
Scribe: How Meta transports terabytes per second in real time
Manos Karpathiotakis

Meta Platforms Inc.
manos@meta.com

Vlassios Rizopoulos
Meta Platforms Inc.
vlassios@meta.com

Basri Kahveci
Meta Platforms Inc.

basrikahveci@meta.com

Tiziano Carotti
Meta Platforms Inc.
ivendor@meta.com

Artem Gelum
Meta Platforms Inc.
agelun@meta.com

Hazem Nada
Meta Platforms Inc.

hazemnada@meta.com

Yuri Dolgov
Meta Platforms Inc.
ydolgov@meta.com

ABSTRACT
Millions of web servers and a multitude of applications are produc-
ing ever-increasing amounts of data in real time at Meta. Regardless
of how data is generated and how it is processed, there is a need for
infrastructure that can accommodate the transport of arbitrarily
large data streams from their generation location to their processing
location with low latency.

This paper presents Scribe, a multi-tenant message queue service
that natively supports the requirements of Meta’s data-intensive
applications, ingesting > 15𝑇𝐵/𝑠 and serving > 110𝑇𝐵/𝑠 to its con-
sumers. Scribe relies on a multi-hop write path and opportunistic
data placement to maximise write availability, whereas its read path
adapts replica placement and representation based on the incoming
workload as a means to minimise resource consumption for both
Scribe and its downstreams. The wide range of Scribe use cases can
pick from a range of offered guarantees, based on the trade-offs
favourable for each one.

PVLDB Reference Format:
Manos Karpathiotakis, Vlassios Rizopoulos, Basri Kahveci, Tiziano Carotti,
Artem Gelum, Hazem Nada, and Yuri Dolgov. Scribe: How Meta transports
terabytes per second in real time. PVLDB, 18(12): 4817 - 4830, 2025.
doi:10.14778/3750601.3750607

1 INTRODUCTION
Data generation at Meta is on a continuous growth trajectory.
Whether an explicit or implicit byproduct of organic user activ-
ity received by millions of web servers, or of a multitude of other
sources, such as service health telemetry, the volume and variety
of data sources and inputs that Meta systems encounter is ever
increasing. Processing of the resulting datasets typically takes place
via numerous types of data processing infrastructure, such as data
warehouse queries [43], stream processing pipelines [11], or model
training pipelines [51]. A common theme across all of them is the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750607

need to continuously transport datasets at a rate of multiple ter-
abytes per second from their data generation services to their data
processing services.

Regardless of whether data processing services adopt a lambda
model combining the batch and streaming paradigms, or a pure
streaming one, transporting inputs to them typically involves the
use of a message queue [1–3, 17, 27, 39, 46]. For any message queue
solution to be viable for the properties and scale of Meta, it would
need to address the following requirements – some competing
against each other:

(1) Write availability: Ensure that hundreds of millions of
heterogeneous data producers are successful in persisting
messages until consumers can process them; treat inputs
as the company’s golden source of truth.

(2) Multi-tenancy: Expose the abstraction of independent
data streams with dedicated resources, on top of a shared
infrastructure. Mask out heterogeneity in terms of factors
such as traffic volume and shape, message sizes, fan-in / fan-
out, speed of consumption, real-time vs. “historical” data
consumption, and criticality levels.

(3) High (global) read fanout: Accommodate the presence
of hundreds of consumers, spawning across multiple data
center regions, for the same logical dataset.

(4) “No-ETL” data consumption: Allow real-time data con-
sumers to read and process only their data subsets of inter-
est, with a minimal deserialization tax.

(5) One size does not fit all: Serve heterogeneous use cases
that have varying requirements in terms of ordering and
delivery guarantees.

This paper presents Scribe, the message queue service responsi-
ble for making data available with high throughput and low latency
to Meta’s multitude of batch and realtime systems. The architecture
of Scribe has evolved over the past 18 years to cater to all of the
requirements above. Specifically:

(1) Amulti-hopwrite path uses buffering and non-deterministic
routing / placement of data to maximizewrite availability.

(2) Traffic shaping and quota management mechanisms protect
the performance of individual requests in amulti-tenant
environment, while the write and read paths minimize the
impact of individual resource-demanding requests on any
given host of the Scribe data plane.

4817

https://doi.org/10.14778/3750601.3750607
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750607

(3) On-demand replication of the popular data tail end on
ephemeral storage and integration with the job schedulers
of prominent downstream compute platforms keep the im-
pact of high global read fanout in check.

(4) Population of oft-used materialized (columnar) views min-
imizes the volume of transported data and the associated
deserialization “tax” [24]. Combined with the ability to dy-
namically partition input datasets as well as preserve inter-
esting orders in input batches, Scribe enables lightweight,
scalable ETL for the downstream analytical systems.

(5) Exposing trade-offs around freshness, scalability, resource
consumption, and delivery guarantees to customers enables
them to opt for the offering best “sized” for their needs.

Contributions. The contributions of this work are the following:

• We present the architecture of Scribe, the message queue
service that acts as Meta’s data transport layer, and high-
light the key properties that have empowered Scribe to
scale to > 15𝑇𝐵/𝑠 of ingress and > 110𝑇𝐵/𝑠 of egress.

• We present learnings distilled from the 18-year evolution of
Scribe, and retrospect on past decisions and their outcomes.

The rest of this work is structured as follows: Section 2 presents
the high-level abstractions that Scribe exposes to its users. Section 3
outlines the end-to-end architecture, whereas Sections 4 and 5 dive
deeper into the data and control planes, respectively. Section 6
discusses how we gradually introduced stronger guarantees on top
of Scribe. Section 7 discusses learnings based on the evolution of
Scribe over the past 18 years. Finally, Section 8 concludes the paper.

2 SCRIBE CONCEPTS
Scribe exposes the concept of a logical stream, called a category, to
which producers can write messages and which consumers can read.

Writing messages: Scribe customers write messages to a cate-
gory using a Producer library. While Scribe historically had allowed
for messages to contain arbitrary payloads and had treated every
message as an opaque blob regardless of its serialization (e.g., CSV,
JSON, Thrift), nowadays the vast majority of Scribe traffic follows
an explicit schema – published in a globally available registry – and
a Thrift-based, schema-evolution-friendly serialization [48]. Cus-
tomers can also annotate their messages with auxiliary metadata
for purposes such as tracing, privacy enforcement, and filtering.

Callers of the Producer library can issue unary / N-ary calls: In
the case of N-ary calls, Scribe allows for a message batch to use
serialization formats that are more suitable for subsequent analyti-
cal processing, such as PrestoPage [8] – the wire format that the
Velox [38] query engine is most compatible with. In addition, Scribe
exposes the ability to treat the provided message batch as atomic,
guaranteeing that the Scribe write path will store the messages of
the batch contiguously and that the consumers will also receive the
messages contiguously.

Durability: The messages that producers write to a category
are durable and available to consumers for a configurable retention
period: applications can thus decouple their data production from
their data consumption rate, as well as recover from events such
as outages and corruptions by reading the historical portion of the
category’s data stream.

Reading messages: Callers of the Consumer library read a cat-
egory in streaming fashion starting from an arbitrary time point
within the category’s retention – although the majority of con-
sumers are reading the tail end of a category’s data – or resume
from where they had previously left off by providing a checkpoint.
Consumers can optionally specify a SQL expression to filter out a
portion of the category, as well as specify a desirable output serial-
ization format (e.g., request the output to be expressed as PrestoPage
or JSON, even if the original messages had been Thrift-encoded).

Sharding: A voluminous category typically requires a group
of consumers to consume it in its entirety – with said consumers
relying on a sharding scheme to distribute the category among them.
Customers can partition a category into multiple logical shards
based on a key value provided at write time, or based on the values
of a message’s (sub)set of fields. A given consumer can then opt to
read only the messages corresponding to a given logical shard.

For use cases where affinitizing messages of a given sharding key
to a specific consumer is unnecessary, Scribe allows a consumer
group to collectively read a category by distributing the whole
traffic to them in arbitrary fashion: The group’s only concern then
becomes how to balance the category’s traffic among its consumers.
Finally, Scribe provides interfaces that allow users to rightsize a
consumer group’s size based on the current traffic volume.

3 THE ARCHITECTURE OF SCRIBE:
A 10000 FOOT VIEW

Scribe addresses the need for reliable streaming data transport of
voluminous datasets continuously generated across Meta’s millions
of geo-distributed hosts. As the scale of Meta kept increasing and its
overall data ecosystem became more refined, Scribe underwent mul-
tiple architectural incarnations to accommodate novel requirements.
Figure 1 provides a high-level view of Scribe’s current architecture.

Write path: Scribe’s utmost priority has always been the buffer-
ing and transportation of the datasets comprising Meta’s “golden
source of truth” with low-latency and high-throughput: An out-
age of the Scribe write path would result in loss of data for the
pipelines powering ingestion into Meta’s data warehouse, realtime
monitoring [22], ads pacing, and numerous other use cases. As a
result, write availability has been Scribe’s main design criterion
ever since its first architectural incarnation.

The Producer library is the main entry point for writing messages
to a category. Meta applications and services written in various
languages (e.g., C++, Python, PHP) use corresponding Producer
bindings for writing to Scribe. The next hop in the Scribe write
path is ScribeD – a local daemon running on every host in Meta.
ScribeD is responsible for receiving messages from all the Producer
instances on a host, buffering them, and eventually sending said
messages to Scribe’s first write backend service – theWrite Proxy.

Once a Write Proxy instance receives an inter-category message
batch, it performs various admission control checks as a first step,
then demultiplexes the incoming batch into per-category batches,
and proceeds to forward each to the Batch Service. The Batch Ser-
vice accumulates batches which it flushes into durable storage.
Scribe relies on a decoupled metadata and payload storage: Specifi-
cally, for a given message batch, the Batch Service compresses and
flushes the corresponding message payloads to block storage; once

4818

Region W

Consumer

Processing Code

Read Stream
Service

Consumer

Processing Code

Region XRegion W

Block-based
Payload Storage

Batcher```````````````Batcher``````````````````````Batch Service

Log-based Metadata Storage

⍈ ⍈ ⍈⍈

⍈

⍈

. . .

Job 1
C++ PHP ...
Producer Lib

ScribeD

Job 1
C++ PHP ...
Producer Lib

ScribeD

Batcher```````````````Batcher``````````````````````Batch Service

. . .

Job 1
C++ PHP ...
Producer Lib

ScribeD

Job 1
C++ PHP ...
Producer Lib

ScribeD

Block-based
Payload Storage

Payload
Cache

Batcher````````````
```

Batcher````````````
``````````

Read Proxy
Local Payload

Cache
Payload
Cache

Batcher````````````
```

Batcher````````````
``````````

Read Proxy

Local Payload
Cache

Region X

Read Stream
Service

Consumer

Processing Code

⍈

⍈

⍈

Batcher```````````````Batcher``````````````````````Write Proxy Batcher```````````````Batcher``````````````````````Write Proxy

Figure 1: Scribe architecture.

successful, the Batch Service flushes metadata about the persisted
batch, including a pointer to the block storage, to log-based meta-
data storage that will accommodate the sequential, stream-like read
patterns of the Scribe consumers.

Read path: The Consumer library is the main entry point for
reading messages of a category. Whenever an application starts a
Consumer, the latter initiates a stateful connection to an instance of
the Read Stream Service – the backend service responsible for expos-
ing the abstraction of stream-like consumption to Consumers. The
Read Stream Service proceeds to contact the log-based metadata
storage and stream every metadata entry (and accompanying pay-
load pointer) it retrieves to the Consumer. The Consumer, finally,
“re-stitches” metadata and payloads by requesting the payloads
from the Read Proxy – the service responsible for encapsulating all
accesses to payload storage.

Beyond accessing durable payload storage, the Read Proxy popu-
lates what constitutes Scribe’s tiered, ephemeral payload storage, in
the form of a disaggregated cache tier as well as in-memory caches
within Read Proxy hosts: Both cache tiers aim for minimizing ac-
cesses to the durable payload storage that is a scarcer resource and,
most importantly, frequently located in a different geographical
region than where the Consumer resides. Finally, the Read Proxy
evaluates any filtering and serialization format transcoding requests
that the Consumer has asked for.

Sections 4 and 5 dive deeper into all of the aforementioned com-
ponents and logic, explain the motivation behind the architectural
decisions, and detail the data and control planes, respectively.

4 THE DATA PLANE OF SCRIBE
The data plane of Scribe comprises relatively decoupled write and
read paths: The write path is responsible for the persistence of
records received via RPC-like requests, whereas the read path is
responsible for exposing the abstraction of a data stream over the
persisted records. The rest of this section goes into details on the
write and read paths, and elaborates on how Scribe bridges their
oft-times conflicting responsibilities.

4.1 Write Path
Applications that write messages into a category typically spawn a
number of Producers, both within and across an arbitrary number of
hosts. The write patterns can vary widely across different categories
or even different hosts: A category can receive a trickle of messages
via Producers residing across millions of web servers, while another
category can be receiving hundreds ofmegabytes every second from
a single host; the messages of a category can comprise a few bytes
each, whereas another category can be receiving messages with
sizes on the order of megabytes. The Scribe write path homogenises
the diverse write patterns of the hundreds of millions of Producer
instances, and aims to maximise write availability and efficiency of
the overall service in the presence of a substantial fan-in factor.

The Producer library is the multi-tenant entry point to the Scribe
write path. When a customer application issues a write call to the
Producer library, the application receives a response object that it
can use to inspect the result of the write operation. Each Producer
instance accumulates incoming messages in a cross-category, multi-
plexed in-memory buffer in order to form large enough data batches:
the use of a cross-category buffer rather than a per-category one
aids in keeping a limited memory footprint, while the batching re-
duces the amount of RPCs to downstream write path components.
Customers writing to Scribe in the hot path of their logic typically
opt for a fire-and-forget write mode, relying on Scribe to flush their
messages to durable storage in a best effort manner.

The Producer instances embedded in each binary running on
a given host periodically flush their message buffers to ScribeD, a
daemon process running on the same host. ScribeD uses similar
criteria as the Producers for buffering messages and flushing them
to the backend, and utilizes an on disk buffer to maintain write avail-
ability in case it is unable to communicate with the write backend.
While Producer instances and ScribeD are heavily configurable,
their default configuration values err on the conservative side in
order to minimize the Scribe “resource tax” and any potential noisy
neighbour effects: Being conservative is necessary given that multi-
ple (e.g., hundreds) of Producer instances can run on the same host
and that ScribeD is available on virtually every one of the millions
of Meta hosts. Still, customers are allowed to tune Producers based
on their needs and resource budget.

Conservative tuning aside, ScribeD acts as the first layer of fault
tolerance to avoidmessage loss in the presence of unexpected events
that prevent a message reaching durable Scribe storage, such as
network outages or backend overloads.

4819

Despite the provisions of ScribeD, a data loss event can still occur
if ScribeD disk buffers fill up in the case of a prolonged outage, or if
a host experiences a fault before ScribeD emitting its buffers to the
Scribe write backend service. In addition, for use cases generating
a high data throughput (e.g., 1 GB/s) per host, the on-disk buffer of
ScribeD brings minimal value due to the limited local disk capacity:
even short periods of ScribeD unavailability can lead to data loss.
Thus, high throughput use cases often opt for skipping the ScribeD
hop andmake their Producers directly communicate with the Scribe
Write Proxy to obtain higher availability guarantees.

Once a Producer / ScribeD instance is ready to offload a batch of
messages, it issues a write request to the Write Proxy, a backend
service with a tier deployed in every data center of Meta. The
responsibilities of a Write Proxy instance are to perform basic
admission control per received message, employ mechanisms to
protect the write path from noisy neighbour problems, and route
each category’s messages to Batch Service . The eventual target
of the Scribe write path is to accumulate a “large enough” amount
of messages, typically in the order of 10MB, for storage efficiency
purposes. Given, however, that the Write Proxy receives messages
from hundreds of thousands of categories, it is non-trivial for the
per-category buffers of a Write Proxy host to hold 10MB-worth of
messages at a time, especially given that traffic between the write
clients and the Write Proxy is opportunistic for load balancing and
availability purposes.

Write Proxy instances thus forward per-categorymessage batches
to the Batch Service, for the latter to further buffer, compress, and
flush them to Scribe storage. Compressibility of the per-category
batches depends on accumulating as many similar messages as pos-
sible given a conservative memory budget. The hop between Write
Proxy and Batch Service is thus the first place where the write path
attempts to affinitize traffic dynamically via the following steps:
(1) continuously monitoring the incoming client traffic per (cate-

gory, logical shard) pair
(2) logically splitting each (category, logical shard) pair’s traffic

into smaller “micro shards”
(3) using rendezvous hashing [45] to route a given micro-shard’s

messages towards a specific Batch Service instance to enable
Batch Service to collect storage-efficient batches

(4) adapting the routing based on changes in the incoming traf-
fic and availability of Batch Service instances to maintain the
overall availability and efficiency of the write path

Having accumulated and compressed a batch of messages, the rel-
evant Batch Service instance attempts flushing them to ephemeral
payload storage (subject to the policies described in Section 5.4
and to durable payload storage. Upon success and reception of a
pointer to the payload, Batch Service stores the payload pointer
along with additional metadata to metadata storage. At this point,
after having gone through multiple intermediate transient hops,
Scribe considers a batch of messages as persisted to its storage.

4.2 Storage
For multiple years, Scribe relied on a log-based storage system
as its sole storage solution, storing message payloads in append
only files. The gradual transition to a decoupled model – with the
log-based storage system storing sequences of pointers to external

block storage – unlocked a number of benefits, some of the most
prominent ones listed below:

• The ability to use a different storage type for the “hot” (realtime)
and the “cold” (historical) portions of a category’s data.

• The ability to retrofit stronger guarantees over a category’s
record sequence (e.g. read repeatability), stored across hundreds
/ thousands of physical shards, without having to access and
manipulate voluminous data payloads; Section 6 offers more
details.

• The ability to decouple stateful, stream-based data accesses to
lightweight metadata information, from RPC-like accesses to
block payload storage, subsequently enabling the straightfor-
ward introduction of numerous enhancements (e.g., ephemeral
replicas, disaggregated compute) over said block storage.

The rest of this section discusses the components and services
comprising Scribe’s decoupled, tiered storage.

Log-based metadata storage. Scribe stores positional meta-
data for the message batches of a category in LogDevice [32], a dis-
tributed log storage system optimised for sequential data accesses.
For a given category, LogDevice stores the positional metadata of
each message batch as a record in append-only, trimmable files
called logs: Each LogDevice log acts as a Scribe physical shard; each
record within a log is identifiable by a monotonically increasing
(log) sequence number, assigned by a sequencer entity. Multiple
LogDevice logs (typically in the order of 1 million) are stored in a
LogDevice cluster.

Akin to Scribe, a key tenet of LogDevice’s architecture is write
availability, which LogDevice accommodates through the use of
non-deterministic data placement: Every LogDevice cluster com-
prises a set of storage nodes, and replicas (e.g., 5) of a record can end
up in any of a large subset (e.g., 20) of said nodes – guaranteeing
no single point of failure in terms of accepting write operations.
Special care is built in the write protocol to ensure the storage
nodes picked reside in different failure domains: Examples from
a production environment include the nodes being i) powered by
different main switch boards in a data center, ii) located in different
data centers, or even iii) located in different geographical regions.
Non-deterministic data placement at write time implies additional
complexity on the read path; still a log’s readers benefit from re-
peatable reads, and are guaranteed to receive records at the order
of their sequence number. Finally, as stricter guarantees became
relevant for a subset of Scribe traffic, LogDevice refined its write
protocol to allow for i) linearizable writes and ii) exactly once writes,
with each of the two enhanced modes being incrementally more
rigid in terms of handling failure events of the sequencer entity.

Durable block (payload) storage. Scribe stores durably the
payloads corresponding to a category’s messages in Tectonic [37],
the multitenant, distributed filesystem developed in Meta to replace
HDFS. Besides Scribe, Tectonic backs multiple other services, such
as Meta’s data warehouse and media storage.

Scribe stores category payloads in Tectonic files residing in stor-
age nodes that are backed by hard disk drives; a collection of storage
nodes form a Tectonic cluster. Rather thanmaintaining N “full” repli-
cas per payload, Tectonic allows for the use of Reed-Solomon [40]
error correction to achieve similar redundancy properties, yet re-
quiring a more involved reconstruction process in cases of a storage

4820

32.50% 32.95%

68.84% 73.45%
84.97%

99.12% 99.57% 100.00%

0%
20%
40%
60%
80%

100%

0 1 10
100

1,000

10,000

100,000

1,000,000

Cumulative percentage of Scribe egress

Lag Bucket (seconds)

Figure 2: Buckets of time elapsed between the moment mes-
sages are written to Scribe and the moment a consumer reads
them: ~85% of messages are consumed less than 20 minutes
after being ingested; ~99% of messages are consumed less
than 3 hours after being ingested.

node loss. Adapting to Tectonic properties and best practices, Scribe
stores the payloads of multiple categories within a given file, in
order to keep the number of said files under control. Likewise,
Scribe flushes Tectonic blocks comprising payloads that can belong
to multiple categories in order to avoid blocks of small size; by
accumulating blocks in the order of 10s of megabytes, Scribe makes
the flush operation disk-friendly and avoids bloating the per-block
metadata that Tectonic maintains. Scribe also optimizes for the per-
category payloads within each Tectonic block to maintain a size in
the order of 2 megabytes because said batches are the typical Scribe
unit of reading: Therefore, it is important for the read operation to
be large enough to amortize the I/O seek operation involved with
retrieving a payload from a hard disk drive.

Ephemeral block (payload) storage. Scribe uses a two-level
ephemeral storage tier on top of its durable storage. While the use
of replication is typically associated with fault tolerance, Scribe
rather uses the ephemeral tier to optimize for the following reasons:
• Reduction of cross-region network traffic by populating payload

replicas in a consumer’s geographical region.
• Reduction of (more resource-intensive) IO operations over durable

Tectonic storage.
• Transcoding payloads to a serialization format that is more

favourable for downstream readers.
• Population of materialized views that are better suited for con-

sumer queries.
Scribe relies on different caching technologies to form its two-

level ephemeral storage tier. First, Memcache [35] – Meta’s large-
scale deployment of memcached [19] – acts as a disaggregated layer
that holds payloads for a period in the order of 1-2 hours. Based on
the Scribe read patterns depicted in Figure 2, said period is typically
sufficient for interested readers to consume the “warm” tail end of
a category. Memcache typically attempts to use the memory of the
hosts comprising its tiers to store data entries, eventually offloading
them to the hosts’ solid-state drives.

Scribe workloads form an outlier for Memcache: While the ma-
jority of Memcache workloads are RPC-heavy and thus CPU-heavy,
the size of Scribe payloads post-batching and the overall Scribe
egress requirements make the workload bandwidth-heavy and thus

NIC-heavy. In addition, given the streaming nature of Scribe work-
loads, most payloads end up promptly flushed to (and thus even-
tually retrieved from) the solid-state drives of Memcache tiers –
thus also making the ability to efficiently serve Scribe workloads
subject to the endurance thresholds of the Memcache hosts’ solid
state drives.

Scribe relaxes the strain on Memcache NIC and flash resources
through the use of a second ephemeral storage tier, residing in
Cachelib instances [9] that use the spare memory resources of
Read Proxy hosts. The Cachelib-powered second tier benefits from
the high-read fanout, hard-realtime nature of a sizable subset of
Scribe workloads that consume a category’s messages in a matter
of (milli)seconds after message persistence. Section 5.4 will expand
on the policies that Scribe uses to populate replicas across the two
ephemeral storage tiers.

4.3 Read Path
Applications that read a category’s data typically spawn a group of
Consumer instances, collectively reading a category’s contents in
streaming fashion. Given the minimal resource footprint of a Con-
sumer, it is typical for applications to spawn multiple instances on a
single host. Each of the consumer instances will initiate a Thrift [50]
connection to a Read Stream Service instance. The Scribe read path
favours the establishment of such connections within the same
geographical region in order to facilitate capacity provisioning /
predictability as well as to minimize chances of flow control issues
that could arise due to cross-region communication. After instan-
tiating the connection with a Read Stream Service instance, the
Consumer instance will start receiving streams of logical pointers
corresponding to the payloads of messages, and will issue RPC
calls to Read Proxy instances using the logical pointers in order to
retrieve the actual payloads. Once retrieving a payload, the Con-
sumer will proceed to decompress it and make it available to the
application in a no-copy manner.

Forming a stream via the Read Stream Service. The Read
Stream Service is the multi-tenant entity responsible for exposing
the abstraction of a single stream per Consumer request, stitched
together out of multiple LogDevice physical shards. Under the hood,
every instance of the service maintains a pool of connections to
LogDevice clusters, which it multiplexes across all incoming Con-
sumer requests, thus amortising thememory tax of said connections.
When a Read Stream Service instance receives a Consumer request,
it will establish a connection to the Consumer and proceed to per-
form a discovery process to identify all LogDevice clusters and
physical shards within them that are relevant for the request, as
well as the offset within each shard that it should start reading from;
Section 5.1 expands on the discovery process.

After identifying relevant physical shards, the Read Stream Ser-
vice instance will spawn a LogDevice reader instance for each of
them, start receiving a stream of records from each reader, and
propagate them to the Consumer. This data flow relies on credit-
based [28] techniques for flow control and application of backpres-
sure when necessary: Each component indicates that it can process
more messages by providing credits to its upstream. While being
an elegant concept, in practice we have had to introduce significant
complexity on top of our initial implementation in order to cater

4821

for messages of different sizes, rely on different “channels” for mes-
sages and for stream metadata / telemetry, and to allow for control
messages to flow downstream without consuming credits.

As messages flow downstream from LogDevice reader objects,
the Read Stream Service needs to merge them together into the
single metadata stream that the Consumer anticipates. The on-the-
fly merging process defines the order in which a given Consumer
will receive the category’s messages, attempting to mask the impact
of straggling, slow(er) shard readers; in the general case, the order
can be different across Consumers making identical requests – with
more details available in Section 6. Having established an order, the
Read Stream Service forwards the records to the Consumer via the
Thrift connection in streaming fashion.

At the time of receiving a Consumer request and establishing a
connection, a Read Stream Service instance has little knowledge
about the overall eventual resource consumption of the long-lived
request: one Consumer request might involve reading a single phys-
ical shard, whereas another could involve hundreds / thousands of
shards; the message rate per physical shard can also vary signifi-
cantly. Given that each Read Stream Service instance serves hun-
dreds of Consumer requests, it is possible to end up with hotspots
if multiple “fat” streams land on a given Read Stream Service host.
Therefore, the Read Stream Service performs load balancing by
having every request undergo an eviction process a few minutes
after its initialization, and has to re-establish a connection with a
(less loaded) Read Stream service instance; Section 5.2 elaborates
on host selection and traffic shaping.

Managing stream latency and liveness. Given the continuous
nature of data streaming, the Read Stream Service attempts to mask
the impact of any event that could disrupt data flow. When it comes
to Consumer stream eviction events, given that the per-request
shard discovery and initialization process can be time-consuming,
the Read Stream Service accompanies each eviction message with
information on the physical shards relevant for the request as well
as the position in which reading them left off; the next connection
event can thus bootstrap using this information and start the read-
ing process instantaneously. In addition, despite allowing individual
physical shard readers to progress independently at their own pace,
the Read Stream Service still makes an effort to minimise chances of
straggler effects and to detect non-transient issues as early as possi-
ble: For instance, each LogDevice physical shard punctuates [47] its
record streams with heartbeat information [42], so that the Scribe
read path can maintain accurate low-watermark [30] information
as well as infer the liveness of each underlying physical shard. The
Consumer also relies on heartbeats emitted from the Read Stream
Service to infer whether it should retry its request against a dif-
ferent, healthier Read Stream Service instance. In terms of retry
etiquette in general, all remote calls that the read path components
issue follow best practices around the use of timeouts, jitter, and
(exponential) backoff behaviour [10].

Serving and staging data payloads via the Read Proxy. The
Read Proxy is a regional service, deployed in every data center of
Meta, which encapsulates all accesses to Scribe payload storage. In
contrast with the Read Stream Service and the long-lived, stream-
like incoming requests that it receives, the Read Proxy receives
short-lived, RPC-like requests from Consumers. Specifically, as a
Consumer retrieves logical pointers to batches of data payloads

from the Read Stream Service, it issues an RPC per logical pointer to
a Read Proxy instance. The Read Proxy instance proceeds to retrieve
the payload batch from Scribe’s tiered storage and forwards it to
the Consumer instance.

Shielding the network backbone. Scribe typically persists
each record in the same data center region as its producer. Therefore,
a given Scribe category typically receives input data records from
producers deployed all over the globe rather than from a specific
data center region. As a result, when a Consumer issues a read
request, it receives the majority of relevant records – 80%-90% as a
rule of thumb – via a cross-data-center-region data transport. Scribe
operated in this fashion for almost its entire existence without
issues. The rapid growth of recommender systems pipelines within
Meta [51], however, drastically increased the egress of Scribe by
more than 5× YoY. If not acted upon, such an increase trend could
have surfaced risks in terms of satisfying cross-data-center network
backbone [15] demand for critical data pipelines.

A major lever in accommodating the demand for ever-growing
read fan-out came from the nature of the growth itself, which
stemmed from data pipelines interested in reading the tail end of
categories in hard real-time fashion. The growth also followed a
power-law distribution – with a small set of popular categories
being relevant for tens / hundreds of data pipelines performing
feature engineering and model training. The Scribe read path thus
evolved to minimize cross-region data fetching via the population
of regional, ephemeral data replicas: When the Read Proxy receives
a request, it attempts to retrieve the payload from a region-local
replica – either an in-memory one or a Memcache-resident one –
prior to resorting to a cross-region data fetch. Given the high read
fanout of the workload, the aim is to perform the cross-region fetch
once, and have the replica reused across all interested consumers;
Section 5.4 elaborates on the replica population policies and on the
scheduling extensions to maximize read fanout per replica.

Shielding the durable storage. Beyond the network backbone
strain, the sheer amount of durable storage IO operations was
an additional factor impacting the ability to accommodate read
demand: Given that consumers for a category can spawn in multiple
data center regions, Scribe would need to access its durable storage
at least once per region with consumers. The Read Proxy thus
supports chaining of requests: If a Read Proxy instance in region X
receives a request for a payload stored in region Y, it will forward the
request to the Read Proxy instance in region Y rather than contact
storage directly, and indirectly populate an ephemeral replica in
region Y if the payload is not already present in one. A subsequent
request from a Read Proxy instance in region Z is thus likely to
be served by the ephemeral replica of region Y. The end result is
reduction in terms of i) IO operations for the scarcer durable storage,
as well as in terms of ii) direct (cross-region) connections that can
overwhelm durable storage, cause call latency unpredictability, and
/ or contribute to TCP incast effects [12].

Lightweight ETL. The multiple real-time stream processing
applications consuming a popular category all conduct an identical
data preparation process: Retrieve message batches from a Con-
sumer instance, deserialize the batch into an in-memory columnar
representation [38], and then proceed with the actual processing
logic. The deserialization process involves a substantial compute
“tax” [24, 36] for all the relevant applications. The tax is exacerbated

4822

because it is typically non-trivial for the thousands of producers of
a given category to independently accumulate enough data records
at a time to convert them to an analytics-friendly, batched (colum-
nar) representation prior to offloading them to Scribe: The major-
ity of Scribe writers thus produce row-oriented, Thrift-encoded
records rather than column-oriented batches, and the consuming
applications have to perform the compute-intensive transcoding.
In addition, while multiple stream processing applications can be
consuming the same category, not all of them are interested in the
entirety of the category’s contents: such selective readers pay an
even larger premium, given that they read and process data that
they’d rather have pruned early on.

Scribe reduces the resource consumption of downstream appli-
cations by having the Read Proxy and the ephemeral storage act as
a data staging area. Specifically, as part of populating an ephemeral
replica, the Read Proxy transcodes the category’s payloads to a
columnar representation. At first glance, the transcoding compu-
tational cost is more pronounced for the Read Proxy compared to
the case of a downstream application, because the Read Proxy has
to i) decompress data batches, ii) deserialize them into Velox [38],
iii) serialize them to a wire representation, and iv) recompress them
prior to populating an ephemeral replica whereas a downstream
consumer would only perform step (ii) on top of the decompression
work they’d have to perform regardless. The Read Proxy compu-
tational cost, however, amortizes across the multiple readers of a
high-fanout category.

Beyond transcoding, the Read Proxy is able to evaluate (a subset
of) SQL queries, allowing for the pushdown [26] of the downstream
application’s filtering predicates to Scribe. In such cases, the Read
Proxy populates materialized views [21, 23] rather than full data
replicas. The Read Proxy refines the view definition based on a
feedback loop that monitors the incoming, relatively static continu-
ous query workloads; the current view definition policy optimizes
for maximal reuse across all queries over a given category rather
than exact matching with any specific query. The overall filtering
process occurs in two phases, involving both the Read Proxy and
the Consumer: Given that the Read Proxy compresses payloads for
storage and network efficiency purposes prior to populating a view,
it would incur a decompression - recompression tax per query: we
instead opt for serving the entire view contents to a Consumer to
avoid the (re)compression tax, even if they contain a superset of
what the query requested; the Consumer then performs the final
filtering step. We are also currently working on a workload-driven
split of each view into multiple “mini-views” in order to increase
the probability of answering queries without retrieving all of them.

Disaggregating the read path. A previous incarnation of the
Scribe read path relied only on Read Stream Service, which would
forward LogDevice records that contained the actual data payloads
to the Consumer. The move to a decoupled storage model allowed
for the corresponding disaggregation of the read path, with the
Read Proxy becoming responsible for the manipulation of data
payloads. The disaggregation brought multiple benefits:

• The (data) units of work shifted from long-lived, heterogeneous
requests (i.e., streams) to short-lived, (more) homogeneous ones
(i.e., single data payloads): The finer-grained work unit con-
tributed to load balancing improvements.

• Disaggregation reduced the chance of a heavy request (in terms
of compute or requested data volume) overwhelming a specific
host, acting as a hotspot for the service, and being a noisy neigh-
bour to other requests on the affected host; the computational
cost of a stream now distributes across the entire Read Proxy
tier. Coupled with the load balancing improvements, we were
able to operate the Read Proxy tiers at 20-30% higher average
utilization compared to the Read Stream Service ones.

• Having the Read Stream Service operate onmetadata-only streams
removed the heterogeneity factor stemming from varying mes-
sage sizes, thus allowing for more predictable flow control.

5 THE CONTROL PLANE OF SCRIBE
Scribe relies on an extensive, multi-faceted control plane in order
to accommodate the requirements for horizontal scalability and
elasticity in the presence of multitenancy. The rest of this section
highlights key aspects of Scribe’s control plane.

5.1 Metadata management
Different parts of Scribe require access to metadata about categories
to function correctly, such as who is the owner of a category, or
whether a category exists at all. Category metadata thus needs to
be accessible both on the write and the read path by the entire fleet
of Scribe clients and backend services. While the canonical store
for category metadata is a transactional, highly available database,
having millions of hosts continuously querying the metadata ser-
vice could overwhelm it. Scribe, thus, makes use of a caching and
distribution layer on top of the canonical metadata store: A periodic
job reads the entire database and publishes its contents to Meta’s
configuration distribution system [44], via which any interested
entity can retrieve a category’s metadata. Every instance of the
Scribe fleet has to be resilient to issues related to i) the eventually
consistent nature of metadata distribution that can lead to propa-
gation delays for the latest metadata version, and ii) the small yet
non-zero probability of corruption events. All relevant Scribe in-
stances thus store in-memory and on-disk copies of the last “good”
version of metadata they retrieved.

Besides coarse-grained category metadata, the Read Stream Ser-
vice requires finer-grained knowledge onwhich LogDevice physical
shards contain data for a given category. Populating this informa-
tion involves a periodic job that polls LogDevice clusters to ob-
tain the current tree-like mapping between cluster, categories and
physical shards, and publishing said information in Meta’s highly-
replicated, global routing information database [41]. Each Read
Stream Service instance subscribes to the relevant mapping for
an incoming read request and dynamically initiates / terminates
readers for each relevant physical shard added / removed from the
mapping during the data stream’s timeline.

5.2 Traffic management
Scribe has to accommodate virtually ad-hoc ingress and egress –
with producers and consumers spawning in arbitrary fashion across
the globe, and with arbitrary traffic spikes on a category / region /
overall service level being the daily norm. The nature of the work-
load has thus motivated the introduction of traffic management
mechanisms at multiple granularities.

4823

Intra-cluster traffic shaping. Thewrite path of Scribe reacts to
a category’s intra-region traffic increase by dynamically provision-
ing physical shards for it: A dedicated shard provisioning service
monitors the traffic that existing shards of a LogDevice cluster re-
ceive. The service splits any shard that becomes too “hot” in terms
of received throughput, in order to ensure horizontal scalability
for each category. The same service is also responsible for reacting
to traffic drops by deleting excess, empty logs once they are past
their retention period. The periodic polling of LogDevice to identify
empty logs can be resource-intensive for the LogDevice cluster;
the provisioning service thus opts for pacing garbage collection of
empty shards rather than eagerly deleting them at the very end of
their retention period.

Inter-cluster traffic shaping. The write path of Scribe needs
to be able to reason about how much traffic a given LogDevice
cluster can receive and react accordingly once a cluster reaches its
saturation point. To that end, the Scribe control plane monitors
each cluster’s write and read load, and continuously refines the
threshold of incoming write volume that the cluster can accept.
Based on this information, the regional tier of the Write Proxy can
opt for redirecting traffic to a different LogDevice cluster. If all the
clusters assigned to a regional tier of Write Proxy are saturated,
or if the tier itself is overloaded, the write path will “spill” write
traffic requests to nearby, less loaded regional tiers [41]. In case of
a global overload event, Scribe opts for graceful degradation [34],
shedding traffic of lower criticality to protect the overall service.

Host-level traffic shaping. Scribe relies on Meta’s service
mesh [41] to route traffic from its client libraries to its backend
services. Specifically, each instance of a backend service advertises
a load metric; the service mesh picks a random subset of hosts via
rendezvous hashing [45] out of the overall candidate pool and relies
on their load metric value to route the request to the least loaded
one. For cases where the resource consumption of a (long-lived)
request manifests seconds after its admission, such as in the case of
the Read Stream Service, the host receiving the request advertises
an artificially higher load metric value at the moment of a request’s
acceptance, and proceeds to exponentially decay the artificial value
until the real resource consumption of the request becomes known.

Besides load-based routing, there are families of Scribe requests
that benefit from affinitization to specific service hosts: The Write
Proxy affinitizes traffic micro-shards to a specific Batch Service host
to maximize the size of per-category message batches, and the
Read Stream Service affinitizes payload requests to a specific given
Read Proxy host when the request can potentially benefit from the
latter’s in-memory payload cache. Such cases affinitize requests via
consistent hashing [25]. Still, given that consistent hashing can lead
to hotspots in case of hot shards, Scribe’s affinitized requests have a
finite retry budget in case of reaching an overloaded or unavailable
host. After the retry budget expires, the request salts its hash to
deterministically route itself to 1 out of N fallback hosts – N being
a configurable value.

Regardless of such fallback safeguards and of the reliance on the
service mesh to achieve proactive traffic shaping, there is always a
chance that a given host will receive increased load. For instance,
a host can receive a sudden burst of requests; the load metric can
lag behind; the overall tier of a service can be overwhelmed with
incoming traffic. Thus, there is also a need for reactive traffic shaping

to protect a service’s goodput. Scribe service backends use a variety
of techniques to react to a potential host-level overload event by
transiently denying an incoming request and forcing its re-routing:

• Memory-bound Write Proxy instances rely on each incoming
(Thrift) request annotating its header with the size of the pay-
load to be processed. If the payload size would have lead to the
host’s memory budget to be exceeded, the Write Proxy instance
rejects the request without paying for its full unmarshalling and
processing.

• CPU-/NIC-bound Read Proxy instances rely on a PID controller
to dynamically resize their request input queue based on a target
host utilization.

• All backend services rely on token buckets to prevent thundering
herd phenomena.

5.3 Quota management
Scribe relies on a quota management system to prevent global re-
source depletion, enforcing limitations on the acceptable growth of
any given customer’s write / read traffic on a global level. Different
customer families can opt to distribute their available quota in dif-
ferent granularities. In addition, different enforcement mechanisms
are popular for different use cases: On the write path, customers typ-
ically choose from i) fully blocking traffic to an offending category,
ii) experiencing rate limiting in their write calls, or iii) sampling out
a portion of their requests so that the overall traffic remains below
the quota threshold. On the read path, outright blocking of readers
is less favourable for Scribe, given that their eventual attempt to
read the accumulated data backlog post-unblocking will consume
more storage resources compared to real-time data reading. As a
result, customers typically opt for sampling out a portion of their
traffic as the quota enforcement mechanism of choice.

5.4 Ephemeral replicas management
Scribe populates inexpensive, ephemeral data replicas to minimize
accesses to more expensive resources such as durable block storage
and cross-region network traffic and to maintain data copies in a
representation that is optimal for downstream analytical workloads.
Deciding the criteria for maximum pay-off from replica population
has involved dissecting the problem statement into two complemen-
tary ones: i) How can Scribe maximize pay-off given the current
workload, and ii) how the overall workload shape can incrementally
adapt to the available Scribe resources.

On the Scribe end, we model the problem statement as a con-
straint satisfaction problem: The control plane aims to come up
with decisions on replica and materialized view creation at a data
center region granularity, in the presence of constraints around
the availability of resources such as durable storage IO, Memcache
ingress / egress, and (cross-data-center) network backbone ingress
/ egress. Parameters that affect decisions include, among others,
i) the read fanout of a category, ii) whether a category’s consumers
are reading the tail end of the category’s messages rather than older
ones, iii) the selectivity factor (in terms of bytes) of a candidate
materialized view, and iv) whether the Read Proxy would have to
(re-)pay a deserialization tax to transcode a category’s contents to
the output wire format of choice.

4824

The Scribe control plane outputs population decisions per data
center region. For instance, a region with limited Memcache egress
availability could adopt a policy of hierarchical caching, with the in-
memory replicas shielding accesses to Memcache. Another region
with limited Memcache ingress availability could adopt a policy
of treating Memcache and the Read Proxy’s memory as disjoint
caches – with the latter alleviating some of the ingress demand
that would be destined for Memcache. Given that workloads can
fluctuate, the control plane periodically recomputes the population
policies to account for fluctuations; still, regardless of the quality
and responsiveness of Scribe policies, a category’s multiple readers
could be spread across a large number of data center regions, thus
making replica population less effective or even moot.

Scribe minimises the chance of such pathological cases by in-
tegrating with the schedulers [13, 29] of major downstream plat-
forms: Specifically, Scribe advertises its available resources per data
center to the schedulers; the schedulers have incorporated reader
co-location as one of their optimization criteria in order to mini-
mize the spread of readers for the same category across data center
regions. In practice, the greedy approach of prioritizing the co-
location of readers for the most voluminous categories has so far
offered the best outcome in terms of network backbone utilization.

5.5 Service health management
Observability into the health of the Scribe service was initially heav-
ily focused on write availability and on specific business-critical
use cases. Beyond those limited use cases, write path monitoring
was in place on a global, coarse-grained level. Introduction of read
path observability also took place on a global level, with additional
complications stemming from user behaviour: A reader application
could be willingly reading historical rather than fresh messages,
be underprovisioned for incoming traffic, or even be incurring a
downstream dependency failure that applies backpressure to the
overall data stream. The diversity of the thousands of applications
writing into and reading from Scribe brought further complications,
given the range of guarantees they expected from the service.

As the Scribe service and the overall data ecosystem in Meta
evolved, Scribe introduced per-tenant SLO monitoring, focused on
availability and data quality. A major part of the effort went into
error attribution: We developed a monitoring system capturing a
diverse set of signals and embedded it into Scribe clients in order to
discern failures stemming from downstream issues or even infras-
tructure issues (e.g., faulty host, client networking overloads). In
anticipation of the calibrating / de-noising of the monitoring taking
multiple iterations, we ensured that the error attribution definitions
were dynamically configurable. We also extended all components
comprising the read path pipeline to be able to infer whether their
downstream is not actively consuming messages, and thus be able
to disambiguate Scribe-caused latency from customer-caused one.

6 GUARANTEES: ONE SIZE DOES NOT FIT ALL
Scribe serves messages to multiple downstream systems; inevitably,
these systems exhibit different properties. For instance, the inges-
tion service that hauls TAO [49] social graph data into Meta’s data
warehouse performs in-order processing in hourly granularity; the

general-purpose stream processing service [11] performs out-of-
order-processing [7, 30]; select Ads revenue pipelines are extremely
sensitive to both data duplication and loss, favouring exactly once
processing. In short, the numerous Scribe customers have different
requirements out of the service.

Looking at the storage solution that powers Scribe streams,
LogDevice [32] offers strict properties such as repeatable reads
and exactly once data delivery at a physical shard granularity. At
the same time, numerous challenges arose for Scribe to expose
stringent properties across multiple LogDevice clusters (and even
more LogDevice shards): For a start, the majority of Scribe cus-
tomers (in terms of volume) were uninterested in strict delivery
properties if they would come at a Scribe resource consumption
premium. Any proposed solution would thus need to become avail-
able as an optional feature, without bringing in a horizontal re-
source consumption regression, and without overcomplicating the
existing infrastructure that had been optimised for supporting high-
throughput traffic at scale.

The rest of this section discusses the variety of guarantees that
Scribe exposes, goes through examples of how Scribe empowers
different use cases to pick the right trade-off, and discusses ongoing
work towards supporting strict guarantees, without an increase in
resource consumption, for high-throughput traffic at scale.

6.1 Best effort guarantees
“Vanilla” Write Path: Best effort delivery. The majority of ap-
plications interacting with Scribe produce data in “firehose mode”
– with some prominent categories receiving more than 500GB/s
of traffic. When reasoning about the aggregate traffic of such ap-
plications, Scribe’s primary care is successfully persisting the sub-
stantial data volumes at minimal resource consumption. Being
write-availability-first means that Scribe opts for opportunistic
data routing between client and Write Proxy hosts, and that traffic
can occasionally “spill” to another data center region. Coupled with
the use of retries in case of perceived write call failures / timeouts,
it is unlikely yet plausible that multiple calls for the same message
will successfully reach Scribe storage, leading to message duplica-
tion. At the same time, enabling customers to produce high-volume
traffic per Producer instance implies that customers should be able
to write their messages to Scribe in as non-blocking fashion as
possible. Customers relying on such “fire and forget” write calls
thus have to tolerate a potential degree of data loss in case one of
their many write calls ends up failing.

“Vanilla” Read Path: Approximate ordering.When a con-
sumer issues a read request for a given category, it would typically
retrieve messages from numerous physical shards because of the op-
portunistic routing nature of Scribe’s write path and because a given
category’s producers generate messages in geo-distributed fash-
ion. Attempting to retrieve data from multiple LogDevice shards
is inevitably subject to straggler effects [14]: At best, not all shard
readers will be able to sustain the same pace. At worst, a given
shard may be experiencing availability issues. Thus, attempting to
enforce strict temporal order across the numerous log-based read-
ers that form a category’s output data stream imposes an inherent
trade-off between throughput, latency, and data availability.

4825

C1
ts = 7

... ...C2
ts = 12

C3
ts = 15

C4
ts = 15

C5
ts = 20

Shard C, in LogDevice cluster X

D1
ts = 4

... ...D2
ts = 5

D3
ts = 9

D4
ts = 12

D5
ts = 23

Shard D, in LogDevice cluster X

E1
ts = 2

... ...E2
ts = 4

E3
ts = 11

E4
ts = 12

E5
ts = 12

Shard E, in LogDevice cluster Y

Read
Stream
Service

C1
ts = 7

... ...E4
ts =12

C2
ts = 12

D1
ts = 4

C3
ts = 15

Output

Window = 10

Figure 3: Keeping read traffic from multiple physical shards in approximate order: Assuming an ordering window of 10 time
units, the (faster) reader of shard C will pause until the reader of shard D advances forward from message D2.

Scribe bridges the gap between throughput and latency by al-
lowing its customers to embrace disorder [31]: A category’s shard
readers can advance individually as long as they don’t drift too much
from each other. Specifically, consumers have access to a config-
urable ordering window concept, an example of which is illustrated
in Figure 3: The ordering window ensures that output messages are
within a specified time range from each other, typically in the order
of minutes, based on the time said messages reached persistent stor-
age. Exposing the ordering trade-off allows different downstream
applications to opt for their experience of choice: For instance, a
general-purpose stream processing application can opt for a 30-
minute ordering window and introduce a sorting buffer to reinstate
order; another application that performs windowed joins can be
more memory-conscious and opt for a 5-minute ordering window;
a database used for realtime, timeseries-based data monitoring [5]
that favours early data delivery and can tolerate out-of-order data
can opt for an ordering window in the order of days.

6.2 At least once delivery
Moving beyond best effort guarantees, the most obvious scenario
that comes to mind is the need for at least once data delivery, which
is critical for use cases such as the ones ingesting critical datasets
into Meta’s data warehouse. Scribe offers at least once delivery by
relying on storage acknowledgments that indicate whether the stor-
age layer considers a message as successfully persisted, and relying
on aggressive retries in each write path hop to ensure eventual
success. On the other hand, aggressive retries increase the chance
of data duplication if performed in a brute force fashion.

The Scribe write path is thus carefully tuned to minimize the
chances of duplication: For instance, the write path maintains traffic
statistics at different historical granularities to predict how many
physical shards to initialize ahead of time in order to mask the po-
tentially blocking nature of shard initialization. In addition, every
downstream write path hop has more slack in terms of when to
consider a request as timed-out compared to its upstream hop, in
order to keep request duplication at a minimum. Finally, the write
path applies more conservative batching thresholds for traffic sub-
ject to at least once delivery, effectively generating smaller batches,
so that potential duplicate request spikes have a smaller chance to
overwhelm the resources of its backend services. The additional

measures to ensure at least once delivery lead to increased resource
consumption for the relevant data traffic.

6.3 Repeatable reads & exactly once processing
Scribe can further enhance its at least once delivery offering by
activating support for repeatable reads. Scribe currently offers two
variants of repeatable reads, each surfacing different trade-offs.

Write path variant: Use cases interested in transporting (low-
volume) change-data-capture-streams depend on strict data order-
ing and read repeatability. Scribe achieves this level of guarantees
by affinitizing the traffic of a given logical shard’s writer to a single,
dedicated (LogDevice) physical shard. The side effect of serializing a
logical shard’s traffic is that its maximum supported throughput
is now capped by what a single physical shard can support. In
addition, the offering also “inherits” the less-aggressive batching
involved with the at least once delivery offering, and is thus subject
to scalability limits and increased resource consumption.

Read path variant: Stream processing pipelines with exactly-
once processing requirements integrate vertically with Scribe to
apply an established methodology [20]:
(1) Repeatable reads out of a given Scribe category allow the down-

stream to associate each message batch read with a unique,
monotonically increasing identifier

(2) Deterministic processing without side-effects in the stream pro-
cessing application ensures resilience to failures

(3) Scribe deduplicates the write operations of the stream process-
ing application to a sink category via the use of a [data producer,
message batch identifier] de-duplication map at the LogDevice
layer, guaranteeing idempotent writes

On top of these properties, the relevant stream processing appli-
cations require the ability to fine-tune the size of the message batch
associated with the aforementioned unique identifier – especially
when performing memory-intensive operations such as streaming
joins. The minimal batching of the Scribe write path was a poor fit
for such a requirement. Scribe thus also introduced read repeatabil-
ity via a read path variant, depicted in Figure 4, that decouples the
degree of batching from the write path properties: The variant acts
as a “bolt-on” over the vanilla read path, and uses a dedicated reader
to consume all physical (metadata) shards of a given category, form
message batches of a size dictated by the downstream application,
and sequence them into a single metadata shard – establishing a

4826

Metadata
Storage

. . .

. . .

Payload Storage

Sequenced Shard
Generator

Repeatable Reads
Consumer

Metadata
Storage

Figure 4: Generating a repeatable read order: An internal flow
sequences a category’smetadata entries into a single physical
shard. The end consumers read the single, “sequenced” shard.

singular sequence for the category’s messages. End application
readers can then consume the single, sequenced shard and obtain a
deterministic (rather than an approximate) data order for the cate-
gory. The trade-off involved in the described Scribe enhancement
is related to latency: An additional hop and (metadata) persistence
step is required to generate the sequenced representation that all
downstream consumers will read.

Towards exactly once processing at scale: Despite having
two repeatable reads variants, each faces different scalability is-
sues that make their adoption challenging for the most voluminous
Scribe categories with a throughput greater than 100GB/s. The
issues stem from legacy architectural decisions around the provi-
sioning of physical shards: Specifically, thresholds for the creation
of additional physical shards stem from the Scribe era when a
message’s metadata and payload were stored together, rather than
decoupled. In addition, a physical shard had always been the unit of
reading data out of Scribe. Therefore, the traffic directed to a single
shard could not exceed the consumption rate of the “wimpiest”
consumer out of the many consumers reading the shard.

The design choices above contributed to excessive shard frag-
mentation – an obstacle for the scalability of stronger guarantees
solutions: For instance, the sequenced shard generator of Figure 4
could be responsible for the resource-intensive reading of tens of
thousands of storage shards and be subject to multiple straggler
effects. In addition, the proliferation of shards and the management
of their extensive state hindered the adoption of alternative designs
that would offload each message (batch) and its corresponding
stream state to transactional storage [6].

We are currently working on making physical shard provision-
ing more judicious, based on per-message-count thresholds rather
than on per-payload-size ones: Our aim is to reduce the amount
of physical shards by at least an order of magnitude in order to
make their sequencing more straightforward. We are also working
to allow consumers to read subsets of a physical shard, decoupling
a physical shard’s write throughput threshold from the potentially
limited processing capabilities of a consumer, and thus unblocking
the creation of fewer and more voluminous physical shards.

7 LESSONS LEARNED
Our experience with Scribe over the past 18 years has helped us
distill a number of observations around managing and evolving
infrastructure at scale: The rest of this section presents some notable
cases in which we revisited assumptions and evolved our designs.

On client binaries vs. (fat) libraries: A non-static decision
driven by the ecosystem. While Scribe’s client interfacing has
largely converged towards the use of Producer / Consumer libraries,
this had not always been the case. Using the read path as a case
study, the de facto entry point used to be a binary that was en-
capsulating the entire read path functionality. The binary exposed
messages via a pipe API: a user could pipe the “raw” byte stream
into their business logic and rapidly spin a novel application over
Scribe. We also accommodated customers stalling in terms of up-
dating their applications: We introduced a bespoke “autoupdating”
wrapper over the binary to avoid the presence of stale versions that
would stand in the way of fixing bugs and introducing new features.
Essentially, the binary had a very low entry bar and “assumed /
allowed the worst” in terms of customer behaviour and capabilities.

While allowing our customers to “move fast”, the low entry bar
raised a set of challenges: Untyped access to a binary stream was
error-prone and non-trivial to extend without careful orchestration
with our long tail of customers. In addition, the bespoke autoup-
dating logic was brittle and occasionally conflicted with successful
reader restart / shutdown. AsMeta’s data ecosystemmatured, we re-
solved the pain points by making “close world” assumptions rather
than accommodate every outlier behaviour: We partnered with our
most voluminous downstream data platforms to migrate them to
the lean, strictly typed Consumer library that was less prone to
interface evolution pain points while providing first-class access
to metadata related to privacy enforcement and schema manage-
ment; we then encouraged our long tail of customers to migrate to
said platforms. In addition, numerous Meta-wide safeguards and
processes discouraged and prevented the presence of stale binaries,
thus eschewing the need for auto-updating logic.

While we consider lean libraries as the ideal entry point to Scribe,
we have frequently run into cases where our libraries accumulate
logic relevant for optimisation purposes, and thus the challenges
around distributing error-prone, resource-intensive, complicated
logic to millions of instances resurface. For such cases, such as
the one of our Producer library, we have adopted the model of
having the ScribeD on-host daemon process engulf as much of
the complicated logic as possible, while multiplexing its resource
budget across all Producer instances on the host.We thenminimized
the blast radius of daemon bugs by adopting a very cautious, slow
rollout process throughout the Meta fleet.

On user freedom: Encouraging / enforcing best practices.
Historically, a Scribe consumer could spawn in an arbitrary data
center region, at an arbitrary time point, and request to consume
an arbitrary time slice of a category’s N-day retention. While the
isolated case of a single consumer would go unnoticeable, the same
would not hold if repeated by large-scale data consumers (e.g., the
data flows powering model training for video recommendations):
Regardless of Scribe’s multiple layers of overload protection, we
consider large-scale traffic shift to an undersized backend tier as

4827

an extraordinary event rather than a business-as-usual one. In sim-
ilar spirit, Scribe’s architecture is optimised under the assumption
that real-time data accesses form the majority; a drastic change
towards large-scale historical reading operations in steady state
would likewise degrade the overall quality of service.

As the scale of realtime data flows kept increasing, we moved
from encouraging best practices towards enforcing them:

• The expectation is for customers to now adhere to predefined,
regionalized capacity contracts [18], offering predictability in
terms of hardware provisioning across large-scale services.

• Borrowing ideas from “pure” pub-sub systems, we are moving
towards consumers registering their intent with Scribe, allowing
us to perform optimizations such as materialized view selection
with higher confidence.

• We are looking into distinguishing between realtime vs. (lower)
non-realtime SLOs / pricing models as a further incentive.

On (inevitable) vertical integration: Abstraction leakage
avoidance.We have frequently revisited Scribe interfaces and capa-
bilities to better fit those of upstream and downstream partners in
an attempt to overcome scalability walls. To name a few examples:

• Co-partitioning of Scribe categories and the data warehouse
tables that they feed into allows for warehouse ingestion of par-
titioned tables without involving a large-scale shuffle operation.

• APIs for the atomic transport of customer-provided message
batches enable customers to offload to Scribe ready “sorted runs”
for their downstream sorting workloads.

• Adopting columnar encoding schemes [4] that are specific to ML
sparse features leads to succinct, storage-efficient representations
for voluminous categories that contain training data.

In hindsight, making (too) strong connections between Scribe
interfaces and at-the-time implementation details has been an anti-
pattern that hindered system extensibility and innovation: For in-
stance, implicitly connecting Scribe’s physical sharding scheme
with the ability of an individual consumer to keep up with a sin-
gle shard’s traffic tied our hands in terms of making shards more
voluminous and combating fragmentation.

On the other hand, the way Scribe exposes data grouping and
partitioning capabilities have been positive examples: Customers
interested in writing pre-grouped data batches rely on a dedicated
write() call that ensures a set of invariants hold; customers inter-
ested in partitioning their category based on a subset of its fields
explicitly indicate so at category authoring time, and are subject to
restrictions in terms of partition cardinality.

On architectural evolution: Incremental simplification
and modernization. Up until recently, and ever since its creation,
Scribe’s focus was singular: Transporting binary, opaque payloads
in streaming fashion from point A to point B. The need for resource-
efficient realtime analytics across an ever growing scale and number
of data centers forced a mindset transition: rather than offering
“just” a data transport offering, we had to expose a data staging one.

Such architectural evolutions are multi-year endeavours that can
be challenging to motivate and kickstart. We tackled this specific
instance by identifying potential blockers as well as potential boons
in the overall data ecosystem of Meta, and working incrementally
towards the end goal, bringing added value in each step:

• We introduced support for data transcoding as a facilitator for
the migration of Meta flows from CSV and JSON to a Thrift-based
representation [48].

• We standardized (de)serialization logic across all major down-
stream platforms as part of a consolidation initiative to mini-
mize discrepancies across query engines, while also benefiting
from the widespread adoption of Velox [38]: customers issuing a
transcoding / filtering request to Scribe would now be getting
results consistent with performing the evaluation on their end.

• We introduced support for per-message metadata to facilitate
the propagation of privacy- and lineage-related information [16];
the same support would later allow downstream platforms to
perform data clustering without deserializing messages.

• We introduced a preliminary version of decoupling data pay-
loads from ordering information as part of an earlier endeavour
to separate our storage backend into two tiers, optimized for re-
altime and backlog accesses, respectively; said decoupling would
end up powering both the stronger guarantees offerings as well
as the first-class support for ephemeral replicas and filtering
capabilities in the read path.

• The decoupling of data payloads from ordering information also
meant that the scalability requirements for LogDevice, which
used to store both, lowered by orders of magnitude. The relaxed
requirements enabled the Scribe team to create a blueprint on
how to deliver stronger delivery guarantees without the burden
of scalability concerns, as well as “shed” a lot of the bespoke
logic within LogDevice, and explore building Scribe’s metadata
layer on top of an existing, general-purpose key-value store [33].
With the above efforts in place, bridging the delta from the

desired end state appeared less daunting for the team.

8 CONCLUSION
This paper presented Scribe, Meta’s message queue service, and
outlined the key properties that have empowered Scribe to ingest
> 15𝑇𝐵/𝑠 from its producers and serve > 110𝑇𝐵/𝑠 to its consumers.
Since its inception, we designed Scribe from the ground up to favour
write availability over other properties. As Meta workloads became
more read-intensive, we evolved the Scribe architecture: While
write availability is still a first class citizen, the Scribe read path now
adapts to workload properties in order to scale data delivery across
an ever growing number of data centers. Our priorities also evolved
from “just” reducing the resource consumption of Scribe to also
reducing the one of its downstream consumers – with lightweight
ETL capabilities meshed into Scribe data delivery. Likewise, the
service’s focus extended beyond serving high-throughput traffic
with approximate guarantees, towards a wide range of flavours that
enable customers to opt for trade-offs around delivery guarantees,
freshness, scalability, and cost. Finally, the journey towards the
current Scribe architecture has not been linear; we thus outlined
some of the learnings we obtained along the way.

ACKNOWLEDGMENTS
Scribe has been an ever-evolving service for the past 18 years, with
multiple architectural incarnations. Numerous past and present
Scribe team members have contributed to the journey and the big
picture described in this work; we are grateful to them all.

4828

REFERENCES
[1] [n.d.]. RabbitMQ. Retrieved February 28, 2025 from www.rabbitmq.com
[2] 2022. Redpanda Cloud brings the fastest Kafka API to the cloud. Retrieved

February 13, 2025 from https://www.redpanda.com/blog/introducing-redpanda-
cloud-for-kafka

[3] 2025. Redpanda. Retrieved February 13, 2025 from https://www.redpanda.com/
[4] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-

sion and execution in column-oriented database systems. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, Chicago, Illinois,
USA, June 27-29, 2006, Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis
(Eds.). ACM, 671–682. https://doi.org/10.1145/1142473.1142548

[5] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak R. Borkar, Bhuwan
Chopra, Ciprian Gerea, Daniel Merl, Josh Metzler, David Reiss, Subbu Subrama-
nian, Janet L. Wiener, and Okay Zed. 2013. Scuba: Diving into Data at Facebook.
Proc. VLDB Endow. 6, 11 (2013), 1057–1067. https://doi.org/10.14778/2536222.
2536231

[6] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: Fault-Tolerant Stream Processing at Internet Scale. Proc. VLDB Endow.
6, 11 (2013), 1033–1044. https://doi.org/10.14778/2536222.2536229

[7] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Ap-
proach to Balancing Correctness, Latency, and Cost inMassive-Scale, Unbounded,
Out-of-Order Data Processing. Proc. VLDB Endow. 8, 12 (2015), 1792–1803.
https://doi.org/10.14778/2824032.2824076

[8] Masha Basmanova. 2023. SerializedPage Wire Format. The Presto Founda-
tion. Retrieved February 6, 2025 from https://prestodb.io/docs/current/develop/
serialized-page.html

[9] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gu-
nasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-
Balter, and Gregory R. Ganger. 2020. The CacheLib Caching Engine: Design
and Experiences at Scale. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 753–768. https:
//www.usenix.org/conference/osdi20/presentation/berg

[10] Marc Brooker. [n.d.]. Timeouts, retries, and backoff with jitter. Amazon.
Retrieved February 22, 2025 from https://aws.amazon.com/builders-library/
timeouts-retries-and-backoff-with-jitter/

[11] Guoqiang Jerry Chen, Janet L. Wiener, Shridhar Iyer, Anshul Jaiswal, Ran Lei,
Nikhil Simha, Wei Wang, Kevin Wilfong, Tim Williamson, and Serhat Yilmaz.
2016. Realtime Data Processing at Facebook. In Proceedings of the 2016 Interna-
tional Conference onManagement of Data, SIGMODConference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016, FatmaÖzcan, Georgia Koutrika, and SamMadden
(Eds.). ACM, 1087–1098. https://doi.org/10.1145/2882903.2904441

[12] Yanpei Chen, Rean Griffith, David Zats, Anthony D. Joseph, and Randy H. Katz.
2012. Understanding TCP Incast and Its Implications for Big Data Workloads.
login Usenix Mag. 37, 3 (2012). https://www.usenix.org/publications/login/june-
2012/understanding-tcp-incast

[13] Arnab Choudhury, Yang Wang, Tuomas Pelkonen, Kutta Srinivasan, Abha
Jain, Shenghao Lin, Delia David, Siavash Soleimanifard, Michael Chen, Ab-
hishek Yadav, Ritesh Tijoriwala, Denis Samoylov, and Chunqiang Tang. 2024.
MAST: Global Scheduling of ML Training across Geo-Distributed Datacen-
ters at Hyperscale. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24). USENIX Association, Santa Clara, CA, 563–580.
https://www.usenix.org/conference/osdi24/presentation/choudhury

[14] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA, December 6-
8, 2004, Eric A. Brewer and Peter Chen (Eds.). USENIX Association, 137–150.
http://www.usenix.org/events/osdi04/tech/dean.html

[15] Marek Denis, Yuanjun Yao, Ashley Hatch, Qin Zhang, Chiunlin Lim, Shuqiang
Zhang, Kyle Sugrue, Henry Kwok, Mikel Jimenez Fernandez, Petr Lapukhov,
Sandeep Hebbani, Gaya Nagarajan, Omar Baldonado, Lixin Gao, and Ying Zhang.
2023. EBB: Reliable and Evolvable Express Backbone Network in Meta. In
Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM 2023, New
York, NY, USA, 10-14 September 2023, Henning Schulzrinne, Vishal Misra, Eddie
Kohler, and David A. Maltz (Eds.). ACM, 346–359. https://doi.org/10.1145/
3603269.3604860

[16] Wenlong Dong, Rituraj Kirti, Diana Marsala, Kendall Hopkins, Lucas Waye,
Hannes Roth, Jonathan Bergeron, Alex Ponomarenko, and Avtar Brar. 2024. How
Meta enforces purpose limitation via Privacy Aware Infrastructure at scale. Meta
Platforms Inc. Retrieved February 6, 2025 from https://engineering.fb.com/2024/
08/27/security/privacy-aware-infrastructure-purpose-limitation-meta/

[17] Pavan Edara, Jonathan Forbesj, and Bigang Li. 2024. Vortex: A Stream-oriented
Storage Engine For Big Data Analytics. In Companion of the 2024 International
Conference on Management of Data, SIGMOD/PODS 2024, Santiago AA, Chile, June
9-15, 2024, Pablo Barceló, Nayat Sánchez-Pi, Alexandra Meliou, and S. Sudarshan
(Eds.). ACM, 175–187. https://doi.org/10.1145/3626246.3653396

[18] Marius Eriksen, Kaushik Veeraraghavan, Yusuf Abdulghani, Andrew Birchall,
Po-Yen Chou, Richard Cornew, Adela Kabiljo, Ranjith Kumar S, Maroo Lieuw,
Justin Meza, Scott Michelson, Thomas Rohloff, Hayley Russell, Jeff Qin, and
Chunqiang Tang. 2023. Global Capacity Management With Flux. In 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 23). USENIX
Association, Boston, MA, 589–606. https://www.usenix.org/conference/osdi23/
presentation/eriksen

[19] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux Journal
2004, 124 (Aug. 2004), 5.

[20] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos.
2024. A survey on the evolution of stream processing systems. VLDB J. 33, 2
(2024), 507–541. https://doi.org/10.1007/S00778-023-00819-8

[21] Alon Y. Halevy. 2001. Answering queries using views: A survey. VLDB J. 10, 4
(2001), 270–294. https://doi.org/10.1007/S007780100054

[22] Stavros Harizopoulos, Taylor Hopper, Morton Mo, Shyam Sundar Chan-
drasekaran, Tongguang Chen, Yan Cui, Nandini Ganesh, Gary Helmling, Hieu
Pham, and Sebastian Wong. 2022. Meta’s Next-generation Realtime Moni-
toring and Analytics Platform. Proc. VLDB Endow. 15, 12 (2022), 3522–3534.
https://doi.org/10.14778/3554821.3554841

[23] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2010. An
architecture for recycling intermediates in a column-store. ACM Trans. Database
Syst. 35, 4 (2010), 24:1–24:43. https://doi.org/10.1145/1862919.1862921

[24] Svilen Kanev, Juan Pablo Darago, Kim M. Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David M. Brooks. 2016. Profil-
ing a Warehouse-Scale Computer. IEEE Micro 36, 3 (2016), 54–59. https:
//doi.org/10.1109/MM.2016.38

[25] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy,
Matthew S. Levine, and Daniel Lewin. 1997. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, Frank Thomson Leighton and
Peter W. Shor (Eds.). ACM, 654–663. https://doi.org/10.1145/258533.258660

[26] Donald Kossmann. 2000. The State of the art in distributed query processing.
ACM Comput. Surv. 32, 4 (2000), 422–469. https://doi.org/10.1145/371578.371598

[27] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: A distributed messaging
system for log processing. Proceedings of NetDB 11 (2011).

[28] H. T. Kung and Robert Morris. 1995. Credit-based flow control for ATM networks.
IEEE Netw. 9, 2 (1995), 40–48. https://doi.org/10.1109/65.372658

[29] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying, Thawan Kooburat,
Suryadeep Biswal, Jun Chen, Kun Huang, Yatpang Cheung, Yiding Zhou, Kaushik
Veeraraghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta, and Chunqiang
Tang. 2021. Shard Manager: A Generic Shard Management Framework for
Geo-distributed Applications. In SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-
29, 2021, Robbert van Renesse and Nickolai Zeldovich (Eds.). ACM, 553–569.
https://doi.org/10.1145/3477132.3483546

[30] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-
son, and David Maier. 2008. Out-of-order processing: a new architecture for
high-performance stream systems. Proc. VLDB Endow. 1, 1 (2008), 274–288.
https://doi.org/10.14778/1453856.1453890

[31] David Maier, Jin Li, Peter A. Tucker, Kristin Tufte, and Vassilis Papadimos. 2005.
Semantics of Data Streams and Operators. In Database Theory - ICDT 2005, 10th
International Conference, Edinburgh, UK, January 5-7, 2005, Proceedings (Lecture
Notes in Computer Science), Thomas Eiter and Leonid Libkin (Eds.), Vol. 3363.
Springer, 37–52. https://doi.org/10.1007/978-3-540-30570-5_3

[32] Mark Marchhukov. 2017. LogDevice: a distributed data store for logs. Meta
Platforms Inc. Retrieved February 13, 2025 from https://engineering.fb.com/
2017/08/31/core-infra/logdevice-a-distributed-data-store-for-logs/

[33] Sarang Masti. 2021. How we built a general purpose key value store for Face-
book with ZippyDB. Meta Platforms Inc. Retrieved July 2, 2025 from https:
//engineering.fb.com/2021/08/06/core-infra/zippydb/

[34] Justin Meza, Thote Gowda, Ahmed Eid, Tomiwa Ijaware, Dmitry Chernyshev,
Yi Yu, Md Nazim Uddin, Rohan Das, Chad Nachiappan, Sari Tran, Shuyang Shi,
Tina Luo, David Ke Hong, Sankaralingam Panneerselvam, Hans Ragas, Svetlin
Manavski, Weidong Wang, and Francois Richard. 2023. Defcon: Preventing
Overload with Graceful Feature Degradation. In 17th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2023, Boston, MA, USA, July
10-12, 2023, Roxana Geambasu and Ed Nightingale (Eds.). USENIX Association,
607–622. https://www.usenix.org/conference/osdi23/presentation/meza

[35] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, RyanMcElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at
Facebook. In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013, Nick
Feamster and Jeffrey C. Mogul (Eds.). USENIX Association, 385–398. https:
//www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala

[36] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making Sense of Performance in Data Analytics Frameworks. In 12th

4829

www.rabbitmq.com
https://www.redpanda.com/blog/introducing-redpanda-cloud-for-kafka
https://www.redpanda.com/blog/introducing-redpanda-cloud-for-kafka
https://www.redpanda.com/
https://doi.org/10.1145/1142473.1142548
https://doi.org/10.14778/2536222.2536231
https://doi.org/10.14778/2536222.2536231
https://doi.org/10.14778/2536222.2536229
https://doi.org/10.14778/2824032.2824076
https://prestodb.io/docs/current/develop/serialized-page.html
https://prestodb.io/docs/current/develop/serialized-page.html
https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/osdi20/presentation/berg
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/
https://doi.org/10.1145/2882903.2904441
https://www.usenix.org/publications/login/june-2012/understanding-tcp-incast
https://www.usenix.org/publications/login/june-2012/understanding-tcp-incast
https://www.usenix.org/conference/osdi24/presentation/choudhury
http://www.usenix.org/events/osdi04/tech/dean.html
https://doi.org/10.1145/3603269.3604860
https://doi.org/10.1145/3603269.3604860
https://engineering.fb.com/2024/08/27/security/privacy-aware-infrastructure-purpose-limitation-meta/
https://engineering.fb.com/2024/08/27/security/privacy-aware-infrastructure-purpose-limitation-meta/
https://doi.org/10.1145/3626246.3653396
https://www.usenix.org/conference/osdi23/presentation/eriksen
https://www.usenix.org/conference/osdi23/presentation/eriksen
https://doi.org/10.1007/S00778-023-00819-8
https://doi.org/10.1007/S007780100054
https://doi.org/10.14778/3554821.3554841
https://doi.org/10.1145/1862919.1862921
https://doi.org/10.1109/MM.2016.38
https://doi.org/10.1109/MM.2016.38
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/371578.371598
https://doi.org/10.1109/65.372658
https://doi.org/10.1145/3477132.3483546
https://doi.org/10.14778/1453856.1453890
https://doi.org/10.1007/978-3-540-30570-5_3
https://engineering.fb.com/2017/08/31/core-infra/logdevice-a-distributed-data-store-for-logs/
https://engineering.fb.com/2017/08/31/core-infra/logdevice-a-distributed-data-store-for-logs/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://www.usenix.org/conference/osdi23/presentation/meza
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala

USENIX Symposium on Networked Systems Design and Implementation, NSDI 15,
Oakland, CA, USA, May 4-6, 2015. USENIX Association, 293–307. https://www.
usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout

[37] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov,
Abhinav Sharma, Shiva Shankar P, Mike Shuey, Richard Wareing, Monika
Gangapuram, Guanglei Cao, Christian Preseau, Pratap Singh, Kestutis Patieju-
nas, JR Tipton, Ethan Katz-Bassett, and Wyatt Lloyd. 2021. Facebook’s Tec-
tonic Filesystem: Efficiency from Exascale. In 19th USENIX Conference on File
and Storage Technologies (FAST 21). USENIX Association, 217–231. https:
//www.usenix.org/conference/fast21/presentation/pan

[38] Pedro Pedreira, Orri Erling, Maria Basmanova, Kevin Wilfong, Laith Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: Meta’s Unified
Execution Engine. Proc. VLDB Endow. 15, 12 (2022), 3372–3384. https://doi.org/
10.14778/3554821.3554829

[39] Anna Povzner, Prince Mahajan, Jason Gustafson, Jun Rao, Ismael Juma, Feng
Min, Shriram Sridharan, Nikhil Bhatia, Gopi K. Attaluri, Adithya Chandra,
Stanislav Kozlovski, Rajini Sivaram, Lucas Bradstreet, Bob Barrett, Dhruvil
Shah, David Jacot, David Arthur, Manveer Chawla, Ron Dagostino, Colin Mc-
cabe, Manikumar Reddy Obili, Kowshik Prakasam, Jose Garcia Sancio, Vikas
Singh, Alok Nikhil, and Kamal Gupta. 2023. Kora: A Cloud-Native Event
Streaming Platform for Kafka. Proc. VLDB Endow. 16, 12 (2023), 3822–3834.
https://doi.org/10.14778/3611540.3611567

[40] I. S. Reed and G. Solomon. 1960. Polynomial Codes Over Certain Finite Fields. In
Journal of The Society for Industrial and Applied Mathematics. 300–304.

[41] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max Kontorovich, Josh
Kirstein, Margot Leibold, Dimitrios Skarlatos, Hitesh Khandelwal, and Chun-
qiang Tang. 2023. ServiceRouter: Hyperscale and Minimal Cost Service Mesh
at Meta. In 17th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 23). USENIX Association, Boston, MA, 969–985. https:
//www.usenix.org/conference/osdi23/presentation/saokar

[42] Utkarsh Srivastava and Jennifer Widom. 2004. Flexible Time Management in
Data Stream Systems. In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 14-16, 2004, Paris,
France, Catriel Beeri and Alin Deutsch (Eds.). ACM, 263–274. https://doi.org/10.
1145/1055558.1055596

[43] Yutian Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova, Orri
Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, Nikhil
Collooru, Ke Wang, Sameer Agarwal, Arjun Gupta, Dionysios Logothetis, Kostas
Xirogiannopoulos, Amit Dutta, Varun Gajjala, Rohit Jain, Ajay Palakuzhy, Prithvi
Pandian, Sergey Pershin, Abhisek Saikia, Pranjal Shankhdhar, Neerad Somanchi,
Swapnil Tailor, Jialiang Tan, Sreeni Viswanadha, Zac Wen, Biswapesh Chat-
topadhyay, Bin Fan, Deepak Majeti, and Aditi Pandit. 2023. Presto: A Decade

of SQL Analytics at Meta. Proc. ACM Manag. Data 1, 2 (2023), 189:1–189:25.
https://doi.org/10.1145/3589769

[44] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holistic
configuration management at Facebook. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015,
Ethan L. Miller and Steven Hand (Eds.). ACM, 328–343. https://doi.org/10.1145/
2815400.2815401

[45] David Thaler and Chinya V Ravishankar. 1996. A name-based mapping scheme
for rendezvous. Electrical Engineering and Computer Science Department, The
University of Michigan, Ann Arbor, Michigan (1996), 1–31.

[46] Raúl Gracia Tinedo, Flavio Junqueira, Tom Kaitchuck, and Sachin Joshi. 2023.
Pravega: A Tiered Storage System for Data Streams. In Proceedings of the 24th
International Middleware Conference, Middleware 2023, Bologna, Italy, December
11-15, 2023. ACM, 165–177. https://doi.org/10.1145/3590140.3629113

[47] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003. Exploiting
Punctuation Semantics in Continuous Data Streams. IEEE Trans. Knowl. Data
Eng. 15, 3 (2003), 555–568. https://doi.org/10.1109/TKDE.2003.1198390

[48] Bharat Vaidhyanathan, Dhruv Matani, MdMustafijur Rahman Faysal, and Saurav
Sen. 2023. Tulip: Schematizing Meta’s data platform. Meta Platforms Inc.
Retrieved February 6, 2025 from https://engineering.fb.com/2023/01/26/data-
infrastructure/tulip-modernizing-metas-data-platform/

[49] Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabr-
era III, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,
Jeremy Hoon, Sachin Kulkarni, Nathan Lawrence, Mark Marchukov, Dmitri
Petrov, and Lovro Puzar. 2012. TAO: how facebook serves the social graph. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, K. Selçuk Candan, Yi Chen,
Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.). ACM, 791–792.
https://doi.org/10.1145/2213836.2213957

[50] Dave Watson. 2014. Under the Hood: Building and open-sourcing fbthrift. Meta
Platforms Inc. Retrieved February 21, 2025 from https://engineering.fb.com/2014/
02/20/open-source/under-the-hood-building-and-open-sourcing-fbthrift/

[51] Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram
Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean Wu,
Christos Kozyrakis, and Parik Pol. 2022. Understanding data storage and in-
gestion for large-scale deep recommendation model training: industrial prod-
uct. In ISCA ’22: The 49th Annual International Symposium on Computer Ar-
chitecture, New York, New York, USA, June 18 - 22, 2022, Valentina Salapura,
Mohamed Zahran, Fred Chong, and Lingjia Tang (Eds.). ACM, 1042–1057.
https://doi.org/10.1145/3470496.3533044

4830

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/fast21/presentation/pan
https://www.usenix.org/conference/fast21/presentation/pan
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.14778/3611540.3611567
https://www.usenix.org/conference/osdi23/presentation/saokar
https://www.usenix.org/conference/osdi23/presentation/saokar
https://doi.org/10.1145/1055558.1055596
https://doi.org/10.1145/1055558.1055596
https://doi.org/10.1145/3589769
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1145/3590140.3629113
https://doi.org/10.1109/TKDE.2003.1198390
https://engineering.fb.com/2023/01/26/data-infrastructure/tulip-modernizing-metas-data-platform/
https://engineering.fb.com/2023/01/26/data-infrastructure/tulip-modernizing-metas-data-platform/
https://doi.org/10.1145/2213836.2213957
https://engineering.fb.com/2014/02/20/open-source/under-the-hood-building-and-open-sourcing-fbthrift/
https://engineering.fb.com/2014/02/20/open-source/under-the-hood-building-and-open-sourcing-fbthrift/
https://doi.org/10.1145/3470496.3533044

	Abstract
	1 Introduction
	2 Scribe Concepts
	3 The architecture of Scribe:A 10000 Foot view
	4 The data plane of Scribe
	4.1 Write Path
	4.2 Storage
	4.3 Read Path

	5 The control plane of Scribe
	5.1 Metadata management
	5.2 Traffic management
	5.3 Quota management
	5.4 Ephemeral replicas management
	5.5 Service health management

	6 Guarantees: One size does not fit all
	6.1 Best effort guarantees
	6.2 At least once delivery
	6.3 Repeatable reads & exactly once processing

	7 Lessons learned
	8 Conclusion
	Acknowledgments
	References

