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ABSTRACT
Modern enterprise applications and data warehouse systems move
data into data lakes for economical and scalability reasons. Data
is then stored in popular columnar !le formats like Parquet which
are optimized for writing using open table formats like Iceberg or
Delta. This presents new challenges for existing database systems
and their execution engines because excellent performance and
scalability when accessing this data in complex analytical queries
is expected while data is located in a remote data lake.

In this work, we present how we adapted the HANA Cloud Data-
base Engine for e"cient processing of !les in data lakes, which
we call SQL-on-Files (SoF). We motivate this evolution by its rele-
vance for Business Data Cloud, SAP’s Lakehouse, we discuss the
viability of general architecture choices like pushdown and direct
access architectures, and give insights into our SoF design decisions
towards scalable, analytical query processing around execution en-
gine, optimizer and caching. Our evaluation of SoF shows bene!ts
of direct access over pushdown architectures for a new warehouse
benchmark with complex, analytical workloads.
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1 INTRODUCTION
Lakehouses for Analytical Workloads The past few years have
seen the rise of a new type of data management system, called
lakehouse (LH), which combines the bene!ts of low-cost, open-
format data lakes / object storage (i. e., cloud-based storage sys-
tem for large amounts of any data) and transactional data ware-
houses [14, 33, 38, 71]. With the data gravity leading towards data
lakes for economic reasons, LHs for analytical query processing be-
came crucial for modern enterprise applications and warehousing
use cases (e. g., [4, 5, 25, 27, 28, 35, 38, 54, 55, 71]). While the sepa-
ration of compute and storage of data in data lakes opens up a new
design space, there are several challenges for cloud data systems,
as also recently acknowledged in the database community [1].
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Figure 1: “Physics” of current cloud infrastructure in terms
of cost, latency (LAT), throughput (TP) and capacity (CAP).

Challenges for Analytical Workloads The data is stored in open
columnar storage formats, e. g., Parquet [45] or ORC [18], often us-
ing clustering schemes like HIVE partitioning or Z-ordering. These
clustering schemes and associated statistics can be leveraged for
pruning in queries. However, in the context of complex analytical
workloads, the execution engine often needs to process large por-
tions or even the entirety of the table data. As pointed out in [7],
reading data from data lakes can become the primary bottleneck.

On the one hand, storage in cloud data lakes is cheaper than al-
ternatives like multi-attach persistent disks or elastic block storage
(see Fig. 1), o#ering high throughput (TP) and high availability (not
shown). On the other hand, the read and write latencies (LAT) are
within 2–3 digits milliseconds and incur variable costs per access.
That makes the overall costs of queries in LHs less predictable than
in classical data systems.

For the required database table semantics and transactional prop-
erties, LHs use open table formats (OTFs) such as Delta Lake [48],
Apache Iceberg [17], or Apache Hudi [16] to de!ne separate meta-
data layers on the data lake for each table [3, 71]. Those formats
implement transactions for single tables and operations, indexes,
and time travel [3, 71], but also lack support for critical features like
recovery, multi-statement transactions and isolation for multi-table
queries with separate transaction domains (e. g., [3, 22, 30]).

Finally, complex, analytical queries of modern enterprise appli-
cations with concurrent workloads of 90% reads and 10% writes at
SAP [34] (up to 60% / 40% from independent LH applications and
sources [54]) require support of operations beyond standard SQL,
making in-situ processing (e. g., no indexes) on data in data lakes
challenging for current systems.
State-of-the-Art To address these challenges, current cloud data
systems feature elastic compute (e. g., Apache Spark [15, 70] with
Photon for pipeline processing [6] and adaptivity [67], Presto, Trino
[19, 59]) for processing data stored in write-optimized, columnar
formats. In addition, there are many dedicated big data processing
systems on data lakes with Azure Datalake [46], Microsoft Fabric
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[8], AWS Redshift (with Spectrum) [4], Umbra / CedarDB [43] with
!le access improvements [49], and data ingestion AWS Glue [53].

The economic cost vs. performance trade-o# is usually addressed
by data and metadata caches, which are even more relevant for
non-co-located compute and data lake. For example, Databricks
[6, 31], Google BigQuery [41], Snow$ake [9, 13] and Redshift [4]
use data and Parquet !le or OTF metadata caches on compute node
local SSDs or based on shared services like FoundationDB [73].
Umbra’s Crystal [10] has a ring bu#er-based metadata cache and a
columnar format agnostic data cache. Shared result caches are used
by Snow$ake (across virtual warehouses), and shared read-through
caches in Google Napa [2]. However, it is unclear which caches are
meaningful for complex analytics.

We found that there are two fundamentally di#erent architec-
ture styles for analytical processing on data in data lakes: “push-
down” (e. g., PushdownDB [68, 69]) vs. “direct access” (e. g., Data-
bricks [6, 31]). However, there are no insights into these styles from
a real-world perspective.

Multi-table, multi-query transactions remain a challenge (e. g.,
[22]) and are practically mitigated by limiting the number of con-
current writers (impacting data freshness), and data normalization
(incl. nesting data) to avoid inconsistencies and guarantee isolation.
SAP HANA SQL-on-Files (SoF) SAP has recently introduced
Business Data Cloud, its Lakehouse, which we brie$y present below,
and whose data processing backbone is HANA Cloud. However, it
was a priori unclear how to adapt an in-memory database system
like HANA Cloud [32, 39] for complex analytics that fully leverages
read parallelism, mitigating the data access challenge of data lakes
(e. g., [7, 11]). How we addressed that is the subject of this paper.

HANA Cloud is an in-memory, HTAP database system [20, 32,
39] in the cloud. In this work, we introduce the Lakehouse capabili-
ties in HANA Cloud, referred to as SoF, for complex analytics that
address these challenges with a focus on the direct access system
architecture, elastic scaling via elastic compute nodes (ECNs) [24]
and caching (cf. [12]).

In particular we productively implemented both architecture
styles, deciding for direct access (i. e., SoF), and share our insights
that we gained and resulting design decisions. We show that the
pushdown architecture style inherently breaks regarding expres-
siveness, performance, costs and ironically data transfer due to the
limited operator expressiveness.

However, optimizations like pushdown are still relevant and
speci!ed for new !le processing capabilities as part of the existing
smart data access layer in HANA close to the expressive HANA
Execution Engine (HEX). The !le processing with HEX is scaled
across multiple ECNs and integrated with HANA workload classes
for massively parallel processing (MPP) of data in data lakes.

The user-facing interface is based on existing (fabric) virtual ta-
bles [40], HANA’s remote data access technology, which allows for
application switching between replication and federation, depend-
ing on their use case. We consciously decided to enable few caches,
i. e., enabling existing static view caches and existing, more sophis-
ticated, transactional analytical caches, and added OTF metadata
caching, and discuss our decisions.

Contributions To summarize, we make the following contribu-
tions with HANA for LHs that we think are interesting for the
database research community as well as practitioners:

• We motivate the business impact and introduce a motivat-
ing LH scenario in Sect. 2 that we use for benchmarking
and discuss predominent lakehouse architecture styles and
motivate our choice in Sect. 3,

• we specify an enterprise-scale data architecture “one-size-
!ts-all” with HANA cloud for complex analytics on data in
delta lakes in Sect. 4 and for our execution engine in Sect. 5,

• we show improvements how to scale the parallel processing
in Sect. 6, we describe options for caching in Sect. 7,

• for a better understanding, we explain transaction process-
ing across HANA and Delta tables by example of DDLs
in Sect. 8 and leave a more general LH description (e. g.,
transformations, ingestion or DML) for future work, and

• we evaluate the di#erent architecture styles and evaluate
standard TPC-H workloads in Sect. 9,

before we conclude in Sect. 10.

2 MOTIVATION: BUSINESS IMPACT AND
LAKEHOUSE SCENARIOS

In this section, we discuss the business impact of LHs on modern en-
terprise applications, and motivate our SoF solution. We introduce
a corresponding scenario that we also use in the evaluation.

2.1 Business Impact
At SAP, HANA Cloud [39] plays both the role of main database
for business applications, and the role of technical backbone for
SAP Business Data Cloud (BDC). BDC is SAP’s Lakehouse and data
integration technology.

In its role of SAP’s Lakehouse, all of SAP’s business applications
publish to BDC all of their business data as Data Products. Data
Products are curated and governed datasets, which are published
as a service under the zero-copy model: any byte of business data
produced by SAP’s business applications is extracted only once
and published for general consumption as a producer-oriented
primary data product. There is no further copy, unless a speci!c
optimization is needed for a speci!c consumption pattern. In that
case, data is transformed and a consumption-oriented derived data
product is created and published. A typical example would be de-
normalizing and pre-aggregating to reduce the cost and enhance
the performance of pre-de!ned analytical processing on top of the
Lakehouse. Data products are currently implemented as delta tables
and published using the delta sharing [47] protocol, required for
governed, secure, open, and cross-platform data sharing.

At SAP, we distinguish process integration and data integration.
The former is based on application APIs, gives access to data with
low latency and high freshness, and is record or object oriented. It
does not scale well for set-oriented access. Conversely, data integra-
tion focuses on set-oriented access at scale. BDC’s role as the SAP
data integration technology is likewise based on data products and a
zero-copy consumption model. Data published by an application as
delta tables is shared at scale across all consumer applications and
services, without wasting resources for each producer-consumer
pair, like point-to-point integration would do.

4832



Figure 2: Motivating Retail Lakehouse Scenario

Although it is out of the scope of this paper to cover SAP BDC
in depth, we introduced it as the main motivation for HANA Cloud
evolving to native data lake, SQL-on-Files (SoF), and Spark integra-
tion. The Spark component of HANA Cloud is BDC’s runtime for
data ingestion and transformation. To become the data processing
backbone of BDC, HANA Cloud had thus to evolve and become
more than a HTAP multi-model database engine [39].

At the same time, this evolution serves the role of HANA Cloud
as the application’s main database. An SAP application accesses in
a seamless way both its private data and data lake data, under the
same programming model. The application uses SQL SELECT for
all data reads, including when accessing the delta table of a data
product published by another application. Delta table data is either
accessed directly in the data lake, through SQL-on-Files federation,
or locally in a database table where the data is replicated. When
replicating data, HANA Cloud leverages the delta table’s native
change data capture (CDC) mechanism. Likewise, an application
uses SQL INSERT, UPDATE, and DELETE to write to local tables the
datasets which it publishes as data products, using database ACID
transactions. HANA Cloud replicates out on behalf of the applica-
tion those datasets to the delta tables of the data products and thus
decouples its own transaction domain of the data lake.

The "one-size-!ts-all" role of HANA Cloud at SAP, already de-
scribed in [39] for business applications, is yet again notable here
for BDC: its data processing needs are covered by the database
engine, Spark, and data lake. We do not debate the general rele-
vance of Stonebraker et al. [63]; our architecture choice might not
hold for other software editors. It nevertheless holds for SAP, pre-
dominantly a business application editor. The investment in HANA
Cloud, as a single data processing service covering all SAP needs, is
a better solution compared to spreading the investment to support
and evolve multiple di#erent specialized services. At the same time,
reinventing established state of the art open source technology
would be a poor decision, hence the approach described in this
paper: the reuse of Apache Spark and delta table, integrated with
the database engine and operated as part of the HANA Cloud data
processing service “menage a trois”. In this paper, Spark-based data
transformations, replicating data in for local access and replicating
data out for Data Products creation are out of scope. The focus is
on SoF access to delta tables in the data lake, with the business
motivation of accessing BDC Data Products, both for application
data integration and analytical processing.

The business impact could be materialized through a relational
compute engine that allows for e"cient, complex analytics on
data lakes. Subsequently, we discuss the two most common LH
architecture styles for that.

Table 1: LH Scenario Stories / Queries.
Story / Query !lter union-all aggr. join sort sql-h select fems

Q1 ○ ○ ○ ○ ○ ○ ○ ○
Q2 ○ ○ ○ ○ ○ ○ ○ ○
Q3 ○ ○ ○ ! ○ ○ ○ ○
Q4 ○ ○ ○ ○ ○ ○ ○ ○
Q5 ○ ○ ○ ○ ○ ○ ○ ○
Q6 ○ ○ ○ ○ ○ ○ ○ ○
Q7 ○ ○ ○ ○ ○ ○ ○ ○
Q8 ○ ○ ○ ○ ○ ○ ○ ○
Q9 ○ ○ ○ ! ○ ○ ○ ○
Q10 ○ ○ ○ ○ ○ ○ ○ ○
Q11 ○ ○ ○ ○ ○ ○ ○ ○
Q12 ○ ○ ○ ○ ○ ○ ○ ○
Q13 ○ ○ ○ ! ○ ○ ○ ○

contained:○, !(left-outer join) not contained: ○

2.2 Motivating Lakehouse Scenario
The motivating LH scenario shown in Fig. 2 is inspired by our
previous BW/4HANA experience, containing three use cases of
(1) complex analytics on data lakes, (2) data marts, and (3) data
lake to LH replication for real-time analytics. These use cases are
subsumed today by SAP’s Lakehouse, Business Data Cloud.
Storage In the LH use cases, data arrives in a data lake from various
source systems from di#erent business domains like warehousing,
smart meters, or retail. The data comes in a multitude of formats
that are transformed into OTF tables like Delta or Iceberg stored
in columnar Parquet format, which grow into multiple TB of com-
pressed data, making this a good !t for data lakes. The columnar
format allows for storage closer to the relational engines and OTFs
provide basic transaction guarantees.

At SAP, the business applications are the main producers of
business data. Domain-driven design and service decomposition,
architecture patterns of modern cloud applications, require the
Business Data Cloud LH for data to be seamlessly accessed, inde-
pendently of the service producing it.
Compute The transformations require versatile user-de!ned func-
tions (UDFs) that are provided by scalable data processing systems
like Apache Spark [15]. While real-time analytics cannot be guaran-
teed on current, non-proprietary storage formats in data lakes (e. g.,
[72]) and thus requires replication into the relational data system,
the cases (1) requiring execution of SQL queries and (2) requiring
data transformations using SQL (e. g., to avoid operational costs of
multiple data systems) can be done directly on data in data lakes.

In this work we focus on relational queries directly on data
lakes (case (1)) that are adapted from a use case out of the retail
domain. The queries require complex analytical capabilities like
hierarchies, currency conversions that are available in relational
engines like HANA Cloud and are not supported by other systems
like SparkSQL. For example, query 12 (Q12) of our motivating
scenario is shown in Fig. 3. While Q12 is a relatively simple query
with standard SQL (e. g., aggregation, join, sort), it contains two
types of hierarchies at leaf nodes served with !ltering joins (i. e., a
time and a sales org. dimension) and restricted and calculated key
!gures. Table 1 gives an overview of the capabilities of all 13 queries
with sql-h denoting hierarchies and fems being “Form EleMent
Selection” (short FEMS) local !lters in LH InfoCubes. FEMS !lters
target selection groups in the SAP Business Warehouse. When
these !lters are pushed down to the HANA database, they are
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Figure 3: Motivating Lakehouse scenario, plan of query Q12
with hierarchies at leaf nodes.

converted into standard SQL queries that include sum aggregation,
CASE expressions, and bitwise operations.

Similar to related work on LHs (e. g., [54, 64, 66]), we observe
highly concurrent read-write workloads with writes coming from
ETL, transformations or data ingestion that are not part of query en-
gines, and reads like complex, multi-dimensional analytical queries,
on which we focus in this work.

3 LAKEHOUSE ARCHITECTURE STYLES
In this section, we discuss the predominant Lakehouse (LH) ar-
chitecture styles that we found in current research and industrial
implementations that attempt to support the scenario presented
in Sect. 2. While both styles show huge potential, we discuss our
rationale on the selection of the direct access style.

3.1 Pushdown Architecture
In disaggregated architectures, the network connects the computa-
tion and storage layers. While cloud networks are no bottleneck
anymore (e. g., see [11]), the inherent challenges based on physics
of current cloud data systems (see Fig. 1) need to be addressed.
Hence, two intuitive solutions are widely applied in such systems:
caching [23] and computation pushdown closer to the storage [26].
Sub-Query Plan Pushdown For the latter, systems like Oracle
Exadata server [29] and IBM Netezza machine [61] showed sig-
ni!cant performance improvements. More recently, PushdownDB
studied the question on how to divide query processing by pushing
down limited computation to Amazon S3 Select [56], close to data
lakes as shown in Fig. 4, and gained good results through push-
down [69]. Driven by the assumption that cloud networks are the
bottleneck, the architecture evolved toward a dedicated, custom
elastic compute in [68], shown in Fig. 4, which caters for cloud
vendors without in-place query capabilities. In all cases, sub-query
plans are passed from the relational DBMS with elastic compute to
the dedicated compute. The speci!c pushdown architecture parts
are shown in purple . With the reduced capabilities, the dedicated

Figure 4: Pushdown architectures (similar to [56, 68, 69])

compute with externalized !le access can be placed into smaller,
more cost e"cient nodes with elastic scaling.
HANA Data Lake Files Select In 2022, we explored a pushdown
architecture, short Data Lake Select (DL-Select), which external-
ized the Parquet !le-format handling and utilized speci!ed elastic
compute on top of data lakes. Similar to S3 Select, DL-Select started
out with simple relational operators like projection, selection and
pre-aggregation, which are easy to scale. Later support for Bloom
!lters, more complex expressions and other optimizations were
added. Sub-query plans were passed from the HANA optimizer into
DL-Select and executed in a dedicated compute engine di#erent
from HEX. To gain robustness through persistent failover states,
intermediate results were shared via data lake which served as an
in!nite size, persistent bu#er between DL-Select and HEX. The
results were picked up by HEX via returned URLs. Alternatives
like direct streaming from DL-Select into HEX were considered.
However, failover and back-pressure handling would complicate
the architecture signi!cantly. We did not pursue those approaches
further and focused on a direct access architecture instead.

3.2 Direct Access Architectures
While the pushdown architecture requires two “data hops” from
data lake to the dedicated compute and then to the DBMS, sys-
tems like Databricks access the data directly through compute like
Apache Spark as shown in Fig. 5 or specialized compute (e. g., [6]),
marked in red .
Data Lake Adapted DBMS Consequently, such a direct access to
data lakes requires engines of existing DBMS to add capabilities of
reading from storage formats like Parquet and directly integrating
with OTF semantics (i. e., metadata, handling table versions). That
requires a !le access layer which applies read optimizations like
!le skipping, data skipping and passes available metadata like zone
maps or min-max statistics to the DBMS optimizer. This naturally
includes pushdowns into the !le access, which are similar to the
ones discussed for the pushdown architecture. There are also mul-
tiple implicit “data hops” necessary (i. e., data lake → !le access →
DBMS engine). The distributed query processing of horizontally
scaling engines likewise introduces such extra hops. However, in
contrast, the !le access can be integrated tightly with the engine
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Figure 5: Direct Access Architecture ( red parts like [71])
of the DBMS and incurs fewer format conversions (e. g., Parquet
column chunks to DBMS engine format). In such an architecture
elasticity is inherited from the DBMS.

3.3 Discussion of Performance and Costs
Having e"cient SQL compute close to data lakes seems desirable
to implement a pushdown architecture. However, pushdown archi-
tecture components like S3 Select and AWS Aqua [58] were either
discontinued or are not exposed to customers of cloud vendors.
DL-Select evolution to HANA SoF We share our rationale for
evolving DL-Select with pushdown architecture to SoF based on
the direct access option. Our decision was mainly based on the ex-
pressiveness of required complex SQL and multidimensional (MDS)
queries. A dedicated pushdown compute would need the same ca-
pabilities as the database engine to be e#ective. However, pushing
down more complex operations into the dedicated compute would
have ultimately meant having the same engine in two di#erent
layers, e#ectively mimicking the scalable technology of ECNs. The
additional operational costs of a dedicated, elastic compute, the
increased variable costs of a pushdown architecture with its higher
number of data lake accesses, and the multiple data hops involving
data format transformations were the main reasons to adopt the
direct-access architecture in HANA Cloud. Avoiding such complex-
ity and also the associated development and operational costs is a
concrete illustration of "one size !ts all" at SAP.
A Simple Analytic Cost Model To support this decision we de-
vised a simple analytic model to estimate the cost, using prices for
AWS services, for some query considering the main cost compo-
nents of the two architecture alternatives. Figure 6 shows a cost
calculation for our direct and pushdown solutions for TPC-H query
Q1 (scan heavy), assuming a single ECN instance for the direct
option and a downsized ECN instance for pushdown to DL-Select.
The CPU utilization is assumed up to be 100% (equivalent to 44.2
query executions per time) using all available CPU resources. The
direct option (i. e., SoF) has !xed costs per time per instance and
variable read-only costs to fetch data from the Amazon S3 data lake.
The DL-Select option has lower !xed costs per time because it uses
less powerful hardware and lower variable costs for read access
because less data needs to be fetched in the pushdown architecture.
But additional write costs for intermediate results and elastic com-
pute compute costs apply. The results show a break even for low
CPU utilization making the direct access architecture the preferred
option in most cases.

Figure 6: Cost trade-o!: direct access (SoF) vs. pushdown (DL-
Select)

4 HANA CLOUD ARCHITECTURE FOR LHS
In this section, we introduce the high-level architecture style for
realizing query processing on data lakes in HANA Cloud.

4.1 Direct Access Architecture Style for HANA
The high-level direct access architecture for HANA Cloud is shown
in Fig. 5 with the speci!c extensions marked in blue components .
The !le access component is integrated with HEX (i. e., !le scan next
to table scan), which accesses data lakes directly during processing
of complex SQL or multidimensional (MDS) queries. The elasticity
is achieved on two levels. The actual data from the data lake is
read massively parallel through multiple !le access threads and the
compute runs on multiple elastic compute nodes (short ECNs).

To guarantee a multi-cloud, enterprise-scale service, HANA uses
an abstraction called HANA Data Lake Files (HDLF), which deals
with cloud vendor speci!cs, locates the data needed for a query,
and performance e#ective !le and data skipping. As a result, HDLF
passes direct access URLs to the !le access layer in HANA that loads
the data. For secure network isolation, HANACloud uses virtual pri-
vate clouds (VPCs), which specify so called gateway endpoints [57]
for a more secure (i. e., no public NAT) and cost e"cient data lake
access (i. e., no network bandwidth costs) with lower latencies.

4.2 HANA Architecture and Design Decisions
Based on the direct access architecture style and the high-level
architecture, we carefully adapted HANA’s core architecture as
shown in Fig. 7 and made the following design decisions.
Integrate File Access Layer The highly optimized !le processing
of DL-Select (e. g., with latency hiding through thread scheduling)
is a natural !t for the !le access layer in HANA, moving the “second
hop” to the data into HANA. Figure 7 shows its main components
including plan execution and statistics estimation as well as format
handling for storage formats like Parquet and CSV, and OTF ac-
cessors for formats like Delta and services like Delta Sharing (e. g.,
for leveraging OTF metadata when handling !ltering predicates
to limit the set of accessed !les). The latter will be adapted for
upcoming OTF formats like Apache Iceberg. The main aspect of
the integration concerns an e"cient interplay with HEX.
Extend HANA Federation for Files using Virtual Tables A
natural choice for the SQL interface are HANA’s (fabric) virtual
tables [51], which expose tabular data of remote source systems
as a table in HANA and are used for federating queries to remote
source systems. Instead of making OTF tables a !rst-class citizen in
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Figure 7: Adapting HANA Core for LHs.

HANA, the federation approach allows for a loose coupling to OTFs
with a focus on read-cases. Fabric virtual tables provide $exible
toggling between federation and replication on a per-table basis,
allowing applications to navigate the cost vs. performance trade-o#
of queries on data lakes.
Adapt DQP for Files For scalability, we employ HANA’s dis-
tributed query processing (DQP) across multiple ECNs. Conse-
quently, optimizer and execution engine require extensions to work
well for data in data lakes.
Elasticity with ECNs Elasticity is an important optimization that
allows for e"cient query processing over large data, while allowing
to process data in smaller in-memory HANA instances. HANA
ECNs naturally provide massively parallel processing (MPP) for
e"cient processing based on DQP. The HANA optimizer distributes
the query processing over multiple ECNs, each with a local !le
access, HEX query processing, and caching, as shown in Fig. 7.
Enable Speci"c Caches for Delta ChangesAnother optimization
is data and metadata caching, which helps dealing with the cost
vs. performance trade-o# when working with data lake, especially
when compute and storage are not co-located in the same data
center or region.While HANA’s static view caches [52] immediately
work by our design, we identi!ed OTF metadata for reducing the
number of non-data calls and the transactional MDS Cube Cache
for e"cient multidimensional query processing as shown in Fig. 7
as most bene!cial caches in the LH architecture.
OTF Table Lifecycle—Combine Transaction Domains The cre-
ation and update of virtual tables via DDL crosses the transaction
domains of HANA and OTFs, which have di#erent ACID guaran-
tees. We deal with this issue by applying operations inspired by
the SAGA pattern [21, 62], which was originally designed for long-
running transactions. Instead of implementing these capabilities
natively in HANA, we opted to utilize existing open-source engines.

This allows us to capitalize on the maturity and extensive function-
ality of these engines, while minimizing development e#ort and
ensuring compatibility with industry standards.

Subsequently, we give more details of the above design decisions
for !le access, HEX and optimizer and the two optimizations for
elasticity and caching, as well as OTF lifecycle.

5 HANA ENGINE MEETS DATA LAKE
In this section we give a background on the execution engine and
query optimizer in SAP HANA Cloud and share some experiences
on integrating data lake access. The resulting architecture is de-
picted in Fig. 7.

5.1 Base Engine
Execution Engine About 2016 we started elaborations to com-
pletely re-engineer query execution in SAP HANA [20]. At that
point we had multiple engines specializing in di#erent areas, e. g.,
one optimized for star-schema queries (but only those), another
for generic joins (but only of column store tables), and a separately
tuned access path for small OLTP selects. Those excelled at their re-
spective tasks, but the tight design space made them hard to extend
to anything beyond pure in-memory processing over the HANA
column store. Thus major design goals for the new HANA Execution
Engine (HEX) were future extensibility and $exibility to support
any speci!c optimization without mandating its applicability.

HANA being an HTAP system, many of the decisions went
along a similar trajectory as the HyPer system [37, 42, 50]. HEX
does push-based pipelining and JIT compilation using LLVM. A
pipeline consists of multiple executable operators, each of which
may or may not use JIT code generation (cg) or pre-compiled C++.
Subsequent relational operators that all generate code, like a join
probe followed by an aggregation, can be fused into one executable
operator. At runtime, cg-operators can be interpreted as long as
the compilation is not !nished. To amortize for compilation costs
(which are signi!cant), we use heuristics to determine if and when
actual JIT code compilation for an operator is triggered. Data is
pushed from one operator to the next in small chunks of tuples that
!t into cache. We use morsel-based parallelization with dynamic
sampling to determine task sizes and degree of parallelism. Because
a pipeline can have multiple operators, we are free to re-parallelize
within a pipeline, e. g., after a potentially expanding join. Distribu-
tion is based on distributed exchange. In anticipation of Sect. 6 let
us point out that from the perspective of the engine, an ECN is just
another compute node used for distributed query processing.

Just as was observed in [43], we realized a while back that pure
in-memory systems are uneconomical, especially in the cloud. To
that end, HANA had grown beyond a pure in-memory system by
incorporating Native Storage Extension (NSE) tables [60]. As natural
counterpart for that and to lower TCO in the cloud further, HEX
provides disk-spilling variants of all pipeline breaking operators.
Query Optimizer The HANA query optimizer was not rewritten,
but rather evolved and grew alongside the development of HEX
further into a full-$edged general purpose relational optimizer. In
a nutshell it is Volcano style, transform-based and cost-based. Spe-
cialized rule-based optimizations represent accumulated learnings
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to deal with the sophisticated HTAP workloads and deeply nested
views in the SAP ecosystem [20, 32].

In federated query processing, the optimizer has been enhanced
to consider the capabilities o#ered by remote sources. It makes
informed operator pushdown decisions based on these capabilities
and employs a cost model that aims to minimize network tra"c
between federated systems. By pushing down operations to the
remote sources whenever feasible and bene!cial, the optimizer can
signi!cantly reduce data transfer volumes, leading to more e"cient
query execution. We refer to Sect. 6 for details on plan enumeration
considering DQP and partition-wise optimization alternatives.

5.2 Integrating Object-Store Access
The new engine was solidly established (although surely not “!n-
ished”) when the need for object-store access arose. It was never a
reasonable option to start from scratch and develop yet another en-
gine that is designed speci!cally for the lakehouse use case. Besides
being too costly (from an engineering perspective), such a narrow
focus does not !t to the heterogeneous nature of applications using
HANA. In our opinion, just the one example in Fig. 3 clearly shows
why. We need full composability of object-store access with all
other sources of data. A dedicated engine for data lake data would
either need to have complete semantic coverage, or mandate cutting
the plan into pieces, e#ectively federating between engines. Having
the full plan in integrated form provides the most optimization
potential for plan generation and execution, and the easiest way to
ensure consistent semantics.

Therefore, our baseline is somewhat di#erent from other engines
that are tailored for the lakehouse, such as Presto [59], Photon [6]
or Apache DataFusion [36]. We stay close in spirit to HyPer and
Umbra, which got also extended to data lake access [11, 43].

There are two main requirements coming with the lakehouse use
case. One is how to get the data into the engine, which will be the
focus of the next section. The other is that data volumes expected
to be handled by a query become a lot bigger, in particular relative
to the available main memory of an instance. To that end, some of
the design decisions underlying the engine came to be very bene!-
cial. Push-based pipelining with adaptive parallelization is a good
basis to handle unexpectedly large data, and we had disk-spilling
operators as a fallback. Clearly, e"cient and scalable distributed
processing is mandatory; see Sect. 6 for more details. Fortunately,
distributed exchange combined with semi-join reduction goes a
long way. One can build the necessary broadcast- and shu%e-joins
by merely adding repartitioning steps before the exchanges.

Our point here is that a solid general purpose engine can be
extended in a pragmatic way to e"ciently handle essentially a
new data source (or table type). Techniques like repartitioning or
semi-join reduction do become particularly necessary, but they will
bene!t also queries that do not involve tables on data lakes.

A strong case is made in [67] that the need for adaptive execution
is exacerbated for lakehouses, due to, basically, more uncurated
data with less (reliable) statistics. We fully concur with that assess-
ment. Currently our execution plans still incorporate some hard
estimation-based decisions made by the query optimizer. Those
cannot be changed at runtime, except by falling back and recompil-
ing the plan. For instance, while we can adjust the order of !lters
on column store tables at runtime, we cannot switch join types yet.

Improving the interplay of optimizer and execution engine to allow
for more adaptivity is an ongoing e#ort.

5.3 File Access and the FileScan Operator
As teased in Sect. 4 and shown in Fig. 5, the decision for a di-
rect access architecture naturally led to a new component File
Access to handle accessing !les (via HDLF or direct) and scanning
them e"ciently. File Access remains a separate sub-component,
not subsumed by HEX, because it is also used for data import and
replication. Furthermore as we will elaborate below, needs for par-
allelization are a bit di#erent.

Initially, we employed the existing federation capabilities of
optimizer and execution engine to connect to the File Access layer.
The interface takes generic SQL and returns a generic internal table
structure. This turned out, unsurprisingly, to be too in$exible and
ine"cient: With SQL as input, the query optimizer is limited in
optimizations that can be pushed down, and the results needed !rst
to be converted to HEX chunks. Thus we implemented a dedicated
FileScan operator that acts as the bridge between HEX and File
Access. In Sect. 6.3 we outline the distributed semi-join reduction
for FileScans—an optimization that would not have been easily
possible using the generic federation capabilities.

Similar to the pushdown architecture, the optimizer assigns spe-
ci!c operations, e. g., projection, selection, or pre-aggregation, to
the FileScan operator. Based on !le clustering schemes and statis-
tics, entire !les or portions of them are pruned. Simple aggregations
like MIN, MAX, and COUNT can often be computed directly from the
available !le statistics without reading the actual data.

The File Access layer processes data in a column-wise manner,
which aligns naturally with columnar !le formats. After apply-
ing projection, selection, or pre-aggregation, the resulting data is
transformed into the row-wise format required by HEX for further
processing. This conversion from a columnar to a row-oriented for-
mat has proven to be a major contributor to overall query runtime.
However, we partially mitigate this overhead by leveraging dictio-
naries stored in the !les—particularly for string columns. Instead
of storing the actual strings in the row format, we store ValueIds—
markers that reference the corresponding string in the dictionary.

The File Access layer enables parallel processing across multiple
!les and row-groups within !les. Retrieving the data from data lake
is inherently network I/O-intensive. Therefore, while one chunk
of data is being processed, subsequent data is prefetched from the
data lake to improve throughput and reduce latency. As demon-
strated in [11], hundreds of outstanding requests are required to
fully utilize high-bandwidth networks. HANA does not yet employ
asynchronous techniques such as io_uring or coroutines, as used
in systems like Umbra [65]. Instead, it relies on a separate thread
pool within the File Access layer. Threads in this pool primarily
wait for network responses and consume minimal CPU resources.
They are not counted against the thread usage limits imposed by
HANA workload classes.

5.4 All in one Engine
We ended up with the situation as in Figure 7, where a FileScan
operator (or rather family of operators) is integrated into the en-
gine as full counterpart to the TableScan for database tables and
RemoteScan for federation scenarios. From the perspective of the
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engine, FileScan represents "just another data source". Similar to
how, say, the implementation of a TableScan on a column table can
exploit internal knowledge of the HANA column store, the FileS-
can is a direct and native connector to the FileAccess component
dealing with OTF tables in the data lake.

6 ELASTIC SCALE-OUT VIA ECNS
In modern data processing, elastic scale-out architectures are in-
strumental for e"ciently handling large-scale, heterogeneous data
workloads. SAP HANA’s Elastic Computation Node (ECN) [24]
enables such scale-out by distributing query execution across mul-
tiple nodes, leveraging partition-aware optimization (PAO). This
section describes new HANA optimizer strategies for generating
distributed query plans that e#ectively utilize ECNs, ensuring opti-
mal performance for queries of data lakes.

6.1 Partition-Aware Optimization
PAO was designed to optimize execution plans for partitioned col-
umn tables, enabling more granular data processing within indi-
vidual HEX operators. In contrast to conventional single-stream
approaches, PAO allows each operator to manage multiple par-
titioned data streams distributed across multiple compute nodes.
During the plan enumeration phase, the optimizer determines the
method and location for accessing partitioned data, aiming to mini-
mize the execution costs of operators distributed across multiple
compute nodes. Unlike traditional approaches where table parti-
tion locations are !xed, PAO with SoF tables has been extended to
leverage the $exibility to assign FileScan operator locations across
multiple ECNs. As a consequence, subsequent operators can be
distributed as well, involving repartitioning operations to balance
workload distribution.

6.2 Distributed Plan Generation
For SoF queries, the optimizer transforms enumerated plans into
distributed plans through a post-enumeration process. Initially, pre-
de!ned heuristic rules populate execution information, guiding par-
tition strategy decisions. Key rules include creating pre-aggregation
for group-by operations, repartitioning for joins and window opera-
tions, and generating broadcast joins. The optimizer then calculates
partition execution details, specifying where and how partitioned
data is executed. Joins employ broadcast or repartition strategies,
selected based on estimated network transfer costs. In broadcast
joins, smaller data sets are broadcasted to all ECNs, while reparti-
tion joins hash and distribute data using join keys, ensuring parallel
execution at corresponding ECNs.

Aggregations bene!t from pre-aggregation and repartitioning.
Pre-aggregation is applied to group-by operations for aggregation
functions with associativity, while repartitioning is considered for
high cardinality grouping operations. Each ECN performs an initial
and a !nal aggregation after merging results. Repartitioning in-
volves hashing grouping columns and distributing data for parallel
aggregation across ECNs.

Integrating SoF with traditional in-memory table operations
requires e#ective handling of partition-unaware operators, such
as non-partitioned tables or shared views. These operators can,
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Figure 8: Distributed SJR for FileScan operations
for example, broadcast results for joins and repartition for group-
bys. Partition-aware operators preserve output partitions until they
have to be converged or repartitioned for a subsequent operation.

6.3 Distributed Semi-Join Reduction
Semi-join reduction (SJR) is a well-established technique for reduc-
ing the workload on the probe side of a join by leveraging values
already observed on the build side. In this context, we refer to the
build side as the reducer.

In our initial federation-based approach, where every request to a
remote service had to be expressed in generic SQL, all distinct values
from the reducer side had to be transferred to the probe side in
order to formulate an In-List clause or similar. In a distributed setup,
this typically requires broadcasting a potentially large number of
values across the network.

With the introduction of the custom FileScan operator, we adopted
a more e"cient approach to reduce the amount of data broadcasted.
On the sender side, we construct a compact structure representing
the semi-join !lter. This structure may consist of min/max values
from the reducer, a compressed list of distinct values, a bitvector, a
Bloom !lter, or a combination of these (e.g., min/max values com-
bined with a Bloom !lter). The creation of this structure is explicitly
modeled in the algebra through the FileScan Predicate Builder, allow-
ing it to seamlessly integrate into the distributed query-processing
architecture: broadcasting the !lter is handled via standard data
exchange operators.

On the receiver side, as part of the FileScan operation, semi-join
!lters from multiple nodes are merged and applied to prune !les
and row-groups that are guaranteed not to contain matching rows
for the join. The transformation rule is illustrated in Fig. 8, where
a table stored in !les is joined with an arbitrary derived table R.
For simplicity, the !gure omits additional data exchanges that may
occur on either side of the join before or after the transformation.

It is worth noting that this !lter-building approach before broad-
casting is not limited to SQL-on-Files processing and can also be
applied to regular TableScans. However, given the large volumes of
data typically encountered in lakehouses, minimizing the amount
of exchanged data becomes particularly crucial.

6.4 Decision on ECN Utilization
In order to leverage available ECN resources, workload classes [44]
are employed to determine statements to be executed with dis-
tributed query processing without modifying application code.
Since any node can fetch !les from the data lake at the same cost for
SoF processing, by leveraging ECNs and employing partition-aware
optimization techniques, the query optimizer enables e"cient and
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scalable execution of SoF queries, enhancing the performance and
scalability of data processing infrastructures.

Determining the optimal number of ECNs for query execution
is under exploration. The goal is to develop a heuristic approach
that dynamically allocates ECNs based on query workload and
available resources, ensuring e"cient use of computing resources
in distributed systems.

7 CACHING
In this section we give insights into our analysis on data and meta-
data caching, eviction strategies and locality, before we describe a
more complex, transactional cache for multidimensional queries.

7.1 The Relevance of Caches
There aremultiple options and layers at which caching can be useful.
Ideally, we want to have 1) a high cache hit ratio to e#ectively use
the caches and 2) small caches because they consume precious
memory resources. Therefore, we implemented an OTF format
metadata cache and a Parquet column chunk data cache for which
we study the performance impact.

We compare “no caching” as performance baseline and run the
LH benchmark (see Sects. 2 and 9). Only caching the metadata of the
OTF tables already reduces the query runtimes to ca. 32%. The root
cause of this performance improvement is a drastic reduction in
the number of network requests to the data lake. Consequently, the
caching of metadata does not only reduce the query response times
but also saves costs for requests to the data lake. We found that
additionally caching the Parquet column chunks further reduces
query response times to less than 10% of the baseline. However,
to achieve this speedup much more memory resources are needed.
Consequently, we focus on caching metadata only.

7.2 The Relevance of Eviction Strategies and
Storage Locality

For data caches like the in-memory Parquet column chunk cache,
we elaborated on the importance of di#erent caching strategies
for the LH scenario in Sect. 3. For that we executed the queries
with an increasing cache size and evaluate the cache hit ratio for
di#erent cache replacement strategies. Not surprisingly, the cache
hit ratio increases up to 60% starting with a cold cache as cache size
increases to the size of the working set of the data. Also, we see no
clearly dominating cache replacement strategy when comparing
LRU, LFU, CLOCK and WATT-2; LRU has slightly worse cache hit
ratios for smaller cache sizes. Therefore, it might be worth investing
into larger and cheaper caches, e. g., instance local SSD compared
to memory, rather than sophisticated cache eviction strategies, for
the parquet column chunks.

In another experiment, we explore the e#ect of caches regarding
the locality of compute and storage in the same data center com-
pared to remote data center, which might be the case for some sce-
narios from Sect. 3. The results in Fig. 9 show a signi!cantly higher
$uctuation rate between all data in the compute (i. e., unlimited
cache) compared to di#erent caching strategies.

Figure 9: Relative performance with enabled column chunk
cache with data in local vs. remote data center

7.3 MDS Cube Cache with Delta Changes
In addition to caches that work on the !le I/O layer discussed above
SAP HANA also supports caching query results for complex ana-
lytical queries. Speci!cally, multi-dimensional services (MDS) is a
SAP HANA component that is responsible for processing analytical
and multidimensional queries. MDS queries are commonly used
in analytic applications of SAP, e.g. Business Data Cloud. MDS
uses the MDS cube cache to cache the results of aggregation and
calculation operations.

Internally MDS stores a data structure called a cube, which is
used to produce the query results. By caching these query results,
the repeated computation of the cube can be avoided which reduces
the query response times and saves CPU resources. As MDS queries
may access data stored in Delta tables or Iceberg tables, the caching
of cubes also avoids reading data repeatedly from the data lake.

To make sure that consistent and fresh results are returned from
the MDS cube cache, it maintains version information of the ac-
cessed OTF tables with the cached results. When the OTF tables in
the data lake are updated and subsequently accessed, a new version
of a cube cache is computed, cached and returned as result. When
older versions of the OTF tables are accessed, also older cached
versions of an MDS cube can be returned from the cache.

8 OTF TABLE LIFECYCLE
While the focus of this paper is on query processing (SELECT) over
OTF tables, this section only brie$y describes some of the challenges
when dealing with DDL statements across di#erent transaction
domains for HANA and OTF tables.

8.1 Spark Integration
Apache Spark’s rich support for OTFs makes it an ideal choice for
executing DDL statements on OTF tables in data lakes. We extended
the HANA Smart Data Access (SDA) to use Spark as shown in
Fig. 10. The integration provides a SQL interface for HANA users
to create OTF tables in data lake using HANA DDL. The statements
are passed to remote Spark compute which applies the actual DDL
changes to OTF tables. A HANA virtual table is made available
as HANA object referring to the remote OTF table. The virtual
table can be queried and is used for other lifecycle operations. Two
examples of HANA DDL SQLs to create OTF tables are shown in
Listing 1. They support the creation of OTF tables in two di#erent
modes (a) where the table is created purely for consumption and
its lifecycle is managed by some other application / DB engine and
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Figure 10: OTF Lifecycle Management and Spark Integration

(b) where the table’s lifecycle is managed by this HANA instance.
In both cases, SQL processing is performed in HANA, whereas
Spark is only used to perform transactional operations (e. g., DDL,
transformations). It is worth noting that the architecture leverages
LH-capability for optimal choice of compute engines (HANA or
Spark) based on the use-case.

1 (a) CREATE VIRTUAL TABLE ITEMS
2 AT <HDLF Remote Source > AS DELTA
3 (b) CREATE VIRTUAL TABLE ORDERS
4 AT <HDLF Remote Source > AS DELTA
5 USING REMOTE_CONTROLLER <Spark Remote Source >

Listing 1: Modes to create OTF tables in SAP HANA

The HANA SQL interface allows for describing Spark applica-
tions as virtual procedures in HANA, containing programs, e. g.,
written in SparkSQL or using DataFrame APIs. That allows users
to specify and perform required transformations on the OTF ta-
bles. The execution of virtual procedures is done by an orchestrator
that creates and executes Spark jobs through a Spark controller
and returning the results. The HANA SQL interfaces also support
the necessary con!guration, monitoring, and troubleshooting of
remote jobs, providing complete integration.

When the virtual procedures are executed by a HANA DB user,
the Spark integration takes care of creating and executing jobs on
the remote Spark engine and transporting outcomes back to the
HANA users in an e"cient, column-oriented format. Such data
transfer also requires handling di#erences in datatype support
between HANA and Spark engine.

8.2 Atomic Operations
Maintaining data consistency across di#erent transaction domains
and heterogeneous artifacts of HANA and OTF tables is crucial.
Applications demand atomic operations to ensure transactional
integrity. However, SQL’s single-statement transaction model and
HANA’s transactional capabilities, which include multi-statement
transactions, creates a signi!cant con$ict. This mismatch can lead
to partial commits, jeopardizing data integrity and undermining

Figure 11: Speedup direct vs. pushdown in LH benchmark.

application consistency. Furthermore, this discrepancy renders tra-
ditional mechanisms such as two-phase commit (2PC) protocols
unsuitable for ensuring atomicity in this hybrid environment.

To address this challenge, we used and extended the SAGA pat-
tern [21, 62]. In this approach, operations on native HANA artifacts
and OTF tables are executed within the scope of a single HANA
transaction. HANA acts as the orchestrator, ensuring that all remote
OTF table participants eventually converge to the same commit
state as the HANA transaction, even in the presence of failures.
To achieve this, HANA maintains a metastore to track the state
of remote OTF operations associated with a given HANA trans-
action. This metastore is populated before executing remote OTF
operations and truncated upon successful commit or rollback of
the HANA transaction and associated remote OTF tables.

Remote OTF operations are committed immediately upon ex-
ecution by the remote Spark engine, adhering to Spark’s single-
statement transaction behavior. In the event of a rollback, triggered
by errors such as a failed remote OTF operation or a user-issued
rollback, the metastore facilitates undo (compensation) of opera-
tions for all registered remote OTF operations under the HANA
transaction. We de!ne a compensation action for an operation as a
sequence of idempotent steps, reversing the e#ects of the operation.

De!ning a compensation action for a table operation can be a
complex task as it is based on the operation logic. However, availabil-
ity of OTF time travel simpli!es compensation operations. Before
performing an operation on a OTF table, HANA registers the latest
version of the OTF table in the metastore. If the operation needs
to be compensated then the OTF table is restored to the version at
start of the operation. This stands as base mechanism to perform
compensation for any unit operation on the OTF table.

It is also possible to de!ne compensation actions which are based
on the operation logic. This is useful when certain compensation
actions might require additional processing beyond changing the
state of an OTF table (time travel is not applicable). For example:
DROP TABLE compensates CREATE TABLE. Time travel is not su"-
cient in this case, as compensation needs to drop table entries from
Spark catalog and delete object store !les. Similarly, CREATE TABLE
compensates DROP TABLE. If a transaction has performed multiple
operations on the same OTF table then rollback needs to ensure
compensation actions are performed in the reverse order.
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Figure 12: Latency impact factor of SoF relative to HANA
in-memory for TPC-H queries, SF 1k.

9 EXPERIMENTAL EVALUATION
In this section, we compare our pushdown / DL-Select and direct
access / SoF architecture solutions using our LH benchmark from
Sect. 3, study the “data lake tax”, and assess the e#ects of data size
scaling, before we evaluate the scaling optimization using ECNs
based on TPC-H, guided by the questions in subsection titles.

9.1 System Resources and Con"gurations
Regarding the resource con!guration, if not stated otherwise, sub-
sequent experiments use a data in memory to object storage ratio
of roughly 1:10 with an upper limit of one single ECN with 60vCPU
and 960GB RAM. In experiments with multiple ECNs the resources
are divided by their number, leading to multiple, smaller ECNs.

Regarding a potential impact of SoF on concurrent queries, HANA
workload classes enable administrators to manage and optimize re-
source consumption within the database system [44]. They provide
dynamic resource allocation and control at the session or statement
level, ensuring e"cient utilization of system resources and prevent-
ing individual queries from monopolizing the entire system. As
discussed in Sect. 5 and Sect. 6, we have con!gured a workload class
for this experimental evaluation in order to maximize thread and
ECN utilization. However, I/O throughput is not bound to this con-
!guration, since the threads waiting for network responses are not
restricted to the thread usage limits. In our evaluation, we did not
observe I/O or CPU resource contention under these con!gurations.

9.2 What is the Overhead of Pushdown vs.
Direct Access Architectures?

In the !rst experiment we investigate the fundamental di#erence
between the pushdown and direct access approaches. To that end
we run the LH benchmark with a data set size of 20GB for 11 out
of 13 queries; queries Q12 and Q13 are left out as they have more
complex logic (cf. Sect. 3) that would bias the results toward the
direct access approach. The data is provided via Delta Sharing. For
direct access we use the FileAdpater on one HANA ECN, while for
pushdown we employed up to 50DL-Select instances with sizes like
8 vCPU and 32GB RAM each. Fig. 11 shows the results as relative
speedup of direct access over pushdown (baseline).

Note that the underlying access capabilities to the data are the
same: both FileAdapter and DL-Select can push simple predicates,
conjunctions, disjunctions as well as simple aggregations down to

the point where the !les are read, leading in particular to the same
opportunities for !le pruning and min-/max-skipping.

The disadvantage of a pushdown to DL-Select is the extra net-
work hop getting the results to HANA. This is a decisive e#ect
in most queries (especially Q2, Q8, Q11) that have complex joins
on large intermediate results. The speedup of direct access ranges
up to factor 30↑ for some queries with a geomean (GM) of 3.7↑.
Where DL-Select can compete or even shine compared to the single
HANA ECN are scan-intensive queries like Q1, Q6 and Q7 where
the capability to scale as an independent service can come to bear.

9.3 How much is the “Data Lake Tax”?
In the second experiment we investigate the performance impact
of SoF on data lake compared to the in-memory HANA Column
Store (CS). We run TPC-H queries with scale factor (SF) 1k on the
same instance and track the required I/O for SoF in GBs.

The results are shown in Fig. 12 with a geomean (GM) “tax” of the
current SoF version is ↓ 17↑. The queries with larger tables, such
as LINEITEM and ORDERS, generally show larger amount of SoF I/O
and thus longer latency. However, there are some outliers where
in-memory execution shows relatively small improvement over SoF
(e. g., Q18). Those queries are a#ected by a suboptimal utilization
of the in-memory index operator, which is not enumerated for SoF.

We emphasize these !ndings provide just a preliminary snapshot.
We leave it as a future work to o#er a systematic exploration of the
data lake tax, across a broader spectrum of workloads, system sizes,
and optimization con!gurations.

9.4 What is the Impact of Data Size Scaling with
a Single ECN?

In this experiment, we explore the impact of data size scaling for a
single ECN using the LH benchmark. Data lakes are meant to allow
for accessing large amounts of data. We add the two queries Q12
and Q13, measure only the direct access case using one ECN, and
increase the data size stepwise, i. e., 20GB to 1TB (factor 50↑), 1TB
to 10TB (factor 10↑), with constant Parquet !le size 4GB.

The results were normalized to 1.0 as shown in Fig. 13 for linear
scaling with the data. Figure 13a shows e#ects for smaller data that
leads to higher $uctuations and sub-linear scaling, due to limited
I/O optimizations on small data sets and tables with few Parquet
!les. Going to larger, more realistic data sizes in Fig. 13b, the data
processing with HANAmostly scales linear to the data size increase.
However, for queries Q9 and Q12, which scale very well for 1TB,
we encountered memory management challenges at scale of 10TB.
Those showed us some opportunities for improvements, which are
in progress, but unfortunately for now we had to exclude them
from the experiment.

9.5 How well is DQP Compute Scaling with
Multiple ECNs?

To assess scalability along two dimensions of increased data size
and more available compute, we performed measurements using
the TPC-H benchmark at scale factors SF-1k (1TB), SF-10k (10TB),
and SF-100k (100TB). Fig. 14 presents the execution times for the
TPC-H queries, with outliers removed to ensure clarity. The left
axis features execution times on a logarithmic scale, with vertical
bars signifying the execution duration for each query: blue bars
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(a) 20GB vs. 1TB (factor 50), normalized to 1 (b) 1TB vs. 10TB (factor 10)

Figure 13: Size scaling using LH benchmark for smaller (20GB to 1TB) and bigger (1TB to 10TB) data.

Figure 14: ECN scalability (data sizes, TPC-H benchmark).

for SF-1k, green for SF-10k, and red for SF-100k. The right axis
illustrates the factor of increased execution time. The dotted lines
represent comparative factors, with a round marker line showing
the comparison between SF-1k and SF-10k, and a square marker
line showing the comparison between SF-10k and SF-100k.

The results indicate a 7.6↑ increase in execution time for the
10TB/1TB and a 228↑ increase for the 100TB/10TB. Given the scale
factor increase of 10↑ for both 10TB/1TB and 100TB/10TB, the
anticipated execution time increase should be 10↑. However, for
the 10TB/1TB comparison, performance shows a favorable increase
of 7.6↑ in execution time. In contrast, the 100TB/10TB scenario
indicates scalability issues which are caused by group-by operations
and additional communication overhead between ECNs. A more
detailed analysis will be part of future work.

10 SUMMARY AND CONCLUSIONS
In-situ processing of data in data lakes by relational (in-memory)
database engines remains a challenge. In this work we show how
SAP HANA Cloud natively supports complex analytical queries
over data in data lakes for modern lakehouses. We follow a direct
access architecture style by integrating the necessary !le access
into HANA’s federation layer and specify necessary changes to the
HANA execution engine and optimizer. The required elasticity is
reached through HANA’s elastic compute nodes, and we showed
metadata and transactional caching for multidimensional analyt-
ical queries. With respect to our design decisions we report the
following key takeaways:

• The direct access architectures style morphs the multi-
network hop pushdown style into an extra hop within

HANA, allowing for using HEX, but disallowing highly
elastic compute on tiny compute instances.

• The integration of OTF tables in a loosely coupled, fed-
eration approach is elegant for read-only cases based on
existing virtual tables and required minimal changes to
HANA, but makes write cases challenging.

• The usage of ECNs allows for e"cient data loading and
compute scaling for DQP on data lakes but could be made
even more elastic in terms of HEX on serverless compute.

• The selection of caches and their impact on locality are cru-
cial to achieve good performance and for cost-e#ectiveness.
With its comparably smaller storage footprint, metadata
caches become relevant. With non-co-located compute and
storage, caching and selection of eviction strategy are cru-
cial. Cache sizes are more important than eviction strategy.

• Lakehouse systems are essentially composable data sys-
tems with di#erent transaction domains, type systems, and
semantics that either require sophisticated data system so-
lutions or standardization.

We identi!ed the following (research) topics—potentially inter-
esting to the community—that need to be addressed by . . .

. . . studying on more specialized, elastic database operator
compute for complex queries.

. . . specifying OTF support for multi-table, multi-query trans-
actions with concurrent readers and writers.

. . . elaborating serverless vs. ECN-style compute cases regard-
ing elasticity and performance vs. costs and robustness (e. g.,
adding ad-hoc compute for out-of-memory situations).

. . . studying the selection of caches and their interdependencies
for complex HTAP stacks.

. . . standardizing composable data systems like lakehouses us-
ing open formats, engines, transactions and type systems.

Like any other rapidly evolving domain, SAPHANA’s support for
query processing on data lakes is and will be an ongoing endeavor,
and we share the current state with our community.
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