entries that point to invalid addresses
(i.e., address < BEGIN), are invalidated using CAS operations.

Cold-Cold Compaction. Our initial assumptions with CI were:
(1) the source log is the same as the target log, and (2) the START
address is the log address of the record we wish to append to the
log tail. Notice how with these assumptions, CI can safely compact
a live cold-log record to the cold-log tail, even when newer records
are being appended to the same tail (e.g., hot-cold compaction).

Hot-Cold Compaction. Here we consider the case where the
source log (i.e., hot log) differs from the target log (i.e., cold log),
relaxing our first assumption. As before, we follow the hash chain
backwards for any key matches, ultimately exploring the entire hot
log address range. We are now ready to copy our record to the cold
log tail. Since the records in the cold log are older by-design, they
naturally satisfy our invariant and we can just issue an Upsert to
cold log. The only implication here is that we might Upsert non-
live keys (e.g., if newer records entered the hot log in the meantime).
While these superfluous writes might lead to slightly more disk
operations, correctness is still ensured. We late relax our second
assumption, when discussing user RMWs (Section 5.3).

4916

Concurrent Conditional-Insert. Our key invariant is satisfied,
even in the presence of concurrent CI ops. The only concern here
is a possible record re-ordering at the target log (as a result of
non-sequential record processing), that might lead to overwriting
of newer records. First, we note that when compaction threads
operate on records with different keys, records re-ordering poses
no correctness issues (i.e., different hash chains). Now consider a
scenario where two threads, T; and Ty, operate on two different
records with the same key, R; and Ry. We know that both records
are part of the same hash chain, and thus one record, e.g., Ry, is
located in front (i.e., higher log address) of the other, e.g., Ry, in the
hash chain. This suggests that R; is live, while R; is not. When the
two threads call CI, only T;’s request succeeds. This is because by
following the hash chain backwards, T inevitably encounters Ry
(i.e., same key) and thus aborts. Notice how T; does not encounter
Ry at all, since it is located before R; in the log. Generalizing this
to many threads operating on multiple records with the same key,
it follows that exactly one record for each key is compacted.

Multi-threaded Compaction. To achieve shorter compaction
times, multiple threads can participate in the compaction process,
issuing concurrent CI ops on different records. Participating threads
coordinate using the epoch protection framework (overhead is
negligible), and correctness under concurrent CI ops is always
ensured (see above discussion). During copying phase, we employ
an in-memory circular buffer that is populated with several (32MiB)
log pages; initially the first pages in the [START, END] range. Records
residing inside the log pages are distributed to compaction threads
using fetch-and-add atomic operations, while the next log page(s)
(if any) are prefetched from the disk to avoid any processing stalls.

Summary. Unlike FASTER’s scan-based compaction, F2’s lookup-
based compaction (i) requires minimal memory resources (three log
pages, or 96MiB), (ii) is multi-threaded, enabling much faster com-
paction times (i.e., 5.2X as shown in Section 8.2), and (iii) performs
only the absolute necessary disk operations to determine record
liveness. Hence, F2 can even compact billion-key logs, which would
otherwise be infeasible with the original FASTER.

5.3 User Operations

Upsert and Delete. We implement Upserts/Deletes as follows.
First, we perform a lookup in hot-log index, then append the new
record to hot log tail, and finally CAS the index entry to point to
the our newly-appended record. If CAS fails, we mark the record as
invalid and retry. In Delete, a tombstone record is always inserted,
even when the entry for the key does not exist in the hot-log index,
as (non-tombstone) valid records may still exist in the cold log.
Read. We first issue a Read op in the hot log (i.e., most recent
records). If a record is found there, we return it to the user. If a
tombstone record is found, we return NOT_FOUND. If no record is
found in the hot log, we then issue a Read to the cold log. As before,
we either return a valid record, or NOT_FOUND. The above algorithm
provides correct results in most cases. Yet, under concurrent cold-
cold compaction, a Read might return NOT_FOUND even if a record
exists. We discuss this anomaly in Section 5.4. We later explain how
Reads are modified when using a read-cache (Section 7).
Read-Modify-Write. A user RMW operation atomically updates
the value of a key based on user-provided logic, or inserts a record

Algorithm 1: User Read-Modify-Write (RMW) in F2

1 function Status Rmw(key):

2 start_addr = hot_log.index.FindEntry (key).address;

// Try RMW record in hot log

rmw_status = hot_log.Rmw(key, create_if not_exists=false);
if rmw_status # Status.NOT_FOUND then

5 L return rmw_status // Record updated!

// No record in hot log - try Read from cold log
read_status = cold_log.Read (key, record);
if read_status == Status.OK then

L new_value = UpdateValue (key, input, record.value);
else new_value = InitialValue(key, input) ;
// Check if stored start log address is valid
if start_addr < hot_log.begin_address then

| goto RETRY;
// Append updated value; abort if new records
ci_status = hot_log.ConditionalInsert(key, new_value, start_addr);
if ci_status == Status.OK then

| return Status.OK;

10

12
13

RETRY:
return Rmw(key);

15
16

with an initial value if the key does not exist. The first step in RMW
is to locate the most-recent record with a matching key. In F2, this
record may reside in either hot or cold log.

Algorithm 1 details how user RMWs are performed. First, we issue
a RMW request to the hot log (L3). Since write-hot records are usually
stored in the hot log, this makes the common case fast, as we can
quickly return upon updating (possibly in-place) the record (L5).
If no record matching our key exists in hot log, we refrain from
creating a new record. Instead, we issue a Read request to the cold
log (L6), as a record may exist there. In this case, we update its value
(L8) using the user-provided logic (i.e., UpdateValue); otherwise
(L9) we use the initial value (i.e., InitialValue). Finally, we try to
append the updated record to the hot log tail (L12).

Concurrent to our RMW operation, newer records with the same
key might have been appended by the user, causing a change in the
hash chain. To ensure that we always use the most-recent record
for our key, we leverage the CI primitive we presented earlier.
More specifically, at the very start of the user RMW (L2) we fetch
and store the address where the hash chain begins in the log (i.e.,
start_addr). We later use that address to determine whether any
new records has been inserted in the (start_addr,TAIL] range
(L12). If this is the case, we abort the user RMW operation and retry
again. Note that the hot log RMW request (L3) will now most likely
succeed, since a record now exists in the hot log (assuming small
chance of hash collisions). Otherwise, CI successfully inserts the
updated record to the tail of hot log. In the rare case where the range
(start_addr,TAIL] is invalid (L10), caused by log truncation (e.g.,
due to concurrent hot-cold compaction), we retry from the start.

5.4 False-Absence Anomaly

A cold log Read traverses the entire log, by following the hash
chain. However, it is possible to fail locating a record that is indeed
present in the log, incorrectly returning NOT_FOUND.

Consider the scenario depicted in Figure 7, where a Read op-
eration is issued in the cold log (after a failed search in the hot
log) for a given key, Kj. At the same time a concurrent cold-cold
compaction is being executed. Assume that only a single record

4917

[T1
[Find log addr for K,
6 Issue Read for R,

T2

@ Copy R; o tail (R,)
T T, = NOT_FOUND
@ Truncate Cold Log «— 12 — 12

TN i :

\x""‘ el : \
Key mismaich R, | o [R]] © I
Return NOT_FOUND| N — 1)

(K, # K,

Figure 7: False-Absence Anomaly Scenario

Ry for key Kj exists in the cold log, and it is located in at the very
beginning of the cold log. The following events transpire in-order.
First, thread T; issues a Read, and thus performs a lookup in the
cold-log index to find the log address of the first record in the hash
chain (i.e., R2). T; then issues a read I/O request to fetch Ry from
disk. Unbeknownst to Tj at the time, Ry has a different key Kz # Kj,
i.e., due to a hash collision. While R; is being read from disk, thread
T, performing the compaction, manages to copy all live records
to the tail of the cold log. Thus, a copy of Ry, R} has been written
to the tail. T, then proceeds and truncates the log, invalidating R;.
Then, Ry is finally fetched from disk. T; only now realizes that Ry’s
key K> # Ki. Now, it follows the hash chain backwards, only to find
that the previous address, originally pointing to Rj, is now invalid
(due to log truncation). Thus, T;’s Read op returns NOT_FOUND, as it
deduces that no record with key Kj exists in either hot or cold log.
However, this is clearly incorrect, as R; exists in the cold log tail.

This anomaly occurs because T; is not aware of the concurrent
cold-cold compaction. To address this, one might try to employ
some locking scheme (e.g., where cold log truncation is done only
when no cold-log Reads are active), or temporarily store every
live record in compacted region into a separate in-memory store.
However, the former introduces starvation issues (e.g., for constant
stream of cold-log requests), while the latter introduces additional
memory overhead. Instead, we fix this issue by employing a shared
atomic counter that tracks the number of completed log truncations.
On every cold-log Read request, we now first fetch and store (in the
operation context) the number of log truncations. We then follow
the respective hash chain backwards, as before. If we ultimately find
no record with a matching key, we then check if a log truncation
took place, i.e., by comparing the current counter value with the
one we stored previously. If a log truncation indeed occurred, we
traverse just the newly-introduced part of the hash chain (if any) to
check whether a record was indeed compacted. While this scheme
introduces some extra work to few cold-log Read ops to ensure
correctness, log truncations are infrequent, thus the common case
remains unaffected.

6 INDEXING COLD RECORDS

When F2 handles larger-than-memory skewed workloads, most
records end up in the cold log. Yet, indexing this many records
using solely in-memory structures incurs large memory overheads.
For instance, indexing a billion keys using a design similar to the
hot-log index requires at least 8GiB. Other systems require even
more memory, as they store extra metadata (e.g., 19GiB for KVell).

To this end, we introduce a two-level hash index design, as shown
in Figure 8. The core idea is to perform in-memory indexing at a
coarse-grained level. Specifically, we first group multiple hash index
entries together, to create hash chunks. Each hash chunk holds a
fixed power-of-two number of entries (e.g., 32). Then, we use an
in-memory hash table to index these chunks (1% level), while the

actual chunks are stored in a log-structure disk store (2" level). To
facilitate concurrent updates on the index chunks, we leverage a
HybridLog instance, configured with a small in-memory region.

This cold-log index design comes with three main benefits. (1)
By reusing existing lock-free components (i.e., HybridLog), we
can easily ensure multi-threaded correctness. (2) The hash chunk
size allows us to control the in-memory overhead of the index:
increasing (decreasing) hash chunk size results in fewer (more)
hash chunks required to index the same number of keys, leading to
a smaller (larger) in-memory hash table. Finally, (3) by adopting a
log-structure design to store hash chunks, we can now use small
chunks (i.e., less than 4KiB disk block size), leading to low write
amplification, as a single disk block write updates many chunks.
We note that our cold-log index design could be replaced by any
other concurrent memory-efficient index structure as well.

Finding an Entry. Finding a cold-log hash entry consists of (i)
reading the hash chunk from the hash chunk log, and (ii) extracting
the respective hash entry. Given a key, we first compute its hash
value, h, and then identify the respective hash chunk using a subset
of h’s bits. Then, we issue a Read in the hash chunk log. Once the
chunk is read, we identify the hash entry for our key (different
subset of h’s bits). Finally, we issue a Read in the cold-log, as this
hash entry now points to a cold-log hash chain.

Modifying an Entry. Modifying a cold-log hash entry consists of
(i) reading the hash chunk from the hash chunk log, (ii) applying
our update to the specific hash entry, and (iii) writing the entire
hash chunk back to the hash chunk log. Notice how this process
naturally fits the functionality of a RMW. Thus, given a record key,
we first identify the respective hash chunk (from the key hash), and
then issue an atomic RMW to the hash chunk log; if no hash chunk
exists, we create an empty one (i.e., all entries are invalid).

Configuration. We configure the index so that we use less than 1B
of memory per cold key. We set the size of each hash chunk to 256B,
resulting in 32 hash index entries being stored in a single chunk.
Smaller chunk sizes (e.g. 64B) trade off less write amplification for a
larger index memory footprint, and vice-versa. We set the number
of chunks based on the expected number of unique cold keys, e.g.,
for 250M keys, we can use 250M/32 ~ 8M chunks (i.e., one hash
entry per key). Indexing 8M chunks in-memory requires just 64MiB.

7 SERVING ON-DISK READ-HOT RECORDS

F2’s two-tier design physically separates write-hot records from
write-cold ones. However, this leads to poor performance when
serving disk-resident read-hot records, as F2 would have to per-
form I/O each time such records are requested. To address this, we
introduce a dedicated, in-memory read cache.

We tightly integrate the read-cache with the hot-log index, by
extending the hot-log index chains to span both the read-cache
and the hot-log (Figure 4). Specifically, a hot-log index entry may
now (optionally) point directly to a record in the read-cache, be-
fore continuing to point one (or more) hot-log records. The entry
may also point to the hot-log directly, bypassing the read-cache
altogether. Read-cache keeps replicas of records originally located
in the hot or cold log; the original records are never removed from
their position in the log. Records already residing in-memory (e.g.,
hot-log in-memory region) are never inserted in the read-cache.

4918

Two-Level Index
Read(K) SSD/HDD DRAM
Ret(V) Hash ChunkLog ~ ----"" r G
A
2! Hash Chunk
BEGIN TAIL Index
R =
Cold-log “, P &
; = ||
2
£
TAIL £

Figure 8: Cold-log Index architecture, and Read op lifecycle.

Read-cache is implemented as a separate in-memory Hybrid-
Log, and thus contains only a mutable and a read-only (RO) region.
Records are inserted at the log tail (i.e., mutable region), and even-
tually evicted at the head (i.e., RO region). If a record residing in the
RO region is requested again by the user, we update its presence in
the read-cache, by copying it to the log tail. This gives our record
a second-chance (similar to Second-Change FIFO cache [46]), and
further ensures that the most read-hot records are never evicted.

The key invariant that the read-cache should satisfy is that for a
given key, it should keep its most-recent record. We next describe
how user operations are modified to ensure this.

Upsert, RMW, Delete. When inserting/updating a record for a
given key to F2’s hot log, we need to invalidate the (older) read
cache-resident entry (if any). Since the hot-log and read-cache share
the same hash chains, we can do so by traversing the record hash
chain, invalidating any potential records located in the read cache
(by setting a bit in the record header), and then proceed with the
request as before (Section 5.3).

Reads Given a key, we first identify its respective hash chain (by
consulting the hot-log index), and then follow the chain backwards
as before. If we encounter a valid record with a matching key in
read-cache (i.e., most-recent), we promptly return it to the user.
Otherwise, we continue the search in the hot (and possibly in the
cold log). If we find a disk-resident record in either log, we first
try to insert it to the read-cache; this might fail if another thread
concurrently updates the same key. Ultimately, we either return a
valid record to the user or NOT_FOUND.

Records Eviction When the read-cache becomes full, records need
to be evicted to make space for other (read-hotter) records. The
only challenge is to ensure that both during, and after the eviction
process, the system always remains in a consistent state. Thus,
the records eviction process involves re-arranging hash chains
that point to soon-to-be-evicted read-cache records, in a lock-free
manner, without impeding incoming user ops.

Eviction is performed on a per-page granularity. For each record
in the page, we first determine if it is valid; if it is, we skip the record.
Otherwise, it means that the respective hash index entry points to
this soon-to-be-evicted record, and thus needs to be modified to
point to the hot log instead. To do so, we retrieve the next address
in the hash chain, which always points to the hot log (i.e., at most
one record per hash chain resides in read cache). Then, we CAS this
address to the hash bucket entry; if we succeed, we move to the next
record. Otherwise, some other thread altered the hash chain in the
meantime, e.g., by inserting a new record in the chain. Therefore,
our record has been invalidated, and we again move to the next
record. Note that multiple threads can participate in this process
safely, as no two evicted records share the same hash chain.

—— Scan(1T) =—— Lookup(1T) =—— Lookup(4T) Lookup(8T)
@ 1250 i i |

Q ! | 1

< 1000 : v '

= 1 A 1 1

& 750 i |

© 500 ! i

o« ! i

~ 2504 - :

2 ‘i | | 1.8‘>< faster (‘1T) :‘5‘85

0 10 20 30 40 50 60

Time (seconds)

Figure 9: FASTER’s scan-based vs F2’s lookup-based single-
log compaction disk read throughput, when compacting 2GiB
(out of 30GiB). For same target disk BW, lookup-based fin-
ishes 5.2x faster and uses 25X less memory (120MiB vs 3GiB).

8 EVALUATION

F2 was recently merged into the FASTER code-base, and we do not
yet have production workloads to test it on. However, we find that
we can emulate the characteristics of larger-than-memory skewed
workloads with available YCSB and MixGraph benchmarks. In this
section, we evaluate F2 along multiple dimensions and and compare
against state-of-the-art KV stores. In particular, we show that:

e F2’s lookup-based compaction is 5.2x faster than FASTER’s scan-
based one and uses 25X less memory. F2’s read-cache improves
throughput by up to 1.27x for read-heavy workloads (Section 8.2).
F2 provides meaningful speedups (2-11.9%) across YCSB and
real-world MixGraph workloads, with on average 1.4-2.9% lower
write amplification than LSM stores (Section 8.3).

F2 remains robust to varying degrees of key access skewness,
outperforming the best SOTA stores by on average 2.6x (1.8%)
for high (low) skewness levels (Section 8.4).

F2 outperforms the best systems on small memory budgets (2.5-
10% of DB size) by 2.7X on average, while matching the best
system for larger (> 20% of DB size) budgets (Section 8.5).

8.1 Experimental Setup

System. We conduct all experiments on CloudLab [25], using a
sm110p node that is equipped with a 16-core Intel Xeon Silver 4314
CPU, 128GiB of RAM, and four Samsung PM9A3 NVMe SSD (PCle
v4.0) devices, running Linux kernel v5.4. For our experiments, we
use all four NVMe disks in RAID-0 formation (using mdadm) with
ext4 filesystem and disk block size of 4KiB.

YCSB. We use YCSB [17] workloads with 250 million keys (8B keys,
100B values) and run YCSB-A (50% reads, 50% updates), YCSB-B (95%
reads, 5% updates), YCSB-C, (100% reads), YCSB-F, (50% reads, 50%
RMWs), YCSB-D read-latest workload (95% reads, 5% inserts), and
a custom YCSB-W (5% reads, 95% updates). We model the skewness
of real-world workloads with a Zipf distribution, using the YCSB
default 6 = 0.99 or equivalently @ = 1/(1 — 0) = 100, and other
skewness factors (« € [3,1000]). With the default YCSB skewness
factor (0 = 0.99 / & = 100), 90% of accesses go to 18% of records.
MixGraph. We employ two MixGraph (MG) benchmarks with
250M keys, i.e., All-Dist (AD) and Prefix-Dist (PD), which were de-
veloped to emulate the real-world workloads observed in Meta’s pro-
duction services [9]. They use 48B keys with variable-sized values,
and consist of 83% reads, 14% writes (and 3% seeks, which we skip).
All-Dist clusters hot keys close together in the key-space, while

4919

Prefix-Dist further partitions the key-space into smaller hot/cold
key-ranges and issues more requests to hot ranges.

Measurements & Resources. For each experiment, we load the

dataset into the system (e.g., 30GiB), warm it up with 25M ops, and

then run each workload for 300M ops measuring system throughput.
We report average throughput in thousands of requests per second.
Unless otherwise noted, we set the available memory to 10% of the

dataset set, i.e., 3GiB for YCSB 250M key-value dataset, and 4GiB for

MixGraph one. We also manually pin user threads to hardware cores.
The above is done via the exposed user configuration parameters

of each system and further enforced via Linux cgroup [14]. This

setup is similar to prior works [9, 16, 49].

Baseline Systems We compare F2 against several state-of-the-art

systems including, SplinterDB [15, 16] (commit 1939a12), RocksDB

v8.11.4 [9], FASTER [11], Kvell [31] (commit af10b7a), and LeanStore
[30] (commit 26d4a46, io branch). We configure all systems to use

Direct I/O disk ops, and disable any persistent layer (e.g., write-
ahead logging), compression, and checksums (if supported).

For all baselines, we set their memory-related parameters as
recommended by their documentations (for the given memory
budget), and apply all available point operation optimizations. For
RocksDB, we enable Bloom Filters (with 10 bits) and use data block
hash index [29, 44], using the OptimizeForPointLookup() option.
SplinterDB employs quotient filters, which we enable.

We configure FASTER with fixed 1GiB hash index (8 tag bits) and
1.75GiB HybridLog in-memory region (90% mutable like in [11]).
For most experiments, we replace FASTER’s original scan-based
compaction with F2’s lookup-based one, to avoid exceeding the
memory budget during compaction process.

F2 Configuration. Unless otherwise noted, we configure F2 as per
our guidelines (see Section 4.3). The mutable region of the hot log
is set to 90% of the log in-memory region. We use 512MiB memory
budget (4M hash buckets) for the hot-log index and assign 512MiB
to read-cache. We only use 64MiB for the in-memory region of the
cold-log and configure the cold-log index to use 256B hash chunks
that are indexed in-memory using another 64MiB. The remaining
budget (~ 1.75GiB) is mostly used for the in-memory region of the
hot log. To trigger both hot-cold and cold-cold compactions, we set
the disk budget of the hot (cold) record log to 125% of database size:
5GiB (35GiB) for YCSB and 7.5GiB (42.5GiB) for MixGraph. Note
that we use the same F2 configuration for all workloads to perform
a fair comparison against the baselines.

8.2 Comparing F2 with the Original FASTER

Lookup- vs Scan-based Compaction. We compare F2’s lookup-
based compaction with our original scan-based compaction, when
compacting 2GiB worth of records from a single log (to its tail).
As shown in Figure 9, lookup-based compaction can lead to faster
compaction times, i.e., 1.8X when using a single thread, or 5.2x
when using the same disk bandwidth (with 4 threads). More im-
portantly, compactions consume 25X less memory: we measure
the peak memory utilization during lookup-based compaction at
120MiB, compared to 3GiB for scan-based compaction. This is be-
cause the lookup-based approach only stores a fixed amount of data
in-memory (i.e., several log pages), and not a growing temporary
memory buffer of live records (as the scan-based approach does).

o 5000 | F2 E== LeanStore
b [=88 FASTER RocksDB
@ B KVell B SplinterDB
4000

Z

< 3000

=

a

S2000-#

g

3 1000+

e

[0-

C
Figure 10: Throughput of F2 and baselines on all workloads.

—l-F2 ~@-FASTER ——Kvell —¥—LeanStore —@—RocksDB —€p—SplinterDB
YCSB-B

N N

(=3 w

o o

o o
1 |

1500

1000+

w
o
o

Throughput (Kregs/sec)

T T T ;q \7 ?7 \1
4 6 8 10121416
Number of Threads

10
T 7o T

T
0121416

o

4681
Number of Threads
Figure 11: Thread scaling of F2 and baselines systems for
Zipfian YCSB-A (left) and YCSB-B (right).

Impact of Read-Cache. We now evaluate the impact of F2’s read-
cache in system throughput. We observe that compared to the
default 512MiB read-cache, F2 can deliver up to 19% (27%) higher
throughput for read-heavy YCSB-B (YCSB-C), if read-cache is con-
figured properly. Moreover, for the read-only YCSB-C, we see that
even a small cache (of 256MiB) can provide almost a 8.3x speedup
over not using one. Interestingly, for read-cache sizes of 1.5GiB (or
more), an (increasingly larger) number of cold-resident read-hot
records can now be stored in-memory. This occurs because the
read-cache is now able to keep in-memory an (increasingly larger)
subset of read-hot records that actually reside in the cold log.

8.3 Comparison to Baselines

System Throughput. We now evaluate F2 performance compared
to the baseline systems, when using all 16 CPU cores and with
the available memory as 10% of the workload dataset (i.e., 3GiB).
Figure 10 shows system throughput (Kops/sec) for YCSB and Mix-
Graph workloads. F2 outperforms FASTER (2.1x), LeanStore (2X),
KVell (11.9%), SplinterDB (4.6X), and RocksDB (11.8x) on aver-
age. For update-heavy YCSB-A, F2 speedups stem from its tiered
log-structured design, which enables fast ingestion speeds, while
keeping the most-frequently accessed keys in the in-memory part
of hot-log. For read-heavy MixGraph (YCSB-B, YCSB-C), F2 is 1.5-
4.8% faster than FASTER and SplinterDB, while matching LeanStore
for YCSB (its driver does not support MixGraph), mostly due to its
read-cache and smaller hash chains (i.e., less read I/O).

KVell’s poor performance is attributed to its large in-memory
index, parts of which are continuously being swapped out to disk.
LeanStore’s page-oriented buffer pool cannot keep the hot records
in-memory, as these are not always clustered together in the same
page; however, it saturates the I/O bandwidth, achieving good per-
formance. FASTER’s "death-spiral" effect is observed on update-
intensive YCSB-A/F/W workloads: i.e., continuous compaction of
write-cold records to log tail, leading to the eviction of hot ones.

4920

Table 1: Average user request latency (us) for F2 and baselines.

Workload | FASTER LeanStore | RocksDB SplinterDB | F2
b YCSB-A | 415 254.3 53.0 42.1 41.7
3| YCSB-B 47.2 122.0 50.7 42.1 453
®lycsBw| 409 311.8 63.1 58.8 39.2
9[YCSB-A 4.2 262.8 10.3 3.9 3.4
£ | YCSB-B 4.8 128.8 6.7 3.9 3.9
= YCSB-W| 4.1 324.9 17.3 3.5 3.3

Table 2: Disk read (RA) and write (WA) amplification for F2
and baselines on YCSB-A, YCSB-B, YCSB-W, and MG-PD.

Workload |FASTER KVell LeanStore [RocksDB SplinterDB| F2
YCSB-A 7.23 91.93 66.87 2147 17.09 6.41
é YCSB-B 5.03 48.71 35.22 16.51 15.75 5.5
YCSB-W 38.6 95.32 72.23 109.12 52.97 53.68
MG-PD 1.91 33.72 - 5.23 4.61 1.84
< YCSB-A 2.62 31.17 34.47 5.28 2.18 1.23
=z YCSB-B 1.21 33.79 38.73 2.64 2.52 1.77
YCSB-W 1.75 31.48 32.87 5.81 1.85 1.48
MG-PD 2.26 32.01 - 2.52 2.38 2.43

Overall, F2 provides meaningful speedups (2-11.9%) across many
YCSB and real-world MixGraph workloads.

Latency. We now evaluate F2 request latency compared to base-
lines. We use a single thread to avoid any potential additional disk
controller delays caused by larger I/O queue depth. Table 2 lists the
average latency (in microseconds) for three YCSB workloads. We
observe that F2’s average read/write request latency is on par with
the best baselines, FASTER and SplinterDB, while achieving 1.4x
(3.5%) lower read (write) latency compared to RocksDB.

I/0 Amplification. Table 1 lists disk read and write amplification
for several as measured by proc/io. We observe that F2 reads 2.5-
2.9% less bytes from disk compared to SplinterDB for read-intensive
YCSB-B and MG-PD, due to the in-memory region of F2’s hot log
and its read-cache that provide immediate access to hot records. For
update-intensive YCSB-A/W, we see that F2 writes 1.3-1.7x fewer
bytes to disk, compared to the best-performing system, SplinterDB.
This is attributed to the in-place update region of F2’s hot log, which
avoids writing stale values to disk for write-hot keys, as well as
its log-structured design, which aggregates multiple records (or
hash chunks), before writing them to disk in larger (4KiB) blocks.
Note that even with F2’s cold-log index writing hash chunks to
disk, F2 writes a comparable number of bytes to disk compared to
FASTER, and is more disk-friendly compared to LSM-based systems.
Unsurprisingly, page-oriented designs, i.e., LeanStore, KVell, incur
high write amplification (i.e., > 30X for 8B key, 100B value records).

Overall, F2 achieves minimal disk wear, i.e., 1.3-3.9% lower write
amplification than LSM-based stores, on average.

Thread Scaling. We now evaluate system throughput by varying
the number of threads. Figure 11 shows throughput for YCSB-A
and YCSB-B. For YCSB-A, we observe that F2 scales linearly from
1 to 6 threads, but between 10-12 threads the scaling flattens out.
LeanStore manages to saturate the disk bandwidth with 10 threads;
adding more threads do not result in better performance due to
inefficient record caching. Both RocksDB and SplinterDB show
good scaling, with the latter showing superior ingestion behavior,
yet they cannot saturate disk bandwidth. Finally, for YCSB-B, F2,
LeanStore and FASTER achieve good thread scaling, and saturate
85-90% of the disk bandwidth with 16 threads.

§ § 3000+
@ @ 2000
g g
~4 1000
5 5 1
i b i
a 1 a] Gl Ci
£ 500 Vs A B - £ 500 = i
S &8 ©-FASTER 3 Lo ©-FASTER
© 300+ —V—LeanStore o I —¥-—LeanStore
£ 200 choselinterDB] g 2007 —4-Spinterds
101 102 103 101 102 103

Skewness Factor (alpha) Skewness Factor (alpha)

Figure 12: Throughput on YCSB-A (left), YCSB-B (right), when
varying Zipf Skewness Factor (a). Axes in log scale.

8.4 Varying the Workload Skewness

F2 targets larger-than-memory workloads with skewed key distribu-
tion. To better understand how F2 behaves under different skewed
distributions, we experiment with varying the Zipfian skewness
factor «, from 3 to 1000 (higher values mean more skewed accesses).
When =100 (YCSB default), 90% of accesses go to 18% of records;
for @=10, 90% of accesses go to 33% of records. As before, we use
16 threads, and set the memory budget to 3GiB. Figure 12 shows
total system throughput for YCSB-A, YCSB-B (axes in log scale).
For high skewness factors (¢ > 200), F2 performs 3.4x (1.4x)
better for YCSB-A (YCSB-B) compared to LeanStore, and matches
or outperforms FASTER (e.g., by 1.5x for YCSB-B), due to its ef-
fective physical separation of hot and cold records, minimizing
compaction and user-related disk operations. As we decrease work-
load skewness (@ < 50), F2’s performance gracefully degrades, as
the hot set now spills over to disk (and subsequently to cold-log
for a < 20). For update-intensive YCSB-A, F2’s fast ingestion ca-
pability and efficient lookup-based compaction manage to retain
superior performance, even for less-skewed workload (i.e., & = 3).
For read-intensive YCSB-B, F2’s performance degrades, as for more
requests now F2 needs to issue two additional I/O (i.e., cold-log
resident records). Yet, even with its moderately-sized read-cache
(i.e., 512MiB), F2 outperforms the original FASTER by almost 2.

8.5 Varying Memory Budgets

F2 aims for high-performance even when deployed on constrained
memory environments. Here, we experiment with varying mem-
ory budgets, ranging from 750MiB to 7.5GiB (2.5-25% of our 250M
dataset), using YCSB-A and YCSB-B. We use 16 threads, and config-
ure each system to adhere with the memory limit (we also impose
this limit via Linux cgroups). Specifically, for F2 we only change the
size of the in-memory region of the hot log based on the available
budget, while keeping everything else constant (e.g., read-cache).
When operating on the lowest 750MiB budget, we disable the read-
cache (to make space for the hot-log index and in-memory hot-log
region). For LeanStore/SplinterDB (FASTER) we adjust the size of
the in-memory buffer-pool/cache (log) based on memory budget.
Figure 13 shows throughput of the best systems as we increase
the available memory budget. Given a minuscule memory budget
of 750MiB (2.5% of 30GiB), F2 achieves 36% (83%) of the perfor-
mance for YCSB-A (YCSB-B) when given 4X more memory, while
still performing 1.73% (2.14X) better than the best system on the
same budget, LeanStore. When using such small budgets (2.5-5%) on
YCSB-A even the hottest records do not fit in-memory, forcing F2 to
perform mostly I/O operations. Once we give slightly larger budget
of 2.25GiB (> 7.5%), F2 sees a performance jump of 2x, as most

4921

9 5000 {-@-F2 ¥~ LeanStore
9 @~ FASTER -gb- SplinterDB
EAOOO P Kvell
o
¥~ 3000
=
-A

22000 T 2
=y 993100 s > =y
3 1000 W 2% 3
£ B £

0 T T 0

T T T
15 20 25

R
2557510
Mem Budget (% of DB Size)

2557510 15 20 25

Mem Budget (% of DB Size)
Figure 13: Throughput on memory-scarce environments.
Memory budget is 2.5% — 25% of database size (30GiB). Zipfian
YCSB-A (left), YCSB-B (right). X-axis in log scale.

hot records are now in-memory, leading to 3.1-4.7X better through-
put compared to LeanStore/SplinterDB, while always matching or
outperforming FASTER. On YCSB-B, F2 quickly saturates the disk
bandwidth at 2.25GiB (7.5%), and any further gains stem from serv-
ing in-memory hot records (i.e., due to larger in-memory hot-log
size). LeanStore and FASTER, while slow on small budgets, manage
to perform well on higher ones, with FASTER even matching F2’s
performance for budgets of > 6GiB (20-25%).

In summary, F2 outperforms the best systems on small-moderate
memory budgets and matches their performance on larger ones.

9 RELATED WORK

Memory-efficient Designs. Log-structured Merge (LSM) Trees [41]
designs prioritize memory-efficiency, and they can store TBs of data.
They have been widely adopted as the storage layer for many pop-
ular key-value stores [9, 16, 34, 43]. Researchers have proposed
many optimizations for LSM-Trees, including better compaction
algorithms [21, 43, 45] (or policies for different tiers [18, 19]), and
smaller and more-performant filters [15, 20, 37]. State-of-the-art
LSM-based systems, like SplinterDB [15, 16], integrate additional
optimizations aimed at improving concurrency and I/O bandwidth
utilization, like STBe-tree, flush-then-compact compaction, quo-
tient mapplets [15, 42], which further reduce write amplification.

B-Tree based Designs. KVell [31] uses a B-Tree to map every key
to a page offset on disk. Disk pages are cached in-memory using a
dedicated page cache. In KVell, each thread is responsible for han-
dling requests only for a subset of the key space, eliminating thread
contention. LeanStore [30] is optimized for modern NVMe SSDs
and multi-core CPUs, and uses a B-Tree alongside an in-memory
page buffer manager to support larger-than-memory workloads. Its
key idea is pointer swizzling: cached pages are directly accessible
via pointers, avoiding the indirection necessary in traditional buffer
manager designs. It employs additional techniques (e.g., optimistic
locking, contention split) to improve concurrency [1]. Bw-Tree [32]
uses log-structured writes using delta records for pages, as dis-
cussed in Section 2. Recent work [52] proposes a migration process
that clusters hot (cold) records together to create hot (cold) pages,
by moving records across pages, improving caching effectiveness.

10 CONCLUSION

This paper describes our journey from the original FASTER library
to F2 (for FASTER v2), an evolved key-value store design that targets
large skewed workloads. F2 addresses the limitations of existing
systems that prevent them from serving such workloads effectively.
F2 is open-sourced and available as part of the FASTER project.

REFERENCES

(1]
(2]

(3

=

[10]

[11]

[12

[13

[14

[15]

[16

[18]

[19]

[20]

[21]

Adnan Alhomssi, Michael Haubenschild, and Viktor Leis. The evolution of
leanstore. In BTW 2023, pages 259-281. Gesellschaft fiir Informatik eV, 2023.
M. H. Alj, C. Gerea, B. S. Raman, B. Sezgin, T. Tarnavski, T. Verona, P. Wang,
P. Zabback, A. Ananthanarayan, A. Kirilov, M. Lu, A. Raizman, R. Krishnan,
R. Schindlauer, T. Grabs, S. Bjeletich, B. Chandramouli, J. Goldstein, S. Bhat, Ying
Li, V. Di Nicola, X. Wang, David Maier, S. Grell, O. Nano, and I. Santos. Microsoft
cep server and online behavioral targeting. Proc. VLDB Endow., 2(2):1558-1561,
August 2009.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload analysis of a large-scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and
Modeling of Computer Systems, SSIGMETRICS ’12, page 53-64, New York, NY,
USA, 2012. Association for Computing Machinery.

Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizability.
ACM Trans. Comput. Syst., 12(2):91-122, May 1994.

Azure Stream Analytics. https://azure.microsoft.com/en-us/products/stream-
analytics, February 2025.

Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, Christopher S Meiklejohn, and Xiangfeng
Zhu. Netherite: Efficient execution of serverless workflows. Proceedings of the
VLDB Endowment, 15(8):1591-1604, 2022.

Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, Christopher S Meiklejohn, and Xiangfeng
Zhu. Netherite: efficient execution of serverless workflows. The VLDB Journal,
34(2):25, 2025.

Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Con-
nor McMahon, and Christopher S Meiklejohn. Durable functions: Semantics
for stateful serverless. Proceedings of the ACM on Programming Languages,
5(OOPSLA):1-27, 2021.

Zhichao Cao and Siying Dong. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In 18th USENIX Conference on File and
Storage Technologies (FAST 20), 2020.

Badrish Chandramouli, Jonathan Goldstein, and Songyun Duan. Temporal
analytics on big data for web advertising. In Proceedings of the 2012 IEEE 28th
International Conference on Data Engineering, ICDE 12, page 90-101, USA, 2012.
IEEE Computer Society.

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. FASTER: A concurrent key-value store with in-
place updates. In Proceedings of the 2018 International Conference on Management
of Data, pages 275-290, 2018.

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. FASTER: an embedded concurrent key-value
store for state management. Proceedings of the VLDB Endowment, 11(12):1930—
1933, 2018.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:
A distributed storage system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):1-26, 2008.

Control Group v2. https://docs.kernel.org/admin-guide/cgroup-v2.html, October
2023.

Alex Conway, Martin Farach-Colton, and Rob Johnson. Splinterdb and maplets:
Improving the tradeoffs in key-value store compaction policy. Proc. ACM Manag.
Data, 1(1), may 2023.

Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton,
Richard Spillane, Amy Tai, and Rob Johnson. SplinterDB: Closing the bandwidth
gap for NVMe Key-Value stores. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 49-63. USENIX Association, July 2020.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143-154, 2010.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal navi-
gable key-value store. In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD °17, page 79-94, New York, NY, USA, 2017.
Association for Computing Machinery.

Niv Dayan and Stratos Idreos. Dostoevsky: Better space-time trade-offs for
Ism-tree based key-value stores via adaptive removal of superfluous merging.
In Proceedings of the 2018 International Conference on Management of Data, SIG-
MOD 18, page 505-520, New York, NY, USA, 2018. Association for Computing
Machinery.

Niv Dayan and Moshe Twitto. Chucky: A succinct cuckoo filter for Ism-tree.
In Proceedings of the 2021 International Conference on Management of Data, SIG-
MOD 21, page 365-378, New York, NY, USA, 2021. Association for Computing
Machinery.

Niv Dayan, Tamar Weiss, Shmuel Dashevsky, Michael Pan, Edward Bortnikov,
and Moshe Twitto. Spooky: granulating Ism-tree compactions correctly. Proc.
VLDB Endow., 15(11):3071-3084, July 2022.

4922

[22

[23

[24

[26

[27

(28]

[30

[31

(32]

[38

(39]

[43

[44

S
)

Biplob Debnath, Sudipta Sengupta, and Jin Li. Skimpystash: Ram space skimpy
key-value store on flash-based storage. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD 11, page 25-36, New
York, NY, USA, 2011. Association for Computing Machinery.

Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stan
Zdonik. Anti-caching: A new approach to database management system archi-
tecture. Proceedings of the VLDB Endowment, 6(14):1942-1953, 2013.

Siying Dong, Andrew Kryczka, Yangin Jin, and Michael Stumm. Rocksdb: Evolu-
tion of development priorities in a key-value store serving large-scale applica-
tions. ACM Trans. Storage, 17(4), October 2021.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of cloudlab. In Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC 19, page 1-14, USA, 2019. USENIX
Association.

FASTER: Fast persistent recoverable log and key-value store + cache. https:
//github.com/microsoft/FASTER, October 2023.

Gabriel Haas and Viktor Leis. What modern nvme storage can do, and how to
exploit it: High-performance i/o for high-performance storage engines. Proc.
VLDB Endow., 16(9):2090-2102, May 2023.

Andy Huynh, Harshal A Chaudhari, Evimaria Terzi, and Manos Athanassoulis.
Endure: a robust tuning paradigm for Ism trees under workload uncertainty.
arXiv preprint arXiv:2110.13801, 2021.

Improving Point-Lookup Using Data Block Hash Index. https://rocksdb.org/
blog/2018/08/23/data-block-hash-index.html, August 2018.

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann.
Leanstore: In-memory data management beyond main memory. In 2018 IEEE
34th International Conference on Data Engineering (ICDE), pages 185-196. IEEE,
2018.

Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. Kvell: the
design and implementation of a fast persistent key-value store. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, pages 447-461, 2019.
Justin Levandoski, David Lomet, and Sudipta Sengupta. The bw-tree: A b-tree
for new hardware platforms. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE). IEEE, April 2013.

Justin J. Levandoski, Per-Ake Larson, and Radu Stoica. Identifying hot and cold
data in main-memory databases. In 2013 IEEE 29th International Conference on
Data Engineering (ICDE), pages 26-37, 2013.

LevelDB. https:/github.com/google/leveldb, October 2023.

Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. Silt:
A memory-efficient, high-performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, page
1-13, New York, NY, USA, 2011. Association for Computing Machinery.

Chen Luo and Michael J. Carey. Lsm-based storage techniques: A survey. The
VLDB Journal, 29(1):393-418, jul 2019.

Sigiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin, and
Stratos Idreos. Rosetta: A robust space-time optimized range filter for key-value
stores. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, page 2071-2086, New York, NY, USA, 2020.
Association for Computing Machinery.

Lin Ma, Joy Arulraj, Sam Zhao, Andrew Pavlo, Subramanya R. Dulloor, Michael J.
Giardino, Jeff Parkhurst, Jason L. Gardner, Kshitij Doshi, and Stanley Zdonik.
Larger-than-memory data management on modern storage hardware for in-
memory oltp database systems. In Proceedings of the 12th International Workshop
on Data Management on New Hardware, DaMoN ’16, New York, NY, USA, 2016.
Association for Computing Machinery.

Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young 1k
Eom. Sfs: Random write considered harmful in solid state drives. In Proceedings
of the 10th USENIX Conference on File and Storage Technologies, FAST 12, page 12,
USA, 2012. USENIX Association.

NuGet Gallery. https://nuget.org/, July 2025.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-
structured merge-tree (Ism-tree). Acta Informatica, 33:351-385, 1996.

Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. A general-
purpose counting filter: Making every bit count. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD ’17, page 775-787,
New York, NY, USA, 2017. Association for Computing Machinery.

Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. Peb-
blesdb: Building key-value stores using fragmented log-structured merge trees.
In Proceedings of the 26th Symposium on Operating Systems Principles, pages
497-514, 2017.

RocksDB Tuning Guide. https://github.com/facebook/rocksdb/wiki/RocksDB-
Tuning-Guide, october 2023.

Subhadeep Sarkar, Kaijie Chen, Zichen Zhu, and Manos Athanassoulis. Com-
pactionary: A dictionary for Ism compactions. In Proceedings of the 2022 Interna-
tional Conference on Management of Data, SIGMOD ’22, page 2429-2432, New
York, NY, USA, 2022. Association for Computing Machinery.

https://azure.microsoft.com/en-us/products/stream-analytics
https://azure.microsoft.com/en-us/products/stream-analytics
https://docs.kernel.org/admin-guide/cgroup-v2.html
https://github.com/microsoft/FASTER
https://github.com/microsoft/FASTER
https://rocksdb.org/blog/2018/08/23/data-block-hash-index.html
https://rocksdb.org/blog/2018/08/23/data-block-hash-index.html
https://github.com/google/leveldb
https://nuget.org/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

[46

[47]

[48]

[49]

Andrew S Tanenbaum and Albert S Woodhull. Operating systems: design and
implementation, volume 2. Prentice Hall Englewood Cliffs, 1997.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy transactions in multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, page
18-32, New York, NY, USA, 2013. Association for Computing Machinery.
Juncheng Yang, Yao Yue, and K. V. Rashmi. A large scale analysis of hundreds
of in-memory cache clusters at twitter. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20), pages 191-208. USENIX
Association, November 2020.

Geoffrey X. Yu, Markos Markakis, Andreas Kipf, Per-Ake Larson, Umar Farooq
Minhas, and Tim Kraska. Treeline: An update-in-place key-value store for
modern storage. Proc. VLDB Endow., 16(1):99-112, sep 2022.

4923

[50] Jinghuan Yu, Sam H. Noh, Young-ri Choi, and Chun Jason Xue. Adoc: automati-

(51]

[52]

cally harmonizing dataflow between components in log-structured key-value
stores for improved performance. In Proceedings of the 21st USENIX Conference
on File and Storage Technologies, FAST 23, USA, 2023. USENIX Association.
Huanchen Zhang. Memory-efficient search trees for database management
systems. In Proceedings of the 2021 International Conference on Management of
Data, SIGMOD ’21, page 9, New York, NY, USA, 2021. Association for Computing
Machinery.

Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael Stonebraker. Two is
better than one: The case for 2-tree for skewed data sets. In 13th Conference on
Innovative Data Systems Research, CIDR 2023, Amsterdam, Online Proceedings,
2023.

	Abstract
	1 Introduction
	2 Issues with Large Skewed Workloads
	2.1 Limitations of Existing KV Store Designs

	3 Original FASTER and Limitations
	3.1 Design Overview
	3.2 Challenges with Large Skewed Workloads

	4 F2 Overview
	4.1 Components Overview
	4.2 Lifecycle of a Record
	4.3 Implementation and Usage

	5 Tiered Record Logs
	5.1 Conditional-Insert Primitive
	5.2 Lookup-based Compaction
	5.3 User Operations
	5.4 False-Absence Anomaly

	6 Indexing Cold Records
	7 Serving On-Disk Read-Hot Records
	8 Evaluation
	8.1 Experimental Setup
	8.2 Comparing F2 with the Original FASTER
	8.3 Comparison to Baselines
	8.4 Varying the Workload Skewness
	8.5 Varying Memory Budgets

	9 Related Work
	10 Conclusion
	References

