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ABSTRACT

Relational database design is a well-understood process enabled by

a combination of database theory (e.g., normal forms) as well as

conceptual modeling (e.g., ER-based design). In contrast, database

design for NoSQL databases, notably document databases, is often

approached in a much more ad hoc manner. It is frequently driven

by application details and physical considerations that muddy the

design process in ways all too reminiscent of the pre-relational

database era. In this paper, we argue for a return to sanity – for a

logical, data-�rst, conceptually grounded approach to document

database design. We explain how such an approach can work, yield-

ing a clean, query-friendly document database design. We also

highlight a collection of document (JSON) anti-patterns to avoid.

The process and the anti-patterns both stem from the authors’ expe-

riences in current and past lives when dealing with a wide variety

of JSON document data from commercial applications, government

applications, and university research applications.
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1 INTRODUCTION

As the popular saying from Spider-Man goes, "With great power

comes great responsibility." Since their inception in the 1960s, data-

base management systems have served as a powerful tool for stor-

ing, managing, and analyzing information, both for powering in-

teractive applications as well as supporting downstream business

intelligence activities. To e�ectively harness that power, the ac-

tivity of database design has been a key problem in the database

�eld from the outset. As described in modern database textbooks

(e.g., [28, 33]) and summarized in [35], three key components of

the database design process are: (1) conceptual design, where the

information requirements for a given database are captured and

modeled; (2) logical design, where the conceptual design is trans-

lated into a design expressed in terms of a data model (e.g., the

relational model); and (3) physical design, where various physical
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design choices (such as indexing) are made based on the features

provided by the target database management system.

For the �rst two decades in database history, commercial data-

base systems were based on data models that were quite physical in

nature, e.g., the hierarchical model of IBM’s IMS system or the net-

work (CODASYL DBTG) model [22]. Their use required application

developers and data analysts to write programs to carefully navi-

gate through data structures and to perform look-ups in indexes

to achieve acceptable performance. As a result, database design in-

volved thoroughly understanding the physics of a given database’s

intended application(s), and adding to or changing an application

required rethinking the database’s design. This changed in a revo-

lutionary manner when Ted Codd introduced the relational model,

with its declarative, set-oriented query interface, thereby gifting us

with data independence – the ability to change a database’s phys-

ical structure without having to reprogram the applications that

use it (and vice versa) – and with the ability to support unforseen

ad hoc queries. Owing to the usability of languages like Quel and

SQL and their resulting productivity gains, commercial relational

database systems appeared and largely displaced their commercial

predecessors for new applications over the course of the 1980s.

The database design process was similarly revolutionized by the

arrival of relational database systems. Relational database systems

enabled a data-�rst approach to database design in which the phys-

ical database design step is last and can be performed separately

from the conceptual and logical design steps, serving to tune the

database "under the hood" to the application(s) needs without af-

fecting the logical structure of the database. Similarly, changes in

an application’s performance requirements (e.g., the need for new

or di�erent queries) can be addressed via such tuning (e.g., the

creation of a new index) at the physical level alone. This is Ted

Codd’s legacy – thank you, Ted! – resulting in today’s thriving,

nearly $80 billion dollar relational database software market.

Five decades after Codd’s revolution, the world is di�erent. Re-

lational database systems remain the dominant technology in the

database market [34], but today’s application requirements are

much more demanding in terms of scale, performance, and schema

�exibility. In addition, the kinds of data that now need to be man-

aged, in terms of their variety and regularity (or lack thereof), is

very di�erent. These changes have led over the last two decades

to the creation and deployment – in serious production use – of

alternative, so-called NoSQL1, database systems [20, 31, 34]. These

include key-value stores, column-family database systems, docu-

ment database systems, and graph database systems.

1NoSQL initially stood for "no SQL", but today it is commonly said to mean "not only
SQL", as many NoSQL systems now o�er SQL-inspired query interfaces as well.
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Customers(custid, name, street, city, zipcode, rating)

Orders(orderno, custid, order_date, ship_date)

LineItems(orderno, itemno, qty, price)

Products(itemno, kind, name, descrip, manuf, listprice)

ProductsCategories(itemno, category)

ProductsElectric(itemno, power)

ProductsClothing (itemno, size)
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ProductsElectric(itemno, power)

ProductsClothing (itemno, size)

.
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Figure 1: A Few Alternative Relational Designs.

Spanish philosopher George Santayana (in The Life of Reason,

1905) stated: “Those who cannot remember the past are condemned

to repeat it.” NoSQL database systems originated outside the re-

lational database community, and Santayana’s adage has unfortu-

nately been borne out in the database design methodologies being

commonly recommended by their vendors and consultants. NoSQL

designers have been guided to return to design methods that are

much more application-�rst and physical rather than being data-

�rst in nature. (Sorry, Ted...!) One goal of this paper is to stem that

tide by showing how a data-�rst approach can be used e�ectively,

given the nature of today’s document database systems. A second

goal is to present a set of document design anti-patterns that should

be avoided regardless of the design approach being followed.

The remainder of this paper is organized as follows: Section 2

reviews the relational database design process, brie�y discussing

both normalization theory and ER-based design thinking. Section

3 then delves into document database design, discussing �exible

schemas and current design practices followed by recommending

a methodology that �ows from an ER model (similar to relational

database design). Section 4 presents a set of document anti-patterns

that are either dangerous or query-unfriendly or both; these pat-

terns have been encountered in practice by one or more of the

authors. Finally, Section 5 concludes the paper.

2 RELATIONAL DATABASE DESIGN

There are two main tools used in relational database design: nor-

malization theory, and ER modeling followed by ER-to-relational

schema translation. We review both here as an important precursor

to proposing our recommendation for document database design

in Section 3, as we will show how a number of these principles

also apply there. Both tools lead to a logical schema, i.e., a set of

relational tables. This is then followed by a physical design step

in which decisions are made about the �le organizations, index

structures, and partitioning options for the tables.

2.1 Normalization Theory

Given the information needed for a given application, the problem

for the relational database designer is to come up with a "good" set

of tables in which to store the required information. As a simple

example, Figure 1 shows three alternative designs for a database

involving customers, products, and the orders placed by customers

for products. As a �rst option, Figure 1(a) sketches how the en-

tire database’s worth of information could be stored in one large

spreadsheet-like "universal" table (with the table’s primary key

columns being underlined). As an alternative, Figure 1(b) shows

what will likely strike most readers as a more natural design where

the information has been decomposed into multiple tables that

separate the information about customers, products, and orders.

Figure 1(c) shows a third alternative design in which the tables

of the second alternative have been further decomposed into an

extreme design in which each piece of information (each "fact")

lives in its very own table. In this last design the tables’ common

primary keys hold the separated values together logically.

All of these designs can hold the application’s information – but

which is a "good" design, and which might be viewed as the "best"

design? Functional dependencies and normalization theory were

invented to answer these questions by giving relational database

designers the tools to formulate or improve on a given relational

database design by decomposing its current table(s) into a set of

tables that minimize redundancy – i.e., into a design that avoids

storing a given fact, like that the name of customer "C13" is "T.

Cody", in more than one row of a table in the database. Figure 1(a)

is clearly not a good design, as it will store an instance of this fact

over and over, once for each line item in each order placed by a
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Table 1: Dependency-Driven Relational Database Design

Normal Form Description

1NF All �elds must be atomic (i.e., scalar)

2NF Avoid partial dependencies on PK (using FDs)

3NF Avoid transitive dependencies on PK (using FDs)

BCNF Avoid “all” remaining redundancy (using FDs)

4NF, 5NF (PJNF) Avoid “nesting” redundancies (using MVDs)

given customer. This redundancy will waste space, obviously, and

it will also waste time since every row where "C13" appears as the

customer id will have to be updated if the customer requests that

their name be updated (e.g., to "Thomas Cody"). It also introduces

room for inconsistent data if some rows are somehow missed by

the application when a name change occurs.

Functional dependencies (FDs) provide a formal notation for

capturing such facts. The FD 2DBC83 → =0<4 captures the fact that

a given customer id should only have one name associated with it

in the database, so wherever those two �elds appear together in a

table, the name known to be associated with a given customer id

should be the same. This example FD can be read as "the customer

id determines the name". Given a proposed database design and a

set of FDs that properly model which �elds determine which other

�elds, normalization theory provides a way to arrive at a design

that minimizes redundancy. As the relational design problem was

studied, researchers identi�ed a series of normal forms – based on

FDs – that avoid various ways in which redundancy can crop up in

a given relational schema design.

Without going into great detail, Table 1 lists the major normal

forms as we know them today along with the kinds of FD-related

problems that they avoid [28, 33]. 1NF is di�erent from the others

and is simply the relational model’s rule that each �eld in a table

must be atomic (a scalar value). The other normal forms each aim to

avoid potential redundancies. 2NF avoids situations where a table

has a composite key, like a primary key (PK) of (2DBC83, 8C4<=>),

and has non-key �elds that are involved in facts (FDs) that depend

on some but not all of the PK �elds. Such facts would be redundantly

stored for each 2DBC83/8C4<=> pair. 3NF avoids problems that 2NF

would miss where there is a transitive dependency on a PK that

could also lead to redundant fact storage.2 Lastly, in terms of FDs,

BCNF avoids certain corner cases where redundancy can be hiding

within the �elds of a composite primary key.

The bottom row in Table 1 lists two additional normal forms,

4NF and 5NF (a.k.a. PJNF), that address potential redundancies

due to dependencies involving what would be nested �elds if the

relational model didn’t insist on all �elds being atomic. In our

example, associated with a given product is a set of categories, so

wherever the product’s id (8C4<=>) �eld appears together in a table

with a category �eld (20C46>A~), a given id value should always be

associated with the same set of category values across the rows

of the table. This can be captured with the addition of the notion

2E.g., if we wanted to record which continent a customer is from along with that conti-
nent’s name (region), size, and population, the FDs 2DBC83 → A468>= and A468>= →
?>?D;0C8>= would lead to the transitive dependency 2DBC83 → ?>?D;0C8>=, warn-
ing us not to store region facts in the same table as customer facts lest we redundantly
repeat region facts for each customer.

of a multivalued dependency (MVD), e.g., 8C4<=> →→ 20C46>A~

in this example. (A good mental model is to think about the set of

categories associated with a product being functionally dependent

on the product’s id, 8C4<=> .)

As it turns out, Figure 1(b) is the relational design that one would

obtain by starting from the Universe table and then using functional

dependency theory to decompose it (normalize it) into a nice BCNF

equivalent. Figure 1(a) is only in 1NF. Figure 1(c) also turns out to

be in BCNF and avoids redundant storage, but decomposing tables

to that extent would lead to more di�cult querying (lots of joins)

and more expensive updates (lots of little updates).

2.2 ER Modeling

An alternative path to arriving at a "good" relational database design

is based on the seminal work of Peter Chen from the mid-1970’s on

the Entity-Relationship (ER) model [23] and its subsequent exten-

sions. This path involves (1) capturing the conceptual data model

for an application (or set of applications) in the form of an extended

ER model and then (2) translating the conceptual data model into

a logical data model, in this case a relational one. The ER model

for an application expresses the information that’s needed in terms

of entities, relationships, and attributes. Later extensions to Chen’s

initial ER model include support for modeling composite attributes,

multivalued attributes, and inheritance [28, 33].

To illustrate step (1), Figure 2 shows an extended ER model for

the simple commerce database that we have thus far been describing

informally or relationally. This model was inspired by the sample

data in Appendix A of Don Chamberlin’s SQL++ book [21], but it

includes some extensions to his example data that we will utilize in

Section 3 when we explain how to translate from an extended ER

design into a document database “schema”. To explain the extended

ER model in a nutshell, here is what Figure 2’s model is saying:

• There is an entity set called Customers. A Customers entity

has four attributes, 2DBC83 (which is its key), =0<4 , 033A4BB ,

and A0C8=6. The attribute 033A4BB is composite (nested) and

has sub-attributes BCA44C , 28C~, and I8?2>34 .

• There is an entity set called Orders with attributes >A34A=>

(its key), >A34A_30C4 , and Bℎ8?_30C4 .

• There is a one-to-many relationship Place to relate each

Customers entity to its associated Orders entities.

• There is a weak entity set called Items with attributes ;8=4=>

(its key), @D0=C8C~, and ?A824 . (The double lines in the �gure

express the entity set’s weak-ness.)

• Each entity in the Items entity set is existence-dependent

on a parent entity in Orders. This is modeled by the weak
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Table 2: ER-Driven Relational Database Design

ER Concept Relational Artifact

Entity Table with entity’s attributes and PK

Relationship (M:N) Table with relationship’s attributes and FKs

Relationship (1:N) Merge relationship table into N-side’s entity table

Composite attribute Use a �attened column naming convention

Multivalued attribute Add separate side table with entity’s PK as FK

Inheritance hierarchy Delta tables or mashup table

custid

OrdersCustomers
order_date

Place
1 N

orderno

rating

ship_dateaddress

name
street

zipcode

city

Items

Contain

quantity

price

1

N

Products
name

category

itemno

descrip

manuf

listprice

For

1 N

lineno

Clothing Electricsize power

IsA

not covering

disjoint

Figure 2: Extended ER Model for a Commerce Example.

1:N relationship, Contain, which relates each Items entity

(a line item) of an order to its containing Orders entity.

• There is an entity set called Products with attributes 8C4<=>

(its key), 20C46>A~, =0<4), 34B2A8?C ,<0=D5 , and ;8BC?A824 .

The attribute 20C46>A84B is multivalued, so a Products entity

may have several category values.

• The Products entity has two entity subtypes, Clothing and

Electric products, each having its own additional attributes

(B8I4 for Clothing products, ?>F4A for Electric products). A

given Products entity instance can be a regular product or

it can be one of the product subtypes.

• There is a 1:N relationship called For that relates each Items

entity to the Products entity that that line item is for.

Given an ER diagram produced by step (1), like the example

that we just walked through, step (2) involves translating the ER

diagram into an appropriate relational schema. Table 2 lists how

each feature in a given extended ER diagram is typically translated

into tables. Figure 1(b), introduced earlier, shows what Table 2’s

translation process would produce when given Figure 2’s ER dia-

gram. Notice how in Figure 1(b) the entity sets have become tables

with appropriate primary key �elds and other �elds. Had there

been an M:N relationship, it would have become a table whose pri-

mary key is a composite of the primary keys from the two related

tables. If a relationship has attributes, which is not the case here,

they would appear as additional �elds in the relationship table. 1:N

relationships can be modeled in the same way, but their primary

keys are just the key from the N side; as a result, their �elds can

be included in the N side’s entity table to avoid having a separate

relationship table and resulting unnecessary joins if so desired. An

example of this can be seen in Figure 1(b), where the Orders entity

table includes the �eld 2DBC83 rather than introducing a separate

table with (2DBC83, >A34A=>) pairs to relate customers and orders.

We turn now to translating the extensions of Chen’s original

model. Since the relational model does not allow data to be nested,

composite attributes have been �attened3 in the relational schema.

Again due to no nesting, multivalued attributes result in the need

for a side table (%A>3D2CB�0C46>A84B in our example) where the

multiple values can be held and associated with the entity table’s

key �eld value. Inheritance can be modeled in several ways, but

the most common one, used here, is to have side tables for each

subtype to hold its additional �elds. Again, Figure 1(b) shows the

complete relational translation result for Figure 2.

2.3 Relational Design Today

As mentioned above, both the normalization approach and the

ER approach lead to the same �nal result in this case. So how

are the two aforementioned approaches used in practice today? If

one is given a set of tables to improve, with no accompanying ER

model, normalization theory can help. It is more common nowadays,

however, for a relational schema to be designed via the ER path

since it is more intuitive and it nicely documents the data model.

Moreover, done right, an ER model’s relational translation will yield

a 3NF or BCNF design; problem solved. Lastly, given a relational

schema resulting from either approach, the �nal step would be

physical design (a.k.a. tuning), including the selection of indexes to

be created to accelerate the application’s queries.

3 DOCUMENT DATABASE DESIGN

We have now seen, or been reminded of, how database design is

handled in the relational world based on Ted Codd’s gift of data in-

dependence. In this section we explain how that gift can be applied

in the document database world. We �rst discuss "schemas" in that

world and review common current practices and/or recommenda-

tions for document database design. We then explain and make

the case for a data-�rst approach based on ER modeling and data

independence. We conclude by brie�y discussing some physical

considerations that might feed back into the design process.

3One minor detail in our example is that since 033A4BB is a composite attribute, a
purely mechanical translation would likely name the tables �elds for the nested ER
attributes 033A4BB_BCA44C , 033A4BB_28C~, and 033A4BB_I8?2>34 .
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{ "custid": "C13",

"name": "T. Cody",

"address": {

"street": "201 Main St.",

"city": "St. Louis, MO", 

"zipcode": "63101= },

"rating": 750

}, ...

customers: orders:

{ "itemno": 460,

"category": ["music", =fashion"],

"name": "Fender Bender T-Shirt",

"descrip": "Extra Large T-Shirt for

Fender Bender fans",

"manuf": "Fender Bender",

"listprice": 34.99,

"kind": "clothing",

"size": "XL"

},

{

"itemno": 680,

"category": ["music", =fashion"],

"name": "Fender Bender Tank Top",

"descrip": "Medium Tank Top for

Fender Bender fans",

"manuf": "Fender Bender",

"listprice": 29.99,

"kind": "clothing",

"size": "M"

}, ...

products:

{ "orderno": 1002,

"custid": "C13",

"order_date": "2017-05-01",

"ship_date": "2017-05-03",

"items": [

{ "itemno": 460,

"qty": 95,

"price": 100.99 },

{ "itemno": 680,

"qty": 150,

"price": 8.75}

] 

}, ...

linking

embedding

aggregate   
object

Figure 3: Document Database Design Concepts.

3.1 Document Schemas

Document databases are known for their schema �exibility, i.e., for

supporting collections of semistructured data that can be nested,

heterogeneous, and/or schemaless [31]. Most document databases

today have adopted self-describing data models based on JSON [10].

Examples, in alphabetical order, include: Apache AsterixDB [3, 19],

CosmosDB [14], Couchbase [2, 7, 17, 26], DynamoDB [1], and last

but certainly not least, MongoDB [11]. Cassandra [5] is another

well-known NoSQL database system, but it is di�erent in that while

it supports nesting, it is less �exible because it expects collections

(�at or nested tables) to have prede�ned schemas expressed using

a user model provided for data de�nition purposes.4

As explained nicely in [31], the notion of a schema is still present

in document databases. Applications that use document databases

still have to be written based on the objects in the database and

the information that they contain – it’s just that the knowledge of

the schema is embedded within the application code rather than

being explicitly de�ned within and managed by the database. There

are advantages and disadvantages to such schemalessness, but the

ability for the data in the database to evolve quickly, i.e., to have

schema �uidity as applications evolve, is one of several reasons

that document databases have gained favor in a growing number

of application areas.

Figure 3, which we will revisit again later, shows an example

of the collections of documents that a document database system

might store to support our commerce-inspired running example.

Rather than the seven "�at" tables of Figure 1(b), here we have

three collections, one for customers, one for orders, and one for

products. Each object, at least conceptually, is self-describing; it

comes with both �eld names and �eld values. Fields can be nested,

and di�erent objects might have more, fewer, or di�erent �elds

than other objects. For example, customers outside the US might

have di�erent address information; orders that haven’t shipped yet

might not have a Bℎ8?_30C4 �eld at all; di�erent kinds of products

might have di�erent �elds.

4Cassandra is commonly referred to as being a "wide-column store", not a document
store, and its data model is not JSON-based [6].

Even in the absence of a prede�ned schema, an order manage-

ment application, for example, will be written based on expecta-

tions about what it may encounter in the database’s collections.

The program would be "surprised" if one of the objects in the orders

collection is a customer, or if one of the order objects is missing

an expected 2DBC83 �eld indicating which customer placed it. As

a result, when storing and manipulating document data, it is still

the case that the schema(s) of the database’s collections must be

well-designed. Indeed, schema design for document databases is

every bit as important as relational database design – perhaps more

so, in fact, as document database systems have richer data models

and provide fewer "guardrails".

3.2 Current "Best" Practices

As discussed earlier, database design for the pre-relational database

systems of the B.C. ("Before Codd") era was application-�rst in

nature. One had to think physically to ensure a proper data orga-

nization that could support e�cient navigation by the application.

One also had to rethink things when new requirements cropped up,

potentially modifying both the data organization and the existing

application to account for the additional requirements.

Unfortunately, the current database design processes being rec-

ommended for NoSQL database systems, including document data-

base systems, have regressed to being much more physical in

nature. Figure 3 shows that the data relationships in document

databases can be represented either via embedding (nesting) or

linking (relational-style value matching). Embedding is commonly

pushed in favor of linking due to system limitations. CosmosDB [14],

DynamoDB [1], and Cassandra [5] all lack support for joining data

across collections, o�ering only single-collection query capabilities.

Thus, data that needs to be accessed together needs to be stored to-

gether in these systems, or else the application programmer will be

forced to deal with the additional complexity of writing application-

level joins. In contrast, for document database systems whose query

languages do support joins, like MongoDB [11], Apache Aster-

ixDB [3, 19], and Couchbase [2, 7, 17, 26], the database designer

has a wider range of choices in terms of when and why to favor

linking over embedding or vice versa – to join or not to join – as

we will discuss further in the next section.

Another challenge for database designers targeting DynamoDB,

Cassandra, or CosmosDB is that they prominently expose their

distributed data partitioning scheme(s) and per-partition storage

organizations as part of the logical database design process. A col-

lection’s primary key is a carefully crafted composite of �elds that

serve to �rst guide partition formation and then guide the storage

order of data within a partition, which is much more than the sim-

ple notion of a primary key being just a unique identi�er in the ER

or relational models. Careful key design is thus a critical aspect of

database design for those systems, and getting it wrong can lead

to something between poor performance and terrible performance

(full scans of all data in all partitions) or the inability to execute

certain queries at all. (E.g., Apache Cassandra won’t �lter on non-

key columns by default, requiring ALLOW FILTERING to explicitly

be speci�ed in a query.) Applications that need to e�ciently access

data from several angles, e.g., with di�erent predicates or di�erent
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combinations of �elds, have to maintain several copies of the same

data with appropriately supportive keys.

Other document database systems have much less restrictive

query capabilities, including language support for multi-collection

queries like joins and subqueries. Such systems include MongoDB,

Couchbase, and Apache AsterixDB. Historically, however, Mon-

goDB and Couchbase started their lives as distributed key-value

JSON document stores [13, 17]. Aggregation, joins, and multi-object

transactions were not initially available in MongoDB, and similarly

in Couchbase Server, so one still �nds remnants of "physical think-

ing" and a preference for embedding over linking in some of their

current materials on recommended JSON database design practices.

3.3 From ER Designs to Documents

As we described in Section 2, the �rst step in modern best practices

for relational database design is to use ER (or similarly UML [31])

modeling to capture the conceptual model for the desired database.

ER modeling is also recommended by some as a good initial step in

the document (and other NoSQL) database design process [8, 24],

while others quickly move into recommending product-speci�c

models [6] or focus the bulk of their recommendations on the

question "if you would have had these tables in the SQL world, how

would you model their data in the document world instead?" [8, 12].

There have also been a few proposals for new conceptual modeling

frameworks for the NoSQL world, e.g., NoAM [16]. The goal of this

section is to show how one can methodically start with the familiar

and time-tested ER model and end up with a "good" document

database design consisting of collections of JSON objects.

Before proceeding down the ER path, it is worth taking a quick

historical detour to make two points. First, nested database design

is not a new problem. Signi�cant research attention was paid in

the 1980’s to the idea of generalizing SQL’s �at relational model to

support nested tables and building systems to support such a model

(e.g., [30, 32]); the line items of an order could then be stored more

naturally as a nested 8C4<B table �eld in each row of the orders table,

for example. This is referred to as the non-�rst normal form (#� 2)

relational model. Second, it is common today, but actually wrong,

for nested document schemas to be referred to as "denormalized".

While such schemas are indeed not in 1NF, it is still possible for

nested designs to be normalized to avoid redundancy in a "one fact,

one place" sense that the other relational normal forms do, and

the late 1980’s saw the use of MVDs to guide the design of normal

forms for nested tables [27, 29]. However, for the same reason that

ER modeling has largely displaced functional dependency-based

design in the relational world, here we will follow the ER path

rather than a path based on nested normalization theory. We will

re�ect later on how proper ER-model-to-JSON-schema translation

will indeed lead to a non-redundant document database design.

Figure 4: Some Alternative Nested Database Designs.
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Table 3: ER-Driven Document Database Design

ER Concept Document Artifact

Entity Collection with entity’s attributes and PK

Relationship (M:N) Collection with relationship’s attributes and FKs (linking)

Relationship (1:N) Merge relationship collection into N-side’s entity collection

Composite attribute Use nested object (embedding)

Weak entity Use nested object (embedding)

Multivalued attribute Use nested array (embedding)

Inheritance hierarchy Use entity collection with subtype indicator �eld(s)

We return now to our main path, the sharing of our ER-driven

data-�rst document database design methodology for full-featured

document database systems. We have seen that one of the central

design decisions, hinted at in Figure 3, is the question of when

and why to use linking versus embedding to tie data together –

in other words, how to determine the aggregate objects for an

application. Figure 4 sketches some of the di�erent choices that one

might make, at least in principle. Figure 4(a) shows the choice that

would lead to the three collections of Figure 3. Figure 4(b) shows

a more deeply nested alternative where each customer’s orders

are nested inside the customer object. Figure 4(c) shows a truly

extreme nested alternative where the whole database is a single

JSON object; obviously undesirable, yet not impossible. Last but not

least, Figure 4(d) shows an alternative where the document schema

is �at and similar to a BCNF relational database design. So which

of these might be characterized as a "good" design, and why, and

how might one methodically arrive at that design?

It is important to point out that the choice between targeting a

relational or document database for a given application should not

a�ect its conceptual data model. Thus, the decisions that identify

the entities, relationships, and attributes for a document database

application can follow the usual textbook approaches to ER de-

sign [28, 33]. The pertinent question for ER-driven document data-

base design, then, is how to take an ER model as input and produce

a good document database schema. Table 3 summarizes what we

believe is a principled, practical, and easily mastered approach to

creating JSON database designs from ER models. This approach

has been tested with success over a period of over �ve years in a

university setting. It has been used in a UC Irvine undergraduate

database course, COMPSCI 122A: Introduction to Data Management,

to teach several thousand students – in 1-2 weeks – how to design

JSON schemas for Apache AsterixDB after learning the principles

of ER modeling and relational database design and SQL. It has

also been used by hundreds of students in a follow-on elective,

COMPSCI 122D: Beyond SQL Data Management, to design and de-

ploy databases for MongoDB, Couchbase Server, and Couchbase

Analytics starting from an ER model.

Taking a closer look at the translation approach laid out in Ta-

ble 3, we initially see similarities with the relational mappings of

Table 2. Entity sets here become collections of JSON objects whose

�elds correspond to the entity’s attributes. M:N relationships, again

customer

vehicles

vehicle

owners

. . .

. . .

custid

VehicleCustomers
make

Owner

M N

vin

rating

modeladdress

name
street

zipcode

city

year

(a)

(b)

Figure 5: A Dual Array Option for Small M:N Relationships.

very similar to the relational case, become collections of JSON ob-

jects that use linking to model the entity-to-entity relationships.5

And also as in the relational case, the relationship information (link

and relationship attributes) for a 1:N relationship can optionally

be placed in the N-side’s entity collection to minimize the number

of collections. Where the document versus relational di�erences

emerge is when mapping the ER model’s extended and more ad-

vanced features. Since JSON allows nesting, composite attributes

in the ER model can be mapped to nested objects in JSON. Simi-

larly, since JSON supports arrays, multivalued attributes (whether

scalars or objects) can be mapped to array-valued �elds in JSON.

Weak entities are semantically similar to multivalued composite

attributes and can be similarly mapped in JSON. Last but not least,

since JSON schemas are �exible regarding which �elds are present

or absent, the objects in an inheritance hierarchy can be kept in a

single collection whose objects are variations on the entity’s theme

(along with a �eld or �elds that serve to indicate which subtype(s)

a given object belongs to).

To illustrate the results of these ER to JSON feature mapping

guidelines, it turns out (not coincidentally) that Figure 3 from ear-

lier turns out to show the sample document structures that Ta-

ble 3’s mappings produce when applied to the running commerce

ER model example from Figure 2. Some details to notice are that

033A4BB is a nested, object-valued �eld of customers, 8C4<B is a

nested array of objects in orders, and 20C46>A~ is a nested array

5One possible modeling exception for the M:N case would be to use nested arrays
of links on each side to “cut out the middleman” if the arrays will be small on both
sides. Figure 5 illustrates this option, showing how a relationship between Customers
and Vehicles could utilize it if the commerce ER model were extended to keep track of
customers’ vehicles.
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product

electric product

clothing product

product

clothing product

...

...

IsA

product

electric_product clothing_product

(a)

(b)

Figure 6: Modeling an IsA Relationship.

... 

{   "itemno": 375,

"category": ["music"],

"name": "Stratuscaster Guitar",

"manuf": "Fender Bender",

"listprice": 149.99

},

{  "itemno": 780,

"category": ["essentials", "kitchen"],

"name": "Automatic Beer Opener",

"descrip": "Robotic beer bottle opener",

"manuf": "Robo Brew",

"listprice": 29.95,

"kind": "electric",

"power": "AA batteries=

},

{   "itemno": 460,

"category": ["music", =fashion"],

"name": "Fender Bender T-Shirt",

"descrip": "Extra Large T-Shirt for Fender Bender fans",

"manuf": "Fender Bender",

"listprice": 34.99,

"kind": "clothing",

"size": "XL=

},

...

Figure 7: JSON Objects from an IsA Hierarchy.

of strings in products. Figure 6 zooms in on the handling of �B�

hierarchies, with Figure 6(a) showing the entity type hierarchy for

product objects and Figure 6(b) showing them neatly co-existing in

a single products collection. Figure 7 shows a sample JSON object

of each type with a :8=3 �eld6 indicating their particular subtype.

3.4 Other Design Considerations

The ER to JSON schemamapping methodology in the preceding sec-

tion targets document database systems that are fully query-capable,

like MongoDB, Couchbase, and Apache AsterixDB. MongoDB’s

MQL query language (with its 5 8=3 and 066A460C4 interfaces) pro-

vides support for aggregation, joins, and subqueries, and queries

in Couchbase and Apache AsterixDB are based on SQL++ [18], a

JSON-oriented generalization of SQL. Decisions about data parti-

tioning and indexing are treatable in those systems as physical layer

decisions that can be made after the logical design step is �nished

6If a single product could belong to multiple subtypes, i.e., if the �B� relationship was
not disjoint, then a pair of boolean �elds 8B_2;>Cℎ8=6 and 8B_4;42CA82 would have
been needed as a subtype indicator instead.

CREATE INDEX ON orders (shipdate)

CREATE INDEX ON orders (custid)

CREATE INDEX ON orders (items.itemno)

customer

address

order

item

...

product

items

item

SELECT * FROM customers WHERE ...

SELECT * FROM orders o, o.items i WHERE ...

SELECT * FROM products WHERE ...

CREATE INDEX

ON products (listprice)
CREATE INDEX

ON customers (name)

CREATE INDEX

ON customers (address.city)

SELECT c.*, o.* FROM customers c, orders o WHERE c.custid = o.custid AND ...

Figure 8: Query Entry Points and Indexing Considerations.

and that can be modi�ed later, as needed, without a�ecting the

application’s query statements. As a result, those systems provide

physical data independence similar to the relational model.

Figure 8 sketches how the document mapping guidelines, based

on following the ER model’s choices about entity sets, will provide

target applications with a convenient set of entry points for query-

ing purposes. Queries that are just focused on customers can target

just that one collection, and likewise for queries that focus on just

orders or products. Queries that need to combine information from

several of the resulting collections, e.g., to ask about customers

and their orders, can use joins or subqueries to follow the inter-

collection links. To accelerate an application’s queries, indexes can

be created at the physical level, and more indexes can be added as

the application’s lookup needs evolve.

We would be remiss if we totally dismissed physical considera-

tions (e.g., I/O) as being thought-worthy in the logical design phase.

For example, Figure 9 shows how nesting choices can a�ect the

read and/or write performance of an application. Figure 9(a) shows

the amount of data that might be read when querying orders in

a design with nested items, while Figure 9(b) shows how having

orders and items as separate JSON objects in separate collections

could save I/O for an application in which most orders queries

don’t require data about line items. Updates to orders could involve

a similar I/O consideration, as most systems don’t write partial

JSON objects. These considerations are not unique to JSON; similar

tradeo�s exist even in the relational world and sometimes lead

designers to vertically partition a table into multiple parallel tables.

It should also be mentioned that this I/O consideration may be less

of a factor for document database systems that employ a columnar

JSON storage format under the hood [2, 15].

Lastly, one other factor worth considering towards the end of the

JSON document design process is an application’s possible need for

fast access to information whose inclusion at a certain place in the

schema would lead to a degree of redundancy (i.e., to a "one fact,

one place" rule violation, likely violating 2NF or 3NF in relational

theory parlance). Again, this consideration is not unique to JSON;

e.g., Chapter 20 of [28] has a similar discussion related to relational

database design tuning. There is also a related JSON discussion

in [4] referred to as an "Extended Reference", and a discussion

involving nesting of "recent" JSON objects in [9].
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...

(a) (b)

Figure 9: Scan-Related I/O Considerations.

As a concrete example, a web page to display an order in our

commerce example would be more user-friendly if its list of line

items included the product name of each item in addition to its

8C4<> . Retrieving this information in our "good" design requires a

join (albeit a small one). Product names will change rarely, while

order web pages will frequently be displayed, so one could opt to

add a ?A>3D2C_=0<4 �eld to the objects in 8C4<B and manage the

resulting redundancy by propagating name changes to places like

this where the 8C4<=>-=0<4 association is redundantly represented.

To informally quantify this trade-o�, we had ChatGPT help us gen-

erate a scaled-up version of our example data with 100,000 products,

500,000 customers, and 1,000,000 orders with 1 to 5 line items each.

We loaded this data into the free tier of a document database service,

indexed orders on >A34A=> and products on 8C4<=> , and then ran

40 executions of a query to retrieve the line items of a randomly

selected order. Without redundancy, the average server time for

the query was 5.1 msec and its roundtrip time from a laptop was 69

msec. With redundancy, the times were 2.4 msec (half the previous

server time) and 68 msec (roughly the same end-to-end latency).

4 PATTERNS AND ANTI-PATTERNS

The previous section o�ered a data-�rst design methodology for

document databases – in short, it presented a set of do’s for database

designers who are targeting applications at document database

systems that aren’t limited to single-collection queries. This section

o�ers a set of don’ts based on various anti-patterns that the authors

have encountered over the years in real-world JSON document

designs in both research and industrial settings. It is important

to point out that the don’ts presented here apply not just to full-

featured document database systems but also to NoSQL database

systems with more limited query capabilities. For each anti-pattern

– i.e., each don’t –we provide an example of the anti-pattern, explain

why it should be avoided, and then suggest a cure in the form of a

pattern with the same (or greater) information capacity that avoids

its problems. As we will see, the overall theme will be to ensure

that the chosen document design is query-friendly, both from a

user level perspective as well as being amenable to subsequent

optimization through indexing at the physical design level.

Before presenting our anti-patterns, i.e., our list of don’ts, we

should point out that our list is undoubtedly incomplete. For exam-

ple, we would also encourage interested readers to check out the

set of patterns (both do’s and don’ts) that MongoDB has assembled

to guide their JSON schema designers [4]. While less top-down and

less prescriptive than our ER-based approach, having more of an "if

your JSON data currently looks like this, you might consider doing

that instead" �avor, their pattern set contains some well-explained

and valuable document design suggestions.

4.1 Anti-Pattern 1: Unbounded Nesting

Figure 10 illustrates our �rst anti-pattern, which is to use embed-

ding instead of linking in situations where the nested data may

grow without bound. Nesting line items within orders is a sensible

decision for the reasons covered earlier; a given order will likely

contain a reasonable number of line items. Nesting the entire order

history for a customer within a customer object, on the other hand,

is a recipe for disaster. In addition to negative I/O implications,

over-nesting can lead to the exhaustion of a system’s internal limits

on the size permitted for a single JSON object or a �eld thereof.

There is another, less drastic, but also inadvisable, variant of the

unbounded nesting anti-pattern where the orders objects are stored

in a separate collection while keeping an array of order references

within each customer. We have seen this variant in practice as well,

and while it postpones the eventual exhaustion problem, it is still

a form of unbounded nesting and will cause customer objects and

customer-order queries to become unruly over time.

The best cure for anti-pattern 1 is simply to follow the design

guidelines of Table 3 in the previous section.7 In this example the

7We caution against attempting to work around this anti-pattern by "chunking" a
nested array into large blocks that, when exceeded, lead to the addition of another
copy of the upper-level object to hold the next array chunk. Unbounded nested arrays
should be treated as a call to use linking rather than embedding. However, on a
tangentially related note, MongoDB’s "Bucket Pattern" [4] is an interesting idea for
making intentional use of nesting and chunking in use cases like time series data.
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orders
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item

...

items
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items
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items
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item

...

items
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item

...

items

address

.
.
.

Figure 10: Over-Nesting Doesn’t End Well.

...

{

"storeid": 288,

"day": "2020-01-01",

"sales": 1258.77

}

...

...
{

"storeid": 288,
"2020-01-01": 1258.77

}
... SELECT *

FROM daily_sales

WHERE day >= "2020-01-01"

AND day < "2020-02-01"

CREATE INDEX ON daily_sales (day)

(b)

(a)

SELECT *
FROM daily_sales d,

OBJECT_NAMES(d) AS field
WHERE MILLIS(field) IS NOT NULL

AND field >= "2020-01-01"
AND field < "2020-02-01"

Figure 11: Don’t Confuse Metadata and Data.

...
{

"storeid": 288,
"day": "2020-01-01",
"item_counts":
[   { "itemno": 120, "num_sold": 17 },

{ "itemno": 185, "num_sold": 86 },
{ "itemno": 460, "num_sold":  2 },
{ "itemno": 680, "num_sold": 33 }

]
}
...

...
{

"storeid": 288, 
"day": "2020-01-01",
"120": 17,
"185": 86,
"460":  2,
"680": 33

}
...

SELECT ds.storeid, ds.day, ic.itemno, ic.num_sold

FROM daily_sales ds, ds.item_counts ic

WHERE ic.itemno = 680 AND ic.num_sold > 2

CREATE INDEX ON daily_sales (item_counts.itemno)
CREATE INDEX ON daily_sales (item_counts.num_sold)

(b)

(a)

SELECT ds.storeid, ds.day, "680" AS itemno, `680`.num_sold

FROM daily_sales ds

WHERE `680`.num_sold > 2

Figure 12: Don’t Confuse Fields with Arrays.

result of following the guidelines will be as shown in Figure 3,

where customers and orders are stored separately and each order

is linked back to its associated customer.

4.2 Anti-Pattern 2: Data as Metadata

Figure 11 shows the next anti-pattern, which might be described

from a database point of view as confusing metadata and data. In

the relational world (of SQL tables), the system catalogs store the

metadata (�eld names and types) and the rows of a table store its

�elds’ values; their query languages (usually SQL) are oriented in

this way. Query languages for document databases have their roots

in relational languages, albeit generalized to work against JSON

data. Figure 11 is an example of a collection that captures the daily

sales history from a company’s stores. In Figure 11(a) the designer

has structured the data to have a �eld named after the date and

whose value holds the sales volume for that date. Notice how this

decision makes it very awkward to write date range queries like

the one in the �gure if the application needs to do so, either now

or in the future – and note that this design is not amenable to the

creation of a secondary index to speed up such queries.

The cure for anti-pattern 2, as shown in Figure 11(b), is to use

a more "databasey" design that avoids using data values as �eld

names – i.e., to separate what would be schema fromwhat would be

data even though JSON databases are schemaless and make the anti-

pattern possible. (It is worth mentioning that JSON exhibiting this

anti-pattern sometimes originates from map-oriented Javascript

libraries and their associated persistent stores [25].)
We have also encountered a more complex, nested variant of

anti-pattern 2 in practice (which we can probably thank Javascript
for as well). An example based on monthly sales data for stores
might have objects of the following form:

{"storeid": 288,

"data": {"2020": {"Q1": {"Jan": {"sales": 14999.99}}}}}

Applying the cure, based on "schema thinking", leads to the
following much more query- and index-friendly alternative that
doesn’t confuse data and metadata:

{"storeid": 288,

"year": 2020,

"quarter": "Q1".

"month": "Jan",

"sales": 14999.99}

4.3 Anti-Pattern 3: Arrays as Fields

The third anti-pattern is shown in Figure 12. This is a cousin of anti-

pattern 2, but for arrays. In this example, the goal is to track, for each

store on each day, the number of each product that was sold there

on that day. In Figure 12(a) the designer has used the products’ ids

(8C4<=>) as �eld names and their associated counts as �eld values.

As indicated in the �gure, this design is query-unfriendly; it is

awkward to search for sales records based on combinations of their

product ids and associated counts. As shown, such a query is messy

to formulate against the anti-pattern. Other queries could be even

worse, like a range query to identify the stores and days where

more than 100 units of any product were sold and then return the

ids of such products. Another problem with this anti-pattern is that

it can cause objects to have many, and highly variant, sets of �elds.

(This could be especially problematic when columnar JSON storage

formats are in use internally).

The cure for anti-pattern 3, as shown in Figure 12(b), is to avoid

confusing data with schemas and/or confusing �elds with arrays.
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... { "itemno": 347,
"name": "Beer Cooler Backpack",

"colors": ["black"],
"listprice": 29.95 }, 

{ "itemno": 375,
"name": "Stratuscaster Guitar",
"colors": ["sunburst", "black", "cherry"],
"listprice": 1499.99 }, ...

... { "itemno": 347,

"name": "Beer Cooler Backpack",
"colors": "black",

"listprice": 29.95 }, 
{ "itemno": 375,

"name": "Stratuscaster Guitar",
"colors": ["sunburst", "black", "cherry"],
"listprice": 1499.99 }, ...

vs.

(a)

(b)

Figure 13: Avoid Array Heterogeneity.

Again, the original design is problematic for querying and would

make e�ective indexing impossible.

4.4 Anti-Pattern 4: Non-Uniform Nesting

The fourth anti-pattern, shown in Figure 13(a), might best be de-

scribed as non-uniform nesting. In the example, some products are

available in a set of colors, while others have only one color op-

tion. Here a JSON document designer has chosen to exploit JSON’s

schema �exibility – speci�cally, its willingness to support hetero-

geneous �eld types and values. If there is only one color choice,

2>;>A is a string, while its value is an array of strings if the product

has multiple color options. This is again a query-unfriendly design

(though not as unfriendly as the previous examples), as queries

may need to test the �eld’s type (string versus array) when they are

searching for products that are available in a particular color. In-

dexing such non-uniform data may also turn out to be problematic

in some systems.

The cure for this anti-pattern is to uniformly model a potentially

multivalued �eld as an array, as shown in Figure 13(b), even if the

array will have just one entry in some of the records. (It is worth

mentioning that JSON of this kind sometimes originates from data

conversion tools, such as tools that convert XML data into JSON.)

4.5 Anti-Pattern 5: Scalar Heterogeneity

The �fth anti-pattern, which is shown in Figure 14(a), is having a

non-uniform representation of a scalar-valued �eld. Here, the illus-

trated use case involves dealing with monetary values expressed

in di�erent currencies. If no currency is speci�ed here, the pre-

sumption is US dollars, and the records have a mix of string and

numeric values for the price. If the currency is di�erent, then an

object representation is used. JSON is �ne with such heterogeneity,

of course, due to its �exibility, but exploiting that �exibility in this

way makes both querying and indexing messier, requiring both to

deal with the defaults as well as the more general case.

Not unlike the cure for the previous anti-pattern, the recom-

mended cure for this anti-pattern would be to always model such a

potentially variant �eld’s value as an object and to use a numeric

... { "itemno": 185,

"category": ["black ", "silver"],

"name": "Stapler",

"listprice": {"price": 21.99, "currency": =USD"} },

{ "itemno": 347,

"name": "Beer Cooler Backpack",

"colors": ["black"],

"listprice": {"price": 29.95, "currency": =USD"} },

{ "itemno": 375,

"name": "Stratuscaster Guitar",

"colors": ["sunburst", "black", "cherry"],

"listprice": {"price": 227436.62, "currency": "Yen"} }, ...

... { "itemno": 185,

"category": ["black ", "silver"],

"name": "Stapler",

"listprice": 21.99 },

{ "itemno": 347,

"name": "Beer Cooler Backpack",

"colors": ["black"],

"listprice": "29.95" },

{ "itemno": 375,

"name": "Stratuscaster Guitar",

"colors": ["sunburst", "black", "cherry"],

"listprice": {"price": 227436.62, "currency": "Yen"} }, ...

vs.

(a)

(b)

Figure 14: Avoid Scalar Heterogeneity.

type for the price to support meaningful comparisons8, as shown

in Figure 14(b). Another speci�c variant that we have seen of this

anti-pattern in the wild involves using di�erent date formats (e.g.,

Unix timestamp, date string, datetime string) either across or within

the �elds of objects in a given collection.

4.6 Anti-Pattern 6: A Mix of Anti-Patterns

The sixth anti-pattern, shown in Figure 15, shows how a given de-

sign can su�er from multiple query-related challenges. Here we see

an example where the desire is to store some additional information

about customers, in this case adding a �eld containing informa-

tion about their dependents (perhaps for insurance or marketing

use). In Figure 15(a) the information about a customer’s spouse is

stored separately, as a nested object-valued �eld, with the infor-

mation about children being stored as a nested array of objects.

This design su�ers from non-uniformity, making it both query- and

index-unfriendly if the application needs to ask dependents-related

questions such as the example shown in the �gure.

The cure for this anti-pattern, as shown in Figure 15(b), is to

adopt amore uniform approach tomodeling the desired information.

In the cure, all dependents are now modeled as objects in an array

of dependents, which is �ne despite the fact that more information

(02C8E8C84B) is being maintained for the dependents that are children.

(It is interesting to note that the design shown in this anti-pattern

is a document schema that came from someone with a Ph.D. from

a top 5 school and decades of SQL experience.)

4.7 Anti-Pattern 7: Failure to Embrace Diversity

The poet Maya Angelou said: "We all should know that diversity

makes for a rich tapestry, and we must understand that all the

threads of the tapestry are equal in value no matter what their

8It would also likely be desirable to use a user-de�ned function in queries to convert
such prices into some chosen common currency, presumably based on the current
exchange rate at query time.
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...

{

"custid": "C13",

"name": "T. Cody",

"address": {

"street": "201 Main St.",

"city": "St. Louis, MO",

"zipcode": "63101"

},

"rating": 750,

"dependents": [

{ "kind": "spouse",

"name": "Mary",

"age": 42

},

{"kind": "child",

"name": "Sue",

"age": 23,

"activities": ["soccer", "music"]

},

{"kind": "child",

"name": "Todd",

"age": 17,

"activities": ["reading"]

}

]

} ...

...

{

"custid": "C13",

"name": "T. Cody",

"address": {

"street": "201 Main St.",

"city": "St. Louis, MO",

"zipcode": "63101"

},

"rating": 750,

"dependents": [

{ "spouse":

{ "name": "Mary",

"age": 42 }

},

{ "children": [

{"name": "Sue",

"age": 23,

"activities": ["soccer", "music"]

},

{ "name": "Todd",

"age": 17,

"activities": ["reading"]

}

]

}

]

} ...

SELECT DISTINCT

innerQ.custid,

innerQ.name

FROM (

SELECT c.custid, c.name

FROM customers c,

c.dependents d,

d.spouse

WHERE spouse.age > 21

UNION ALL

SELECT c.custid, c.name

FROM customers c, 

c.dependents d,

d.children ch

WHERE ch.age > 21 

) AS innerQ

CREATE INDEX ON customers (dependents.age)

(b)(a)

SELECT DISTINCT c.custid, c.name

FROM customers c, c.dependents d

WHERE d.age >= 21

Figure 15: A Mix of Design Problems.

{ "custid": "C13",

"name": "T. Cody",

"address": {

"street": "201 Main St.",

"city": "St. Louis, MO", 

"zipcode": "63101" },

"rating": 750,

"gender": "male",

"pronouns": ["they", "them"],

}, ...

SELECT c.* EXCLUDE gender

FROM customers c

WHERE c.id = "C13"

{ "custid": "C13",

"name": "T. Cody",

"address": {

"street": "201 Main St.",

"city": "St. Louis, MO", 

"zipcode": "63101" },

"rating": 750,

"pronouns": ["they", "them"],

}, ...

{ "custid": "C13",

"name": "T. Cody",

"address": {

"street": "201 Main St.",

"city": "St. Louis, MO", 

"zipcode": "63101" },

"rating": 750,

"gender": "male",

"pronouns": ["they", "them"],

"nickname": "Tim",

}, ...

{ "custid": "C13",

"name": "T. Cody",

"address": {

"street": "201 Main St.",

"city": "St. Louis, MO", 

"zipcode": "63101" },

"rating": 750,

"pronouns": ["they", "them"], "],

"nickname": "Tim",

}, ...

(a)

(b)

Figure 16: Bene�ting from Diversity.

color." Having covered a series of anti-patterns that su�er partly

from non-uniformity issues, our �nal don’t is actually a do stated

in double negative form: Don’t not reap the bene�ts of diversity! It

may seem, based on our ER-based data-�rst design methodology

and on our recommendations about steering clear of various forms

of heterogeneity, that we are arguing to move the document data-

base world back �ve decades to a more rigid (albeit nested) world.

That is not the case. A major bene�t of document (JSON) database

systems is their ability to accommodate the kinds of diversity that

modern applications need in order to manage and �uidly evolve

their underlying data.

Figure 16 shows an example of how document databases and

their query facilities can be exploited to enable application �uidity.

Figure 16(a) shows an example of customer data that has been ex-

tended with a private �eld, 64=34A , which should be hidden when a

customer service web page retrieves a customer’s data. As the appli-

cation evolves, new �elds may be added, as shown in Figure 16(b),

where a =82:=0<4 �eld is now also being maintained. The query in

the middle of the �gure shows how an application can be prepared

for the addition of new �elds without having to be changed when

they appear. In particular, the query excludes personal informa-

tion while retrieving any/all other �elds that the retrieved object

happens to have at the time. (The particular syntax shown is for

SQL++, but MongoDB’s MQL APIs o�er a similar exclusionary op-

tion.) Assuming that the application renders customer objects based

on inspecting the returned content, the customer service web page

will now show customer service agents the customer’s nickname

as well. In contrast, adding a new �eld in a relational version of the

application would require updating the customer table’s schema

(via ALTER TABLE) and probably updating the calling web page’s

query code as well, making the application far less �uid in nature.

5 CONCLUSION

Relational database design is a well-understood process today, and

it is almost always approached in a data-�rst manner owing to the

data independence provided by the relational model. In contrast,

the art of database design for NoSQL databases, including document

databases, is in a much less mature state at present. NoSQL database

design is often approached in an ad hoc manner that mixes logical

and physical considerations in ways that are all too reminiscent of

the pre-relational database era.

In this paper, we have made the case for a return to sanity by

presenting a logical, data-�rst, conceptually driven approach to doc-

ument database design. We have explained how such an approach

can start from an ER model and achieve a clean, query-friendly doc-

ument database design even though it is not necessary to declare

the resulting schema to the DBMS. We have also highlighted a set

of document (JSON) anti-patterns that should be avoided in order

to facilitate document queries and enable performance tuning via

secondary indexing.

Both our design methodology and anti-patterns stem from the

authors’ experiences, in current and past lives, with a wide variety

of JSON document data in commercial applications, government

applications, and university research applications. We have found

the proposed approach to be e�ective given the state of today’s

document database systems, as a number of these systems are now

su�ciently rich in their query processing and indexing capabilities

to be able to support data independence in the JSON data world.

Our hope is that others will �nd these lessons and the resulting

do’s and don’ts helpful in their work as well.
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