
Disaggregated State Management in Apache Flink® 2.0

Yuan Mei †
Rui Xia †

Alibaba Group† Boston University‡ KTH Royal Institute of Technology§
{meiyuan.my, zhaoqian.lzq, leiyanfei.lyf, yinhan.yh, fufeng.xr, hukaitian.hkt, feng}@alibaba-inc.com†

{lei, vkalavri}@bu.edu‡, parisc@kth.se§

Zhaoqian Lan†
Kaitian Hu†

Lei Huang‡
Paris Carbone§

Yanfei Lei†
Vasiliki Kalavri‡

Han Yin†
Feng Wang†

ABSTRACT
We present Apache Flink 2.0, an evolution of the popular stream pro-
cessing system’s architecture that decouples computation from state
management. Flink 2.0 relies on a remote distributed !le system
(DFS) for primary state storage and uses local disks as a secondary
cache, with state updates streamed continuously and directly to the
DFS. To address the latency implications of remote storage, Flink
2.0 incorporates an asynchronous runtime execution model. Fur-
thermore, Flink 2.0 introduces ForSt, a novel state store featuring a
uni!ed !le system that enables faster and lightweight checkpoint-
ing, recovery, and recon!guration with minimal intrusion to the
existing Flink runtime architecture. Using a comprehensive set of
Nexmark benchmarks and a large-scale stateful production work-
load, we evaluate Flink 2.0’s large-state processing, checkpointing,
and recovery mechanisms. Our results show signi!cant perfor-
mance improvements and reduced resource utilization compared to
the baseline Flink 1.20 implementation. Speci!cally, we observe up
to 94% reduction in checkpoint duration, up to 49× faster recovery
after failures or a rescaling operation, and up to 50% cost savings.
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1 INTRODUCTION
Alibaba leverages Apache Flink [19, 40] across all core business
operations, demonstrating its versatility in handling high-volume,
large-scale and real-time data processing. From powering dynamic
e-commerce features, like personalized recommendations and real-
time dashboards during peak sales events, to enabling critical !nan-
cial risk control through fraud detection and credit scoring, Flink’s
ability to process data instantaneously is essential. It also optimizes
logistics with real-time route adjustments and warehouse manage-
ment, enhances advertising through dynamic ad placements and
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Figure 1: Distribution of CPU-bound vs. Disk-bound work-
loads in Alibaba’s logistics business.
performance tracking, and ensures system stability with real-time
logging and anomaly detection. Through extensive application and
active contributions to the open-source community, Alibaba has so-
lidi!ed Flink’s position as a leading stream processing engine [43].
Alibaba’s Flink infrastructure supported an inbound data "ow of
over 4.4 billion TPS during the 2024 Double 11 shopping event.

Apache Flink’s success extends beyond Alibaba, with deploy-
ments across hundreds of companies [35], multiple cloud service
o#erings [7, 39, 44, 52], and over 1800 contributors and 100 com-
mitters contributing to its codebase [37, 43]. Flink was one of the
!rst systems to provide features that are considered standard in
modern stream processing engines [42, 56, 63]: support for larger-
than-memory state, exactly-once state guarantees, and embedded
state management with remote checkpointing.

Over the years, Flink’s design has evolved alongside its use
cases. Originally built for continuous analytics, it has gradually
been adopted as a platform for distributed stateful applications
with exactly-once processing and consistent out-of-order execution
guarantees [17]. In the past decade, we have witnessed a dramatic
shift in Flink’s deployment mode and workload patterns, partly
driven by hardware improvements and advances in cloud comput-
ing. We have transitioned from a Map-Reduce era, where computa-
tion is performed on distributed clusters of machines responsible for
both computation and storage, to cloud-native settings, where con-
tainerized deployments on Kubernetes have become commonplace.
Meanwhile, an increase in network bandwidth and the availability
of cheap object storage unlock new disaggregated design options.

These recent trends reveal shortcomings in Flink’s current ar-
chitecture, mainly due to its tight coupling of compute and state.
While embedded state management provides a robust and high-
throughput solution for applications with larger-than-memory
state, it hinders the design of low-downtime auto-scaling and recon-
!guration mechanisms, due to the requirement for checkpointed
state migration. At the same time, it falls short of e$ciently han-
dling multi-terabyte states encountered in today’s applications. As
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an example, Figure 1 shows the cumulative distribution of state size
alongside the corresponding CPU utilization for several hundreds
of jobs in Alibaba’s logistics business. We adopt a threshold of 20 GB
state size per CPU core - equivalent to a single Compute Unit (CU)
in Alibaba Cloud Service [30] - to distinguish between CPU-bound
and Disk-bound jobs. We observe that 35% of jobs are disk-bound,
requiring additional CUs only to address storage limitations.

In this paper, we present Flink 2.0, a disaggregated state archi-
tecture designed to e$ciently support modern cloud infrastructure
and emerging application requirements. Flink 2.0 designates the re-
mote distributed !le system (DFS) as the primary state storage and
uses local disks as an optional, secondary cache. State updates are
streamed to the DFS continuously, enabling faster checkpointing,
recovery, and recon!guration, as !les are immediately accessible in
the remote !le system. Flink 2.0 avoids expensive state migration
by sharing active state and checkpointed state in the same DFS.

Decoupling computation from state management in Flink poses
several technical challenges. Maintaining state in a remote DFS
unavoidably increases access latency and requires careful design
to avoid performance overhead. Naively combining a remote state
backend with Flink’s synchronous execution model further leads
to low throughput and resource underutilization. At the same time,
redesigning the fault tolerance and rescaling mechanisms is es-
sential to e#ectively leverage the new !le storage layout, while
maintaining compatibility. Finally, it is vital to ensure that the new
design preserves Flink’s out-of-order execution semantics and fault-
tolerance guarantees and that the introduction of new features is
seamless, with intuitive and non-intrusive APIs.

To address the above challenges, Flink 2.0 introduces two major
innovations: (i) an asynchronous record execution framework that
enables non-blocking state access and leverages out-of-order exe-
cution to improve performance, and (ii) a new disaggregated state
store, ForSt (short for For Streaming), that provides an LSM-tree
abstraction to seamlessly unify local and remote state access. This
paper makes the following contributions:

• We identify a set of limitations in Flink 1.x’s embedded
state management architecture that hinder support for very
large states and e$cient exploitation of modern cloud in-
frastructure. We then present Flink 2.0’s disaggregated state
model and explain how it addresses the shortcomings by
discussing a real-world use case (§ 3).

• We introduce Flink 2.0’s asynchronous execution model
that enables out-of-order record processing and non-blocking
state access, to achieve high bandwidth utilization and hide
the remote access latency. We discuss how the asynchro-
nous model preserves Flink 1.x’s per-key processing order,
watermark correctness, and fault tolerance guarantees (§ 4).

• We introduce ForSt (For Streaming), Flink 2.0’s disaggre-
gated state store, and a new uni!ed !lesystem layer that
facilitates fast and lightweight checkpointing, instant re-
covery, and seamless recon!guration (§ 5).

• We present a comprehensive experimental evaluation of
Flink 2.0’s features and a comparisonwith Flink 1.20, on two
types of benchmarks: (i) a large-scale stateful production
workload to demonstrate cost savings and performance of
checkpointing, recovery, and rescaling (§ 6.1), and (ii) the
widely-used Nexmark benchmark [60] (§. 6.2).
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Figure 2: Overview of Flink 1.x architecture.

Deployed for over two years in Alibaba Cloud Realtime Computa-
tion Service, Flink’s disaggregated architecture has delivered highly
e$cient services for large-state jobs, enabling fast cluster-level scal-
ing and recovery, particularly during major sales events. We are
pleased to contribute this proven architecture to the community.

2 PRELIMINARIES
Apache Flink adopts a distributed data"ow execution model, where
stream computations are modeled as directed acyclic graphs (DAGs)
of tasks. A Flink job consists of stateful operators, such as window
aggregations and joins that process records and update local state
continuously. These operators execute in parallel across a clus-
ter of machines. At a high level, Flink represents computation as
a logical data"ow graph, describing the sequence of transforma-
tions applied to records. This logical plan is then optimized and
transformed into a physical graph, where operators map to stream
task instances that run in parallel across compute nodes. Next, we
provide a brief overview of Flink’s distributed architecture and
execution model [17, 19] while highlighting its core guarantees:
1) per-key sequential processing order, 2) exactly-once processing,
and 3) low-watermark event-time order.

2.1 Distributed Data!ow Architecture
System overview. Figure 2 shows an overview of Flink 1.x. The
system deployment entails two components: the Job Manager (JM)
and a set of Task Managers (TMs) running on Kubernetes, YARN,
or other cloud-based platforms. The JM acts as the main entry
node to the system, compiling applications to data"ow graphs,
scheduling tasks, coordinating job checkpoints, and instrumenting
the lifecycle of applications. For high availability (HA), the JM node
maintains its metadata in Zookeeper or etcd-Kubernetes for fail-
over. Metadata includes checkpoint references to durable !les in
an external distributed !le system (DFS), such as HDFS/S3/OSS.
The TMs are responsible for the distributed execution of stateful
data"ow programs. Each TM executes its part of the distributed
data"ow computation on a set of dedicated stream tasks.
Synchronous task execution. Stream tasks are dedicated threads
running one physical data"ow task each. They consume multiple
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Figure 3: Logical data!ow graph for a real-time logistics man-
agement use case. The Flink job tracks the lifecycle of order
packages as they move through the supply chain.

input streams that contain records and control events, such as low-
watermarks and checkpoint markers. The network layer derives
a single input stream per task, which maintains the partial FIFO
orders of the inputs. Each stream task in Flink 1.x also follows a
synchronous FIFO execution: pulls the next input element, executes
task logic, and updates state and output as a single atomic operation.
Embedded state management. In Flink, state is pre-allocated in
non-overlapping virtual partitions (key-groups). The partitioning
mechanism pre-arranges state and input partitions using the keyBy
operator. This ensures that all records in the same key partition
are processed by the same task. TMs in Flink 1.x are con!gured
with an embedded state backend module that manages all stateful
read and write operations on their allocated partitions using single-
writer semantics. In Flink 1.x, active state is exclusively handled
by the local state backend, such as the out-of-core RocksDB-based
backend or the in-memory Java-heap alternative. Whereas, recov-
ery state from all local checkpoints is managed externally on DFS
with checkpoint references managed by the JM. Embedded state
backends are responsible for obtaining and transferring all active
state changes to DFS during checkpointing for recovery.

2.2 Core System Guarantees
Flink’s default stream task data"ow execution provides three basic
guarantees, well-understood by its users.
Per-key FIFO order.While Flink does not guarantee total ordering
across di#erent input streams, it ensures that records with the same
key are processed in FIFO order. This means that the order of
records identi!ed by a speci!c key is preserved during processing.
This stems from Flink’s FIFO channels in combination with the
strict sequential execution of its stream tasks. Furthermore, its state
partitioning mechanism guarantees that records belonging to the
same key are always handled by the same stream task, ensuring
exclusive access and enforcing single-writer semantics.
Exactly-once processing. Flink employs an asynchronous 2-phase-
commit (2PC) mechanism to commit all state changes that occur
between two consecutive checkpoint markers [17]. During the !rst
phase, the checkpoint coordinator (JM) inserts checkpoint markers
into all input streams. Flink’s network layer aligns markers leading
to a single aligned checkpoint marker at the task’s input. Upon its
consumption, an asynchronous checkpoint is initiated at the back-
end module of the Task Manager. This process involves taking a
durable physical copy to the external DFSwhile sending an acknowl-
edgment to the coordinator. Upon gathering all acknowledgments,
the coordinator enters the “commit” phase of the protocol, notifying

all stream tasks that the checkpoint is complete. This allows special
tasks, such as transactional sinks, to commit pending changes from
a write-ahead-log to their output !les or consumers.
Low-watermark event-time order. Watermarks are used as a
consistent mechanism to establish progress when stream records
arrive out-of-order from their respective substreams [3, 6]. Stream
tasks use thismechanism to advance their current event-time “clock”
and release timed operations. Then, tasks emit the same watermark
in their output, letting downstream operators also advance their
time. Flink’s network layer automates part of the watermark com-
putation through a monotonic max-min reduction: given the sets
of watermarks per input stream!1, . . .!! , the derived watermark
is computed as such" ′ = min1≤"≤! max#! . In addition, synchro-
nous task execution in Flink 1.x guarantees completeness i.e., all
computations timed before a watermark " are guaranteed to be
complete at the reception of" within each task.

3 DISAGGREGATED STATE MANAGEMENT
In this section, we present a real-world use case to illustrate the
limitations of Flink’s embedded state design and motivate the need
for decoupling compute from storage. Then, we provide an overview
of the disaggregated state management architecture in Flink 2.0
and discuss correctness and performance challenges.

3.1 Real-World Motivating Use Case
Figure 3 illustrates a representative use case of real-time logistics
management within Alibaba’s stream processing ecosystem. The
use case is implemented by a Flink job that tracks the lifecycle of
order packages as they move through the supply chain and consists
of two stateful transformation stages. The !rst stage is a deduplica-
tion operator that ingests Order events originating from multiple
e-commerce platforms (e.g., TMall, Taobao, AliExpress). Upon order
placement, a new logistic order event is generated, containing initial
data like order ID, address, and product information. At this stage,
!elds such as delivery time and status are left empty. Deduplication
is performed by an aggregation operator that retains themost recent
order entry as state. The second stage is a streaming join operator
that matches Order Update events with Shipping Update events to
produce an enriched, up-to-date order record. A Shipping Update
event is generated every time a package goes through transit nodes
and contains progress information, such as delivery, consignment,
or customs clearance. The join maintains two states internally: (i)
aggregated order updates (left stream) and (ii) real-time shipping
updates (right stream). Although most packages are delivered and
updated within a week, exceptions due to customs, weather, or
unforeseen delays require longer update cycles. Consequently, the
deduplication and join operators need to maintain 60 days’ worth
of data, resulting in terabytes of job states. Naturally, the state size
is proportional to the cardinality of orders and events. During holi-
days or Double 11 shopping events, the number of orders exhibits
bursts, and so do the shipping update events. The state size ranges
from a few hundred gigabytes to terabytes.

3.2 Limitations of Embedded State Management
After nearly a decade of operating large-scale Flink deployments,
we have identi!ed several limitations of the embedded state man-
agement architecture (cf.§ 2.1). These challenges are particularly

4848



prominent in jobs with large state, like the logistics use case above,
and containerized deployments, as we explain below.
State size constraints imposed by local disk storage. Flink 1.x
workers use embedded RocksDB instances to support streaming
state beyond the limits of main memory. However, for jobs that
demand signi!cantly larger storage capacities, like the logistics use
case, the local disk can quickly become the bottleneck. Even so,
dynamically adjusting the capacity of local disks may be di$cult,
especially in containerized deployments. Cloud service providers,
like Alibaba Cloud and AWS, commonly provide compute units with
prede!ned and static resource allocations, with a !xed number of
CPU cores and disk capacities. For example, Alibaba Cloud Realtime
Computation Service o#ers compute units with 1 CPU core and 20
GB of disk space [30], while AWS Kinesis Processing Units o#er 1
CPU core along with a 50 GB disk [44]. This inherent in"exibility
limits the scalability and e$ciency of applications with "uctuating
resource needs. To accommodate such workloads, it is essential to
extend the storage hierarchy to integrate remote elastic storage.
Resource interference from periodic state backend opera-
tions. Another problem with managing large states in embedded
RocksDB instances is that background backend operations can in-
terfere with the primary processing tasks. Speci!cally, we found
that periodic operations, like compaction and checkpointing, can
cause spikes in CPU utilization and disk and network I/O consump-
tion. As we will show in Section 6 (cf. Figure 11), the problem
persists in Flink 1.20, even when backend operations are executed
asynchronously. The resource consumption spikes can adversely
impact query performance, unless additional resources are reserved
in advance to accommodate them.
Prolonged checkpointing and recon"guration durations. To
ensure fault tolerance in the logistics use case, Flink’s checkpoint-
ing mechanism periodically transfers job state to durable storage.
In Flink 1.x, checkpointing involves two sequential phases: (i) a
synchronous phase, during which local state tables are locked and
copied to temporary local storage, and (ii) an asynchronous phase,
wherein the local copies are transferred to a distributed !le system.
The same process is followed for on-demand checkpoints, which are
necessary to ensure consistent recon!guration, when resource de-
mands change. During recovery or rescaling, the stored state must
be retrieved from remote storage and reloaded into the local state
backends. As state size increases, both the resource consumption
and the duration of these operations scale proportionally, impeding
Flink’s ability to adapt swiftly to workload variations and provide
e$cient end-to-end exactly-once processing guarantees. As we
show in Section 6.1, an average incremental checkpoint of 1.89 GB
for the logistics use case can take up to one minute to complete.
Rescaling with a 290 GB total state size exceeds !ve minutes.

3.3 Overview of Flink 2.0
To address the above shortcomings, Flink 2.0 adopts a new disag-
gregated state architecture, shown in Figure 4, where the newly
introduced components are highlighted in red. The core design
principle is to decouple resource-intensive state operations from
compute, both at the runtime execution layer and at the state man-
agement layer. Flink 2.0 relies on a Distributed File System (DFS)
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Figure 4: Disaggregated state management in Flink 2.0.

as its primary state storage, allowing faster recon!guration, min-
imizing query performance disruption, and scaling to very large
states that could exceed the storage capacity of a single node. In
addition, we de!ne three key objectives in Flink 2.0: (1) preserving
the core processing semantics of Flink 1.x, (2) ensuring compatibil-
ity with its established execution framework while enabling new
functionalities, and (3) facilitating a seamless migration experience
with minimal modi!cations.
Asynchronous execution. At the runtime layer, we introduce the
Asynchronous Execution Controller (AEC) to enable asynchronous
execution. AEC decouples record processing (applying user-de!ned
transformations to input events) from state access, mitigating la-
tency associated with DFS access for state storage. Additionally, the
AEC ensures correct scheduling of the execution to maintain core
system guarantees (cf § 2.2). Flink 2.0’s execution model is fully
compatible with Flink 1.x. The AEC can be entirely bypassed if asyn-
chronous execution is disabled or state access is not needed. We
describe the asynchronous execution model in detail, in Section 4.
Disaggregated state backend. At the state management layer,
we introduce ForSt, a disaggregated state store using a DFS as its
primary state storage. In Figure 4, active working state is stored in
theWorking Directory on DFS, and is directly accessible by the ForSt
instance to eliminate local disk constraints. Notably, ForSt instances
operate within the Task Managers as before, ensuring compatibility
with Flink 1.x’s deployment paradigm. Further, we incorporate a
Uni!ed File System (UFS) abstraction in ForSt to harmonize the
behavior and capabilities of diverse distributed !le systems. The
UFS provides a logical !le view to Flink engines and delegates
!le management operations. A key bene!t of this abstraction is
the facilitated physical !le sharing between active state !les and
recovery (checkpoint) !les on DFS.

By leveraging the UFS, we provide a fast and lightweight check-
point mechanism in Flink 2.0. While in Flink 1.x, the checkpointed
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!les on the DFS and the state !les on the local disk are managed
separately by the Job Manager and the state backend, respectively.
Flink 2.0 streams states continuously to the DFS. To allow direct
utilization of these physical state !les for checkpoints without man-
agement con"icts, the UFS provides !le operation delegation, main-
taining logical links between state and checkpoint !les, as shown
in Figure 4. This results in a lightweight metadata update when
checkpointing, while maintaining the existing state and checkpoint
!le lifecycle management. As we show in Section 6.1, checkpoints
in Flink 2.0 consistently complete within a few seconds. Recovery
and rescaling bene!t as well, as loading large state from remote
storage can be avoided by leveraging the UFS. Finally, the UFS
enables the option of remote compaction, which reduces interfer-
ence with normal processing. Remote compaction is currently an
experimental feature in Flink [36]. We present Flink 2.0’s new state
management layer, ForSt, in Section 5.

4 ASYNCHRONOUS EXECUTION MODEL
A transition from local to remote state comes with an inevitable
impact on read latencies. Table 1 shows the access latency across dif-
ferent storage mediums. Reading from remote storage, like HDFS
or object storage (OSS, S3), is two orders of magnitude slower
than reading from a local disk. As discussed in Section 2.2, stream
tasks in Flink 1.x follow a strictly sequential per-record execution.
That includes CPU-bound transformations and blocking state reads
as one atomic operation executed by the main thread (writes are
logged locally asynchronously). Evidently, employing this sequen-
tial execution model with remote state access would severely limit
performance and lead to I/O bandwidth underutilization. To address
the limitations of blocking I/O, Flink 2.0 introduces an asynchro-
nous execution model, involving key runtime updates. Speci!cally,
by leveraging task-level parallelism and allowing records to be
processed asynchronously and out-of-order, the system can over-
lap CPU-bound computations with slow remote I/O operations,
amortizing latency penalties while improving throughput.

4.1 Asynchronous Execution Overview
Asynchronous execution in Flink 2.0 decouples state access (I/O)
from data processing (CPU), moving blocking communication out
of the critical path of the main task thread. The processing lifecycle
of each input record is re!ned into three separate processing stages
centered around state access: (1) non-state transformations, (2) state
access, and (3) post-state access callbacks. Non-state transformations
and post-state callbacks are executed in the main thread as before.
However, the state access stage is now handled asynchronously by
a separate thread pool and can involve a chain of multiple state
operations per input record. This is implemented by linking individ-
ual state access calls through callbacks, forming an asynchronous
pipeline. If an input record does not require state access, only the
non-state transformation is executed, similar to Flink 1.x. Finally,
post-state callbacks take precedence over new records’ non-state
transformations to guarantee the timely completion of pending
records before progressing further.

Shifting to asynchronous execution poses several challenges,
particularly in maintaining Flink’s core system guarantees under
the new runtime. In the rest of this section, we !rst detail changes

Table 1: Access Latency for Di#erent Storage Mediums
Local Read Latency Remote Read Latency
NVMe ESSD PL1 HDFS on NVMe OSS
68 µs 199 µs 1.5 ms 23 ms

Algorithm 1: Async join of order and shipping updates.
1 𝑂%&𝑅𝑆) cast to*𝑆)%𝑆 type;
2 +𝑊-𝑊%"#$%# .asyncUpdate(Record);
3 +𝑊-𝑊%&ℎ!( .asyncGetEntries()
4 .THEN (.ℎ"𝑎_%1%𝑐𝑊. -> {
5 Joined_Records = applyJoin(Record, .ℎ"𝑎_%1%𝑐𝑊.)

output(Joined_Records); })

to Flink’s programming model (§ 4.2), using the streaming join
operator of the logistics use case (cf. § 3.1). We then provide a rig-
orous overview of additional mechanisms implemented to preserve
Flink’s core guarantees. Namely, we discuss the Async Execution
Controller (AEC) that schedules async processing to preserve per-
key FIFO order (§ 4.3), theAsync Draining Mechanism that preserves
exactly-once processing with checkpoints (§ 4.4), and, the Epoch
Manager, that enforces low-watermark event-time order (§ 4.5).

4.2 Asynchronous Programming Model
We showcase the async programming model using the streaming
join operator of Figure 3. The join processes either Order updates
or Shipping updates, which are joined against two state tables:
𝑁𝑂%𝑂&.ℎ"𝑎 and 𝑁𝑂%𝑂&𝑅𝑆)%𝑆 , respectively. To enable async state access,
operators need to provide async hints to the runtime executor.

Algorithm 1 illustrates how an Order update is joined with the
𝑁𝑂%𝑂&.ℎ"𝑎 table within the asynchronous processing model. Non-
state transformations (Line 1) remain unchanged from Flink 1.x.
We !rst update the 𝑁𝑂%𝑂&𝑅𝑆)%𝑆 with an %'𝑆𝑇𝑈+𝑊-%𝑂& (Line 2). For
state accesses with additional actions, we use the ./𝑎1 method
(Line 4) to de!ne the callback execution (Line 5). The callback func-
tion is triggered when the async state request is !nished. In the
context of the streaming join, accesses to 𝑁𝑂%𝑂&𝑅𝑆)%𝑆 and 𝑁𝑂%𝑂&.ℎ"𝑎
are independent and can be initiated concurrently. However, when
dependencies exist between state access operations, the ./𝑎1
method ensures sequential chaining and preserves the correct or-
der across state accesses. We refer the reader to the Apache Flink
wiki [12] for a comprehensive list of the Flink 2.0 asynchronous
APIs.

4.3 Preserving Per-Key Processing Order
Flink’s existing per-key sequential processing order guarantee
(§ 2.2) is fundamental for correctness in o#ering single-writer
atomic access to states, as well as for its capabilities, allowing frame-
works such as complex event processing to build on top. To preserve
this property under thread-parallel state access conditions, Flink
2.0 introduces a new component internal to stream tasks, the Asyn-
chronous Execution Controller (AEC). The AEC enforces a single
active in-"ight computation per key, within each task, at a time.

Stream input arriving at each stream task maintains per-key
FIFO order guarantees inherently, through Flink’s existing channel
management mechanism. This ensures that records belonging to
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the same key will appear in their order of origin at the derived task
sequential input. TheAEC extends this guarantee during processing,
by ensuring that intra-task scheduling maintains the same per-
key partial processing order while allowing concurrency across
independent keys. To achieve this, the AEC tracks the keys of all in-
progress computations within its Key Accounting Unit and permits
the scheduling of new input records only when there are no pending
executions on the same respective key. In-progress computations
include non-state executions, state access, and callbacks. Non-state
executions and callbacks are performed in the main thread, whereas,
state accesses are executed by the separate state access thread pool.

Figure 5 illustrates the AEC operations for a task of the logistics
streaming join operator. The task execution thread consumes𝑐𝑑-&𝑑
and 𝑁𝑒5𝑊𝑊5𝑇𝑔 records from the FIFO input channel and submits state
access requests to the AEC. Assume record O1 representing 𝑐𝑑-&𝑑
with key 26 is currently waiting for state access. This operation is
o%oaded to the AEC state access thread pool, while the main task
thread keeps processing records from the input channel. The Key
Accounting Unit has recorded key 26 to prevent concurrent access
with the same key. The following operations take place, as shown
in Figure 5: ! The task execution thread consumes the next input
record -𝑐𝑑-&𝑑 record O2 with key 26. " O2’s state request is sent to
the AEC for async execution. # The Key Accounting Unit identi!es
a con"ict on key 26 caused by the pending record O1 and places O2
in the Blocking Bu"er until all preceding operations on the same
key are complete. $ The main task thread proceeds with the next
record - 𝑐𝑑-&𝑑 O3 with key 18. % Since key 18 currently has no in-
progress computations, O3’s state request passes through the Key
Accounting Unit and acquires a state thread for execution. & The
async state request for pending record O1 eventually completes.
The callback function (Line 4-5 in Algorithm 1) along with the
fetched state is enqueued into the Callback Channel for further
execution. Records in the callback channel are prioritized over those
in the input channel by the main thread to enable faster end-to-end
progress. ' After O1 completes, the AEC resumes the pending state
requests on key 26 in FIFO order. The number of in-"ight records
and the AEC’s blocking bu#er are con!gurable to limit memory
consumption. By default, this is set to 6000 records [11], leading to
severalMBs ofmemory per operator. If the blocking bu#er saturates,
the AEC blocks new records, triggering backpressure.
Correctness argument. Per-key FIFO order in Flink 2.0 is provided
via a combination of two mechanisms I and II:

I - Inter-Task Ordering (Channel Management) As established in
Flink’s original design (Section 2.2), records belonging to the same
key 7 arrive at each task in FIFO order. Thus, 𝑑1 ≺ 𝑑2 in the stream
input if 𝑑1 is produced before 𝑑2, given a stream order relation ≺.
II - Intra-Task Ordering (AEC). Within each task, the AEC allows
only one in-#ight computation per key at a time. That is, any record
𝑑2 that shares a key 7 with an ongoing record 𝑑1 must wait in the
blocking bu#er until 𝑑1 !nishes. Consequently, 𝑑1 completes all
CPU and I/O steps before 𝑑2 can start.

4.4 Exactly-Once Processing Compatibility
As we discussed in Section 2.2, Flink’s checkpointing process en-
sures that all computations (and no more) between two consecutive
checkpoint markers are committed [19]. This fundamental mecha-
nism remains intact in Flink 2.0’s asynchronous execution model to
guarantee exactly-once processing semantics. In Flink 1.x, when an
aligned checkpoint marker triggers a local checkpoint in the stream
task, all records preceding the marker have been fully processed,
and, thus, all state changes have been re"ected in the state store.
However, the same precondition cannot be guaranteed by default
during async execution, as state accesses and post-state callbacks
may still be pending upon processing a checkpoint marker. To ad-
dress this, Flink 2.0 introduces an async draining mechanism to
ensure that all ongoing state accesses and callbacks are !nished
before a local checkpoint operation is triggered.

The draining procedure uses the AEC to track pending computa-
tions while blocking any input that follows the checkpoint marker
until all preceding actions are complete. Preceding actions include
processing in-"ight records and records residing in the blocking
bu#er, as well as, any derivative state accesses and callbacks. Once
all processing has been completed, it is safe to take the local state
checkpoint, and emit a new checkpoint marker in the output. The
draining procedure prolongs checkpoint duration; however, in most
cases, the AEC’s management of the maximum number of in-"ight
records ensures this prolongation is controllable. As shown in Sec-
tion 6.1, checkpoints can consistently !nish within several seconds.
From a compatibility perspective, the draining mechanism pre-
serves Flink 2.0’s portability with Flink 1.x checkpointing, making
it possible to enable or disable asynchronous execution through
simple recon!guration. Finally, the alternative “Chandy-Lamport”
checkpoints from Flink 1.x which bypass alignment, are still com-
patible with Flink 2.0 and are recommended for network-intensive
pipelines. Similar to the Flink 1.x version, no draining is necessary
but in-"ight messages need to be checkpointed as part of the state.
Correctness argument. Let 𝑖! be the aligned input checkpoint
marker for checkpoint 7 . Given an input FIFO network order re-
lation ≺, we must ensure that (I) every record 𝑑 for which 𝑑 ≺ 𝑖!
completes before issuing checkpoint 7 , and (II) no record 𝑑 ′ where
𝑖! ≺ 𝑑 ′ is processed before checkpoint 7 . Once aligned marker 𝑖!
arrives, the operator blocks any subsequent records 𝑑 ′ for which
𝑖! ≺ 𝑑 ′. This satis!es property II. Meanwhile, only when the AEC
detects that no operations remain pending for those earlier records
does it !nalize checkpoint 7 and emit 𝑖! downstream. This guar-
antees property I. In the same atomic step, the task also unblocks
its regular input, allowing normal processing to resume seamlessly.

4851



20

21 24 22 28 26 35 34 37 38 42 41 44 42 55 49

30 40 50

52 55 61
58

5
9

Closed Finished Closed Open

Epoch [20, 30] Epoch [30, 40] Epoch [40, 50] Epoch [50, …

Head epoch of the queue Tail epoch of the queue

watermark

finished record
pending record

Incoming 
records/watermarks

watermark finished record pending record

Figure 6: The event-time epoch mechanism in Flink 2.0.

4.5 Watermark Handling with Async Execution
Watermarks provide a consistentmechanism to track global progress
across all substreams, by o#ering monotonicity and completeness
in out-of-order processing. Flink’s FIFO channels are instrumental
in ensuring monotonicity when generating combined watermarks
from multiple input streams, as explained. Completeness, on the
contrary, relies on synchronous execution. An input watermark"
extracts a promise that if a record 𝑑 originates before the water-
mark, i.e., 𝑑 .𝑂 < " , then that record has been already processed.
Many key mechanisms, such as event-time timers and windows,
rely on this guarantee to trigger their !nal computations. However,
under async execution, it is possible that there are still pending
computations originating earlier than a watermark" at the time
of its reception. Hence, either triggering timers or disseminating"
further would violate low-watermarking ordering semantics.

To address this, we introduce the notion of event-time “epochs”,
representing periods between two consecutive watermarks. Epochs
are used for asynchronous progress tracking, i.e. tracking pending
records per epoch until their completion. An epoch transitions
through three distinct stages according to its progress: i) OPEN :
initially, an epoch begins in that state, awaiting the arrival of the
next watermark. During this stage, newly arriving input records
are assigned to this open epoch. ii) CLOSED: upon the arrival of
the next combined watermark, the epoch transitions to this state.
Closed epochs cannot be assigned more records, whereas, a new
epoch is opened to accept new inputs. iii) FINISHED: a closed epoch
whose records have been fully processed.

Since records are processed in parallel, multiple epochs with
un!nished records may coexist. To estimate completeness and coor-
dinate watermark operations, Flink 2.0 features an Epoch Manager
component, which maintains a queue of epochs and their informa-
tion. New epochs and watermarks are enqueued at the tail, and
emitted from the head. An epoch can only be dequeued if it is in
the FINISHED state, and a watermark can only be emitted down-
stream if it reaches the head of the queue. As shown in Figure 6,
the !nished epoch [30, 40] and its watermark cannot be dequeued
as its preceding epoch [20, 30] still has pending records. The queue
ensures that the propagation of the watermarks and their order
semantics remain consistent with the synchronous execution.
Correctness argument. Completeness is de!ned as the guarantee
that every record 𝑑 such that 𝑑 .𝑂 < " is fully processed by the
time watermark w is emitted downstream. Flink 2.0 ensures com-
pleteness via its epoch management mechanism. Upon processing
watermark" , the task seals the current epoch 𝑎 to a CLOSED state
in the same atomic operation. The Epoch Manager tracks all in-
"ight records within that epoch and blocks " from propagating
until 1) every in-"ight record with 𝑑 .𝑂 < " completes processing
(𝑎 is in FINISHED state) and 2) 𝑎 is at the head of the queue of the

Epoch Manager. As a result, once " is emitted downstream, it is
guaranteed that there are no unprocessed records with timestamps
below" , preserving completeness.

5 ForSt: DISAGGREGATED STATE BACKEND
We now describe Flink 2.0’s new state management layer and intro-
duce ForSt [28] (short for “For Streaming”), a disaggregated state
backend designed for streaming data. ForSt overcomes the limita-
tions of localized state, such as limited storage capacity, resource
spikes, and checkpointing and recon!guration bottlenecks, which
are prevalent issues in workloads with large state. ForSt addresses
these challenges by decoupling storage from compute through a
disaggregated architecture and leveraging scalable remote storage.
This design brings the following novelties in data streaming: i)
active state operations directly in DFS, eliminating local storage
limitations while exploiting local caching; ii) a uni!ed !le system
(UFS) layer, aligning the behavior (API) and capabilities (particularly
fast !le sharing) across diverse distributed !le systems; iii) seamless,
lightweight checkpointing based on the !le-sharing mechanism;
iv) rapid recon!guration and recovery via direct state retrieval
from the DFS; v) remote compaction, mitigating CPU spikes with
checkpoint-triggered compaction in Flink 1.x; and vi) a local cache,
utilizing both memory and disk, to accelerate data retrieval.

5.1 Uni"ed File System (UFS)
ForSt employs an LSM-tree structure to manage state !les, which
are streamed directly to the DFS via a Uni!ed File System (UFS)
layer, as illustrated in Figure 7. Distributed storage systems, such
as HDFS and object storage services, like OSS and S3, vary widely
in terms of behavior and capabilities and also di#er from POSIX-
compliant local !le systems [41]. As an example, while HDFS pro-
vides immediate visibility of !le creations and modi!cations, S3
employs an eventual consistency model, which may result in de-
layed object visibility. Hard links, a POSIX !le system concept,
create metadata entries that point to the same data blocks (inode) of
an existing !le, facilitating e$cient !le sharing. However, most DFS
implementations do not natively support hard links. As a result, !le
duplication often necessitates data copying, leading to increased
overhead and potential consistency problems. The UFS abstracts
away this complexity and provides a single point of entry to access
multiple DFS backends.

Given that both checkpoint and state !les are now stored on the
DFS, it is imperative for ForSt to o#er e$cient linking mechanisms
across diverse DFS implementations to enable lightweight check-
pointing and rapid recon!guration. To this end, the UFS provides
a logical !le abstraction and delegates !le operations. The UFS
maintains the mapping and reference counts between logical !les
and their physical locations and ensures consistent object visibility.
This approach facilitates e$cient move or link operations without
necessitating physical !le relocation or data duplication.

5.2 Fast Checkpointing and Recon"guration
Faster checkpoints. Flink 1.x’s checkpointing design (cf. § 2.2)
involves state backends copying and uploading their local state !les
to the DFS at checkpoint time. This copy and upload process to
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the DFS is both resource-intensive and time-consuming, particu-
larly for applications with large state sizes, leading to signi!cant
resource spikes and prolonged checkpoint time. The Job Manager
(JM), acting as checkpoint coordinator, is responsible for managing
the lifecycle of these checkpointed !les, and state backends are
responsible for managing their working state !les.

ForSt’s disaggregated design optimizes checkpointing in Flink
2.0 by co-locating the working state and checkpoint directories.
Leveraging hard-linked !le sharing capabilities provided by UFS,
the majority of underlying state !les are already durably replicated
in the DFS when a checkpoint is triggered. This transforms check-
pointing from a data-intensive operation to a lightweight reference
creation. Speci!cally, the ForSt checkpointing process comprises
the following steps, as Figure 8 illustrates: i) State backends create
hard-links for state !les to be checkpointed, with the UFS managing
logical-to-physical !le mappings and reference counts (Figure 8 !);
ii) These hard-linked logical copies are registered in the JM (Figure 8
"), as in Flink 1.x. Once a checkpoint becomes obsolete, the job
manager issues a deletion to the state backend via its hard-linked
reference instead of commencing a direct !le deletion (Figure 8 $
and %). iii) Hard-linked copy deletions trigger a reference count
reduction in the UFS. This results in safe physical !le deletions only
when the reference count defaults to zero (Figure 8 # and &).

Checkpointing in Flink 2.0 closely follows the original mech-
anism in Flink 1.x, with one key re!nement: instead of directly
deleting !les, the JM delegates deletion to the UFS. This decouples
checkpointing from physical !le management, while signi!cantly
reducing overhead without compromising the original guarantees.
Seamless recovery and rescaling. Failure recovery and rescal-
ing necessitate state backends to download or copy !les from the
checkpoint to their working directory, which is slow for large state
sizes. As we will show in Section 6.1, recovering a job with 290 GB
of state takes over 3 minutes in Flink 1.20, while large-scale cluster
recovery or migration scenarios (e.g. during Double 11) can take
hours. However, leveraging the hard-linking feature of the UFS,
data transfer can be entirely avoided. New instances can recover
directly from linked !le copies, resulting in near-instant recovery.
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Figure 8: Fast checkpointing on Uni"ed File System.

5.3 Remote Compaction
Compaction is the process of merging immutable !les in LSM-Trees
to remove obsolete or deleted data, reducing storage overhead and
improving read performance. While crucial for read performance
and space e$ciency, compaction introduces recurring CPU and I/O
contention in monolithic architectures. In Flink 1.x, this overhead
is further ampli!ed by periodic checkpointing, as each checkpoint
captures a full snapshot of the working state, triggering local com-
paction. Consequently, foreground tasks contend with background
compactions for resources, leading to latency "uctuations and oc-
casional resource spikes. In practice, this often results in resource
overprovisioning, reducing overall e$ciency.

The disaggregated design of ForSt facilitates the decoupling of
the CPU-intensive compaction process from Flink compute nodes.
Since the active working state is stored on a shared DFS, state !les
for compaction are directly accessible without disturbing normal
processing. This enables ForSt to introduce compaction-as-a-service
(Remote Compaction), where dedicated stateless compactor work-
ers execute !le compactions triggered by Flink tasks. This design
signi!cantly enhances the "exibility of the setup, as the compactor
and compute nodes can scale independently, e#ectively decoupling
the two resource types to handle their respective workloads. Given
the I/O-intensive nature of compaction, the compactor can be de-
ployed either within the same intranet as the DFS cluster or locally,
regardless of the network con!guration of the compute nodes. As
a shared service, resource spikes from compactions across di#erent
jobs can be staggered, leading to more stable CPU usage and a
higher overall resource utilization rate. This optimization aligns
with the pooling concept prevalent in the cloud-native era. Our
implementation [36] adopts the compaction trigerring of Flink 1.x
but o%oads the actual process. Instead of compacting locally, the
ForSt backend sends a compaction request with metadata to a dedi-
cated service. A scheduling node assigns tasks to compactors using
a round-robin policy. Once complete, the backend is noti!ed and
updates LSM metadata accordingly.

5.4 Local Cache Management
Caching is essential for faster read operations in disaggregated ar-
chitectures. ForSt incorporates a caching mechanism that uses both
memory and local disk resources on compute nodes as amulti-tiered
cache hierarchy. ForSt includes a widely adopted block-based Least
Recently Used (LRU) cache in memory and a !le-based secondary
cache on local disks. The secondary cache replicates SSTable !les
from remote storage and uses a History-Based Policy.
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Table 2: Minimum Number of CUs and Associated Costs
Flink 1.20 Flink 2.0

Minimum Required CUs 16 8
Monthly cost ($) 688 344

This History-Based Policy manages cache !les using historical
access statistics. For eviction, we employ an LRU mechanism to
track all currently cached !les, evicting the least recently accessed
!les when the cache reaches its capacity and new !les need to be
loaded. For loading, access frequency over the preceding minute
is monitored. Files on the remote store with an access frequency
exceeding a prede!ned threshold are periodically loaded back into
the cache. The LRU-based eviction policy, while simple, has proven
e#ective in our production deployments, while the frequency-based
loading policy e#ectively mitigates the cache thrashing problem.
The history-based policy is the default cache policy in Flink 2.0
and in Alibaba’s Flink Service. The cache policy is designed to be
pluggable, allowing for easy substitution.

6 EVALUATION
Our experimental evaluation consists of two parts. In Section 6.1,
we evaluate the bene!ts of disaggregated state management on the
production use case of Figure 3, in Flink 1.20 and Flink 2.0. Our
results show that Flink 2.0 leads to lower operating costs, higher
checkpointing performance, and reduced recon!guration duration.
In Section 6.2, we use the Nexmark benchmark [55, 60] to further
evaluate the performance impact of the asynchronous execution
model, the caching mechanism, and the ForSt backend.

6.1 Real-World Workload Evaluation
We replicate the logistics use case of Section 3.1 on a smaller scale,
using a subset of production workloads, resulting in a total state
size of roughly 290 GB. We adjust the input rate to match the daily
production tra$c. We use Flink 1.20 as the baseline, with state
backed by RocksDB and stored on the local disk.
Experimental setting.We run all experiments on a Kubernetes
cluster with 6 ecs.g7.8xlarge Elastic Compute Service (ECS) in-
stances. Each instance is equipped with 32 2.7 Ghz Intel Xeon
vCPUs, 128 GB of main memory, one network card with 16 Gb/s
intra-network bandwidth and one ESSD PL1 disk, o#ering 509 IOPS
and 350MB/s throughput. This setup is based on the commercial
model for Alibaba Cloud’s Real-time Computing service [27].

For storage, we con!gure an HDFS cluster as a replacement for
Alibaba Pangu [48]. We use one NameNode and two DataNodes,
each deployed on an ecs.g6a.2xlarge ECS instance, equipped
with 8 2.6 Ghz AMD EPYC vCPUS, 32 GB of memory, and one
network card with 2.5 Gb/s intra-network bandwidth. The HDFS
cluster can deliver up to 5 Gb/s throughput, which aligns with
our production compute-storage con!guration. To determine the
optimal disk con!guration for DataNodes, we consider both disk
latency and throughput. We choose ESSD PL0 disks, which are su$-
cient to provide ≈ 1𝑘' access latency between compute and storage
clusters. We provision 4 disks per DataNode, o#ering over 5.6 Gb/s
of total disk throughput, which exceeds the network bandwidth.
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Figure 9: CDF of the checkpoint durations.

Cost evaluation. In this experiment, we compare the operating
cost of the two deployments on Flink 1.20 and Flink 2.0. Speci!cally,
we measure the monthly cost in terms of the compute units (CUs)
required by each system to sustain the daily tra$c of the production
workload. Modern containerized service providers bundle resources
like CPU, memory, and local disk, rather than selling them sepa-
rately [30, 44]. Consequently, we have adopted the compute unit
(CU) as an integrated measure for evaluating cost. Based on Alibaba
Cloud’s pricing model [26], the monthly costs for compute and
storage clusters are approximately $7300 and $1000, respectively.
The cost price of one CU — which includes one CPU core, 4 GB of
memory, and 20 GB of disk storage — is roughly $43 per month.
Notice that Flink 2.0 does not incur additional costs on HDFS com-
pared to Flink 1.20. This is because both versions store checkpoint
data on HDFS; Flink 2.0 simply co-locates and shares checkpoint
and active state data without extra storage cost.

Table 2 shows the minimum number of CUs required to run the
job while avoiding backpressure. Flink 1.20 needs at least 16 CUs,
to avoid the state size per CU exceeding the disk limit of 20 GB.
Conversely, Flink 2.0 is memory-bound but handles the job with
only 8 CUs, cutting costs by half ($344 per month).
Checkpoint performance. We now compare the performance of
the checkpointingmechanism in Flink 1.20 and Flink 2.0. Our results
indicate that Flink 2.0 provides substantially faster and more con-
sistent checkpointing, key determinants of overall checkpointing
performance. We set the checkpoint interval to 1min and enable
incremental checkpoints. We run the experiment for !ve hours
and record metrics for 300 checkpoints for each system. Figure 9
shows the CDF of checkpoint durations. Overall, all the check-
points in Flink 2.0 can !nish within 3 seconds, no matter how big
the checkpoint size is, while Flink 1.20’s checkpoint duration is
largely determined by the incremental checkpoint size. In this case,
with an average incremental checkpoint size of 1.89 GB, over 19.7%
of the checkpoints took more than 30 seconds to complete, and
more than 1.5% took more than 50 seconds.

Flink 2.0 is able to complete checkpoints within seconds thanks
to its disaggregated state management. Co-locating the ForSt active
state and checkpoint directories and leveraging UFS to eliminate
!le copies signi!cantly reduces the data transfer required during
checkpointing, ensuring both speed and stability. To validate the
versatility of the UFS-based approach, we replicated the experiment
on OSS instead of HDFS, keeping the setup identical. OSS is using
the recommended standard zone-redundant type [25]. The !nd-
ings were consistent: in Flink 2.0, checkpoint durations remained
fast and stable, with all checkpoints completed within 4 seconds.
In contrast, checkpoint times in Flink 1.20 exhibited signi!cant
"uctuations due to the long-tail transfer latency of OSS.
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Figure 10: Recovery and rescale durations.

Recovery and rescaling. Our next experiment aims to demon-
strate how disaggregated state management facilitates faster recon-
!guration in Flink 2.0. Flink employs pause-and-restart recon!gura-
tion to recover after a failure and to modify the resource allocation
of a job. To achieve state consistency during recon!guration, Flink
temporarily pauses the a#ected job and instructs workers to load
state from the most recent checkpoint. Data processing can resume
once all workers have loaded their respective state partitions.

We evaluate three production-grade recon!guration scenarios
representative of peak tra$c events, such as Double 11 sales: (i)
cross-cluster migration, where we terminate a job on an overloaded
primary compute cluster and seamlessly restart it on a backup
cluster, (ii) a scale-out scenario, where we double job parallelism
(16 to 32) during tra$c surges, and (iii) a scale-in scenario, where
we half job parallelism (32 to 16) post-peak, to save costs. We repeat
each experiment three times on Flink 1.20 and Flink 2.0, testing
each version with both HDFS and OSS as the storage, while keeping
all other settings identical. OSS is using the recommended standard
zone-redundant type [25]. Figure 10 shows the results.

With HDFS, Flink 2.0 signi!cantly shortens the recon!guration
duration and restarts the job within tens of seconds, in all scenarios.
Compared to Flink 1.20, it provides 16× faster job recovery, 12×
faster scale-in, and 49× faster scale-out. Flink 2.0 o#ers superior
performance thanks to its ability to recon!gure the job without
requiring data transfer from remote storage to the compute nodes’
local disks. On the contrary, Flink 1.20 takes several minutes to
download and rebuild job state in the corresponding local RocksDB
instances. For recovery and scale-in, the data transfer volume is
roughly 290 GB, that is, equal to the total job state size. In the scale-
out scenario, however, the data transfer volume is double, as each
scale-out worker (32 parallelism) fetches data stored in one original
worker (16 parallelism). As a result, the bene!ts of disaggregated
state management are even more evident for scale-out.

Repeating the experimentswithOSS as the distributed !le system
yielded a similar conclusion: Flink 2.0 achieves signi!cantly shorter
recon!guration durations compared to Flink 1.20. When compared
to HDFS, we observe that recon!guration using OSS in Flink 2.0
takes approximately 10-20 seconds longer. This is because object
storage services generally exhibit lower performance than HDFS
for metadata lookups and small random I/O operations. Although
our UFS approach eliminates the primary cost of copying large data
!les, loading metadata to rebuild the ForSt instance is still required.
In future work, we plan to optimize this by merging metadata reads
at startup to further accelerate recovery.
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Figure 11: Total CPU utilization over one-hour duration in
Flink 1.20 and Flink 2.0 with remote compaction enabled.

Smooth Resource Utilization. In this experiment, we demon-
strate the smooth resource utilization of Flink 2.0 with remote
compaction enabled. The compaction service was deployed in an
isolated Kubernetes pod. We collect CPU utilization metrics from
all nodes throughout a one-hour job execution for each system.
The checkpoint interval was set to 1 minute and incremental check-
points were enabled. Figure 11 shows the results. Flink 1.20 denotes
the CPU usage of all Task Managers (TMs) in Flink 1.20. Flink 2.0
includes the CPU usage of all TMs plus the compaction service, and
Flink 2.0 TM represents only CPU usage of TMs in Flink 2.0.

Flink 1.20 shows signi!cant and periodic peaks in CPU usage,
aligned with the checkpoint intervals. This is mainly caused by
background processes, like checkpoint !le uploads and LSM-Tree
compactions. In contrast, CPU utilization in Flink 2.0 is more stable.
In particular, Flink 2.0 TM exhibits consistently low variance and
is una#ected by checkpoint operations, due to the improved check-
point mechanism: 1) leveraging UFS to eliminate !le copies signi!-
cantly reducing the data transfer required during checkpointing (se-
rialization and data copying are CPU-intensive), and 2) compaction
tasks are moved from TMs to dedicated compaction nodes. Conse-
quently, Flink TMs exhibited a substantially smaller and smoother
CPU usage pro!le. As for the compaction nodes, their CPU usage
is upper-bounded by the resource limits con!gured for them. This
e#ectively stabilizes the overall cluster CPU usage as long as the
compaction service can keep pace with the compaction demands.

Similar smoother usages in I/O and network are observed due to
UFS, but not detailed here due to space constraints. In conclusion,
Flink 2.0 can prevent excessive resource provisioning by eliminating
sudden surges in resource consumption.

6.2 Performance on Nexmark benchmark
In the next set of experiments, we take a closer look at the per-
formance of the disaggregated state design. We aim to understand
what the impact is, if any, on steady-state performance and the
trade-o#s to achieve the higher "exibility and low-latency recon-
!guration bene!ts we demonstrated in the previous section. To
this end, we use the well-established Nexmark benchmark [29] to
evaluate the performance of the asynchronous execution model,
the caching mechanism, and the ForSt backend. Nexmark provides
a range of continuous query types, including stateless queries, light
state I/O queries, and heavy state I/O queries, allowing us to evalu-
ate performance across di#erent workloads.
Experimental setting. We run all experiments in this section on
two clusters hosted on Alibaba Cloud. The compute cluster consists
of 4 ECS instances, each equipped with 16 vCPUs and 64 GB of
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Figure 12: Maximum achieved throughput for all Nexmark queries under various con"gurations.
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Figure 13: Maximum achieved throughput for I/O-intensive and I/O-light Nexmark queries under various con"gurations.

memory, one 5 Gbps network adapter, and one 100 GB ESSD PL0
disk, providing 39 IOPS and 125 MB/s throughput. For the HDFS
storage cluster, we use one NameNode and 4 DataNodes, each
deployed on an ECS instance, equipped with 8 vCPUs, 32 GB of
memory, one 2.5 Gbps network adapter, and one 100 GB ESSD PL0
disk, providing 39 IOPS and 125 MB/s throughput.

In all experiments, we deploy Flink 1.20 and various con!gura-
tions of Flink 2.0 on the !xed set of resources described above. We
con!gure the Nexmark source to generate 200 million records in
total and we measure the maximum throughput achieved (records
per second). We disabled the bloom !lter on both Flink 1.20 and 2.0
to maximize I/O and evaluate performance under high I/O load.
Maximum sustainable throughput across all queries. In the
!rst experiment, we evaluate the overall performance of Flink 1.20
and Flink 2.0 across all Nexmark queries,1 except Q6, as Flink SQL
does not yet support it. The Flink 1.20 nodes were con!gured with
100 GB of local storage for RocksDB, which is signi!cantly larger
than the actual requirements of the queries, to simulate an environ-
ment with unconstrained local disk resources. To understand the
performance impact of the newly introduced components in Flink
2.0, we evaluate three distinct con!gurations:
(1) Flink 2.0-local-sync uses 100 GB of local storage but replaces
RocksDB with ForSt. Asynchronous execution is disabled.
(2) Flink 2.0-HDFS-async uses the disaggregated state store on
HDFS and employs asynchronous execution. The compute nodes
do not have any local disk cache.
(3) Flink 2.0-HDFS-async-cache uses disaggregated state, asyn-
chronous execution, and a 1GB local disk cache.
Figure 12 shows the results. When comparing Flink 1.20 and Flink
2.0-local-sync, the two con!gurations with active state on the

1Queries Q0-Q2 are stateless queries, which complete within tens of seconds, so small
disturbances of JVM GC will have a noticeable impact on the results.

local disk, we observe that they achieve almost identical through-
put. This indicates that Flink 2.0 with ForSt can serve as a seamless
replacement for Flink 1.x with RocksDB, maintaining the same per-
formance level. Enabling disaggregated state management without
any cache (Flink 2.0-HDFS-async) incurs a moderate overhead,
degrading throughput by 48% on average for queries with heavy I/O.
The primary reason for this degradation is the increased latency
introduced by remote I/O operations. Nevertheless, for the majority
of queries without heavy I/O, disaggregated state management does
not have any signi!cant performance impact. Finally, the results for
Flink 2.0-HDFS-async-cache show that the caching mechanism
can e#ectively mitigate this impact. Even with a limited 1GB local
disk cache, it outperforms local state setup (Flink 1.20 and Flink
2.0-local-sync) by 4% on average.
I/O-intensive queries. We now select the !ve I/O-intensive Nex-
mark queries for closer study. We run these queries on the same
Flink 1.20 con!guration as before and gradually enable disaggre-
gated state management features to assess the bene!ts of asynchro-
nous execution and caching. We evaluate the following settings:
(1) Flink 2.0-HDFS-sync uses the disaggregated state store on
HDFS with synchronous state access.
(2) Flink 2.0-HDFS-async enables asynchronous execution but
has no local disk cache.
(3) Flink 2.0-HDFS-async-cache uses a 1GB local disk as cache.
Figure 13 (a) shows the results. As expected, naively employing dis-
aggregated state management with synchronous execution (Flink
2.0-HDFS-sync) leads to severe performance degradation. Flink
2.0-HDFS-async improves throughput by ≈ 2×, demonstrating
that the asynchronous execution model e#ectively mitigates the
I/O bottleneck. Flink 2.0-HDFS-async-cache further improves
performance by up to 3.7×, indicating the critical role of caching.
Note that the 1 GB local disk cache is not enough to hold the state
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size for any of the queries (q7: 2.25 GB, q9: 4.48 GB, q18: 1.05 GB,
q19: 1.52 GB, q20: 2.95 GB). However, even with only 1 GB of cache,
disaggregated state management can achieve performance that is
comparable to or better than Flink 1.20 with a local disk. Empir-
ically, the extra bandwidth consumption caused by remote state
access does not pose a problem compared to available intra-network
bandwidth in modern DC environments. For example, OSS o#ers a
default bandwidth of 5 Gbps (which aligns with our experimental
setup) and can scale further according to demand.
Queries with light I/O.We further evaluate six queries with state
sizes from 10MB to 400MB, where states !t in the block cache
rendering disk I/O negligible. As shown in Figure 13 (b), throughput
di#erences across Flink 2.0 con!gurations are much smaller than in
high-I/O scenarios (cf. Figure 13 (a)). For CPU- and memory-bound
tasks, async threading and caching o#er little bene!t, as dispatching
overhead exceeds memory access gains.
CPU overhead.We evaluated the overhead of the disaggregated
state model with asynchronous data access. Nexmark benchmark
results demonstrate a 30% average increase in CPU utilization
for stateful operators. This increase is primarily attributed to: (i)
context-switching cost for asynchronous access (30%); (ii) AEC
intra-task scheduling cost (20%); (iii) batching I/O classi!cation and
parallel execution for remote access (20%); and (iv) additional Java
garbage collection for Future objects (30%). While Flink 2.0 with
disaggregated state management bene!ts large-scale, I/O-intensive
stateful jobs where CPU is typically not the bottleneck, we plan
to further reduce this CPU cost in future work. In contrast, for
workloads with minimal or no I/O, the added CPU overhead from
async execution and DFS access may outweigh bene!ts. Flink 2.0
supports both sync and async modes, letting users choose based on
workload. In practice, overhead is often low, as stateless operators
skip these steps. Most jobs mix stateful and CPU-intensive stateless
operators (e.g., sources, sinks). Our logistics use case (Figure 11)
shows Flink 1.20 using 9% more CPU than Flink 2.0, regardless of
remote compaction. This is due to Flink 1.20 requiring 16 task man-
agers (TMs) versus 8 in Flink 2.0, thus, increasing TM framework
overhead. Asynchronous overhead is not dominant in this scenario.

7 RELATEDWORK
Many database systems architectures decouple the storage engine
from the compute engine [2, 8, 10, 16, 33, 34, 46, 61, 62, 64, 66].While
these systems share the same underlying motivation with Flink 2.0,
their functional and operational requirements di#er signi!cantly
from those of streaming systems. In the rest of this section, we only
review closely related works on stream processing systems.
Stream processing systems with external state management.
Various stream processing systems separate the compute layer from
state, by pushing state management responsibilities to a distributed
key-value store. MillWheel [4] uses BigTable [22] and Spanner [31]
as remote storage, coupling per-key state modi!cations and check-
points in the same atomic write. While this approach achieves
fault tolerance at task and record granularity, remote state access
is performed synchronously, on the critical path of record process-
ing, to guarantee exactly-once semantics and idempotent updates.
Meta (formerly Facebook) [23] employs ZippyDB [50] for remote

storage, reducing failure recovery time by avoiding complete state
loading during restarts. However, this model is primarily suited
for monoid processors [14], when updates can be performed as
local append-only operations. Storm [59] and S4 [54] o%oad state
management and durability to users, without providing framework
support for direct remote state access. Recent SQL streaming data-
base systems [15, 45] also o#er native state caches and support for
remote cloud storage. RisingWave’s architecture [45] is perhaps the
closest one to Flink 2.0, using remote storage as the source of truth
and employing remote compaction. While these approaches bene-
!t from disaggregation, they focus on SQL APIs and o#er limited
support for custom state and user-de!ned event-based logic.
Asynchronous and out-of-order execution. Stream processors
rely on event time and watermarks to maintain order and ensure
correctness [4, 5, 19, 42, 47, 53, 57]. However, disorder can also be
introduced internally, after the event’s arrival. StreamBox [51] and
Cameo [65] o#er out-of-order processing and dynamic scheduling
to either leverage parallelism within a single multi-core machine or
prioritize events according to user-de!ned latency deadlines. Flink
2.0 allows out-of-order processing across watermark boundaries,
without incurring additional scheduling overhead.
Evolution of stream processing architectures. Data stream pro-
cessing research can be traced back to systems like Tapestry [58],
TelegraphCQ [21], STREAM [9], NiagaraCQ [24], Aurora / Bore-
alis [1, 13, 20], Gigascope [32], and S-Store [49]. These systems
established the core principles of modern stream processors, paving
the way for today’s commercial and open-source success. Data"ow
architectures continue to evolve, driven by emerging applications,
cloud computing, and hardware trends [18, 38].

8 CONCLUSION
Over the past decade, Apache Flink has become a popular choice
for distributed stateful applications due to its low-latency, high-
performance state management. However, its tightly-coupled ar-
chitecture limits checkpointing and recon!guration speed at large
state sizes. Flink 2.0 overcomes these limitations through disaggre-
gated state management while making no compromises to existing
guarantees. Our evaluation exhibits fast recon!guration and state
scalability with ForSt, an LSM-tree structured state store targeting
remote storage systems built on top of Flink’s new asynchronous
execution model, utilizing non-blocking state access.
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