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ABSTRACT
In this paper, we describe veDB-HTAP, a highly integrated, ef-
ficient, and adaptive HTAP system recently built in ByteDance.
veDB-HTAP adopts a highly integrated system architecture by
leveraging the Secondary Engine mechanism provided by MySQL
and provides a seamless query processing experience across OLTP
and OLAP engines. In addition, we introduce a cost-based and
machine-learning-based smart query router that significantly out-
performs the rule-based query router used in ByteHTAP, a pre-
cursor of veDB-HTAP. A key design principle of veDB-HTAP is
the collaboration and adaptability of major system components,
including query planning, query execution, and unified storage.
Our adaptive query execution can be classified into two categories:
1) adaptive execution that dynamically collects and utilizes runtime
statistics for better query performance; 2) utilizing runtime resource
information to achieve a high quality of service even under heavy
workloads. The experiments show that veDB-HTAP can achieve
more than 3× speedup for TPC-H while consuming only one-third
of the resources compared to ByteHTAP.
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1 INTRODUCTION
As ByteDance’s business grows, we have observed many appli-
cations that require both transactional processing and analytical
processing over fresh data with strong data consistency require-
ments. To meet those business requirements, we built ByteHTAP
[32] system, which was launched in the middle of 2021.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750614

Dr. Jianjun Chen is the corresponding author, jianjun.chen@bytedance.com.

To provide context for this paper, we begin with a brief overview
of ByteHTAP system. ByteHTAP employs an architecture of sep-
arate engines over unified storage, integrating a ByteDance’s ex-
isting OLTP (TP) system (i.e., veDB [18, 76]) and an open-source
OLAP (AP) system (i.e., Apache Flink [6]). ByteHTAP provides a
unified API for query processing, facilitating seamless interaction
with both OLTP and OLAP systems. A rule-based query router
within the proxy layer automatically routes queries to the appro-
priate engine—either OLTP or OLAP—based on predefined rules.
The Metadata Service provides centralized metadata access for the
OLAP query optimizer and storage nodes. ByteHTAP guarantees
strong data consistency by providing consistent data snapshots
for its queries. The Metadata Service relays a globally committed
Log Sequence Number (LSN) to the OLAP engine. Each query is
assigned a read LSN derived from the globally committed LSN,
ensuring that the query operates on a consistent data snapshot.

We aim to provide HTAP capability on ByteDance’s public cloud
(i.e., Volcano Engine [9]) as an extension to our veDB product [18],
besides supporting internal customers. Many external use cases
are expected to involve upgrades from our existing veDB MySQL
customers, who wish to leverage enhanced OLAP query-processing
capabilities without modifying their applications, which requires
ByteHTAP to provide consistent query semantics across its OLTP
and OLAP engines. In addition, many ByteHTAP customers want
a more efficient and cost-effective OLAP query engine. Below we
listed three substantial limitations of ByteHTAP that motivated the
design of veDB-HTAP:

Subtle semantic differences between OLTP and OLAP en-
gines. First, even though ByteHTAP’s OLTP engine uses MySQL
read committed (RC) isolation level as default, its OLAP engine
only supports snapshot isolation which often uses a slightly older
snapshot than the most recently committed one in the OLTP engine
due to log replication delay. Hence, the same query executed by
both the OLTP and OLAP engines may produce different results.
Therefore, ByteHTAP does not support session-level data consis-
tency. Queries directed to the OLAP engine may not reflect earlier
updates made by DML operations within the same session. Second,
ByteHTAP adopts Apache Flink as its OLAP query engine, which
uses its own SQL dialects and lacks certain MySQL dialects support.
The system’s unified storage also needs enhancement to support
the MySQL dialects.

Simple rule-based query routing in the proxy has many
limitations. The rule-based query router in ByteHTAP’s proxy
layer determines query routing based solely on predefined rules,
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without considering the performance characteristics or syntax sup-
port of OLTP and OLAP engines. This can lead to query failures
if a query is sent to an engine that does not support its syntax. To
address this, we propose a more sophisticated query router that
leverages a cost-based query optimizer for in-depth plan analy-
sis while maintaining MySQL compatibility. Additionally, we are
exploring machine learning (ML)-based approaches to further en-
hance routing accuracy.

Limitations in Flink’s query engine and resource scheduler
to support large-scale OLAP workloads. Although ByteHTAP
has made significant improvements over Flink and achieved up to
25% performance improvements on the TPC-H benchmark com-
pared to Flink’s open source version [32], it did not satisfy the re-
quirements of our new use cases, which demanded a more efficient
and elastic OLAP system. For example, ByteDance’s application-
platform-as-a-service team wants to build a scalable platform-as-
a-service platform on top of ByteHTAP to support thousands of
developers with tens of millions of tables. In addition, they want
great OLAP query performance over complex queries, i.e., seconds
of query latency, that may consist of many joins and other complex
operators. Furthermore, they want our system to be elastic and
cost-effective, and it can be used in a multi-tenant environment.

In summary, we aim to build a highly integrated HTAP system
that alleviates users from concerns about underlying engine differ-
ences by providing consistent querying semantics across its OLTP
and OLAP engines. In addition, we seek to improve query routing
to ensure each query is directed to the appropriate engine for exe-
cution. Furthermore, we strive to develop an efficient and elastic
OLAP query engine capable of handling complex OLAP workloads
in a multi-tenant environment.

Based on the aforementioned considerations, we propose veDB-
HTAP, a system designed to serve as a generic HTAP solution
capable of accommodating both large-scale and light-weight HTAP
processing needs, including: (1) catering to large-scale customers
with multi-tenant demands, and providing support for up to tens of
millions of tables while ensuring high performance and scalability,
and (2) offering solutions for light-workloads OLTP clients, and
prioritizing cost efficiency and excellent MySQL compatibility.

We released veDB-HTAP to internal customers in 2024 and plan
to expand its availability to external customers on ByteDance’s
Volcano Engine soon. Since its release, several customers have been
onboarded and we are actively migrating ByteHTAP customers to
veDB-HTAP. Customers of veDB-HTAP have reported significant
improvement in performance and resource utilization compared
to ByteHTAP. veDB-HTAP’s support of MySQL Read Committed
isolation level also simplifies the migration of our customers’ work-
loads. In summary, our key contributions are as follows:

• veDB-HTAP transforms system architecture of ByteHTAP into
a highly integrated system. In veDB-HTAP, queries are always
sent to the OLTP engine and we utilize the Secondary Engine
mechanism [13] provided by MySQL to direct query to OLAP
engine when necessary. veDB-HTAP also enables a seamless
querying experience across OLTP and OLAP engines by pro-
viding an unified Read Committed isolation level. In addition,
a cost-based smart query routing is implemented and used in
production. We also designed and implemented a query routing

prototype based on machine learning techniques, which showed
some interesting and promising results in our preliminary study
presented in this paper.

• We demonstrate how to build a high-performance and elastic
OLAP query engine in veDB-HTAP to replace the Flink engine
in ByteHTAP. A key aspect of our design strategy for achieving
high performance and elasticity in our OLAP query system is
to ensure that the major system components, including query
planning, query execution, and the unified storage, operate in a
collaborative and adaptive manner, which will be illustrated with
concrete examples within the paper. Overall, our adaptive query
execution can be classified into two categories: 1) adaptive execu-
tion that dynamically collects and utilizes runtime stats for better
query performance; 2) utilizes runtime resource information for
better quality of service. The experiments show that veDB-HTAP
can achieve more than 3× speedup while consuming 1/3 fewer
resources than ByteHTAP.

The rest of the paper is organized as follows: Section 2 gives
an overview of related work. Section 3 describes the overall ar-
chitecture of veDB-HTAP as well as the implementations of its
key components. Section 4 shows how veDB-HTAP supports a
highly integrated HTAP processing through architecture change
and smart query routing. Section 5 focuses on how veDB-HTAP’s
OLAP query engine achieves high performance and elasticity. In
Section 6, we provide some empirical measurements of veDB-HTAP.
Finally, Section 7 concludes our work.

2 RELATEDWORK
In this section, we first briefly review early HTAP databases and
techniques in industry and research literature. Then, we discuss the
latest HTAP systems and techniques in detail. Lastly, we present
works in the area of resource management and workload isolation.

HTAP systems and techniques have been studied over the years
[31, 41, 43, 49, 56, 59, 65, 65, 66, 70, 71]. For example, SAP Hana
[39, 48, 55, 75] and WildFire [22–24, 50] are dedicated commercial
HTAP systems. In addition, many existing systems are extended
to support HTAP functionalities, including Oracle’s Database In-
Memory Option [46, 60], the BLU Acceleration [68] and IDAA [29]
in IBM DB2, Google’s F1 Lightning [84], and the HTAP-related
components in Microsoft SQL Server 2016 [47] and in Greenplum
[51]. Lastly, HTAP techniques are also discussed in some research
works [52, 69, 74].

In recent years, HTAP systems have evolved to integrate with
new architectures and technologies, leading to the emergence of
innovative HTAP databases and prototypes. For instance, TiDB
[40] is an open-source distributed HTAP system built on top of
TiKV and TiFlash. TiKV serves as a row-based storage engine for
transactional workloads, while TiFlash functions as a column-based
storage engine for analytical queries. Starting with TiDB v7.0.0,
TiFlash introduced support for disaggregated storage and compute
[16]. TiDB features its own TiDB Server, which supports MySQL’s
protocol and common syntax, though not all MySQL features are
currently supported [15]. In contrast, veDB-HTAP employs the
MySQL Secondary Engine to provide strong MySQL compatibility.

Alibaba PolarDB [78, 85, 86] is a cloud-native relational data-
base. PolarDB-IMCI [78] extends PolarDB with in-memory column
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indexes and a column-based execution engine to speed up the pro-
cessing for complex OLAP queries. It executes OLAP queries in its
MySQL Read-Only (RO) nodes to separate OLTP workloads from
OLAP workloads. AlloyDB [4] features a columnar analytical pro-
cessing engine that can run on both primary instances and read pool
instances. However, similar to PolarDB-IMCI, it is an in-memory
single node query engine without distributed query execution ca-
pability. In contrast, veDB-HTAP’s architecture utilizes MySQL
Secondary Engine extension [13] and can plug in any OLAP engine
with its modular design. veDB-HTAP has a powerful proprietary
MPP OLAP engine that can execute queries across different servers.

PolarDB-SCC [86] adopts several techniques to reduce the data
freshness gap between its Read-Write (RW) and RO nodes. Sim-
ilarly, veDB-HTAP also provides Read Committed isolation and
utilizes techniques such as multi-level LSNs to reduce the gap of
data freshness between its OLTP and OLAP engines. In contrast,
under frequent updates, the columnar data in AlloyDB may become
stale relative to the row-format data[4].

There are other commercial and prototype database systems[25,
44] that are enhanced to support HTAP workloads. Amazon Red-
shift [20] provides some HTAP capabilities by facilitating both the
in-place querying of data in the OLTP services by using Redshift’s
Federated Query, and the seamless copying and synchronization of
data to Redshift by using Glue Elastic Views [72]. SingleStoreDB
[67], formerly known as MemSQL [33], utilizes the cloud-native
architecture and takes advantage of the elastic infrastructure. It
supports transactions that perform scans on column stores and
perform the seek on row stores, and uses indexes to speed up point
reads and writes.

In the evaluation of an HTAP system, HATtrick[57] proposed a
method from the perspectives of performance and freshness. A
concept called throughput frontier is introduced to capture the
performance of an HTAP system. HyBench[90] proposed a new
benchmark with a hybrid workload that supports throughput and
freshness evaluation simultaneously.

Lastly, some works have discussed resource management and
workload isolation in multi-tenant database systems [21, 30, 38, 61,
64, 77, 88, 91]. SQLVM [62, 63] provides an abstraction for perfor-
mance isolation in a multi-tenant RDBMS based on the promise
of reservation of resources. It proposes a fine-grained resource
scheduling mechanism to meet each tenant’s reservations. It also
provides a novel metering logic to audit the promise of resources.
Another work [36] focuses on the problem of CPU sharing among
tenants co-located at a server. It discusses how to use SQLVM
[62] as an abstraction of CPU reservations to provide resources
to tenants without any restriction on the tenant’s workloads. In
comparison, veDB-HTAP adopts an adaptive approach to handle
resource contention for both CPU and memory.

3 SYSTEM ARCHITECTURE AND IMPORTANT
COMPONENTS

In this section, we first give a brief overview of MySQL Secondary
Engine. Then, we talk about veDB-HTAP’s architecture and impor-
tant components.

3.1 MySQL Secondary Engine Overview
MySQL has provided built-in support for pluggable storage engines.
Customized storage engines such as [79] have been developed and
combined with existing storage engines for extended functionality.
Coupled with additional query processing capability for workload
off-loading or acceleration, this type of alternative storage engine is
referred to as Secondary Engine by MySQL Heatwave [13]. MySQL
can send different query plans to appropriate storage engines for
execution based on the data processing characteristics of different
storage engines and the cost, thereby leveraging multiple storage
engines for optimal workload performance.

In integrating the Secondary Engine into MySQL, an additional
phase is added at the end of the optimizer to decide whether to send
the query plan to the primary or secondary engine for execution.
Users can specify whether to use a specific storage engine through
the Secondary Engine keyword defined in the CREATE TABLE or
ALTER TABLE command for existing MySQL tables. As an example,
the following command

create table orders (

oid int not null primary key,

cust_id int not null, o_date date

) secondary_engine = RAPID

would create a table with all columns also stored in the secondary
engine registered in the system as RAPID, which is the query pro-
cessing engine used in Heatwave. We can plugin any customized
query processing engine such as our own OLAP engine in the same
fashion. Once the table has been created with the Secondary Engine
support, loading the table will automatically load both MySQL’s
default storage engine as well as the Secondary Storage. For exist-
ing tables that have been altered with Secondary Engine support, a
background process will start to replicate the data from the existing
MySQL storage to the newly added Secondary Storage.

veDB-HTAP utilizes the same Secondary Engine mechanism as
MySQL Heatwave to provide a seamless integration between OLTP
and OLAP engines, but they have key differences. MySQL Heat-
wave provides a highly integrated in-memory OLAP accelerator.
Prior to serving user queries, data must be loaded into the memory
of all Heatwave compute nodes. Its underlying storage is a simple
object store that only handles data durability but does not sup-
port predicate pushdown. Propagations of data change also happen
at data nodes. Essentially, Heatwave’s OLAP MPP query engine
adopts a share-nothing architecture where computations happen at
in-memory data nodes. In contrast, veDB-HTAP adopts a disaggre-
gated storage architecture. Its MPP query processor is stateless and
does not require preloading all data into memory to process queries,
making it more elastic than Heatwave. veDB-HTAP’s smart uni-
fied storage handles data change replications and supports query
predicate pushdown. Furthermore, veDB-HTAP has a model-based
smart query router besides heuristic and cost-based query routing,
while Heatwave only supports heuristic and cost-based routing.

3.2 veDB-HTAP System Overview
As shown in Figure 1, veDB-HTAP inherits ByteHTAP’s cloud-
native architecture, with the following major changes.
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Figure 1: An illustration of the veDB-HTAP architecture.

3.2.1 veDB-HTAP Plugin. As shown in Figure 1, we extended the
MySQL OLTP engine using the veDB-HTAP Plugin, our proprietary
Secondary Engine extension, on both the Read-Write (RW) and
Read-Only (RO) nodes. With this new architecture, veDB-HTAP’s
proxy always routes user queries to the OLTP engine, which deter-
mines the appropriate engine to use based on query complexity and
other properties. In contrast, ByteHTAP’s proxy decides sending
queries to either OLTP or OLAP engines. In veDB-HTAP, DDLs and
DMLs can only be sent to the RW node, while read-only queries
can be directed to both the RW and RO nodes.

3.2.2 Adopt a proprietary high-performance and elastic MPP OLAP
engine. ByteHTAP utilizes Flink as the OLAP engine, which has
been widely used in our company for ETL processing in streaming
applications. However, it has some limitations in being used in
large scale OLAP processing, e.g., resource scheduling/managing
for high QPS workload, and lack of vectorized query engine. We
have been improving the Flink engine for a while and it can support
many existing customers currently.

In veDB-HTAP, we want to significantly extend its OLAP ca-
pabilities to further improve query performance in terms of QPS
and query latency and reduce the cost of customers through great
multi-tenancy support. For example, one of our largest customers
manages thousands of shared tenants with a diverse range of job
SLAs and priorities. Enabling resource sharing and isolation among
a large number of tenants within a single veDB-HTAP cluster is
essential for cost reduction. We built a proprietary MPP query
processing engine in veDB-HTAP, which consists of a set of Coor-
dinators for distributed plan generation and optimization, and a set
of Data Servers (DS) for distributed plan execution (see Figure 1).

We have done significant work for adaptive query processing to
make the OLAP engine highly efficient and elastic, which will be
described in detail in Section 5. In addition, we have spent a consid-
erable amount of engineering efforts to make veDB-HTAP MySQL
compatible, including data types (especially date, time, and deci-
mals) and functions etc. In the case a query sent to the MPP engine
for execution is not supported by the OLAP engine, veDB-HTAP
will retry the execution using the OLTP engine automatically.

To support better resource sharing and resource isolation for
multi-tenancy, veDB-HTAP introduces a centralized Cluster Man-
ager to allow users to create resource groups among Data Servers.
For example, customers can create a shared resource group to hold
many low-priority tenants with lenient SLA and dedicated resource
groups for tenants with stringent SLA. To achieve this, we first
send create resource groups commands to the cluster manager with
the corresponding min/max CPU cores and memories. The cluster
manager will then calculate the initial number of Data Servers to be
allocated to the dedicated resource groups. When the workload on
a resource group changes, Data Servers can be added to or removed
from this group by sending update resource groups commands to
the cluster manager on the fly. Currently this process has not been
fully automated yet, which can be a future work to explore.

4 HIGH INTEGRATION BETWEEN OLTP AND
OLAP ENGINES

In this section, we describe how veDB-HTAP seamlessly integrates
its OLAP engine with its OLTP engine through veDB-HTAP Plugin
to provide extendable OLAP query processing capability, MySQL
Read Committed transaction isolation level, and smart routing.

4.1 Extensible OLAP Engine Integration Using
veDB-HTAP Plugin

As shown in Figure 1, veDB-HTAP Plugin reuses the parser and
analyzer from MySQL to generate a MySQL-compatible query plan
and performs simple optimizations. It then sends the partially opti-
mized query plan, together with required metadata, to a coordinator
for distributed plan generation and optimization. After optimiza-
tion, the colocated query scheduler divides the plan into a set of
fragments in a distributed fashion and sends them to a set of Data
Servers for execution, which will read the data from the unified
storage and periodically send heartbeats to the cluster manager.
The final result blocks will be buffered at a dedicated Data Server
and fetched by veDB-HTAP Plugin.

An important design decision is to have the OLAP query opti-
mizer take a partially optimized logical plan from the OLTP planner
instead of SQL text. For example, the expression handling, such as
data type deducing, is done by the OLTP planner. Some complex
OLAP-oriented optimization such as join reorder and common plan
subtree sharing, are all handled in the OLAP optimizer, which is
specifically designed for such tasks. In addition, we have defined
an interface to translate an OLTP logical plan into an OLAP logical
plan to allow future extensions to connect to different OLTP engines
beyond MySQL. In contrast, Fabric DW [28] adopts a single unified
query optimization framework to handle both local and distributed
query plan generation. Since veDB-HTAP adopts a seperate engine
approah for its TP and AP processing, veDB-HTAP’s two-staged
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plan generation approach can fully take advantage of both engines’
plan generation capabilities, provide great compatibility with its
OLTP engine (i.e. MySQL), and offer great extensibility for plugging
in new query engines.

Another important design decision is that we choose to physi-
cally decouple Coordinators (OLAP Query Optimizers) and Data
Servers from the MySQL nodes to achieve better isolation between
OLTP and OLAP workloads and better scalability and elasticity. As
OLAP query optimization tasks can be resource-intensive, running
them on separate processes minimizes the impact to OLTP work-
loads. As the metadata is stored inside MySQL system tables, our
OLAP optimizer does not need to store any metadata, which makes
it stateless and easily scaled out.

4.2 Support Read-Committed Isolation Level
In ByteHTAP, the OLAP engine supports consistent reads over
a snapshot, which might miss the latest committed data in the
OLTP engine due to log shipping and processing delays. Thus,
ByteHTAP fails to maintain read consistency between the OLAP
and OLTP engines. For instance, a query directed to the OLAP
engine might not reflect the outcomes of recent DML operations.
veDB-HTAP addresses this shortcoming by implementing a Read-
Committed (RC) transaction isolation level that spans both OLTP
and OLAP engines. This upgrade guarantees that the effects of
a write operation will be visible to subsequent read operations,
irrespective of whether these operations occur within the same or
different sessions.

Such support requires that a query in the OLAP engine must
read and only read data committed prior to the query’s arrival
at the OLTP engine. This necessitates: (1) acquiring aligned read
snapshot across OLTP and OLAP engines; (2) guaranteeing the
query execution after the OLAP engine receives the corresponding
latest data snapshot.

Acquire aligned read snapshot on read-only (RO) nodes.
The data is replicated to the OLAP engine by applying logical log
records. The veDB-HTAP Plugin assigns a logical log LSN to a query
as its read snapshot. However, RO nodes construct OLTP read view
based on physical log from RW nodes. When a query is sent to a RO
node to execute, RO needs to construct a read snapshot based on a
logical log LSN aligned with OLTP read view. To address this issue,
veDB-HTAP introduces a new type of physical log record. On a
RW node, when a transaction commits, this type of record captures
metadata such as the database name, table name, and the commit
logical log LSN. RW nodes periodically send physical log records to
RO nodes for OLTP data synchronization. The veDB-HTAP Plugin
is enhanced to process physical log records to retrieve the logical
log LSN, that reflects the latest commit and OLTP snapshot. With
this improvement, RO nodes can send queries to the OLAP engine
using the most recently committed LSN as the snapshot, ensuring
compliance with RC isolation level.

Reduce delay of query execution caused by waiting for
the corresponding latest data snapshot.When a query requires
the Read Committed (RC) isolation level, the veDB-HTAP Plugin
may automatically delay its execution to ensure the required data
is ready on the OLAP side. To minimize this delay, two strategies

are employed: (1) a carefully designed pipelined waiting mecha-
nism and (2) use of a fine-grained commit-LSN examination. The
pipelined waiting mechanism allows queries to progress through
the plan optimizer and be dispatched to DS nodes for execution,
even if the storage nodes have not yet applied the necessary log
records. A secondary check occurs when DS nodes send queries to
the storage nodes, ensuring that the required data is ready. This
approach overlaps the delay caused by log application with the
network latency and query plan optimization time, effectively re-
ducing or even eliminating the waiting period. In the fine-grained
commit-LSN examination, the veDB-HTAP Plugin utilizes both
instance-level and table-level commit LSNs to determine whether a
query can proceed without delay. This method builds upon similar
principles to enhance efficiency and responsiveness as [86].

For applications with a stringent query latency requirement,
veDB-HTAP provides a compatible mode, called AP Snapshot mode,
which allows a query to be executed immediately on the OLAP side
with its currently available logical LSN.

4.3 Smart Routing
In order to execute a query correctly and efficiently, ByteHTAP used
a smart query router to automatically decide which engine to use,
mainly based on pre-defined rules over query syntaxes, e.g., queries
with multiple joins and aggregates will be sent to the OLAP engine.
Apparently, such an approach, while being extremely simple, cannot
capture real query costs and cover all potential queries.

In veDB-HTAP, since all queries enter the system via the OLTP
engine, we can leverage its query optimizer to get the costs of all
incoming queries to make more accurate and cost-based routing de-
cisions. Since OLAP queries typically incur higher costs than OLTP
queries, we establish a cost threshold to differentiate between them.
If a query plan’s cost is lower than the pre-defined threshold, it will
be executed by the OLTP engine; otherwise, it will be forwarded
to the OLAP engine through veDB-HTAP Plugin. The production
results showed that cost-based routing outperformed rule-based
routing in the majority of cases. Moreover, the smart router also
ensures that queries sent to the OLAP engine accommodate the
syntax and LSN requirements.

4.3.1 Limitations in cost-based routing. However, a query’s cost
may not always align with its actual execution time, which can lead
to incorrect routing decisions, i.e., sending a query to an engine
that spends more time than the other one. This challenge is further
exacerbated by veDB-HTAP’s architecture, which relies on two
completely different query processing engines. We can use three
examples to illustrate the problem, using the schema and data from
the TPC-H 100G benchmark.

Example 4.1. A Top-N query with ORDER BY and LIMIT clauses.
The cost of the query in the OLTP engine is 1.0×103, with an execution
time of 20ms. The query’s execution time is 650ms in the OLAP engine.

SELECT l_orderkey, l_linenumber FROM lineitem

WHERE l_shipdate <= DATE '1993-6-01'

ORDER BY l_orderkey, l_linenumber LIMIT 11500, 1700;

Example 4.2. A query joins seven tables, with an index on the
column c_phone. Its cost from the OLTP engine is 2.2 × 105, where its
execution time is 70ms. In comparison, the OLAP engine completes
the same query with an execution time of 3.54s.
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SELECT SUM(l1.l_extendedprice) AS total_extended_price

FROM customer c, nation n, orders o, lineitem l1, orders o1,

partsupp p, orders o2

WHERE c.c_phone IN ('15-741-346-9870', '15-741-346-9871',

'15-741-346-9872', '15-741-346-9873')

AND n_name <> 'egypt' AND l1.l_quantity > 5

AND o.o_custkey = c.c_custkey AND n.n_nationkey = c.c_nationkey

AND l1.l_orderkey = o.o_orderkey AND o1.o_custkey = o.o_custkey

AND o1.o_custkey = o2.o_custkey AND l1.l_partkey = p.ps_partkey;

Example 4.3. A query joins three tables and has the SUBSTRING
function in the WHERE clause. Its cost from the OLTP engine is 5.2 ×
103, and its execution time in OLTP engine is 5.80s. The OLAP engine
has an execution time of 310ms for the same query.
SELECT COUNT(*) FROM customer, nation, orders

WHERE SUBSTRING(c_phone, 1, 2) IN ('20', '40', '22', '30', '39',

'42', '21')

AND c_mktsegment = 'machinery'

AND n_name = 'egypt' AND o_orderstatus = 'p'

AND o_custkey = c_custkey AND n_nationkey = c_nationkey;

The examples above show that the cost obtained from the OLTP
engine does not always align with the runtime performance. In
Example 4.1, the query’s cost is 1.0×103, and the OLTP engine takes
20ms to execute. However, in Example 4.2, despite a 220× higher
cost than Example 4.1, the query finishes in only 70ms, which is
just 3.5× slower than Example 4.1. On the contrary, the query’s cost
in Example 4.3 is about 1/42 of the cost in Example 4.2. However,
its execution time in OLTP engine is conversely 74× higher than
the time in Example 4.2.

These discrepancies highlight two key challenges for cost-based
query routing. First, the estimated cost may not be always reliable
enough to reflect the true performance of execution. A high cost
may not always lead to slow execution, and a low cost may not
guarantee a fast execution. Therefore, using a single static cost
threshold for routing may produce incorrect choices of engines.

Second, it is difficult to decide the cost threshold for routing as
the cost obtained from the OLTP engine cannot estimate the perfor-
mance of the OLAP engine. In the examples above, we cannot find
a single threshold to route all three queries correctly. We have also
considered to include the plan cost from OLAP engine. However,
the OLTP cost and OLAP cost cannot be directly compared as they
are generated by different systems.

4.3.2 Learning-based routing. Inspired by recent advancements in
learning-based query optimization [34, 37, 53, 82, 87, 92, 93] and
its successful application in real-world industrial systems [80], we
propose a learning-based smart router. Based on an enhanced tree-
based convolutional neural network (Tree-CNN) [54, 58], our model
learns from historical query executions to predict which engine
would execute a query more efficiently.

Workflow of smart router. The Figure 2 shows the workflow
of the smart router, which is integrated with the workflow of veDB-
HTAP and cost-based routing. Firstly, a query is sent to the OLTP
engine and an OLTP plan is generated. If the query’s cost is below
a low threshold, it will be executed in the OLTP engine directly.
We set this threshold conservatively to avoid the overhead of the
learning-based routing for relatively simple queries. The remaining
more complex queries will be sent to the OLAP engine. Then, the
OLAP engine generates the OLAP plan and sends both OLTP and

AP
Engine

TP
Engine

TP plan

Smart router:
Enhanced Tree-CNN classifier

Input query*

TP plan and AP plan

Model prediction: use TP / AP

Figure 2: Workflow of the Learning-based Smart Router.

OLAP plans to the smart router. The smart router takes those plans
as inputs, and predicts which engine will execute the query more
efficiently. Lastly, the query is routed to the corresponding engine
according to the prediction.

Model structure. Tree-CNN has been proven effective for per-
formance prediction for queries [53, 80, 92]. Our work differs from
previous studies in two major aspects: First, our model is more
practical and more efficient to train because it only needs to select
a better engine from two candidates according to the optimized
plans, instead of predicting the actual query performance for all
candidate plans. Second, our model processes and compares plans
generated by two distinct engines with different characteristics.
This introduces additional challenges compared to processing plans
from a single engine.

Our model begins by formatting the input plans into tree struc-
tures and then encoding them using a series of convolutional layers.
This encoding process transforms each plan tree into a vector rep-
resentation that encapsulates key patterns and relationships within
each plan. We also apply an attention mechanism to each convolu-
tional layer to integrate runtime factors, which allows the model to
prioritize the most critical aspects of the encoded features based
on the current runtime conditions. Then, the results from the con-
volutional layers are processed through dynamic pooling and fully
connected layers, which produces a final score to indicate which
engine will have a better performance for the input query.To pro-
tect user privacy and mitigate the risk of overfitting during model
training, user-specific information in the query plans, such as table
names and column names, is anonymized.

Experimental setup and results. To train and evaluate our
model, we created customized workloads based on the queries col-
lected from ByteDance’s online applications. These queries range
from simple single-table queries to complex queries involving up
to seven-way joins. The workloads also include queries that the
cost-based routing is difficult to handle and may produce incor-
rect routing decisions, such as Top-N queries with an ORDER BY,
LIMIT, or OFFSET clause. In our experiments, in order to test the
performance of our methods across different training sizes and
evaluate the generalizability of our methods, a workload of a to-
tal of 7, 033 queries were utilized, with 10% of queries randomly
selected as the testing dataset and varied percentages of the re-
maining queries were used as the training dataset. The experiments
were conducted on a cluster, with the details of its configuration
provided in Section 6. For all experiments, the training time was
under five minutes.

We compared the routing accuracy of the learning-based routing
with the cost-based routing. For cost-based routing, an exhaustive
search was first performed to identify the optimal cost threshold
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Training Size 5% 10% 20% 50% 100%
Learning-based 86.2% 87.9% 91.6% 92.4% 94.3%
Cost-based 80.2% 80.1% 80.0% 80.0% 79.1%

Table 1: Routing Accuracies with Different Training Sizes

that maximized the routing accuracy for the training set. Table 1
shows the experimental results. The learning-based router consis-
tently outperforms the cost-based router across all training sizes,
and the performance improvement is up to 15%. Additionally, the
routing accuracy of the learning-based method consistently im-
proves as the training size increases, which demonstrates the ef-
fectiveness of our training. Note that the learning-based routing
can have more than 90% routing accuracy with only 20% of train-
ing data, which shows that our method is very effective when the
query patterns in the training and testing workloads are similar.
This is very useful since the query patterns in most of our online
applications are fairly stable.

To the best of our knowledge, our work presents the first deep-
learning-based query router for a production HTAP system. How-
ever, several challenges remain to be addressed before the learning-
based router can be fully adopted in production applications with
complex workloads. For example, a key challenge is determining
when and how to retrain the model to accommodate evolving work-
loads. We are actively working on resolving these issues.

5 HIGHLY EFFICIENT AND ADAPTIVE QUERY
PROCESSING

As the ByteHTAP users grow, we have noticed a few limitations
in the query performance and resources utilization of the Flink-
based OLAP engine. For example, for TPC-H 100G benchmark, we
typically need 128 CPU cores to achieve 140s total running time. In
comparison, a well-known HTAP system on the market (referred to
as HTAP-X) only needs 32 CPU cores to achieve 80s total running
time for the same dataset. This has motivated us to develop our
in-house massively-parallel-processing query engine.

In contrast to Flink’s batch/stream-based data processing en-
gine, which usually aims for streaming applications, our new en-
gine is designed with optimal analytical workload performance in
mind by employing a push-based and vectorized execution engine.
To maximize the CPU utilization, the execution engine adopts a
coroutine-based asynchronous scheduler that can efficiently per-
form user-space context switch with minimal overhead. As shown
later, for the above TPC-H 100G benchmark, we can achieve ap-
proximately 35s total run time with only 32 CPU cores.

One key design of the new query processing engine is to have the
query optimizer and executor work together so the performance-
aware features can be adaptively performed based on the com-
pile time and runtime information, and, therefore, achieve optimal
query performance in practice. Dynamically performing query re-
optimization has been studied to improve the efficiency of query
execution [1, 2, 83]. [83] and [2] introduced approaches in their sys-
tems to change query plans on-the-fly based on runtime statistics.
BigQuery [1] uses a dynamic partitioning mechanism that intel-
ligently chooses partitioning and degree-of-parallelism based on
runtime information. Different from those works, our work mainly

focuses on dynamically changing the executions of query operators
without changing the query plans.
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Figure 3: Adaptive Query Execution Workflow

Figure 3 shows the high level design of our adaptive query exe-
cution workflow. During the planning phase, the Coordinator can
collect the missing column stats on-demand to generate optimal
distributed plans (Section 5.1.1). Some of these stats, such as table
row count, can be attached to plan and sent to the Data Server
for better runtime decision. The Data Server can also collect nec-
essary runtime stats along with its resource utilization metrics to
help determine its execution behavior, such as hash table selec-
tion, disk spill decision, etc (Sections 5.1.2 to 5.2.1). In addition, the
underlying storage can execute the push-down predicates in an
adaptive fashion based on the resource utilizations on storage nodes
to ensure the system stability and quality of service (Section 5.2.2).
In summary, our adaptive query execution can be classified into
two categories: (1) adaptive execution that dynamically collects
and utilizes runtime stats for better query performance; (2) utilizes
runtime resource information for better quality of service.

5.1 Runtime Stats-Based Adaptiveness
In this section, we will first explain how stats are collected on-
demand in veDB-HTAP and then showcase how these stats are
used at runtime to improve the execution efficiency.

5.1.1 On-Demand Stats Collection. In cost-based query optimizers,
the estimation of operator stats is of paramount importance in
generating good plans. While most current commercial DBMSs
offer some form of automatic statistics collection functionality,
they typically support statistics over entire column data. In our
approach, we dynamically collect statistics over selection predicates
that appeared in user queries, which allows us to get more accurate
cardinality estimation over complex compound predicates.

We introduced our lightweight and highly effective on-demand
stats collecting feature, which aims to relieve users from cumber-
some stats-related operations. In addition, we leverage the cache
eviction policy to retain the most frequently accessed statistics and
expel stale statistics when tables get updated.
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There are a couple of key challenges in this approach. First,
the initial time needed to obtain on-demand stats during query
planning contributes to the overall query execution time. To solve
this problem, we offer an asynchronous option to the on-demand
stats approach where a reasonable wait-time can be configured. If
the on-demand stats job does not finish within the wait-time, the
optimizer proceeds without stats. Nevertheless, the stats collecting
job continues to retrieve the stats and store them in the cache for
the benefit of subsequent queries.

Second, on-demand stats collection may increase system over-
head and interfere with other critical user workloads running in
parallel. To address this challenge, the first solution is to make
on-demand stats lightweight. Based on our customers’ workloads
and benchmark studies, we identified three most essential stats for
our optimizer: 1. Base table row count: it can be collected easily
when a table is populated. 2. Selectivity on base table filters: we
employ a sampling-based approach, which issues a scan request
with filter predicates on a small portion of the table to obtain a sam-
pled selectivity. We believe this is a more accurate and lightweight
approach than a histogram-based method, especially in complex
predicate cases such as compound predicates or LIKE predicate.
To address the issue of inaccurate estimation caused by sampling,
we also implemented a runtime feedback mechanism. This mecha-
nism overwrites inaccurate selectivity estimates in our plan cache
with the actual selectivity collected after query completion, thus
benefiting subsequent queries. 3. Column NDV: we extended our
on-demand sampling approach to issue an asynchronously approx-
imate count distinct request on target columns. In addition, we also
utilize dedicated resource work group for these stats collecting jobs
to prevent resource contention from normal user queries.

5.1.2 Adaptive Hash Table Selection. Hash tables are the funda-
mental data structures used for GROUP BY and JOIN operators. It
provides constant lookup time O(1) for inserting a key-value pair
and retrieving the value from a given key. If the hash table can store
ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 elements in its memory block, and ℎ𝑡𝑛𝑑𝑣 elements are
currently inserted, the load factor of the hash table 𝑙 can be defined
as follows:

𝑙 = ℎ𝑡𝑛𝑑𝑣/ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (1)
We call ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 the capacity and ℎ𝑡𝑛𝑑𝑣 the size of the hash table.

The hash table lookup performance usually stays stable as long
as its load factor stays within its maximum value 𝑙𝑚𝑎𝑥 , and degrades
exponentially once it exceeds this threshold [45] due to collisions 1.
Most existing work on hash tables focuses on either improving
the lookup performance [11, 26, 27] or enhancing the memory
efficiency [5, 12] by designing hash tables with high 𝑙𝑚𝑎𝑥 . However,
it is hard to find an optimal solution that satisfies both criteria,
which motivates us to propose an adaptive hash table selection
strategy that dynamically selects the most memory-efficient hash
table based on the estimated hash table capacity at runtime with
great lookup performance.

To estimate the hash table size, we utilize the HyperLogLog
(HLL) algorithm [42] to calculate the number of distinct values

1We limit our discussion to hash tables using open addressing method [45] for collision
resolution where all hash table entries are stored in the bucket array itself, as most
modern hash table is implemented in this way to achieve low memory overhead and
good lookup performance.

(ndv) on the build side at runtime (i.e., ℎ𝑡𝑛𝑑𝑣 in (1)). Because the
HLL algorithm is able to estimate cardinalities of > 109 with a typi-
cal accuracy (standard error) of 2%, using 1.5 𝐾𝐵 of memory, this
approach works well in practice with minimal computation over-
head. Once the estimated number of distinct values in hash table
ℎ𝑡𝑛𝑑𝑣 is calculated, based on (1), the hash table capacity ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
can be expressed as:

ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑛𝑒𝑥𝑡𝑝𝑜𝑤2 (ℎ𝑡𝑛𝑑𝑣/𝑙𝑚𝑎𝑥 ) (2)

where 𝑛𝑒𝑥𝑡𝑝𝑜𝑤2 is a function to get the next power of two and 𝑙𝑚𝑎𝑥

is the hash table’s suggested maximum load factor.
In veDB-HTAP, we currently maintain two hash table implemen-

tations, with a higher 𝑙𝑚𝑎𝑥 and a lower 𝑙𝑚𝑎𝑥 separately. In order
to achieve high 𝑙𝑚𝑎𝑥 , additional metadata needs to be stored in
the hash table, which causes extra indirections during lookup. Our
experimental results have shown that, only when under the same
capacity, the one with higher 𝑙𝑚𝑎𝑥 exhibits worse lookup perfor-
mance (around 10%) than the other. In all other cases, it consumes
less memory and shows better lookup performance. Based on above
findings we provide a simple but effective strategy to adaptively
select the hash table implementation. In specific, before hash build,
we calculate the memory capacity used for each type of hash table
according to (2). If they are equal, we select the one with better
lookup performance, i.e., the one with lower 𝑙𝑚𝑎𝑥 , otherwise, we
always select the one with smaller capacity, i.e., the one with higher
𝑙𝑚𝑎𝑥 . We will provide more experimental results in Section 6.

Due to HLL’s computational overhead, adaptive hash table se-
lection may not be advantageous in all cases. It is mainly beneficial
when the build-side’s NDV is large, since the calculating HLL over-
head is outweighed by the benefits of choosing the more efficient
hash table and reduction of the hash table resize cost. When the
build-side’s NDV is small, both the associated HLL calculation over-
head and the potential benefits are small.

5.1.3 Adaptive Runtime Filter. Runtime filtering has been a widely
adopted optimization feature for several decades [7, 8, 14, 83, 89].
The basic idea is to generate a bloom filter [19] over the build
side table and push it down to the probe side table to pre-filter
non-matching rows before the join operation to save the join cost.

It is however a non-trivial task for a query optimizer to compute
the accurate cost saving achieved by pushing down the runtime fil-
ter. The classic join cardinality estimation [81] between table 𝑅 and
𝑆 on attribute 𝐴 is |𝑅 ⊲⊳ 𝑆 | = |𝑅 | · |𝑆 |/𝑚𝑎𝑥 (𝑁𝐷𝑉𝑅 (𝐴), 𝑁𝐷𝑉𝑆 (𝐴)),
where |𝑅 | and |𝑆 | represent the number of rows in 𝑅 and 𝑆 re-
spectively, and 𝑁𝐷𝑉𝑅 (𝐴) and 𝑁𝐷𝑉𝑆 (𝐴) denote the number of
distinct values of 𝐴 in 𝑅 and 𝑆 . Assume 𝑅 is the probe-side base
table, and 𝑆 is the build side table. In order for runtime filter to
be effective, 𝑁𝐷𝑉𝑅 (𝐴) needs to be larger than 𝑁𝐷𝑉𝑆 (𝐴). In the
case of hash join using runtime filter over column 𝐴, we have
|𝑆 | = 𝑁𝐷𝑉𝑆 (𝐴), and , the estimated filtered rows can hence be
expressed as |𝑅 | · (1 − 𝑁𝐷𝑉𝑆 (𝐴)/𝑁𝐷𝑉𝑅 (𝐴)). Multiplying it by 𝛿
(the time required to scan one row) yields the basic cost savings, as
expressed in (3) below:

𝑐𝑜𝑠𝑡𝑠𝑎𝑣𝑖𝑛𝑔 = |𝑅 | · (1 − 𝑁𝐷𝑉𝑆 (𝐴)/𝑁𝐷𝑉𝑅 (𝐴)) · 𝛿, (3)

The overhead of the runtime filter depends on the number of
build-side rows, which is 𝑁𝐷𝑉𝑆 (𝐴). Multiplying 𝑁𝐷𝑉𝑆 (𝐴) by 𝛽
(the build time per distinct value) gives the time needed to construct
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the bloom filter. Both 𝛿 and 𝛽 are session variables with default
values obtained through testing on common clusters.

𝑐𝑜𝑠𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑁𝐷𝑉𝑆 (𝐴) · 𝛽, (4)

Since R is usually a base table, query optimizer usually can es-
timate |𝑅 | and 𝑁𝐷𝑉𝑅 (𝐴) fairly accurately by using statistics on R.
However, it is challenging to obtain accurate 𝑁𝐷𝑉𝑆 (𝐴) because S
may be an intermediate result from a complex sub-query plan. In or-
der to solve this issue, we collect runtime statistics over 𝑁𝐷𝑉𝑆 (𝐴)
at the time of building hash table on S. In this way, we can get
accurate 𝑁𝐷𝑉𝑆 (𝐴), which can also be used to reduce the likelihood
of hash resizing when generating the runtime bloom filter [19].

Different from the work in [83], which only uses the runtime
stats such as row counts on both sides to make a rough decision,
we estimate the bloom filter ndv in a more accurate way.

5.2 Resource-Aware Adaptiveness
Next, we explain how the executor dynamically changes the execu-
tion behavior based on runtime resource information such as CPU
usage, memory availability, etc, to improve both query performance
and quality of service.

5.2.1 Adaptive Disk Spill. Our multi-tenant Data Server clusters
can overcommit memory for cost efficiency, as concurrently run-
ning queries may not require their full memory allocation simul-
taneously. If a Data Server encounters memory shortages, disk
spilling acts as a safeguard mechanism to ensure the successful
execution of queries.

Most disk spill implementations [7, 8, 10, 73] employ preset mem-
ory thresholds at the query level or the operator level for spillable
operators, such as aggregation and join, so that disk spill can take
place whenever the consumed memory exceeds the thresholds. For
example, the optimizer can estimate an operator’s memory usage
and compare it with the threshold to make the spill decision dur-
ing planning. Similarly, the executor can also compare the current
operator’s memory consumption with this threshold to make the
spill decision at runtime.

However, in real-world scenarios, selecting the right query or
operator level threshold is a challenging task for several reasons.
First, workloads are dynamic, and their memory consumption is
unpredictable. Second, accurate cardinality estimation is difficult for
the optimizer, especially with complex queries. Third, the threshold
must balance preventing severe memory shortages on a Data Server
with fully utilizing available resources.

This motivates us to propose an adaptive disk spill approach
based on the runtime memory utilization of Data Servers. Two
memory utilization thresholds, referred to as the soft limit and hard
limit, are introduced. Each Data Server checks its memory usage
against these thresholds at the beginning of each plan fragment
execution, as well as periodically in the remaining execution pro-
cess. Before the memory utilization reaches the soft limit, no disk
spill is required, and queries can allocate memory as needed. When
the memory consumption exceeds the hard limit, all running and
incoming queries will be terminated to prevent the system from
out-of-memory (OOM).

When the memory usage falls between these two limits, indicat-
ing that the system memory is under pressure but not critically low,

disk spill will be triggered. However, instead of spilling all running
queries, in our adaptive approach, disk spill will only be selectively
applied to a subset of queries and their execution fragments. These
candidate fragments are chosen based on their runtime memory
usage, with the goal of bringing the overall memory consumption
down below the soft limit. Specifically, we sort all fragments based
on their execution start time in descending order, and spill the
running operators in the top 𝑘 fragments whose sum of consumed
memory is right above a threshold. If only spilling these queries
are not fast enough to achieve this goal, additional queries may
be considered to spill in a more aggressive way. This adaptive ap-
proach minimizes the performance impact of disk spilling to the
overall system throughput by targeting only a subset of queries,
and provides a fast response to ensure system stability at critical
resource pressures.

5.2.2 Adaptive Predicates Push-Down. veDB-HTAP’s unified stor-
age system is engineered to not only facilitate columnar data gener-
ation and scanning but also support a broad spectrum of push-down
computations, such as filters and aggregates, which can significantly
accelerate query processing by minimizing data transfer across the
network, albeit at the expense of higher resource consumption.
Besides push-down processing and data scans across thousands
of data partitions on a storage node, the unified storage engine
also needs to execute concurrent background tasks such as log
replication and apply, Delta Store flush, compaction, and garbage
collection on those data partitions. A crucial aspect of the unified
storage engine is its ability to segregate the performance effects of
these distinct tasks.

To enhance cost efficiency, the engine optimally serves a multi-
tenant workload at elevated resource utilization levels. To protect
it from ever getting overloaded, the multi-tenant unified storage
engine coordinates with other system components, such as Data
Servers and the replication framework, allowing for the selective de-
lay, avoidance, rejection, or parameter value changing of operations
based on resource utilization while guaranteeing the correctness of
query executions.

One of those approaches is adaptive predicates push-down. The
main idea is that during scan processing, the storage engine checks
its CPU utilization periodically. If it exceeds a certain threshold, the
rest of the scanned data will be returned to the Data Server without
any predicate evaluation. Each data block returned from the storage
possesses a flag, which indicates whether the corresponding predi-
cates have been evaluated. If not, the predicates will be evaluated
at the Data Server to ensure correctness.

6 PERFORMANCE STUDY
In this section, a set of experiments are conducted to evaluate our
system. Except for the elasticity experiment, all the experiments are
conducted on a cluster of six machines with configurations listed
in Table 2. Note the cluster contains four Data Servers and one
Coordinator that is co-located on one of Data Servers. In addition,
the cluster uses one read-write (RW) node and one read-only (RO)
node to handle HTAP SQL queries.

To evaluate the HTAP capabilities of our highly integrated sys-
tem, we conduct experiments using a hybrid OLTP and OLAP work-
load based on the CH-benCHmark [35]. This benchmark combines
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RW/RO Node 16v CPU, 1 NUMA node 64GBDRAM
Data Server/Coordinator 8v CPU, 1 NUMA node 32GB DRAM
Storage Unified Storage
OS Debian 4.14.81
Network 25Gbps Ethernet

Table 2: Cluster Configurations

(a) Perf isolation of OLTP (b) Perf isolation of OLAP

Figure 4: Performance isolation on HTAP workloads

the unmodified TPC-C [3] workload with modified TPC-H queries.
The experiments are performed on CH-benCHmark datasets with
100 warehouses. Additionally, to assess the efficiency and adapt-
ability of our new MPP OLAP engine in handling complex query
processing, we use the widely adopted TPC-H [17] benchmark
with data volumes of 100GB and 1TB. We also compare the execu-
tion times of individual queries against the published results of a
well-known HTAP system on the market, referred to as HTAP-X.

6.1 Hybrid OLTP and OLAPWorkloads
The performance isolation between OLTP and OLAP is critical for
HTAP systems. We test the performance isolation on the RW node
with mixed workloads from CH-BenCHmark. It enables running
both OLTP and OLAP queries on a set of shared tables in one data-
base, and the data is firstly loaded from the OLTP side and then
replicated to the OLAP side. As Figure 4 (a) shows, when the number
of OLTP clients is less than 128, OLTP’s throughput is almost not
affected as the number of OLAP clients increases. However, when
we use 256 OLTP clients, as increasing OLAP clients to issue analyt-
ical queries, there is a small OLTP throughput degradation(<10%)
since CPU resources on the RW node become a bottleneck.

Next, we conducted similar experiments by submitting analytical
queries to the RO node while keeping the TP workload on the RW
node. We verified that there was no OLTP throughput degradation
in such configurations. In production, we recommend customers to
run the veDB-HTAP Plugin on MySQL RO nodes if they want to
avoid potential performance degradation over OLTP workloads.

Figure 4 (b) shows the performance impact on OLAP queries
when we increase the number of OLTP clients with different trans-
action isolation levels. As we increase the number of TP clients
from 4 to 256, the accumulated AP query latency only increases
slightly, which demonstrates great performance isolation in our sys-
tem. In addition, we can observe that the total query latency in Read
Committed (RC) isolation is about 4 seconds higher than the AP

Figure 5: TPC-H 1T performance

(a) Elasticity on TPC-H Q3 (b) Resouce Group Isolation

Figure 6: Elasticity and Isolation

snapshot mode (for each query, we notice there is about 100-200ms
latency delay), where AP queries can be evaluated over current
data snapshots like in ByteHTAP. This performance degradation is
expected since AP queries need to wait for the data snapshot with
the latest committed LSN in the RC mode.

6.2 OLAP Performance
Achieving advanced OLAP performance is one of the foremost
motivations of veDB-HTAP. In this section, we evaluate veDB-
HTAP’s OLAP performance, and compare it with HTAP-X’s latest
published results, using equivalent computing resources.

Figure 5 shows the result for TPC-H 1TB, where veDB-HTAP’s
total latency is 372 seconds, which is about 4× speedup compared
to HTAP-X’s 1534 seconds of latency. Except Q1, all other queries’
running times on veDB-HTAP are at least 2× speedup than HTAP-
X because of better query plans and more efficient query execu-
tion. We also conduct a comparison with ByteHTAP on TPC-H 1T.
veDB-HTAP can achieve about 3× speedup (372 seconds vs 1034
seconds) with less than one-third computing resources. In addition,
we observe that disk spill happens for memory-intensive query Q18.
Without the disk spill functionality, TPCH 1T won’t succeed under
our experiment setup due to constrained memory configuration.

In summary, veDB-HTAP delivers a significant improvement in
OLAP performance over ByteHTAP, and demonstrates substantially
superior performance compared to HTAP-X.

6.3 Elasticity and Isolation
To evaluate the elasticity of our system, we use Q3 in the TPC-
H 100GB benchmark with an upper-bound latency requirement
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of 6 seconds, under different resource group configurations. As
shown in Figure 6 (a), when increasing #Clients (the number of
query streams) from 1 to 2, the query latency also increases and
exceeds the upper bound of the latency requirement. Meanwhile,
all DS nodes’ CPUs are fully utilized and the system is overloaded.
After adding two more DS nodes to the resource group, the query
latency drops down in a few seconds. We repeat the above process:
add another two DS nodes into the resource group after increasing
#Clients from 2 to 3. Similar reductions in latency are observed,
demonstrating that our system scales out efficiently and rapidly.

To demonstrate the resource isolation capability, we run TPC-H
Q3 and TPC-H Q10 on two different resource groups concurrently,
where each resource group contains two DS nodes. As shown in
Figure 6 (b), increasing the #Clients of TPC-H Q3 on resource group
1 has no impact for TPC-H Q10 on resource group 2.

6.4 Adaptive Query Processing
In this section, we conduct experiments to evaluate the effectiveness
of adaptive query processing in veDB-HTAP including runtime stats
collection and resource aware adaptiveness discussed in Section 5.

On-Demand Stats Collection To evaluate the effectiveness
of the on-demand stats, we conduct experiments on the TPC-H1T
benchmark, as shown in Figure 7. Initially, we execute all 22 queries
without collecting any stats, and some queries such as Q5, Q8, and
Q13 cannot even be completed due to suboptimal plans. The re-
maining queries are finished in 1415 seconds. Subsequently, we
sequentially run all 22 queries with the on-demand stats feature.
All 22 queries are completed in 417 seconds, and we observe that
the plans are gradually improved starting from Q4. In the third
run, since all the collected stats are saved in the cache, we achieve
the optimal performance of 379 seconds, which is the same as if
we manually collect all necessary stats in advance. This experi-
ment demonstrates how our system can gradually achieve excellent
performance without any human intervention.

Adaptive Hash Table Selection To evaluate the effectiveness
of adaptive hash table selection, we conduct experiments on TPC-
H 1T benchmark with different hash table implementations. As
Figure 8 shows, neither the high nor the low load hash table is
optimal for both queries. For TPC-H Q3, the high load factor hash
table selection can achieve about 13% performance improvement
compared with the low load factor hash table because its allocated
capacity is smaller in this query. However, choosing the high load
factor hash table causes 7% performance degradation for TPC-H
Q14 than the low load factor hash table, since the high load factor
hash table implementation has a worse lookup performance while
their allocated capacity is same.

By adopting the adaptive hash table selection method, we can
achieve the optimal performance andmemory usage for both queries.
Note that in our design, there is an overhead in calculating the es-
timated NDV. However, this experiment shows the gain from our
approach outweighs the overhead of calculating the NDV.

Adaptive Runtime Filter Since our system uses a disaggre-
gated storage architecture, optimizations, such as runtime filters
and predicate pushdown, can significantly reduce data transfer costs
from storage to Data Servers through the network. Our experiment
shows that we achieve around 41.36% performance improvement

Figure 7: On-demand stats
collection

Figure 8: Adaptive hash table
selection

Figure 9: Adaptive runtime filter Figure 10: Adaptive disk spill

(a) Disable (b) Enable

Figure 11: Adaptive Predicates Push-Down

on the TPC-H 100GB benchmark with the help of the runtime filter,
and even more improvement on the TPC-H 1T workload.

Since building and applying runtime filters during query exe-
cution can incur additional CPU overhead on both Data Servers
and storage nodes, it’s essential to choose the right joins with high
selectivity as the runtime filter candidates in an adaptive manner
as we described in Section 5. We conduct experiments to evaluate
the adaptive runtime filter on TPCH 1T dataset since some queries
contain a mix of high and low-selectivity joins. For Q5, Figure 9
shows we can achieve about 62.2% performance improvement from
38.67 seconds to 14.61 seconds by forcing runtime filters on all join
conditions compared with the case without using runtime filters
at all. With the adaptive runtime filter, we can further improve its
latency to 11.19 seconds by choosing only highly selective joins, i.e.,
not using runtime filters over the join between the tables SUPPLIER
and LINEITEM to avoid unnecessary runtime filter overhead. Sim-
ilar to Q5, Q8 also gets performance improvement with adaptive
runtime filter due to the similar reason.

Adaptive Disk Spill To demonstrate the effectiveness of adap-
tive disk spill, we concurrently run 1 TPC-H 1T Q9 and 8 TPC-H
100G Q9 on the cluster that has 128GB total memory. We compare
the performance across three setups, namely, (1) no-spill, which

4906



(a) Queries Latency Comparision (b) OLAP query latency (c) Extra latency using Read Committed

Figure 12: Production workloads

simply disables the disk spill feature; (2) all-spill, which spills all
the queries when the soft limit is reached; and (3) adaptive-spill,
which selectively spills queries as needed in an adaptive manner
as explained in Section 5.2.1. As expected, the no-spill setup can’t
finish because of limited memory capacity. Figure 10 illustrates the
results for the all-spill and adaptive-spill setups, where adaptive-
spill provides 4% and 12% performance improvements over all-spill
for TPC-H 1T Q9 and TPC-H 100G Q9, respectively. This is because
with adaptive-spill, only a small portion of the 8 TPC-H 100G Q9
queries are spilled, which explains the 12% overall performance
gain over all-spill. TPC-H 1T Q9 will always be spilled in the given
environment due to insufficient system memory. Since the cluster
resource is fully utilized in this experiment, more resource can be
allocated to TPC-H 1T Q9 with the performance improvement of
TPC-H 100G Q9 with adaptive-spill, which is the reason for the 4%
performance gain of TPC-H 1T Q9.

Adaptive Predicates Push-Down In Figure 11, we present
the outcomes of a workload consisting of two distinct query sets,
one with predicates that can be pushed down to the storage, and
the other without any predicates. We want to demonstrate how
adaptive predicates push-down can effectively improve the QPS of
a mixed query workload, particularly in scenarios where CPU is
heavily loaded in a multi-tenant storage. Since the unified storage
nodes cannot scale out as easily as the Data Servers as they contain
states, it is crucial to prevent storage nodes from being overloaded
under heavy workloads.

As shown in Figure 11(a), without adaptive predicates push-
down, query execution under a heavy workload can result in sig-
nificant variance in the storage scan QPS. In contrast, Figure 11 (b)
shows that the average QPS is about 20% higher and exhibits less
variation when adaptive predicates push-down is enabled. With
this feature, the storage system selectively evaluates predicates to
avoid overloading its CPUs. As a result, spare CPU capacity can be
reallocated to other queries, thereby increasing the overall QPS.

6.5 Performance of Production Workloads
Since ByteHTAP became generally available in the middle of 2021,
it has been deployed widely to serve many ByteDance internal cus-
tomers, includingDouyin, Lark, Finance, etc. Since veDB-HTAPwas
released in 2024, we are working on migrating existing customers
from ByteHTAP to veDB-HTAP for performance and resource uti-
lization improvement.

In this section, we studied veDB-HTAP’s performance on several
real-world workloads in our production environment. Figure 12
(a) shows the performance improvement on some representative
queries from one early adopter after migrating from ByteHTAP
to veDB-HTAP. This customer achieves about 2× performance im-
provement, by using only about 20% CPU resource for veDB-HTAP
compared with ByteHTAP to serve their production workload. In
Figure 12 (b), another new customer of veDB-HTAP requires read
committed transaction isolation with a database over 10 Terabytes
in size. Figure 12 (b) shows over a 12-hour period, the OLAP query
latency consistently remained below 1 second while the system
handled thousands of QPS from concurrent OLTP queries. In addi-
tion, Figure 12 (c) illustrates the additional latency incurred when
waiting for the latest snapshot under the Read Committed isolation
level, which remained below 200ms.

As veDB-HTAP continues to be adopted by more customers, we
will gain deeper insights into the system and share our findings in
the future.

7 CONCLUSIONS
veDB-HTAP is designed to be a highly integrated, efficient and
adaptive HTAP system. veDB-HTAP adopts a highly integrated
system architecture and provides a seamless query processing ex-
perience across OLTP and OLAP engines with a newly built cost-
based and ML-based smart query router. One key design principle
of veDB-HTAP is to make major system components, including
query planning, query execution, and unified storage, collaborative
and adaptive. The experiments show that veDB-HTAP can achieve
more than 3× speedup for TPC-H while consuming only one-third
of the resources compared to ByteHTAP.
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