
SagaLLM: Context Management, Validation, and Transaction
Guarantees for Multi-Agent LLM Planning
Edward Y. Chang

Stanford University

echang@cs.stanford.edu

Longling Geng

Stanford University

gll2027@stanford.edu

ABSTRACT
This paper introduces SagaLLM, a structured multi-agent architec-

ture designed to address four foundational limitations of current

LLM-based planning systems: unreliable self-validation, context

loss, lack of transactional safeguards, and insufficient inter-agent

coordination. While recent frameworks leverage LLMs for task

decomposition and multi-agent communication, they often fail to

ensure consistency, rollback, or constraint satisfaction across dis-

tributed workflows. SagaLLM bridges this gap by integrating the

Saga transactional pattern with persistent memory, automated com-

pensation, and independent validation agents. It leverages LLMs’

generative reasoning to automate key tasks traditionally requiring

hand-coded coordination logic, including state tracking, depen-

dency analysis, log schema generation, and recovery orchestra-

tion. Although SagaLLM relaxes strict ACID guarantees, it ensures

workflow-wide consistency and recovery through modular check-

pointing and compensable execution. Empirical evaluations across

planning domains demonstrate that standalone LLMs frequently

violate interdependent constraints or fail to recover from disrup-

tions. In contrast, SagaLLM achieves significant improvements in

consistency, validation accuracy, and adaptive coordination un-

der uncertainty—establishing a robust foundation for real-world,

scalable LLM-based multi-agent systems.

PVLDB Reference Format:
Edward Y. Chang and Longling Geng. SagaLLM: Context Management,

Validation, and Transaction Guarantees for Multi-Agent LLM Planning.

PVLDB, 18(12): 4874 - 4886, 2025.

doi:10.14778/3750601.3750611

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/genglongling/SagaLLM.

1 INTRODUCTION
Multi-Agent Systems (MAS) have long been a cornerstone of dis-

tributed computing and database systems [15, 26, 29]. Over the

past few decades, their development has followed two primary

trajectories. In the database community, MAS traditionally inte-

grated the foundational transaction processing principles, particu-

larly ACID properties [22, 44], to ensure consistency and reliability

for complex multi-step operations. For long-lived, distributed, or

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.

doi:10.14778/3750601.3750611

loosely-coupled tasks, MAS also adopted more flexible transactional

models (e.g., Saga [18]) to maintain robustness while relaxing strict

atomicity or isolation constraints.

Parallel to these database-oriented approaches, distributed sys-

tems research emphasized coordination protocols and flexible col-

laboration mechanisms [16, 45], enabling scalable multi-agent in-

teractions without the overhead of strict locking or heavyweight

transactional guarantees. These complementary development paths

have resulted in frameworks optimized for different priorities: trans-
actional integrity versus adaptive coordination, highlighting the

fundamental trade-off between strong consistency and flexible exe-

cution in practical systems.

Recent advances in Large Language Models (LLMs) [12, 41, 51]

have revitalized MAS as a paradigm for sophisticated reasoning and

multi-agent collaboration [7, 8, 14]. Frameworks such as AutoGen

[46], LangGraph [28], and CAMEL [30] demonstrate how LLM-

based agents can decompose tasks, interact between modalities, and

coordinate to solve complex problems. However, this resurgence

often neglects the foundational transaction guarantees essential to

reliable multi-agent workflows, particularly in domains requiring

robust state management.

Unlike traditional MAS, LLM-based systems often lack mech-

anisms for maintaining strong consistency, failure recovery, and

rollback handling, leading to inconsistent states, partial failures,

and unreliable execution in real-world applications. These limita-

tions stem from several fundamental challenges: LLMs struggle

with internal validation due to inherent limitations highlighted by

Gödel’s incompleteness theorems [21], making them unreliable for

detecting and correcting their own errors. Furthermore, context
loss in long conversations [33, 35, 47] can cause LLMs to forget

earlier steps, leading to contradictory decisions. When tasks are dis-

tributed across multiple agents, these problems are compounded, as

no built-in supervisory mechanism exists to reconcile state changes

or validate constraint satisfaction across agents.

For example, in a travel booking scenario, an LLM-based MAS

can independently issue flight and hotel reservations without en-

suring their coordinated success. If the flight is later canceled, the

systemmay not recognize the inconsistency, leaving the hotel reser-

vation active. Such scenarios illustrate the critical need for transac-

tional frameworks that preserve the intelligence and adaptability

of LLM-based MAS while ensuring consistency and reliability in

long-running, interdependent workflows.

To address these limitations, we propose SagaLLM, a multi-agent

transactional system that extends the Saga pattern, a transactional

model originally developed to manage complex, long-lived transac-

tions by decomposing them into smaller, independently validated,

committed, and compensable units. By integrating transactional

logic, compensatory rollback mechanisms, and persistent memory

4874

https://doi.org/10.14778/3750601.3750611
https://github.com/genglongling/SagaLLM
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750611
https://www.acm.org/publications/policies/artifact-review-and-badging-current

into LLM-based MAS, SagaLLM ensures that each individual oper-

ation within a workflow is reliably validated and committed, with

clearly defined compensating transactions that restore system-wide

consistency in case of failure.

Crucially, SagaLLM leverages the reasoning and coding capabil-

ities of LLMs to automate core aspects of transaction orchestration

that previously required scenario-specific manual programming.

SagaLLM enables LLMs to:

1. Identify the persistent states to track,

2. Validate constraints and inter-agent dependencies,

3. Design logging schemas to capture workflow transitions,

4. Develop compensatory logic for failure recovery, and

5. Implement communication protocols among agents to coordi-

nate these behaviors.

Traditionally, each of these components required custom imple-

mentation by system developers, tailored to individual applications.

In contrast, SagaLLM employs LLM as intelligent agents that auto-

matically infer, generate, and coordinate these mechanisms, greatly

improving scalability and reducing development overhead.

This hybrid approach—integrating transactional processing with

adaptive multi-agent intelligence—makes SagaLLM particularly ef-

fective for real-world applications that are complex and demand

reliability and safety in e.g., healthcare management, supply chain

management, and emergency response. These capabilities collec-

tively enable SagaLLM to overcome foundational limitations in

LLM-based MAS, such as unreliable state coordination, lack of roll-

back support, and limited context retention, thereby supporting

robust, scalable reasoning across distributed agents. We summarize

our key contributions below:

1. Transactional Consistency via Persistent Memory and
Compensation: SagaLLM introduces transactional safeguards

and persistent-memory-based compensatory mechanisms to

LLM-based MAS, ensuring reliable consistency and coherent

state recovery across multi-agent workflows.

2. Robust Constraint and Dependency Validation: SagaLLM
incorporates temporal-spatial context tracking and external

verification mechanisms to validate inter-agent dependencies

and prevent inconsistencies, addressing the fundamental limits

of LLM self-verification.

3. LLM-Orchestrated Intelligence: SagaLLM automates key

components of multi-agent planning—state tracking, constraint

checking, log schema design, compensation logic, and coordi-

nation protocols—through the generative reasoning and coding

capabilities of LLMs.

The remainder of this paper covers: related work (Section 2),

problem definition (Section 3), architecture (Section 4), evaluation

(Section 5), and conclusions (Section 6).

2 RELATEDWORK
We review three strands of related work: (1) the evolution of trans-

actional management, particularly the Saga pattern; (2) cognitive

limitations of LLMs motivating the requirements for transactional

integrity, independent validation, and context preservation; and

(3) multi-agent LLM frameworks and recent attempts to integrate

transactional safeguards.

2.1 Transaction Management Systems
Transactional models have evolved significantly since Gray intro-

duced the ACID properties [22]. In distributed settings, strict ACID

guarantees became impractical, prompting models such as BASE

[37] and long-lived transaction patterns.

The Saga pattern by Garcia-Molina and Salem [18] decomposes

long-lived transactions into smaller, locally atomic sub-transactions

with compensating steps for failure recovery. This has influenced

modern microservice architectures and workflow engines [38].

Systems such as YAWL [40], AWS Step Functions [1], and Azure

Logic Apps [2] embed Saga-style workflows but remain rigid and

manually defined, lacking dynamic adaptability. These foundational

principles inform SagaLLM’s adaptive, LLM-driven extensions.

2.2 LLM Limitations Necessitating SagaLLM’s
Key Requirements

To realize this complementary relationship between AI and work-

flow systems, we must first address the specific limitations that

prevent current LLMs from functioning effectively in transactional

workflows. In addition to what has been said about hallucinations

[25], our analysis reveals three fundamental limitations that directly

motivate SagaLLM’s core requirements: transactional integrity, in-

dependent validation, and strategic context preservation.

Self-Validation Gap Necessitating Independent Validation.
LLMs inherently lack robust self-validation mechanisms, a limi-

tation originating from intrinsic boundaries identified by Gödel’s

incompleteness theorems, demonstrating fundamental constraints

on a system’s ability to verify its own reasoning [11, 21]. Recent

research confirms that self-refinement techniques [27, 31, 34], while

iterative and beneficial, are unable to surpass inherent capability

ceilings to reliably correct deeper logical errors [24]. In transactional

scenarios, these validation gaps manifest as factual inconsistencies,

invalid operations, and unreliable plan feasibility assessments [48].

Thus, SagaLLM incorporates an independent validation framework

to mitigate these inherent limitations.

Statelessness Necessitating Transactional Integrity. LLMs

process each interaction independently, lacking native mechanisms

to maintain the state across sequential interactions. This funda-

mental statelessness necessitates explicit transactional integrity

management to maintain coherent operation sequences and ensure

robust failure recovery. Without systematic transaction manage-

ment, LLM-based systems risk state inconsistency, operation losses,

and incoherent recovery procedures.

Context Limitations and Strategic Preservation. LLMs rely

on self-attention mechanisms that prioritize recent tokens, lead-

ing to significant degradation in context retention over long se-

quences. Empirical studies reveal sharp drops in recall beyond to-

ken limits [35, 47], especially for mid-context information [23, 33].

Chain-of-thought heuristics [5] further exacerbate this by lack-

ing mechanisms to manage or pass context reliably across steps.

These limitations hinder multi-step reasoning [39, 43], as earlier

outputs are frequently lost. SagaLLM addresses this by explicitly

preserving vulnerable context elements—goals, justifications, and

dependencies—through structured memory and persistent tracking.

4875

Collectively, these limitations provide strong motivation to ad-

dress all three key requirements within SagaLLM. Comprehensive

transaction management, independent validation, and strategic con-

text preservation are essential for reliably deploying LLM-based

multi-agent systems (MAS) in critical real-world applications.

2.3 Multi-Agent LLM Frameworks and
Transaction Limitations

Frameworks such as AutoGen [46], LangGraph [28], and CAMEL

[30] advancemulti-agent LLM coordination but fall short in address-

ing SagaLLM’s three core requirements: transactional integrity,

independent validation, and context preservation.

Missing Transaction Semantics. LangGraph and AutoGen en-

able structured workflows and agent interactions, but lack built-in

atomicity guarantees, compensation logic, or robust failure recov-

ery. AgentScope [17] and AFlow [50] introduce limited rollback

mechanisms, but do not generalize across workflows.

Validation Gaps. Most frameworks are based on LLM self-

validation, exposing them to reasoning errors and hallucinations.

Systems such as PLASMA [4] improve reliability but omit transaction-

level rollback. LLM-MCTS [52] and Tree-of-Thought [49] emphasize

pre-execution reasoning without runtime consistency checks.

Limited Context Preservation. CAMEL preserves dialogue his-

tory but lacks mechanisms for tracking state transitions, inter-agent

dependencies, or compensatory paths. Broader planning systems

[42] do not offer persistent context retention strategies.

Unlike these systems, SagaLLM treats compensation, validation,

and context tracking as first-class design goals, and ensures re-

liable, recoverable, and intelligent coordination across complex

multi-agent workflows.

3 SYSTEM REQUIREMENTS
Building on the limitations identified in Section 2, this section

formally defines SagaLLM’s requirements.While SagaLLM inherits

the core transactional semantics of classical Saga patterns [18],

significant adaptations are required for LLM-based multi-agent

systems, as summarized in Table 1.

To address foundational limitations in LLM-based execution,

SagaLLM is organized around three tightly interwoven yet con-

ceptually distinct requirements that extend classical transaction

processing into the realm of adaptive multi-agent intelligence:

1. Transactional Integrity: Ensures that agent operations tran-
sition the system through coherent, globally consistent states.

This is achieved through structured rollback mechanisms, com-

pensating actions, and invariant preservation across interde-

pendent agents. It also requires reliable tracking of system

state to detect and repair inconsistencies triggered by partial

execution or disruptions.

2. Independent Validation: Addresses the known limitations of

self-validation of LLM by introducing global and cross-agent

and external validation layers. These mechanisms evaluate

agent outputs and inter-agent inputs against constraints, schemas,

and dependency graphs. Persistent validation histories are

Table 1: Classical Saga vs SagaLLM Framework Comparison

Aspect Classical Saga SagaLLM

Domain Database

transactions

Multi-agent LLM

workflows

Compensation Pre-defined

rollback procedures

LLM-generated + validated

compensation

Validation Schema/constraint

validation

Independent LLM output

validation

Context Stateless

transactions

Strategic context

preservation

Coordination Simple sequential

execution

Complex multi-agent

dependency management

Intelligence Rule-based

workflows

Adaptive LLM reasoning

w/ transaction guarantees

maintained to support rollback triggers and guard against hal-

lucinations or invalid commitments.

3. Context Management:Maintains essential state and depen-

dency information across long-horizon workflows. Unlike sys-

tems that rely on ephemeral context windows, SagaLLM per-

sistently stores goals, state histories, decision justifications for

transitions and constraint resolutions, and compensation plans

in structured memory. This enables agents to reason over con-

sistent histories and perform accurate recovery after failures.

This integrated design contrasts with prior systems that handle

these aspects in isolation or without formal guarantees. The mu-

tual reinforcement among these three pillars reflects the central

challenge of LLM-based workflows: effective orchestration under

uncertainty, without sacrificing consistency and correctness.

3.1 Transactional Integrity Requirements
SagaLLM provides transactional guarantees tailored formulti-agent

workflows, extending classical transaction semantics across au-

tonomous agent boundaries. Sequences 𝑂 = {𝑜1, 𝑜2, ..., 𝑜𝑛} are op-
erations treated as a unit of logical cohesiveness, where each 𝑜𝑖 is

locally atomic. If any operation fails, SagaLLM initiates compen-

satory actions to restore global consistency.

Applying 𝑂 to a system state 𝑆 must yield either a fully commit-

ted state 𝑆 ′, or trigger a coherent rollback that returns the system

to 𝑆 , thereby avoiding partial or inconsistent outcomes. To ensure

this, SagaLLM enforces the following properties:

Consistency Preservation. SagaLLM ensures that all state tran-

sitions respect global invariants 𝐼 . If 𝑆 |= 𝐼 , then any resulting

𝑆 ′ |= 𝐼 , even when execution spans multiple agents.

Isolation Guarantees. SagaLLM guarantees that concurrently

executing agents produce final states equivalent to some serial

order, regardless of autonomy or internal decision processes.

Durability Assurance. SagaLLM guarantees persistence of

committed states by durably recording execution outcomes and

metadata necessary for fault recovery and compensatory execution.

To enforce these guarantees, SagaLLM maps each 𝑜𝑖 to a local

transaction 𝑇𝑖 , paired with a compensating transaction 𝐶𝑖 . In case

of failure at step 𝑇𝑗 , compensating actions are invoked in reverse:

4876

Table 2: Transaction State Management in SagaLLM

Mechanism Information Recorded

Application State (𝑆𝐴)

Domain Entities • Application-domain objects

• Entity states and status

• Checkpoints and snapshots

Operation State (𝑆𝑂)

Execution Logs • Operation inputs and outputs

• Timestamps and execution status

• Completion indicators

Decision Reasoning • LLM-generated reasoning chains

• Justifications and alternatives

Compensation

Metadata

• Inverse operations

• Preconditions and recovery state

Dependency State (𝑆𝐷)

Causal Dependencies • Inter-operation constraints

• Data and resource flow mappings

Constraint

Satisfaction

• Boolean condition checks

• Satisfaction evidence

and timestamps

Saga 𝑆 = {𝑇1,𝑇2, ...,𝑇𝑛,𝐶𝑛, ...,𝐶2,𝐶1}. (1)

3.1.1 Transaction State Management. SagaLLM maintains a struc-

tured state representation in three orthogonal dimensions to sup-

port validation, compensation, and recovery, as detailed in Table 2.

• Application State (𝑆𝐴): Application-domain objects, entity states

and status, along with checkpoints and snapshots that capture

the semantic state of the application at transaction boundaries.

• Operation State (𝑆𝑂): Complete execution metadata including

operation inputs and outputs, timestamps and execution status,

LLM-generated reasoning chains with justifications, and com-

pensation metadata for recovery operations. This state enables

precise replay, debugging, and compensation by maintaining

an audit trail of computational steps and decision rationales.

• Dependency State (𝑆𝐷):Graph-structured representation of inter-
operation constraints, data and resource flow mappings, and

constraint satisfaction criteria with boolean condition checks

and satisfaction evidence. This state tracks both explicit de-

pendencies declared by operations and implicit dependencies

discovered during execution, enabling intelligent scheduling

and conflict resolution.

3.1.2 Dependency Tracking and Compensation Planning. SagaLLM
models operation dependencies as a directed graph:

𝐷 = {(𝑜𝑖 , 𝑜 𝑗 , 𝑐𝑖 𝑗) | 𝑜 𝑗 depends on 𝑜𝑖 under condition 𝑐𝑖 𝑗 }. (2)

To express more complex conditions:

𝑐 {𝑖1,...,𝑖𝑛 }, 𝑗 = B(𝑐𝑖1 𝑗 , ..., 𝑐𝑖𝑛 𝑗), (3)

where B is a Boolean function under the prerequisite conditions.

Upon failure, SagaLLM traverses this graph to determine the

minimal set of affected operations and executes compensatory ac-

tions that restore global consistency.

Application Layer

Agent Definitions Workflow Definition Compensation Definitions

SagaLLM
Context Management Framework

Context Manager

- Context Tracking
- State Projection
- Token Management

Information Selector

- Critical Section
- Relevance Filtering
- Priority Rules

Context Restoration

- Checkpoint Mgnt.
- Context Reconstruction
- Restoration Strategy

Validation Framework

Validation Manager

- Validation Layers
- Orchestration
- Result Handling

Validator Registry

- Intra/Inter Agents
- Validation Rules
- Domain Knowledge

Protocol Handlers

- Rejection Protocol
- Augmentation Protocol
- Feedback Protocol

Transaction Framework
Saga Coordinator

- Saga Definition
- Execution Control
- Failure Detection

Transaction Manager

- Transaction Log
- State Management
- Version Control

Compensation Manager

- Compensation Reg.
- Rollback Orchestration
- Recovery Strategies

Dependency Tracker

- Dependency Graph
- Condition Evaluation
- Satisfaction Checking

Critical Op Manager

- Operation Marking
- Tracking Control
- Validation Rules

LangGraph or Equivalent

StateGraph State & Flow Node Handlers Execution Management

LLM Infrastructure
Language Models (e.g.,
GPT-4, Claude, etc.)

Interface Endpoints (APIs)
Context Management

(Tokenization, Windows)

Figure 1: Architecture of SagaLLM. It sits between the ap-
plication layer and LLMs, consisting of three frameworks:
Context Management, Validation, and Transaction.

3.2 Independent Validation Requirements
To address the inherent limitations of LLM self-verification, SAGA

introduces a two-tier validation architecture governed by a global

validation agent. This agent operates independently of task agents

and has visibility into the full transaction history, agent communi-

cations, and global state.

Intra-Agent Output Validation. The global validation agent

inspects the outputs of the individual task agents before those

outputs are committed or transmitted. Outputs are checked for:

syntactic correctness (format, schema), semantic coherence and

reasoning soundness, factual accuracy against context, constraint

adherence and invariants, and context preservation and dependency

awareness. Failures trigger compensations.

Inter-Agent Input and Dependency Validation. Inputs and
messages between agents are validated before delivery. Checks in-

clude: contract conformance, dependency satisfaction, cross-agent

consistency, temporal ordering, mutual agreement on shared state,

and transaction coherence. Failed validations blockmessage passing

and invoke recovery.

Validation Response Protocols. SAGA defines structured vali-

dation outcomes:

- Rejection: Discard and compensate

- Augmentation: Enhance with clarifications

- Feedback: Record for future adaptation

4877

3.3 Context Management Requirements
SagaLLM identifies and retains essential context for recovery, vali-

dation, and inter-agent dependencies:

- Selective Retention: Filters critical info
- Structured Storage:Organizes specs, justifications, and reasoning
- Dependency Tracking: Maintains prerequisites for rollback

- Communication Protocol: Ensures necessary context exchange

Failure Handling and Recovery. Effective recovery depends on pre-

served context and dependency tracking. SagaLLM supports multi-

level failure response:

1. Operation-Level:Upon failure, the system invokes compensatory

actions using logs and rollback specifications stored in 𝑆𝑂 .

2. Workflow-Level: SagaLLM traverses the dependency graph to

orchestrate reverse execution paths across agents, restoring

global consistency based on 𝑆𝐷 and recorded constraints.

This layered integration of recovery within strategic context

management enables SagaLLM to meet the transactional demands

of complex real-world multi-agent LLM workflows.

4 DESIGN AND IMPLEMENTATION
Figure 1 depicts the SagaLLM architecture, which sits between the

application layer and LLM multi-agent systems like LangGraph.

SagaLLM comprises three frameworks: context management, val-
idation, and transaction. To illustrate the design, we use a simple

travel planning example.

Travel Planning Problem
This example demonstrates how SagaLLM automatically manages

complex multi-agent LLMworkflows for international trip planning

with multiple destinations, budget constraints, and transactional

booking requirements. The application illustrates the transition

from manual planning to automated SagaLLM-managed execution.

4.1 Specifications
- Plan a trip from San Francisco to Berlin and Cologne and then

back to San Francisco.

- Travel period: June 2025 (flexible within the month)

- Budget constraint: $5,000 total.

- Required bookings: flights, hotels, and trains between cities.

- Preferences:

> Moderately priced accommodations (3-4 star hotels).

> Direct flights when possible.

> Train pass to save money.

> Flexible scheduling with 4 days in Berlin and 2 in Cologne.

4.2 Two-Phase Workflow Architecture
The application workflow consists of two distinct phases with dif-

ferent automation levels:

Phase 1 (Manual Planning): Human-driven itinerary planning

and user validation.

Phase 2 (Automated SagaLLM Execution): Fully automated

multi-agent transaction management.

Figure 2 illustrates this workflow transition, where gray boxes

represent manual planning activities and cyan boxes represent

automated SagaLLM-managed transactions.

Initial Planning

User

Validation
Revision

Finalize ItineraryFlight to Berlin

Berlin Hotel Train to Cologne Cologne Hotel

Return Flight

Yes

No

SagaLLM Takeover

auto compensate

auto comp auto comp

auto compensate

error

Figure 2: Travel PlanningWorkflow showing transition from
manual planning to automated SagaLLM execution. Gray
boxes representmanual human-driven activities. Cyan boxes
represent fully automated SagaLLM-managed transactions
with automatic compensation, validation, and recovery. The
blue arrow indicates the handoff point where SagaLLM takes
complete control.

4.2.1 Phase 1: Manual Itinerary Planning. Phase 1 involves tradi-
tional human-driven planning activities that establish the require-

ments and constraints for automated execution:

1. Initial Plan Generation: Human planners generate multiple

feasible itineraries based on user requirements, specifying flight

options, hotel reservations, and transportation with cost esti-

mates validated against budget constraints.

2. Iterative Refinement: Users review proposed itineraries and

provide feedback, leading to plan adjustments through manual

coordination. Essential context including dates, preferences, and

constraints is tracked to ensure complete handoff to SagaLLM.

3. Plan Finalization and SagaLLM Handoff: Users select and

approve the final itinerary with all requirements and constraints.

The system compiles comprehensive specifications including

booking dependencies, budget limits, and user preferences, then

initiates automatic handoff to SagaLLM. All subsequent opera-

tions—design, coding, agent coordination, and execution—become

fully automated through LLM-driven orchestration.

4.2.2 Phase 2: Automated SagaLLM Execution. SagaLLM assumes

complete control of workflow development and transaction man-

agement upon receiving the finalized specifications from Phase 1.

Given a planning problem O, constraint set 𝐷 , and performance

metricsM, SagaLLM autonomously generates a complete work-

flow consisting of nodes and edges, provides specifications for both

transaction and compensation agents, and performs validation and

refinement. Each workflow component is assigned both a primary

agent for transaction execution and a compensation agent for roll-

back or compensation operations.

Algorithm 1 outlines SagaLLM’s complete Phase 2 workflow

and code generation process. The following sections detail the

core architecture and validation mechanisms, while the extended

version [11] provides additional coverage of advanced deployment

scenarios and runtime optimization techniques.

4878

Algorithm 1WorkflowW
template

Construction and Agent Code Generation

Require: Problem specification O, constraints 𝐷 , performance metricsM
Local Variables:
1: Roles R; Profiles P; Nodes N; Edges E
2: Log schemas L𝑛𝑖 , L𝑒𝑖 𝑗

3: Agents, Comp Agents 𝛼𝑛𝑖 , 𝛼𝑒𝑖 𝑗 , 𝛼
𝑐𝑜𝑚𝑝
𝑛𝑖

, 𝛼
𝑐𝑜𝑚𝑝
𝑒𝑖 𝑗

Ensure: ValidatedW
template

= (N, E)

Stage 1: Network Construction (extracting information from O)
4: R ← ExtractRoles(O)
5: { (𝑛𝑖 , P𝑖) } ← map

role
(O, R)

6: N ← {𝑛𝑖 }, E ← map
dep
(N, 𝐷)

7: W
template

← (N, E)

Stage 2: Agent Specification (for each node and edge, creating its agent

and compensation agent with logging schema)

8: for all 𝑛𝑖 ∈ N do
9: L𝑛𝑖 ← DefineLogSchema(𝑛𝑖 , P𝑛𝑖)

10: 𝛼𝑛𝑖 ← DefineNodeAgent(𝑛𝑖 , L𝑛𝑖)
11: 𝛼

𝑐𝑜𝑚𝑝
𝑛𝑖

← DefineCompAgent(𝛼𝑛𝑖 , L𝑛𝑖)
12: for all 𝑒𝑖 𝑗 ∈ E do
13: L𝑒𝑖 𝑗 ← DefineLogSchema(𝑒𝑖 𝑗 , P𝑒𝑖 𝑗)
14: 𝛼𝑒𝑖 𝑗 ← DefineEdgeAgent(𝑒𝑖 𝑗 , L𝑒𝑖 𝑗)
15: 𝛼

𝑐𝑜𝑚𝑝
𝑒𝑖 𝑗

← DefineCompAgent(𝛼𝑒𝑖 𝑗 , L𝑒𝑖 𝑗)

Stage 3: Validation and Refinement (code validation and refinement)

16: W
template

← UpdateWorkflow(N, E, 𝛼, 𝛼𝑐𝑜𝑚𝑝)
17: while not ValidateWorkflow(W

template
,M) do

18: StructuralValidation(W
template

)
19: ConstraintValidation(W

template
, 𝐷)

20: CompensationValidation(W
template

), {𝛼𝑐𝑜𝑚𝑝 })
21: W

template
← RefineWorkflow(W

template
,M)

22: returnW
template

4.2.3 Detailed Phase 2 Implementation. The automated execution

phase consists of four integrated components:

1. Automatic System Architecture Generation: SagaLLM ana-

lyzes the finalized itinerary and automatically generates the ap-

propriate agent architecture, defines the transaction sequences

(𝑇1,𝑇2, ...,𝑇𝑛) and the corresponding compensations (𝐶1,𝐶2, ...,𝐶𝑛),

and establishes validation rules and dependency graphs based

on booking requirements.

2. Automatic Agent Deployment and Coordination: The sys-
tem instantiates required domain agents (FlightBookingAgent,

HotelBookingAgent, etc.) with appropriate configurations, de-

ploys GlobalValidationAgent and SagaCoordinatorAgent with

full system access, and configures agent communication proto-

cols and data schemas.

3. Automatic Transaction Execution: The system executes the

complete booking sequence: 𝑇1 (International Flight Booking

SFO→ Berlin),𝑇2 (Berlin Hotel Booking coordinated with flight

confirmation), 𝑇3 (Train Booking Berlin→ Cologne scheduled

with hotel checkout), 𝑇4 (Cologne Hotel Booking aligned with

train arrival), and 𝑇5 (International Return Flight Cologne→
SFO coordinated with hotel checkout).

4. Automatic Exception Handling and Recovery: SagaLLM
automatically detects validation failures and executes appro-

priate compensations, maintains system consistency without

human intervention, automatically replans affected portions

using preserved context and constraints, and only falls back to

Phase 1 for human re-evaluation when automatic replanning

cannot satisfy constraints.

4.3 Agent Architecture and Code Structures
Figure 3 presents the organization of the code implementation,

structured into the application interface, SagaLLM core, and Lang-

Graph integration components. The agent architecture consists of

task execution agents that handle domain-specific operations and

global coordination agents that manage system-wide consistency,

validation, and compensation orchestration.

4.3.1 Task Execution Agents. Task execution agents focus solely

on their domain-specific operations, with all validation handled

externally by the global validation agent. Each agent maintains

structured input/output interfaces and internal state for recovery.

FlightBookingAgent.
- Input Schema: travel_dates, budget_limit, airline_preferences,

passenger_details

- Output Schema: flight_details, confirmation_number, total_cost,

cancellation_policy

- Internal State: reservation_status, booking_reference, payment

HotelBookingAgent.
- Input Schema: checkin_date, checkout_date, location_constraints,
amenity_preferences, budget_limit

- Output Schema: hotel_details, room_type, confirmation_number,

total_cost, cancellation_policy

- Internal State: reservation_status, booking_reference, payment

TrainBookingAgent.
- Input Schema: departure_location, arrival_location, travel_time,

connection_requirements

- Output Schema: train_details, seat_res., total_cost, schedule_details
- Internal State: ticket_status, booking_reference, refund_policy

BudgetTrackingAgent.
- Input Schema: expense_item, cost, category, transaction_id

- Output Schema: updated_total, remaining_budget, budget_status,

expense_breakdown

- Internal State: cumulative_expenses, expense_log, constraints

ItineraryPlanningAgent.
- Input Schema: user_prefs, travel_constraints, confirmations

- Output Schema: optimized_itinerary, timing_schedule, activity

recommendations

- Internal State: preference_history, optimization_parameters, con-

straint_violations

4.3.2 Global Coordination Agents.

4879

Root

langgraph_

integration

saga_

graph.py

state_

manager.py

agent_

wrappers.py

SagaLLM

context

management

agent

validation

transaction

management

applications

travel_

planning.py

customer_

support.py
complex

multi_agent_

workflow.py

nested_tran-

sactions.py

app_state.pyRAG.py

select_

context.py

restore_

context.py

intra_

agent.py

validators.py

inter_

agent.py

protocols.py

transaction_

manager.py

saga_

coordinator.py

compensationdependency.py

Figure 3: Directory Structure of SagaLLM Integration with LangGraph

GlobalValidationAgent. The central validation authority that

maintains access to all system state and performs comprehensive

validation before any transaction commitment.

- System Access: Complete visibility to all agent outputs, transac-

tion history, dependency graph, and critical context

- Validation Scope: Intra-agent output validation and inter-agent

communication validation (detailed in Table 3)

- Response Protocols: Rejection (triggers compensation), Augmenta-

tion (enhances outputs), Feedback (improves future performance)

SagaCoordinatorAgent. Manages transaction sequencing, de-

pendency tracking, and compensation orchestration.

- Coordination State: active_transactions, dependency_graph, com-

pensation_queue, transaction_log

- Responsibilities: Transaction ordering, failure detection, compen-

sation sequence execution

4.3.3 Critical Context and State Management. SagaLLM maintains

comprehensive context across three state dimensions, with specific

agents responsible for different aspects:

Application State (𝑆𝐴). Managed by task execution agents:

- Travel Configuration: travel_dates_per_city, destination_sequence,
passenger_manifest

- Booking Details: confirmation_numbers, cancellation_policies,

pricing_breakdown

- User Constraints: budget_limits, preference_profiles, accessibil-

ity_requirements

Operation State (𝑆𝑂). Managed by SagaCoordinatorAgent:

- Transaction Log: transaction_id, agent_id, input_data, output_data,
execution_timestamp

- Decision Reasoning: reasoning_chain, alternatives_considered,
decision_justification

- Compensation Actions: compensation_procedure, rollback require-

ments, recovery_state

Dependency State (𝑆𝐷). Managed by GlobalValidationAgent:

- Inter-Booking Dependencies: prerequisite_transactions, tempo-

ral_constraints, resource_dependencies

- Validation Status: validation_results, constraint_satisfaction, de-
pendency_resolution

4.4 Transaction Flow and Validation Protocol
4.4.1 Transaction Execution Sequence. Each transaction follows a

standardized execution pattern managed by SagaCoordinatorAgent

with validation checkpoints enforced by GlobalValidationAgent:

1. Pre-execution Validation: GlobalValidationAgent validates inputs
and dependency satisfaction

2. Transaction Execution: Task agent performs operation

3. Output Validation: GlobalValidationAgent performs comprehen-

sive output validation (Table 3)

4. State Commitment: Upon validation success, results are commit-

ted to system state

5. Compensation Registration: SagaCoordinatorAgent records com-

pensation procedures for potential rollback

4.4.2 Comprehensive Validation Framework. Table 3 details the

validation types performed by the GlobalValidationAgent at each

checkpoint. All validation occurs externally to task agents, ensuring

independent eval of agent outputs and inter-agent communications.

4.5 Compensation and Recovery Mechanisms
4.5.1 Transaction-Specific Compensations. Each transaction main-

tains explicit compensation procedures executed by the SagaCoor-

dinatorAgent upon validation failure:

Flight Booking Compensation (𝐶1).
- Immediate Actions: Cancel reservation, release seat, refund
- State Restoration: Reset booking status, clear confirmation num-

bers, restore budget allocation

- Dependency Impact: Trigger hotel and train booking re-evaluation
based on new flight availability

Hotel Booking Compensation (𝐶2).
- Immediate Actions: Cancel reservation per hotel policy, refund

- State Restoration: Cancel room, restore budget allocation

- Dependency Impact: Notify itinerary planning for location-based

activity adjustments

Train Booking Compensation (𝐶3).
- Immediate Actions: Cancel tickets per railway policy, refund

- State Restoration: Clear reservations, update travel schedule
- Dependency Impact: Recalculate inter-city travel times for depen-

dent bookings

4.5.2 Recovery Protocol Execution. Upon validation failure, the

system executes a structured recovery sequence:

4880

Table 3: Validations Performed by GlobalValidationAgent

Validation Type Implementation Example

Intra-Agent Output Validation

Syntactic Validation Verify JSON structure with required fields

(departure_time, arrival_time,

flight_number)

Semantic Validation Confirm accommodation covers entire trip

duration without gaps

Factual Validation Maintain consistent travel times

(45-minute hotel-to-train travel time)

Constraint Adherence Enforce budget limits (total cost under

$5,000 maximum)

Reasoning Validation Verify logical decision chains

(weather-based activity recommendations)

Inter-Agent Communication Validation

Dependency

Satisfaction

Ensure flight booking completion before

hotel finalization

Consistency Checks Standardize location data formats across

all agents

Temporal Validation Sequence budget finalization after all

booking verifications

Mutual Agreement Coordinate feasible travel times between

transportation and itinerary agents

Transaction Boundary

Integrity

Trigger compensation cascade when flight

booking fails

1. Failure Detection: GlobalValidationAgent identifies validation
failure and triggers compensation

2. Dependency Analysis: SagaCoordinatorAgent analyzes de-
pendency graph to determine affected transactions

3. Compensation Sequence: Execute compensations in reverse

dependency order (𝐶𝑛,𝐶𝑛−1, ...,𝐶1)

4. State Verification: GlobalValidationAgent confirms system

state consistency after compensation

5. Replanning Initiation: Re-execute affected portion of work-

flow with preserved context and constraints

This integrated architecture ensures that SagaLLM’s sophisti-

cated validation, state management, and context preservation re-

quirements are systematically implemented through clear agent

responsibilities and structured coordination protocols.

5 EXPERIMENTS
Having established the theoretical foundation for SagaLLM and

presented its architecture, we now empirically validate the effective-

ness of the framework in addressing the fundamental limitations of

current multi-LLM agent systems. As identified in Section 2, exist-

ing frameworks suffer from four critical shortcomings that prevent

reliable deployment in complex, real-world scenarios: inadequate

self-validation capabilities stemming from inherent LLM limitations,

context narrowing that leads to information loss during extended

workflows, lack of transactional properties that compromise consis-

tency and recovery, and insufficient inter-agent coordination that

results in workflow fragmentation.

The SagaLLM framework addresses these limitations through its

three core requirements established in Section 3: independent vali-

dation to overcome self-validation gaps, automatic context preser-

vation to maintain critical information throughout extended in-

teractions, and comprehensive transactional integrity to ensure

consistent state management and reliable recovery. The travel plan-

ning specification in the previous section illustrates how these

requirements translate into practical system architecture, where

manual planning (Phase 1) hands off to fully automated SagaLLM
execution (Phase 2) with complete transaction management.

Our experiments aim to validate SagaLLM’s effectiveness by

measuring improvements in each of the four problematic areas.

1. We aim to compare SagaLLM-managed workflows against base-

line multi-agent systems to demonstrate quantifiable improve-

ments in i) validation accuracy, ii) context retention, iii) trans-

actional consistency, and iv) coordination reliability.

2. We seek to demonstrate that SagaLLM can handle unexpected

plan disruptions and automatically conduct effective reactive

planning, combining the strengths of traditional distributed-

MAS and LLM-based MAS while mitigating their limitations.

5.1 Experimental Design
We selected test cases from the REALM benchmark [20], which

evaluates multi-agent systems on distinct problems spanning vari-

ous complexity levels and coordination requirements. For our ex-

periments, we focused on two medium-tier sequential planning

challenges (problems #5 and #6) that test systematic workflow exe-

cution and dependency management, and two reactive planning

challenges (problems #8 and #9) that evaluate dynamic adaptation

and compensation capabilities. These problems provide compre-

hensive coverage of the scenarios where the four identified short-

comings most significantly impact system performance.

We evaluated four LLMs—Claude 3.7 [3], DeepSeek R1 [13], GPT-

4o [36], and GPT-o1—alongside our proposed SagaLLM framework.

All experiments were conducted between March 12 and 17, 2025.

The source code of SagaLLM for conducting these experiments is

available at [19].

5.2 Thanksgiving Dinner Problems: P6 and P9
Problem P6 considers a Thanksgiving dinner scenario in which a

family of five must return to their home in a Boston suburb for a

6 p.m. dinner. The problem involves coordinating departure times,

managing travel logistics (including possible traffic delays), and

ensuring timely arrival. Table 4 formalizes these challenges as a

sequential planning problem. This scenario also lays the foundation

for a more advanced disruption case, which has proven difficult for

standalone LLMs, as discussed in P9.

5.2.1 Common Sense Augmentation. Figure 4 presents a feasible
schedule planned by Claude 3.7. Similarly, GPT-4o was able to

generate a viable plan to ensure dinner was started on time (figure is

similar and therefore not shown). However, a subtle, yet important

consideration that humans typically account for—but LLMs initially

overlooked—is the time required for passengers to retrieve their

luggage after landing. In practice, this process typically takes about

30 minutes before they exit the terminal.

4881

Travel Coordination Food Preparation

Start Planning

James’ lands

1:00 PM

Exits Terminal

1:30 PM

James

James Rents Car

1:45 PM

James

Drives to Airport

2:30 PM

James

Emily’s lands

2:30 PM

Exits Terminal

3:00 PM

Emily

Emily Pickup

3:00 PM

James, Emily

Drive Home

4:00 PM

James, Emily

Michael’s Arrival

3:00 PM

Michael

Picks Up Grandma

3:45 PM

Michael

Arrive Home

4:15 PM

Michael, Grandma

Turkey Preparation

Sarah

Turkey in Oven

2:00 PM

Sarah

Turkey Done

6:00 PM

Side Dishes

Preparation

Start Side Dishes

4:00 PM

Sarah, Emily

Side Dishes Done

6:00 PM

Thanksgiving Dinner

6:00 PM

All Family

Figure 4: Thanksgiving Dinner Planning Workflow with Common Sense Augmentation, Generated by Claude 3.7

Travel Coordination Food Preparation

James’ Original

Arrival: 1:00 PM

CANCELLED

Original Exit Plan

CANCELLED

Original Car Rental

CANCELLED

James’ New Arrival

4:00 PM

James Exits

Terminal

4:30 PM

James Rents Car

4:45 PM

James

Emily’s Arrival

2:30 PM

Emily Exits

Terminal

3:00 PM

Emily

Emily Pickup

3:15 PM

Sarah

Drive Home

4:15 PM

Sarah, Emily

Michael’s Arrival

3:00 PM

Michael

Picks Up Grandma

3:45 PM

Michael

Arrive Home

4:15 PM

Michael, Grandma

Turkey Preparation

Sarah

Turkey in Oven

2:00 PM

Sarah

Sarah Leaves for

Airport

2:45 PM

Turkey Done

6:00 PM

Side Dishes

Preparation

Start Side Dishes

4:30 PM

Emily, Sarah

Side Dishes Done

6:00 PM

Thanksgiving Dinner

6:30 PM
All Family

James Arrives Home

5:30 PM

James

Figure 5: Reactive Planning for Thanksgiving Dinner After James’ Flight Delay, by Claude 3.7. Red boxes highlight constraint
violations, including travel time, fire safety, side-dish preparation, and dinner deadline.

To address this, common-sense augmentation agent was intro-
duced into the plan. The yellow boxes in Figures 4 and 5 reflect this

augmentation by introducing 30 minutes for James and Emily to

exit the airport.

5.2.2 Context Narrowing. Next, we use problem P9 to illustrate the
attention-narrowing problem and the importance of independent

validation. Problem P9 is identical to the previous instance, except

that at 1 PM, James notifies the group that his plane will land at 4

PM instead of 1 PM due to an emergency detour. Figure 5 shows

that Claude 3.7’s reactive planning introduces constraint violations:

- Fire Safety: Sarah is scheduled to leave home at 2:30 PM, leaving

the oven unattended.

- Travel Time: The travel time between home and BOS should be

one hour, but is scheduled to be only 30 minutes.

- Side Dish Preparation: The required preparation time is 2 hours,

but only 90 minutes are allocated.

- Dinner Time: Dinner is now scheduled for 6:30 PM, violating the

6:00 PM constraint.

Each of these violations is perplexing, given that the constraints

are explicitly stated in the context. Furthermore, after multiple

iterations of reactive planning within the same thread, several

constraints continue to be ignored or misinterpreted (e.g., cooking

safety). This highlights a key limitation in the model’s ability to

maintain global constraint awareness over sequential planning

steps due to attention narrowing, presented in Section 2.2.

When tested with GPT-o1, all constraints were correctly ob-

served. However, in the final step, it added 30 additional minutes to

James’ driving time from Boston airport to home, citing potential

4882

Table 4: Thanksgiving Dinner Coordination Problem

Objective: Coordinate family arrivals and dinner preparation for 6:00

PM dinner in Boston

Family Members and Arrivals:
- Sarah (Mom): Host, at home

- James (Dad): Lands at BOS 1:00 PM from SF

- Emily (Sister): Lands at BOS 2:30 PM from Chicago

- Michael (Brother): Driving, arrives 3:00 PM from NY

- Grandma: Needs pickup from suburban Boston

Cooking Requirements:
- Turkey: 4 hours cooking time

- Side dishes: 2 hours preparation

- Someone must stay home during cooking for fire safety

Transportation Constraints:
- James must rent car after landing

- Emily requires airport pickup

- Travel times:

– Home to BOS Airport: 60 min

– BOS Airport to Grandma’s: 60 min

– Home to Grandma’s: 30 min

Key Requirements:
- All family members at home for 6:00 PM dinner

- Turkey and sides ready by dinner time

- All pickups completed with available drivers

- Cooking supervision maintained

traffic congestion. This kind of cleverness is, on the one hand, appre-

ciated because the LLM injects common sense. However, it is also

concerning, as an LLMmay inject its own opinions at unpredictable

stages in unpredictable ways. For common sense injection, human

supervision would be preferable to ensure that the applied com-

mon sense reflects the shared understanding that is truly common
between people, particularly those living in the Boston area.

This pattern suggests that during reactive planning within the

same thread, the model fixates on recent adjustments while progres-

sively disregarding earlier constraints. According to [32, 33], some

context may be lost randomly, further contributing to systematic

attention narrowing and planning inconsistencies.

5.2.3 SagaLLM Remediation: Context Management and Re-
active Planning. To address the issue of context narrowing and
loss, SagaLLM employs global coordination and context management
agents (as depicted in Sections 4.3.2 and 4.3.3) to checkpoint histor-

ical state transitions, unresolved dependencies, and constraints. A

key design criterion is to keep the agent’s context small to prevent

it from suffering from attention narrowing itself. Hence, we employ

two validation agents: one for travel coordination and another for

food preparation, each maintaining a context of less than 1𝑘 .

The travel coordination agent records in external storage the

temporal-spatial states of each individual and relevant temporal

constraints. For problem P9, it stores the individual’s current state,
next scheduled state-transition time, and all relevant constraints.

When an unexpected event triggers reactive planning, all individ-

uals roll back to the last saved state. The system then consolidates

past and new constraints, resolving conflicts through “compensa-

tional” schedule cancellation before proceeding with rescheduling.

Context management ensures that:

- Past history is preserved and not inadvertently overridden.

Table 5: Wedding Reunion Logistics Problem

Metrics:
- On-time performance:Must arrive at the venue for 3:00 PM photos.

Locations: Four locations: 𝑉 = {𝐵,𝐺,𝑇 ,𝑊 }, where 𝐵 is Boston Air-

port,𝐺 is Gift shop,𝑇 is Tailor shop, and𝑊 is Wedding venue.

Travel time: (minutes)

𝐵-𝐺 : 45, 𝐵-𝑇 : 30, 𝐵-𝑊 : 40, 𝐺-𝑇 : 20, 𝐺-𝑊 : 25, 𝑇 -𝑊 : 15.

Arrival Times:
- Alex: At 𝐵 at 11:00 AM from Chicago (need a ride)

- Jamie: At 𝐵 at 12:30 PM from Atlanta (need a ride)

- Pat: At𝑊 at 12:00 PM driving from NYC (has 5-seater car)

Required Tasks:
- Gift collection from𝐺 (after 12:00 PM)

- Clothes pickup from𝑇 (by 2:00 PM)

- Photos at𝑊 (3:00 PM sharp)

Available Resources:
- One car (5-seater) with Pat, available after he is Boston

- Local friend Chris (5-seater) available after 1:30 PM at𝑊

Scheduling Constraints: - All tasks must complete before 3:00 PM

photo time - Gift store opens at 12:00 PM - Tailor closes at 2:00 PM -

Two cars must accommodate all transport needs

- New dependencies and constraints are properly restored (e.g., oven
safety watch) and integrated.

- Consistency across state transitions is maintained.

By maintaining a structured history of constraint awareness,

SagaLLM effectively mitigates LLM-driven attention narrowing

and improves consistency in reactive temporal scheduling.

5.3 Wedding Gathering Problems: P5 and P8
Table 5 presents a wedding travel coordination problem (Problem

P5 in [20]). Several friends arrive at different times and locations

before a 3:00 PM photo session. The challenge includes using two

vehicles for airport pick-ups (for those unable to drive or saving

costs) and completing key errands like collecting the wedding gift

and retrieving formal attire. All activities must be scheduled to

ensure timely arrival at the venue.

5.3.1 Context Narrowing (again). Table 6 presents an infeasible

schedule generated by Claude 3.7, where Pat arrives at the tailor

shop (T) after closing time: another example of attention narrowing.

When queried about the error, Claude 3.7 admitted that it prioritized

local route optimization while losing track of global constraints.

To remedy this, SagaLLM can enforce constraint validation check-

points at 12:50 PM (evaluating whether to send Pat to T) or at 1:30

PM (when Chris becomes available to drive to T). These missed

opportunities can be addressed by SagaLLM’s validation protocols.

In contrast, GPT-o1 correctly schedules Pat to visit the tailor

shop (T) first, ensuring it is open, before proceeding to the gift

shop (G) and successfully completing both errands. (Due to space

limitations, we do not present the successful results.)

However, both schedules overlook a more efficient alternative:

Chris, who is available at 1:30 PM, could have handled both er-

rands, balancing the workload and improving overall efficiency.

The comparative travel routes for Pat and Chris are:

- Pat’s route: W→B (40 min) + B→W (40 min) = 80 minutes.

- Chris’s route: W→T (15 min) + T→G (20 min) + G→W (25 min)

= 60 minutes.

4883

Table 6: Wedding Reunion Logistics Schedule, by Claude 3.7.
(Planning error rows in red)

Time Activity People

11:00 AM Alex arrives at Boston Airport (B) Alex

12:00 PM Pat arrives at Wedding Venue (W) Pat

12:00 PM Gift Shop (G) opens –

12:00–12:40 Pat drives from Wedding Venue (W) to

Boston Airport (B)

Pat

12:30 Jamie arrives at Boston Airport (B) Jamie

12:40–12:45 Pat picks up Alex at Boston Airport (B) Pat, Alex

12:45–12:50 Pat picks up Jamie at Boston Airport (B) Pat, A., J.

12:50–1:35 Drive from BOS to Gift Shop (G) Pat, A., J.

1:30 Chris available at Wedding Venue (W) Chris

1:35–1:50 Collect gift at Gift Shop (G) Pat, A., J.

1:50–2:10 Drive from Gift Shop (G) to (T) Pat, A., J.

2:00 Tailor Shop (T) closes –

2:10–2:25 Pick up clothes at Tailor Shop (T) Pat, A., J.

2:25–2:40 Drive from T to Wedding Venue (W) Pat, A., J.

2:40 PM Arrive at Wedding Venue (W) Pat, A., J.

3:00 PM Photo session at Wedding Venue (W) All

5.3.2 Transaction Properties. Problem P8 introduces a traffic alert:

Alert 1:00 PM: Traffic Alert, an accident near Logan Airport in

Boston triples all travel times to and from the airport!Only SagaLLM
correctly handles this alert.

Table 7: Claude 3.7 Ignored Traffic Delay (errors in red)

Time Activity People

1:00 Traffic Alert: Accident near Airport

triples travel times to/from airport

–

1:00 Current status: Pat, Alex, and Jamie en

route from Airport (B) to Tailor (T)

Pat, A., J.

1:00–1:10 Emergency decision: Continue to (T) Pat, A., J.

1:10–1:25 Arrive at (T), collect clothes Pat, A., J.

1:25–1:45 Travel from Tailor (T) to Gift Shop (G) Pat, A., J.

1:30 Chris is available at (W) Chris

1:30–1:45 Chris drives from (W) to (G) Chris

1:45–2:00 Both cars meet at (G), collect gift P., A., J., C

2:00–2:25 Pat’s car: Drive from (G) to (W) P., A., J.

2:00–2:25 Chris’ car: Drive from (G) to (W) Chris

2:25 All arrive at Wedding Venue (W) P., A., J., C.

3:00 Photo session at Wedding Venue (W) All

This alert requires LLMs to replan in real time. Unfortunately,

Claude 3.7, DeepSeek R1, and GPT-4o failed to react accurately to

the new traffic constraints, and even GPT-o1 struggled with the pre-

cision of the planning. In contrast, SagaLLM can help remedy these

shortcomings by maintaining both transaction state and history.

The following is a list of results from four LLMs:

* Claude: Table 7 shows that Claude 3.7 recognizes the accident,
but does not update Pat’s driving time from Boston Airport

(departing at 12:50 PM) to the gift shop. In other words, Claude

3.7 fails to fully transition into the new alert state.

* DeepSeek R1: Table 8 demonstrates how DeepSeek R1 fails

to maintain temporal consistency in reactive planning. When

the traffic alert takes effect at 1:00 PM, DeepSeek discards its

Table 8: DeepSeek’s Failed Reactive Schedule After Traffic
Alert, and GPT-4o Made Similar Errors (errors in red)

Time Activity People

1:00 Traffic alert received - Pat at W System

1:05 Pat departs W for B Pat

1:30 Chris becomes available at W Chris

1:30 Chris departs W for T Chris

1:45 Chris arrives at T for clothes Chris

2:00 Chris departs T with clothes Chris

2:15 Chris arrives at G for gifts Chris

2:25 Pat arrives at B (delayed by traffic) Pat

2:35 Pat departs B with Alex & Jamie Pat

2:40 Chris departs G with gifts Chris

2:55 Chris arrives at W Chris

3:55 Pat’s group arrives at W (Late) Pat

execution history and attempts to create a new plan starting from

that point onward. Critically, it reassigns Pat to begin driving to

the airport at 1:00 PM, even though Pat had already arrived at the

airport by 12:40 PM under the original schedule. This “rewrite”

of already-executed actions illustrates how LLMs can lose track

of immutable past events when adapting to new conditions.

* GPT-4o: Similar to DeepSeek R1, GPT-4o exhibits temporal-

spatial context confusion and violatesmultiple constraints, demon-

strating that it struggles to adapt effectively once alerts are in-

troduced mid-plan. (Table not shown due to space limitations.)
* GPT-o1: Table 9 shows GPT-o1’s conservative plan in which

Chris handles the tailor shop, avoiding potential delays for Pat.

The solution is feasible but coarse-grained, as it doesn’t leverage

precise spatial-temporal reasoning about Pat’s current position

relative to the accident location. A more refined approach would

first determine whether Pat has already passed the accident site

by 1:00 PM, which could eliminate unnecessary detours and

resource reallocations. This highlights the difference between

merely finding a feasible solution versus optimizing based on

detailed state information.

5.3.3 LLM Limitations and SagaLLM Remediation. This study
reveals critical limitations in how modern LLMs handle disruptions

in planning scenarios:

- State Maintenance Failure: When an alert occurs, these LLMs

might discard the partial context of already-completed actions,

attempting to generate entirely new plans rather than adapt

existing ones. This reveals their inability to reason about the

continuous flow of time in real-world scenarios.

- Temporal Inconsistency: They attempt to modify immutable

past events.

- Position Tracking: Agent locations are lost at critical intervals.
- Path Dependency: Models cannot recognize that different seg-

ments of a journey may be differently impacted by an alert.

By contrast, SagaLLM implements a comprehensive remediation

approach through fine-grained compensation:

- Persistent Context Repository: SagaLLM maintains an exter-

nal state repository that captures the complete world state at each

checkpoint, enabling reliable rollback and forward projection

regardless of attention constraints in the planning agent.

4884

Table 9: Wedding Reunion Reactive Schedule, by GPT-o1

Time Activity People

11:00 AM Alex arrives at Airport (B). Alex

12:00 PM Pat departs for Airport from (W). Pat

12:30 PM Jamie arrives at Airport (B). Jamie

12:40–12:50

PM

Pat arrives at (B), picks up Alex and

Jamie; departs at 12:50 PM.

Pat, A., J.

12:50–1:00
PM

Drive (B→W) under normal
conditions for first 10 minutes.

Pat, A., J.

1:00–2:30
PM

Traffic Alert starts: remaining
distance (30 min normal) becomes 90
min. Arrival at W by 2:30 PM.

Pat, Alex,

Jamie

1:30 PM Chris available at (W). Departs for Tailor. Chris

1:30–1:45 Drive (W→ T). Chris

1:45–1:50 Pick up clothes at (T), closes at 2:00 PM. Chris

1:50–2:10 Drive (T→ G). Chris

2:10–2:15 Purchase gift at (G). Chris

2:15–2:40 Drive (G→W). Chris

2:30 PM Pat, Alex, Jamie arrive at (W). Pat, A., J.

2:40 PM Chris back at (W) with clothes and gift. Chris

3:00 PM Wedding photo session at (W). Everyone

- Immutable Action Logging: All executed actions are recorded

as immutable transactions in a persistent log, ensuring that his-

torical events remain consistent even when replanning occurs,

preventing the “amnesia effect” common in LLM planners.

- Compensatory Planning:When disruptions occur, SagaLLM
doesn’t simply replan from scratch but applies compensatory

actions specifically designed to address the deviation while pre-

serving as much of the original plan as possible.

- Constraint Consistency Validation: The system continuously

validates that new plans remain consistent with both physical

limitations and temporal dependencies established in earlier plan-

ning phases.

SagaLLM Compensatory Analysis: When faced with disruptions

(e.g., the 1:00 PM traffic alert in our wedding scenario), SagaLLM
executes a structured compensation process:

𝑇
affected

= max(0,𝑇
total
−𝑇

elapsed
) (4)

𝑇new = 𝑇
elapsed

+ (𝑀 ·𝑇
affected

) (5)

This approach enables three key capabilities: (1) partial journey

compensation for route segments, (2) strategic resource reallocation

when needed, and (3) principled constraint relaxationwith appropri-

ate compensatory actions. Here, the key state to facilitate a precise

resolution is to answer the question: “Has Pat’s vehicle passed the

accident location at 1:00 PM (and hence unaffected)?” The answer

determines the remaining time required to reach the originally

scheduled destination, the Tailor. In such a case, no rescheduling

is required. If Pat’s car is unfortunately involved in the accident, a

more comprehensive replanning approach would be necessary to

accommodate this significant disruption.

5.4 Observations
Our experiments across multiple LLMs (GPT-o1, DeepSeek R1,

Claude 3.7, GPT-4o) highlight consistent limitations in complex

Table 10: LLMs vs. SagaLLM on Context Management

Capability Standard LLMs SagaLLM

Maintains historical actions Partial/None Full

Partial journey compensation Rarely Always

Constraint consistency checking Ad-hoc Systematic

Handles attention narrowing Vulnerable Resistant

Physical-temporal consistency Inconsistent Guaranteed

planning scenarios. While GPT-o1 showed partial historical aware-

ness, all models exhibited attention narrowing, self-validation fail-

ure, and inconsistent spatial-temporal reasoning.

Table 10 summarizes SagaLLM’s context management and com-

pensation mechanisms directly address these limitations of LLMs.

6 CONCLUSION
We introduced SagaLLM, a structured transactional multi-agent

framework that addresses four fundamental limitations of existing

LLM-based planning systems: inadequate self-validation, context

narrowing, absence of transaction properties, and insufficient inter-

agent coordination.

Our experiments demonstrate that even advanced LLMs like

Claude 3.5 and GPT-o1 often fixate on recent context while neglect-

ing critical earlier constraints, particularly in reactive planning sce-

narios where models attempt to retroactively rewrite past actions

rather than adapting from the current state. Moreover, LLMs cannot

consistently validate their own adherence to constraints. Critically,

as noted by LeCun’s critique, current LLMs lack persistent memory

capabilities, an essential component for guaranteeing transaction

properties and maintaining consistent state across long-lived tasks.

SagaLLM overcomes these limitations with four key innovations:

1. Independent validation to address self-validation gaps

2. Strategic context preservation to mitigate context narrowing

3. Transactional state management with immutable records

and compensation mechanisms

4. Specialized agent coordination with explicit role distribution

and dependency tracking

These contributions enable robust planning across diverse sce-

narios, from travel logistics to sequential and reactive planning

tasks. By enforcing rigorous transactional validation among spe-

cialized agents, SagaLLM ensures consistency, reliability, and adapt-

ability for mission-critical applications. Due to space constraints

in this experience paper, detailed algorithm specifications (in par-

ticular, for reactive planning) and extended empirical studies on

job-shop scheduling (JSSP) and supply chain management problems

are provided in our companion ALAS paper [11].

Future work will focus on formal verification methods for the

LLM-generated compensation code, addressing autoregressive con-

text limitations, and extending SagaLLM to domains requiring sci-

entific reasoning [6, 9, 10] and decision-making under uncertainty.

ACKNOWLEDGMENT
I am deeply grateful to my late advisor, Hector Garcia-Molina, for

his invaluable mentorship and for pioneering Saga, the founda-

tional inspiration for this work.

4885

REFERENCES
[1] AWS Step Functions. https://aws.amazon.com/step-functions/, 2023. Accessed:

2025-03-04.

[2] Azure Logic Apps. https://azure.microsoft.com/en-us/products/logic-apps/, 2023.

Accessed: 2025-03-04.

[3] Anthropic. Claude Technical Report. Technical report, 2024. URL https://www.

anthropic.com.

[4] Faeze Brahman, Chandra Bhagavatula, Valentina Pyatkin, and Yejin Choi.

PLASMA: Making small language models better procedural knowledge models

for (counterfactual) planning. In International Conference on Learning Represen-
tations (ICLR), 2024.

[5] Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra,

et al. Why do multi-agent LLM systems fail? arXiv preprint arXiv:2503.13657,
2025. URL https://arxiv.org/abs/2503.13657.

[6] Edward Y. Chang. Prompting large language models with the socratic method.

In IEEE 13th Computing and Communication Workshop and Conference, 2023.
[7] Edward Y. Chang. Examining GPT-4’s capabilities and enhancement with

SocraSynth. In The 10th International Conference on Computational Science
and Computational Intelligence, December 2023.

[8] Edward Y. Chang. EVINCE: Optimizing adversarial LLM dialogues via conditional

statistics and information theory. arXiv preprint arXiv:2408.14575, August 2024.
[9] Edward Y. Chang. Multi-LLM Agent Collaborative Intelligence: The Path to Artifi-

cial General Intelligence. ACM Books (accepted), 2025. Amazon (March 2024).

[10] Edward Y. Chang. The unified cognitive consciousness theory (UCCT) for

language models: Anchoring semantics, thresholds of activation, and emergent

reasoning. arXiv preprint arXiv:2506.02139, 2025.
[11] Edward Y. Chang and Longling Geng. ALAS: A stateful multi-LLM agent frame-

work for disruption-aware planning. arXiv preprint arXiv:2505.12501, 2025. URL
https://arxiv.org/abs/2505.12501.

[12] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, et al. A survey

on evaluation of large language models. ACM Transactions on Intelligent Systems
and Technology, 15(3), March 2024. ISSN 2157-6904.

[13] DeepSeek-AI, Daya Guo, Dejian Yang, et al. DeepSeek-R1: Incentivizing

reasoning capability in LLMs via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025. URL https://arxiv.org/abs/2501.12948.

[14] Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch.

Improving factuality and reasoning in language models through multiagent

debate. arXiv:2305.14325, 2023. URL https://arxiv.org/abs/2305.14325.

[15] Barbara Dunin-Keplicz and Rineke Verbrugge. Teamwork in Multi-Agent Systems:
A Formal Approach. Wiley Series in Agent Technology. Wiley, 2010. URL

https://api.semanticscholar.org/CorpusID:26838202.

[16] Edmund H. Durfee. Distributed problem solving and planning. In Multiagent
Systems: A Modern Approach to Distributed Artificial Intelligence, pages 121–164.
MIT Press, Cambridge, MA, USA, 1999. ISBN 0262232030.

[17] Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, et al. AgentScope:

A flexible yet robust multi-agent platform. arXiv preprint arXiv:2402.14034, 2024.
URL https://arxiv.org/abs/2402.14034.

[18] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proceedings of the 1987 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’87, pages

249–259, New York, NY, USA, 1987. Association for Computing Machinery. ISBN

0897912365. doi: 10.1145/38713.38742. URL https://doi.org/10.1145/38713.38742.

[19] Longling Geng. Source code for SagaLLM paper experiments. https://github.

com/genglongling/SagaLLM, 2025.

[20] Longling Geng and Edward Y. Chang. Realm-Bench: A real-world planning

benchmark for LLMs and multi-agent systems. arXiv:2502.18836, 2025.
[21] Kurt Gödel. On formally undecidable propositions of Principia Mathematica and

related systems I. In Jean van Heijenoort, editor, From Frege to Gödel: A Source
Book in Mathematical Logic, 1879–1931, pages 596–616. Harvard University Press,
1967. Translated by Jean van Heijenoort.

[22] Jim Gray. The transaction concept: Virtues and limitations. In Proceedings of the
Seventh International Conference on Very Large Data Bases, volume 7 of VLDB ’81,
pages 144–154. VLDB Endowment, 1981.

[23] Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang Li, Zifeng Wang, Long T. Le,

et al. Found in the middle: Calibrating positional attention bias improves long

context utilization. arXiv:2406.16008, 2024. URL https://arxiv.org/abs/2406.16008.

[24] Jie Huang, Xinyun Chen, SwaroopMishra, Huaixiu Steven Zheng, AdamsWei Yu,

et al. Large language models cannot self-correct reasoning yet. In International
Conference on Learning Representations (ICLR), 2024.

[25] Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian,

and more. Understanding the planning of llm agents: A survey. arXiv:2402.02716,
2024. URL https://arxiv.org/abs/2402.02716.

[26] Nicholas R. Jennings. Commitments and conventions: The foundation of coordi-

nation in multi-agent systems. Knowledge Engr. Review, 8(3):223–250, 1993.

[27] Dongwei Jiang, Jingyu Zhang, Orion Weller, Nathaniel Weir, Benjamin Van

Durme, et al. Self-[in]correct: LLMs struggle with refining self-generated re-

sponses. CoRR, 2024.
[28] LangChain AI. LangGraph: Building structured applications with LLMs. https:

//github.com/langchain-ai/langgraph, 2024.

[29] Victor Lesser, Charles L. Ortiz Jr., and Milind Tambe. Distributed Sensor Networks:
A Multiagent Perspective, volume 9. Springer Science & Business Media, 2004.

[30] Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin,

and Bernard Ghanem. CAMEL: Communicative agents for “mind” exploration

of large language model society. arXiv preprint arXiv:2303.17760, 2023. URL

https://arxiv.org/abs/2303.17760.

[31] Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos,

and Samet Oymak. Dissecting chain-of-thought: Compositionality through

in-context filtering and learning. arXiv preprint arXiv:2305.18869, 2023. URL
https://arxiv.org/abs/2305.18869.

[32] Dancheng Liu, Amir Nassereldine, Ziming Yang, Chenhui Xu, Yuting Hu, et al.

Large language models have intrinsic self-correction ability. arXiv preprint
arXiv:2406.15673, 2024. URL https://arxiv.org/abs/2406.15673.

[33] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,

et al. Lost in the middle: How language models use long contexts. Transactions
of the Association for Computational Linguistics, 12:157–173, 2024. doi: 10.1162/
tacl_a_00638. URL https://aclanthology.org/2024.tacl-1.9/.

[34] Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain

of thought, it takes two to tango. arXiv preprint arXiv:2209.07686, 2022. URL
https://arxiv.org/abs/2209.07686.

[35] Ali Modarressi, Hanieh Deilamsalehy, Franck Dernoncourt, Trung Bui, Ryan A.

Rossi, et al. NoLiMa: Long-context evaluation beyond literal matching. arXiv
preprint arXiv:2502.05167, 2025. URL https://arxiv.org/abs/2502.05167.

[36] OpenAI. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed:

Jan. 30, 2025.

[37] Dan Pritchett. BASE: An ACID alternative. Queue, 6(3):48–55, 2008.
[38] Chris Richardson. Microservices Patterns: With Examples in Java. Manning

Publications, Shelter Island, NY, USA, 2018.

[39] Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of

thoughtlessness? an analysis of CoT in planning. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2024. URL https://arxiv.org/abs/2405.04776.

[40] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: Yet another

workflow language. Information Systems, 30:245–275, 2005. URL https://api.

semanticscholar.org/CorpusID:205487187.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, et al. Attention is

all you need. In Advances in Neural Information Processing Systems (NeurIPS),
volume 30, pages 5998–6008, 2017.

[42] Hui Wei, Zihao Zhang, Shenghua He, Tian Xia, Shijia Pan, et al. PlanGenLLMs:

A modern survey of LLM planning capabilities. arXiv preprint arXiv:2502.11221,
2025. URL https://arxiv.org/abs/2502.11221.

[43] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, et al.

Chain-of-thought prompting elicits reasoning in large language models. In

Advances in Neural Information Processing Systems (NeurIPS), NIPS ’22, 2022.
[44] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan

Kaufmann, San Francisco, CA, USA, 2001.

[45] Michael Wooldridge. An Intro. to Multiagent Systems. John Wiley & Sons, 2009.

[46] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, and Chi Wang. AutoGen:

Enabling next-gen LLM applications via multi-agent conversation. In Conference
on Language Modeling (COLM), August 2024.

[47] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis.

Efficient streaming language models with attention sinks. arXiv preprint
arXiv:2309.17453, 2024. URL https://arxiv.org/abs/2309.17453.

[48] Khurram Yamin, Shantanu Gupta, Gaurav R. Ghosal, Zachary C. Lipton, and

Bryan Wilder. Failure modes of LLMs for causal reasoning on narratives. arXiv
preprint arXiv:2410.23884, 2024. URL https://arxiv.org/abs/2410.23884.

[49] Shinnosuke Yao, Dong Yu, Jianfeng Zhao, Izhak Shafran, Thomas Griffiths, et al.

Tree of thoughts: Deliberate problem solving with large language models. In

Advances in Neural Information Processing Systems (NeurIPS), volume 36, 2024.

[50] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, et al.

AFlow: Automating agentic workflow generation. arXiv preprint arXiv:2410.10762,
2024. URL https://arxiv.org/abs/2410.10762.

[51] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, et al. A survey of large

language models. arXiv preprint arXiv:2303.18223, 2025. URL https://arxiv.org/

abs/2303.18223.

[52] Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as common-

sense knowledge for large-scale task planning. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

4886

https://aws.amazon.com/step-functions/
https://azure.microsoft.com/en-us/products/logic-apps/
https://www.anthropic.com
https://www.anthropic.com
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2505.12501
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2305.14325
https://api.semanticscholar.org/CorpusID:26838202
https://arxiv.org/abs/2402.14034
https://doi.org/10.1145/38713.38742
https://github.com/genglongling/SagaLLM
https://github.com/genglongling/SagaLLM
https://arxiv.org/abs/2406.16008
https://arxiv.org/abs/2402.02716
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2305.18869
https://arxiv.org/abs/2406.15673
https://aclanthology.org/2024.tacl-1.9/
https://arxiv.org/abs/2209.07686
https://arxiv.org/abs/2502.05167
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2405.04776
https://api.semanticscholar.org/CorpusID:205487187
https://api.semanticscholar.org/CorpusID:205487187
https://arxiv.org/abs/2502.11221
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2410.23884
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

	Abstract
	1 Introduction
	2 Related Work
	2.1 Transaction Management Systems
	2.2 LLM Limitations Necessitating SagaLLM's Key Requirements
	2.3 Multi-Agent LLM Frameworks and Transaction Limitations

	3 System Requirements
	3.1 Transactional Integrity Requirements
	3.2 Independent Validation Requirements
	3.3 Context Management Requirements

	4 Design and Implementation
	4.1 Specifications
	4.2 Two-Phase Workflow Architecture
	4.3 Agent Architecture and Code Structures
	4.4 Transaction Flow and Validation Protocol
	4.5 Compensation and Recovery Mechanisms

	5 Experiments
	5.1 Experimental Design
	5.2 Thanksgiving Dinner Problems: P6 and P9
	5.3 Wedding Gathering Problems: P5 and P8
	5.4 Observations

	6 Conclusion
	References

