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ABSTRACT 
As applications and data evolve over time, the database schema 
must be adjusted to accommodate their needs. Schema changes 
in relational databases have traditionally required 
synchronization with concurrent read and write access, causing 
significant interruptions to user applications. Although, most 
commercial databases have optimized common schema changes 
to reduce their runtime, they have not fundamentally addressed 
the requirement for synchronization which can lead to data 
being inaccessible for minutes or even hours in the presence of 
long running queries. MD-MVCC is a new technology in Azure 
SQL Database that enables multi-version concurrency control for 
schema changes. is allows schema changes to occur without 
any synchronization with concurrent queries which can operate 
on the earlier version of the schema until ongoing operations are 
commied, following Snapshot Isolation semantics. Schema 
deployments can now occur with minimal impact, increasing 
data availability but also flexibility for application developers. 
is required a comprehensive redesign of the schema 
management and metadata components of the RDBMS that are 
now multi-versioned across all layers, from query execution and 
in-memory caches to the system tables where metadata is 
persisted. is paper presents the overall design of MD-MVCC 
and demonstrates how it fundamentally improves data 
availability during schema changes without incurring any 
performance overheads. 
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1 INTRODUCTION 
Schema management has been a long-standing challenge for 
relational databases. As applications evolve over time, the 
database schema must be adapted for their needs and this 
imposes a continuous burden for applications and developers: 

1) Coordinating schema changes with the corresponding 
application upgrades is complex and error prone. 

2) Schema changes have traditionally required 
synchronization with concurrent read and write access to 
the objects being altered, leading to extensive blocking and 
data unavailability. 

The first problem has been extensively researched under the 
areas of schema versioning and evolution [5, 6, 7, 20, 27, 28, 29], 
with some commercial RDBMSs also providing solutions [24] in 
this space. Despite the challenges, we have noticed that users 
have been able to work around it by deploying changes 
incrementally and performing manual versioning when 
necessary, e.g. for views or stored procedures. 

In this paper, we focus on the second problem which is a 
fundamental synchronization limitation at the core of the 
RDBMS and cannot be mitigated externally. This problem is 
particularly impactful for: 

• Mission critical applications which operate 24/7 and cannot 
afford regular maintenance windows for application and 
schema upgrades. This has become increasingly common 
for many of our financial, retail and gaming customers. 

• Reporting systems where there are overlapping, long-
running queries, blocking any window available for schema 
changes. In this case, ongoing queries must be drained or 
aborted, and the database must be effectively taken offline 
for schema changes to be deployed. 

Even though scenarios related to schema changes are generally 
excluded from the availability SLAs advertised by database cloud 
services, they incur significant interruptions to user applications. 
According to our telemetry, every day there are: 

• More than 500 databases experiencing at least 5 minutes of 
continuous blocking due to schema changes. 

• More than 50 databases experiencing at least 1 hour of 
continuous blocking due to schema changes. 
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These data points, combined with several incidents where 
schema changes caused hour-long blocking to some of our most 
critical customer workloads, motivated us to analyse this 
problem further and pursue a solution. 

There are two cases where the synchronization required for 
schema changes causes extensive blocking: 

1) The schema change itself requires a long time to complete, 
blocking concurrent user activity. 

2) Long running queries or transactions are blocking a schema 
change from proceeding, which, in turn, blocks other 
activity on the objects being altered. This is an artifact of 
the “first in, first out” (FIFO) design of database lock 
managers which intends to avoid starvation of operations 
that require exclusive locks, like schema changes. 

It is important to note that the latter scenario does not only 
impact user workload on the primary replica but also on 
readable secondary replicas, which are frequently used for long-
running, reporting queries. In fact, the impact on secondaries is 
higher because a blocked schema change completely stalls the 
log replay (redo) process on the replica. This a) impacts the 
freshness of the data available on the secondary, b) prevents the 
transaction log from being truncated, potentially leading to the 
database running out of log space, but also c) significantly 
extends the duration of a potential failover since the replica is 
not caught up with the latest log and will need to redo all the 
pending operations before becoming the new primary. 

Over time, SQL Server (the database engine serving Azure SQL 
Database) and other RDBMSs have incrementally improved 
common schema changes, like adding or removing columns, to 
make them instantaneous by only modifying the table metadata 
and avoiding size-of-data operations [12, 22, 26]. For operations 
that require processing all data, like constructing an index, many 
RDBMSs have introduced the notion of “online” schema changes 
[2, 9, 21, 25] where the tables are accessible for the majority of 
the operation with the exception of short synchronization points. 
Although both solutions reduce the impact of long running 
schema changes, they don’t fundamentally address the need for 
synchronization which leads to the second blocking scenario 
described above. In 2014, SQL Server introduced the concept of 
Lock Priorities [14] which allow users to control how the lock 
manager prioritizes requests to minimize their impact to 
concurrent user workload. Even though this capability has been 
widely used, it requires careful tuning and falls short in the 
presence of long running queries. 

MD-MVCC is a new technology introduced in Azure SQL 
Database that enables multi-version concurrency control for 
schema changes. This allows schema changes to occur without 
any synchronization with concurrent queries which can operate 
on the earlier version of the schema until ongoing schema 
changes are committed, following Snapshot Isolation semantics. 
User data now remains fully accessible for reads, throughout the 
duration of Data Definition Language (DDL) operations that 
modify the database schema. Considering data modifications are 
short-lived for the majority of applications and, therefore, do not 
cause extended blocking, our solution significantly improves 
data availability but also flexibility for application developers 
who can now deploy the necessary schema changes without the 
need for maintenance windows. Finally, our solution addresses 
the log replication challenges, described earlier, since replaying 

schema changes on secondary replicas no longer needs to 
synchronize with user queries executing there. 

MD-MVCC is currently enabled on select customer workloads 
and will be deployed worldwide by the second half of 2025. This 
paper describes the overall design of MD-MVCC and is 
organized as follows: Section 2 provides background on 
traditional schema management and multi-version concurrency 
control in SQL Server. Section 3 outlines the architecture of MD-
MVCC and describes the detailed design of the main components 
involved. Section 4 presents our experimental results and the 
real-world benefits we have observed while testing with 
production customer workloads. Finally, Section 5 concludes 
with our future plans to extend this technology further. 

2  BACKGROUND ON SQL SERVER 
This section provides an overview of the main components 
involved in schema management and data versioning in SQL 
Server. We expect other RDBMSs to have a very similar design 
in these areas which will render MD-MVCC applicable to those 
systems as well. 

2.1 Metadata Manager 
Metadata Manager (MM) is the main component involved in 
schema management. MM stores and serves all properties of 
every object in the database, such as tables, indexes, columns, 
views and more. It is technically divided between the Relational  
Engine (RE), which deals with the metadata of logical objects, 
like tables, columns, views, etc. and the Storage Engine (SE), 
which deals with physical objects, like rowsets (B+ trees or 
heaps). However, the overall design is consistent across both 
layers and we will, therefore, describe it as a single component.  
Figure 1 demonstrates the various layers of the MM architecture. 

System Tables

In-memory caches

Accessors

 

Figure 1. Metadata Manager Architecture. 

At the lowest level, MM uses system tables to store the 
properties of each object. System tables are almost identical to 
regular, user tables. They are stored and accessed using the same 
storage and access methods with the exception that they are not 
accessible to users and have hard-coded schema that can only be 
modified through code deployments. The metadata describing all 
the properties of an object is serialized as a set of rows in various 
system tables. For example, each table will be represented by a 
row storing the table name and basic properties, multiple rows 
storing each of its columns and indexes and additional rows for 
other advanced properties. All of this information can then be 
read and deserialized to construct the full objects and their 
properties in memory. 
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Given that every query that uses an object needs to read its 
metadata, it would be highly inefficient to read all this disparate 
information across system tables and deserialize it for every 
access. Therefore, MM has a layer of in-memory caching where 
the loaded object metadata is stored and reused across 
operations. The information read from disk is deserialized into a 
class that is specific to the object type, e.g. table, function, view, 
etc. Complex objects, like tables, then contain sub-objects, like 
columns or indexes. Each of the top-level objects is stored in a 
hashtable-based cache, at the database level, which allows 
efficiently retrieving the objects based on their IDs, as the 
primary key, but also secondary keys, such as their names. The 
caching layer guarantees the transactional consistency between 
the in-memory and the on-disk states, even when transactions 
roll back. It is also responsible for invalidating the metadata 
caches of secondary replicas when schema changes occur on the 
primary. This is done by generating special “cache invalidation” 
log records that instruct the secondaries to refresh the 
corresponding cache entries. 

Finally, on top of the in-memory cache lies a layer of accessors 
that expose the information of each object to external 
components, such as the query optimizer, while abstracting all 
the implementation details regarding caching, synchronization 
and the object’s lifetime. Specifically, MM exposes all database 
metadata as an object model that external components can 
navigate, starting from top-level items, like a table, and then 
drilling into sub-objects, like columns or indexes. The accessor 
layer exposes a clean and safe interface for other components to 
interact with the objects managed by MM and has been critical 
for the health of the MM component, preventing external callers 
from accidentally corrupting its state or any shared objects. 

2.2 Synchronization and Locking 
Since MM has traditionally maintained a single version of 
metadata for each object, any schema changes must be fully 
synchronized with operations accessing the metadata of the 
objects being altered. The same is true for operations accessing 
the data of an object, such as rows of a table, since data access 
relies on the corresponding metadata to “parse” the physical 
format of each row and it is, therefore, unsafe for metadata to 
change in the middle of ongoing data access. 

To guarantee the above synchronization, SQL Server relies on: 

• A fully exclusive lock mode called “Schema Modification” 
(SCH-M), that is acquired by DDL operations on an object. 

• A shared lock mode called “Schema Stability” (SCH-S) that 
is acquired by operations accessing the metadata of an 
object. 

SCH-M is the most exclusive lock mode and incompatible with 
all modes, including SCH-S and SCH-M, but also the ones 
acquired for data access, such as Intent Shared (IS), used by 
SELECT queries, or Intent Exclusive (IX), used by data 
modifications. In this way, SCH-M allows DDL operations to 
fully synchronize with all schema and data access. On the 
contrary, SCH-S is compatible with all lock modes other than 
SCH-M. It is important to note that these locks are acquired at 
the object level (table, view, stored procedure, etc.) and only 
synchronize access for this specific object. [17] provides all the 
details about the various lock modes and their behavior.  

The accessor layer of the MM component is responsible for 
acquiring these locks based on the specified intent (access or 
modification) from the caller. This allows MM to fully abstract 
the synchronization semantics from the calling components and 
enforce the necessary synchronization without relying on the 
caller.  

2.3 ery Processing 
Query Processing (QP) can be divided into two parts: Query 
Compilation (QC) and Query Execution (QE). QC is responsible 
for translating the user query into a physical execution plan. 
This plan can be cached to avoid repeated compilations of the 
same query when executed multiple times. To generate the 
query plan, QC needs to bind all objects referenced in the query 
to the corresponding database objects, such as tables or views. 
For that purpose, it must access the metadata of these objects to 
resolve their names but also load their properties, such as 
columns and indexes. All metadata information is accessed 
through the interfaces exposed by MM which will also acquire 
the necessary SCH-S locks. This prevents any concurrent schema 
changes, thereby stabilizing the metadata that QC will retrieve 
across the entire duration of the compilation process. Every 
object in metadata also tracks a timestamp of when it was last 
updated. As part of the query plan generation, QC will collect 
the timestamp for each object referenced by the query.  

When query execution starts, QE will take the necessary locks 
for each referenced object (SCH-S or higher depending on the 
operation type and isolation level) and validate its current 
timestamp matches what is captured in the query plan. Since all 
locks are released at the end of query compilation, objects could 
have been modified between the time the query was compiled 
and executed. If that occurs, the query plan must be recompiled 
before execution begins. Note that the query plan could have 
been compiled much earlier and cached for efficiency, providing 
a large window for potential schema changes.  

The locks acquired at the beginning of query execution are held 
until the end of the query or even the overall transaction, 
depending on the operation type and isolation level. This 
guarantees that the metadata of all objects is stable and the 
query can be executed safely. However, it also introduces 
significant blocking since a) queries must wait for ongoing 
schema changes to complete before they can acquire the 
necessary locks and b) schema changes are also blocked until 
ongoing queries, or transactions, complete and release their 
locks. 

2.4 Multi-version Concurrency Control  
Multi-version concurrency control was introduced in SQL Server 
2005 to support Snapshot Isolation (SI). Versioning is performed 
at the row level: for every row update, SQL Server updates the 
row in-place and pushes the previous version of the row to an 
append-only version store, linking the current row version to the 
previous version. Further updates generate newer versions, 
thereby creating a chain of versions that might be visible to 
different transactions following the SI semantics. Each version is 
associated with the transaction that generated it, using the 
Transaction Id, which is then associated with the commit 
timestamp of the transaction. Figure 2 provides an example of a 
row linked to two earlier versions. 
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Figure 2. Example of MVCC row version chain. 

Upon visiting a row, a snapshot transaction traverses the chain 
of versions and determines the visibility of each version by 
comparing the transaction’s snapshot timestamp, established at 
the beginning of the transaction, with the commit timestamp of 
the transaction that generated the version. All this is done under 
page latches without the need to acquire page or row locks 
which are needed for synchronization in other isolation levels. 
This allows full concurrency between snapshot queries and data 
modification operations. It is important to note that Read 
Committed Snapshot Isolation (RCSI) is the default isolation 
level in Azure SQL Database and, therefore, the improved 
concurrency benefits the vast majority of queries. 

Versioning was traditionally supported exclusively for user data. 
All MM layers only managed a single version of metadata for 
each object. None of the system tables, caches or accessors were 
versioned. Queries would always read metadata “as of now” and 
synchronize with any schema changes by acquiring, at least, a 
SCH-S lock to guarantee that the schema remains stable for the 
duration of the query. This was true even for SI or Read 
Uncommitted isolation which do not require locking and 
synchronization at the data level (pages/rows). In the case of SI, 
in particular, if a schema change occurs on an object between the 
time the transaction snapshot is established and the time the 
transaction accesses the metadata for this object, MM will detect 
this and raise an error to abort the transaction.  

3 MD-MVCC 

3.1 Overview 
MD-MVCC is a new technology in Azure SQL Database that 
leverages multi-version concurrency control on metadata (MD) 
to allow full concurrency between queries and schema changes. 
It guarantees that “readers never block writers” (and vice versa) 
which earlier only applied to data access but not schema 
changes. This introduces significant benefits: 

• Schema changes are no longer blocked by long-running 
queries, which have traditionally been the main source of 
blocking, and can proceed immediately without impacting 
new user requests. Schema deployments can, therefore, 
occur with minimal impact, increasing data availability but 
also flexibility for application developers who can now roll 
out their changes without downtime or the need for 
maintenance windows. 

• Schema changes that are not supported as instant metadata 
updates or as “online” operations, such as adding a foreign 
key constraint, still allow read access for the full duration of 
the operation, both on the primary and secondary replicas. 

• Replaying schema changes on secondary replicas is no 
longer blocked by ongoing queries. This a) avoids 
transaction log space growth, which often leads to outages 
due to running out of disk space and b) keeps the replicas 
up to date to guarantee data freshness and, more 
importantly, instant failover in the event of a failure, since 
the replica is fully caught up with the latest log. 

To achieve this, we introduce the concept of versioned metadata 
and extend all layers of SQL Server interacting with it to make 
them version aware. Our locking scheme is also revamped to 
enable the new synchronization semantics required for the 
various isolation levels. In this section, we discuss the detailed 
design of our solution. 

3.2 Multi-version Metadata Manager 
In Section 2.1, we described the various layers of SQL Server’s 
Metadata Manager. Each of these layers must be extended to 
support multiple versions of metadata. 

3.2.1 MVCC for System Tables 

Given that in-memory caches are transient (e.g. eviction due to 
memory pressure), system tables are the ultimate source of all 
object metadata. Therefore, their content must be versioned to 
support storing and serving different versions of the schema, as 
modifications occur. Since system tables use the same storage 
and access methods as user tables, we can reuse the data MVCC 
infrastructure, introduced in Section 2.4, to version their data. As 
schema changes modify object metadata, they update system 
tables, generating new versions associated with the transaction 
performing the schema change. Similarly, queries that need to 
retrieve the metadata of various objects can identify the right 
version based on the snapshot of their transaction. Although we 
can leverage our existing MVCC infrastructure, there are some 
challenges that are specific to versioning system tables: 

1) Synchronization and isolation semantics: Before a user 
application can move from Read Committed (RC) to 
Snapshot Isolation (SI), it is critical to address any 
dependencies on a) the blocking semantics of RC or b) the 
need to access the latest committed data, both of which are 
not provided by SI. Traditionally, system table access had 
always used RC (or Read Uncommitted) isolation, regardless 
of the user transaction isolation level. Therefore, as we 
enabled SI for system tables, we had to go through the same 
evaluation for SQL Server’s code base and make sure that 
we addressed any dependencies on the above properties of 
RC. Although most scenarios worked as expected, there 
were special cases where a) we had to force RC access to 
guarantee that the latest data is read, for example when 
reading the current value of a sequence object that must 
always be the latest or b) introduce additional locking to 
compensate for the lack of synchronization in SI, for 
example for metadata updates that previously relied on row 
level synchronization on the system tables. 

2) Recursive access: Some of the storage engine system 
tables are used when accessing the version store, to load its 
metadata. Given that these system tables are now versioned, 
accessing their data might lead to accessing the version 
store, which introduces the possibility of recursive access to 
their pages, causing latching problems. To address that, we 
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handle version store metadata differently from regular 
tables: a) we preload all version store metadata during the 
database initialization and b) we maintain its metadata in 
memory, in all cases, to avoid having to access the 
problematic system tables. 

3.2.2 In-memory caches 

One of the most intricate areas of our work was introducing 
version support for the in-memory metadata caches, which had 
previously only stored the latest version of each object. As 
described in Section 2.1, the metadata cache stores complex 
objects that contain multiple sub-objects, such as a table with 
multiple columns. Based on that, we had the option to maintain 
versions of a) the top-level objects or b) individual sub-objects. 
The latter is theoretically optimal since it: 

1) Allows for concurrent modifications to different sub-objects 
of the same top-level object which would otherwise cause a 
“fork” in the version chain of a top-level object and require 
some form of reconciliation when the modifications 
commit. 

2) Requires storing multiple versions only for the sub-objects 
that are being modified, and not the full objects. 

Despite its benefits, this approach requires special handling for 
each type of object and is prohibitively expensive to implement 
and test given the large variety of metadata objects and DDL 
operations supported by SQL Server (and most commercial 
DBMSs). Instead, we decided to generate versions at the top-
level object granularity, such as a table or a view. This is an 
important design decision because it allowed us to introduce the 
concept of versioning directly in the cache infrastructure, 
without having to reason about individual object types and 
scenarios. We believe this is the right approach given that: 

1) The vast majority of schema changes are serialized at the 
object level, i.e. there can only be one schema change for a 
specific object at a time. For these, versioning at lower 
granularity does not introduce any concurrency benefits. 
Cases of concurrent modifications to sub-objects are very 
limited (e.g. creating statistics on different columns of a 
table) and we handle them in a targeted way by versioning 
at the sub-object granularity, as needed. 

2) The size of metadata is small (less than 100KB per object at 
P99) and schema changes do not occur at high frequencies 
to generate a large number of versions. So, the memory 
overhead for versioning top-level objects should be 
minimal. 

Based on this design decision, we modified the cache structure to 
introduce the notion of “containers” that store a list of multiple 
versions for each object, each associated with the ID of the 
transaction that generated them. This is done for the main cache, 
that stores the metadata objects indexed on their primary key 
(object ID), but also for its secondary indexes, which index 
objects based on their name or other properties that can also be 
altered. An additional lock is introduced for each container to 
synchronize concurrent requests accessing or modifying 
versions of the object. Since read access is orders of magnitude 
more common than modifications, we opted for reader-writer 
locks which allow concurrent read access. Figure 3 provides an 
example of our caching structure after a schema change has 
occurred, creating a second version for an object. 

At the high level, the versioning logic is simple: when a schema 
change occurs, instead of modifying the cached object in-place, it 
first generates a new version in the container, associated with 
the current transaction.  It then modifies the newly created 
version which is invisible to any concurrent transactions until 
the schema change gets committed. If the transaction rolls back, 
any versions it generated are marked as “ghosted” and will be 
discarded by new transactions until the cleanup process 
eventually removes them (more details in Section 3.2.4). Similar 
logic applies when invalidating the caches of secondary replicas. 
The schema changing transaction generates special “cache 
invalidation” log records that notify the secondary replica to 
generate a new version associated with this transaction, instead 
of updating the earlier version in-place. This allows concurrent 
queries to safely access the earlier versions of the object 
metadata both on the primary and any secondary replicas.  

Object ID 1

Object ID 2

…

Object ID N

Version Container

Version Metadata (V2)

Transaction ID 2

Version Payload

Full Object Metadata

Main Cache

Object Name 1

Object Name 2

…

Object Name N

Secondary Cache Index

Version Metadata (V1)

Transaction ID 1

Version Payload

Full Object Metadata

Null

Version Container (for secondary index)

Version Metadata (Vs1)

Transaction ID 1 NullObject ID 2

 

Figure 3. Example of the caching structure after a schema 
change has occurred. 

Metadata retrieval also benefits from our decision to version top-
level objects. The version lookup logic is introduced at the 
caching layer, returning the appropriate version of the entire 
object. Its sub-objects and properties can, then, be accessed 
directly without additional versioning logic. Specifically: 

• When retrieving an object based on its primary key (object 
ID), we lookup directly into the main cache based on the 
key and locate the corresponding container (cases of cache 
misses are described below). We traverse the version chain 
and identify the visible version based on the snapshot of the 
transaction performing the retrieval and the corresponding 
version information. This logic is effectively identical to the 
MVCC version traversal described in Section 2.4.  

• When retrieving an object based on a secondary key, such 
as the name, we first perform a version lookup on the 
secondary index based on that key. This retrieves the 
corresponding container and identifies the appropriate 
version using the same version traversal logic. From there, 
we retrieve the primary key of the object and perform the 
lookup on the main cache. It is important to note that the 
container of a specific secondary key might contain 
versions pointing to different primary keys, for example if 
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there were two different objects with the same name at 
different points in time. 

Since cached entries are transient and can be evicted under 
memory pressure, the cache eviction and reload logic must also 
be extended to support versioning. Specifically, each container 
must maintain information for all versions of the object to allow 
transactions accessing it to evaluate which version is visible 
according to their snapshot. This information must be preserved 
even if the full object metadata for a specific version is evicted. 
For that purpose, we decouple the “version metadata”, which is 
needed for visibility checks, from the “version payload”, which 
stores all the schema information for this version. When the 
system is under memory pressure, the payload of individual 
versions can be evicted, while the version metadata remains in 
the version chain. This is important because version metadata 
only contains the transaction ID and the lookup keys for the 
entry (e.g. the name and ID) whereas the version payload 
contains the full schema information and is significantly larger. 
The payload for evicted versions can be reloaded dynamically 
when requested by a transaction that must retrieve this version 
based on its snapshot. Figure 4 demonstrates the state of a 
container containing two versions when the payload of the older 
version has been evicted. 

Version Container

Version Metadata (V2)

Version Payload

Full Object Metadata

Version Metadata (V1)

Transaction ID NullTransaction ID

Version Payload

 

Figure 4. The state of a container with multiple versions 
under memory pressure. 

Finally, since under heavy memory pressure, a container can be 
fully evicted, including all versions and their payload, we need 
the ability to reload all versions of an object from disk. To 
achieve that, we introduce a new access methods API that allows 
traversing the version chain of a specified system table row and 
retrieving the version metadata (Transaction ID, lookup keys) for 
all versions in the chain. When there is a cache miss for a 
specific object, this API is called on the system table row that 
corresponds to this object. It retrieves the necessary version 
information and populates the newly created container with all 
the versions, including their metadata but not their payload. This 
allows any transactions accessing this object to traverse the 
version chain, in-memory, and identify the version that is visible 
to them. Finally, the payload of the visible version is dynamically 
loaded to serve the transaction.  

3.2.3 Accessors 

Even though the MM component is now multi-versioned, across 
all its layers, we do not want to expose this complexity to 
external components that only intend to access or modify the 
schema of an object. From their perspective, they should simply 
interact with the object and its properties, without having to 
reason about its multiple versions and their visibility. The layer 

of indirection provided by the MM accessor interfaces allows us 
to abstract all this complexity.  

When a caller expresses their intent to access metadata, they 
must provide the transaction under which the access will be 
performed. This protocol predates our work because the MM 
accessors need to acquire the necessary locks in the context of 
the provided transaction.  We now leverage this to retrieve the 
transaction snapshot and identify the correct version of the 
objects the caller is requesting. The version lookup is only done 
when retrieving top level objects, such as a table, from the cache. 
Any sub-objects or properties are strictly associated with this 
version and can be directly accessed without any additional 
version traversals.  

3.2.4 Version Garbage Collection 

As older snapshot transactions commit or abort, older schema 
versions become permanently invisible and can be garbage 
collected. For row versions in system tables, this occurs 
automatically, leveraging the storage engine garbage collection 
(GC) mechanism of the MVCC infrastructure that was earlier 
only responsible for cleaning up user tables. This identifies the 
oldest active snapshot in the system and then visits each 
versioned row to evaluate what is the version that is visible to it. 
It then removes any older versions since they are guaranteed to 
be invisible to all active transactions.  

For the in-memory MM caches, we introduce a new GC process. 
This wakes up periodically, every few seconds, and visits all 
containers in the cache. Similar to the storage engine GC, it 
traverses the version chain in each container and identifies the 
version that is visible to the oldest snapshot transaction in the 
system. Any older versions can be safely discarded. This process 
is also responsible for removing versions that correspond to 
aborted transactions. These versions are clearly marked as 
“ghosted” and can be safely removed. 

3.3 Synchronization and Locking 
As part of our Constant Time Recovery (CTR) [1] work, any 
schema changes that modify the underlying data, such as 
altering the type of a column, were adjusted to perform these 
modifications in a versioned manner, leveraging the pre-existing 
MVCC infrastructure. With MD-MVCC, metadata is also 
versioned, allowing snapshot queries to access a stable version of 
the schema, even in the presence of ongoing schema changes. By 
combining these two technologies, snapshot queries can now 
safely access the data versions that are visible to their 
transaction and interpret them using the corresponding snapshot 
of metadata. This enables full concurrency between snapshot 
queries and schema changes but the locking scheme must be 
adjusted to allow that. Our locking scheme needs to satisfy the 
following requirements: 

1) Only one schema change should be allowed for an object at 
any point in time. 

2) Only snapshot queries and query compilation should be 
allowed to execute while there are ongoing schema changes 
on the object being accessed. All other isolation levels must 
be blocked. Data modifications must also be blocked. 

3) Some operations cannot be versioned and must block even 
snapshot queries. For example, shrinking the database files 
which temporarily affects the physical structure of indexes. 

4796



 

To satisfy these requirements, we preserved the existing SCH-S 
and SCH-M lock modes but also introduce SCH-A (“Schema 
Access”) and SCH-C (“Schema Create”). SCH-C is an exclusive 
lock that conflicts with all lock modes other than SCH-A. SCH-A 
is a shared lock that only conflicts with SCH-M. Table 1 
demonstrates the compatibility matrix for these lock modes.  

Table 1. Lock mode compatibility matrix. (C) indicates 
conflict and (N) indicates no conflict. 

 SCH-A SCH-S Other 
modes 

SCH-C SCH-M 

SCH-A N N N N C 
SCH-S N N N C C 
Other 
modes 

N N … C C 

SCH-C N C C C C 
SCH-M C C C C C 

These lock modes are used as follows: 

• Snapshot queries and query compilation acquire a SCH-A 
lock on the objects they access. 

• Queries using other isolation levels acquire SCH-S or more 
restrictive locks on the accessed objects. Data modifications 
also acquire more restrictive locks, like IX. 

• Schema changes acquire a SCH-C lock on the objects they 
modify. This allows them to run concurrently with 
snapshot queries but not queries using other isolation 
levels, data modifications or other schema changes. 

• Non-versioned operations acquire SCH-M on the associated 
objects to fully synchronize with all other operations. 

This logic allows us to meet our requirements and achieve the 
necessary synchronization depending on the operation types and 
isolation levels. 

3.4 Snapshot Management 
In this section, we discuss how snapshots are managed in 
different stages of query execution.  

3.4.1 Query Compilation  

Since compiling a query involves retrieving the schema of 
multiple objects, some of which might be connected to each 
other, such as tables linked with a foreign key, query 
compilation must have a consistent view of the schema of the 
objects it accesses. Otherwise, the schema inconsistencies might 
lead to access violations or unexpected results since references 
between the objects could be broken. For example, in a foreign 
key relation, if the referenced column is dropped while the query 
is compiling, we could attempt to retrieve a column that no 
longer exists. 

Traditionally, schema locks acquired during query compilation 
protected us from such inconsistencies. However, since MD-
MVCC allows schema changes to occur while the corresponding 
metadata is accessed, we must address this problem differently. 
Specifically, query compilation will now establish a snapshot 
that is used throughout the compilation process and retrieve all 

metadata using that. This guarantees that all properties and 
relations for all objects referenced by the query are accessed as 
of a consistent point in time. If the compilation occurs in the 
context of an SI transaction, the transaction snapshot is used for 
the query compilation to guarantee that we compile the query 
with the same snapshot as the one that will be used during 
execution. In the case of RCSI or other isolation levels, query 
compilation will establish its own snapshot that will only be 
used for compiling the query.  

It is important to note that, with MD-MVCC, query compilation 
will always use snapshot semantics, even for isolation levels that 
might not use snapshot when executing the query. This design 
choice was made for two reasons:  

1) Query compilation only accesses metadata and its semantics 
are not impacted by the isolation level that will be used 
during query execution. Therefore, using snapshot allows 
for improved concurrency, since no query compilation will 
need to synchronize with ongoing schema changes. 

2) In many cases, the isolation level that will be used at query 
execution is not known during compilation. Therefore, we 
do not want query compilation to block behind a schema 
change for a query that will later use snapshot and execute 
successfully. 

3.4.2 Query Execution 

To safely access a table undergoing schema changes, a 
transaction must have a consistent view between its data and 
metadata, so that the data can be interpreted correctly. For that 
purpose, we establish a single snapshot at the beginning of query 
execution and use that throughout the query. In the case of SI, 
we first check if a snapshot has already been established for the 
transaction and use that. If not, a new snapshot is established 
and associated with the transaction for the entirety of its 
lifetime. In the case of RCSI, a new snapshot is established for 
every query and only used for the duration of that query. 

As described in Section 2.3, at the beginning of query execution, 
we first check whether the timestamp of each referenced object 
matches the one captured in the query plan we are attempting to 
use. If not, the query must be recompiled. This check must occur 
using the same snapshot that will be used for executing the 
query. This guarantees that we perform the checks based on the 
exact version of the schema that we are going to use to access 
the data during query execution. 

3.5 Isolation Level Support 
Similar to other RDBMSs, SQL Server supports a variety of 
isolation levels and even allows users to combine them by using 
isolation level hints [16]. Over the years, this capability has 
become critical for a large number of applications, whose 
correctness depends on the specified isolation semantics, both in 
terms of synchronization (e.g. blocking in Read Committed 
(RC)), as well as data visibility (e.g. latest committed version in 
RC). Because of that, preserving these semantics in all scenarios 
is a key requirement for our solution. 

3.5.1 Session Isolation Level 

The majority of applications configure the isolation level at the 
session (connection) level, changing that for different 
transactions and stored procedures to meet their needs. The 
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session level setting remains consistent for query compilation 
and execution, allowing us to compile and execute the query 
with the same semantics. The locking scheme described in 
Section 3.3 guarantees the necessary blocking semantics: Only 
snapshot transactions (SI/RCSI) will acquire a SCH-A lock and 
execute concurrently with schema changes, whereas 
transactions in other isolation levels will be blocked. In terms of 
data visibility, MD-MVCC is only employed for snapshot 
transactions. Transactions in other isolation levels will access the 
latest version of the schema, as they have historically done.  

3.5.2 Table Level Hints 

Isolation level hints at the table level introduce additional 
complexity since they only control the isolation semantics for 
individual tables and not the overall query and its compilation, 
which occurs based on session level setting. This introduces the 
risk that the version of the schema used to compile and execute 
the query might be different than the version of the data the 
query will access in a specific table, leading to correctness issues. 
Table 2 indicates the problematic combinations of isolation levels 
set at the session level and through query hints. Specifically, the 
risk is present when the session isolation level uses different 
snapshot semantics than the query hint. Even between SI and 
RCSI, the snapshots are established at different points in time 
and can, therefore, lead to inconsistencies. 

Table 2. Problematic combinations of session isolation 
levels and query hints.   

 Isolation Level Hint 
Session Isolation Level SI RCSI Other iso. levels 
SI - X X 
RCSI X - X 
Other isolation levels X X - 

To eliminate this problem, when we detect such isolation level 
mismatch, we perform additional checks at the beginning of 
query execution to verify that the version of the schema as seen 
by the snapshot access is the same as the latest version of the 
object, as seen by the non-snapshot access. This is done by 
comparing the latest timestamp of each object to the timestamp 
visible by the snapshot. If the former is higher, it means the 
object has been altered after the snapshot was established and, 
therefore, access is unsafe. In the case of SI, this results in an 
error that aborts the transaction. In the case of RCSI, however, 
since the snapshot is established at the query level, we can 
internally retry the query without any user impact by 
establishing a new snapshot. This is important because RCSI is 
the default isolation level, used by more than 70% of queries, and 
this optimization can significantly improve the user experience. 

3.6 Deferred Data Deallocation 
With MD-MVCC, a snapshot transaction can potentially access a 
table (or index) that has been dropped if the transaction snapshot 
was established before the transaction dropping the table was 
committed. When a table is dropped, the underlying data pages 
must be deallocated, so that the space can be reclaimed and 
reused for other purposes. Once a page is allocated to a new 
table, it gets formatted to a clean state and any earlier data is 

permanently erased. If pages were synchronously deallocated 
when a table is dropped, earlier snapshot transactions that can 
still access the table might attempt to access data pages that are 
no longer valid.  

To address that, we leverage the concept of “deferred data 
deallocation”. When a table is dropped, the underlying data 
pages are not synchronously deallocated but, instead, the table 
gets registered for deferred deallocation. A background task 
periodically checks for tables that are pending deallocation and 
evaluates if they might still be visible to active snapshot 
transactions. This is done by comparing the commit timestamp 
of the transaction that dropped each table to the minimum 
snapshot timestamp across all active transactions in the system. 
Once older snapshot transactions commit or abort, the minimum 
snapshot timestamp advances and, eventually, the background 
task can safely deallocate the pages of any dropped tables. 

3.7 Query Plan Cache 
As mentioned in Section 2.3, once a query is compiled, it can be 
cached and reused for multiple executions. Traditionally, both 
query compilation and execution always accessed the latest 
version of the schema. Based on that, the query plan cache 
maintained only one query plan for each query. With MD-
MVCC, however, the schema version used by query compilation 
or execution might not be the latest. In fact, two concurrent 
snapshot transactions with different snapshots might be using 
different versions of the schema. When these transactions 
attempt to execute the exact same query, they need to use a 
different query plan and, if the right plan is not available in the 
cache, they would need to recompile, leading to increased 
recompilations. 

One way to address this scenario would be to allow the plan 
cache to preserve multiple query plans for every query, each 
reflecting a different version of the schema. Although this 
solution minimizes query recompilations, it would require a 
broader redesign of the plan cache to introduce a version chain 
for each plan, similar to what was done for the metadata caches. 
Furthermore, since a query can reference multiple objects, each 
of which has a different version history, we would need to 
globally order the versions of the plan based the referenced 
object versions. Snapshot transactions would then identify the 
appropriate plan version by checking the commit timestamps 
associated with every object referenced by the query. This would 
introduce significant complexity but also increase the memory 
footprint of the plan cache, which is already one of the highest 
memory consumers in our service. To avoid that, we decided to 
retain the current behavior where the cache only stores a single 
plan for each query. This could theoretically cause repeated 
recompilations, if two transactions with different snapshots 
repeatedly executed the same query. However, in reality, this 
should be an extremely rare case because: 

• In RCSI, which is the default isolation level, snapshots are 
established at the beginning of the query and are, 
therefore, very recent, reducing the probability of a 
version mismatch. Even if a mismatch is identified and the 
query is recompiled, a new snapshot will be established 
allowing the query to use the latest version and proceed.  

• In SI, although there is a possibility of repeated recompiles 
among two transactions, it is very uncommon that two 
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long-lived snapshot transactions would repeatedly execute 
the same query.  

Based on this rationale and the fact that we have not identified 
any problematic cases as we enabled MD-MVCC in production, 
we believe that our approach is sufficient to address this scenario 
without introducing additional complexity.  

3.8 Security 
Although our goal is to apply snapshot isolation across schema 
and data to improve concurrency, we must guarantee that the 
latest security configuration is always applied for all 
transactions, regardless of when their snapshot was established. 
Otherwise, users with old active transactions could, maliciously 
or accidentally, execute queries bypassing the latest security 
settings. The MD-MVCC design needs to account for these 
semantics for the following reasons: 

1) Schema properties of tables and other objects affect the 
authorization checks applied when they are accessed. For 
example, a table might have Row Level Security (RLS) [15] 
or Dynamic Data Masking [13] enabled, which limit the 
data each user can access. Similarly, objects have a specific 
user assigned as their owner. Owners can grant other users 
indirect access to objects they own through views or stored 
procedures. This capability is known as Ownership 
Chaining [18]. Ownership information is also stored as part 
of the object metadata. 

2) Various security related entities and configurations, 
including users, roles, permissions and auditing settings, are 
stored as database metadata, fully managed by the Metadata 
Manager component, as any other schema information. 

By default, MD-MVCC would version all this information and 
incorrectly apply snapshot semantics for authentication, 
authorization or auditing purposes, violating the principle that 
all transactions should access the latest version of any security 
information. A naïve solution to this problem would be to detect 
any modifications to security information and abort snapshot 
transactions that attempt to access it. However, this would lead 
to a large number of transaction aborts for scenarios that can 
simply access the latest metadata and execute successfully. For 
example, changes to role membership or the permissions of a 
role are common and would cause unnecessary aborts when 
accessing the latest version of this information is perfectly safe. 

To address this issue, we allow the Metadata Manager to 
suppress snapshot isolation when exposing security related 
information and return its latest committed version. This, 
however, creates the risk that a transaction might see an 
inconsistent state between elements that are accessed with 
different isolation semantics. We avoid this problem by 
introducing the ability to selectively abort snapshot transactions 
based on what modifications have been made to the entities they 
are accessing. Specifically, for each schema or security 
modification, we decide whether it should abort snapshot 
transactions based on the following logic: 

1) We distinguish regular, versioned objects, like tables, where 
snapshot isolation applies, from non-versioned security 
metadata, where snapshot isolation should not apply. 

2) We construct a directed acyclic graph (DAG) which has the 
above entities as nodes and their relations as edges. The 

referencing entities point to the referenced ones. For 
example, a table (versioned) references an RLS policy (non-
versioned) which in turn references a function (versioned) 
that applies the necessary security logic. Figure 5 
demonstrates a sample graph with all the possible 
relationships between versioned and non-versioned entities. 

3) Modifications to properties of an entity (versioned or not) 
that do not affect its relations with other entities should not 
abort any transactions. For example, users can safely 
modify the nullability of a column (versioned) or the 
destination of audit records (non-versioned). For the 
following scenarios, we only consider modifications that 
affect relations of an entity, such as dropping the entity the 
relation relies on. 

4) Modifications affecting relations between two versioned or 
two non-versioned entities should not abort any 
transactions since entities of the same type would be 
accessed using the same isolation semantics. 

5) Modifications to a non-versioned entity that is referenced 
by a versioned entity must abort snapshot transactions that 
access an earlier version of the versioned entity since it is 
unsafe for them to access the latest state of the non-
versioned entity. For example, dropping the RLS policy 
(non-versioned, security metadata) of a table (versioned) 
should abort transactions accessing the table with a 
snapshot established before this modification occurred. 

6) Modifications to a versioned entity that is referenced by a 
non-versioned entity must abort snapshot transactions that 
access an earlier version of the versioned entity since it is 
unsafe for them to access its earlier state. For example, 
dropping a table (versioned) that is referenced by 
permissions granted to various users (non-versioned) 
should invalidate snapshot transactions that started before 
the table was dropped since it is unsafe to access the 
inconsistent state between the two entities. 

Versioned object A
(referencing)

Non-versioned 
security metadata A

Versioned object B
(referenced)

Non-versioned 
security metadata B 

(referenced)

Versioned object C
(referenced)

 

Figure 5. A DAG representing various schema and security 
entities and their relationships. Relationships that can 
trigger snapshot transaction aborts are indicated in red 
whereas safe relationships are indicated in green. 

To selectively abort the necessary transactions, we maintain the 
commit timestamp of the last operation that performed an 
unsafe modification (per the rules above) for each entity. When a 
snapshot transaction accesses an entity, we check if the snapshot 
timestamp is lower than the timestamp for this entity. If so, the  
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Figure 6. The impact of a DDL operation with and without MD-MVCC for different types of workloads.

transaction is aborted. It is important to note that the transaction 
is fully aborted only in the case of SI. In RCSI, which is more 
commonly used, transaction aborts can be avoided. The 
timestamp checks occur before the query execution begins and, 
if there is a need to abort, we establish a new snapshot and retry 
the operation without any visible interruptions to the users. 

4 EXPERIMENTAL AND PRODUCTION 
RESULTS 
This section presents experimental results regarding the 
performance of the system when MD-MVCC is enabled. All our 
experiments are executed on a workstation with 2 sockets, 52 
cores (Intel® Xeon® Platinum 8171M Processor, 2.60GHz) and 
575GB of RAM. External storage consists of six 1TB SSDs. 

4.1 Concurrency During Schema Changes 
In our first set of experiments, we evaluate how MD-MVCC 
improves concurrency during schema changes and reduces their 
impact to the user workload. Given that all common DDL 
operations are either instant, through a metadata update, or 
implemented as “online” operations, they only acquire an 
exclusive, SCH-M, lock for a very short window of time, in the 
order of few milliseconds. As described in Section 1, most of the 
blocking is introduced due to long running queries that cause the 
DDL to wait, further blocking new requests. Based on that, the 
exact type of DDL does not affect this experiment and we will 
demonstrate the concurrency improvements using an ADD 
COLUMN operation, which is the most common operation 
according to our production telemetry. However, the results 
would be identical for any other DDL, like dropping a column or 
creating/dropping indexes.  

On the contrary, the concurrency benefits heavily depend on the 
shape of the workload, the ratio between reads and writes and 
the duration of these operations. Based on that, we evaluate MD-
MVCC using three different types of workloads: 

1) An operational workload that simulates TPC-E [33] and 
involves short read and write operations. While the 
workload is running, we add one column to the “TRADES” 
table which is heavily used by most operations. 

2) An analytical workload that simulates TPC-H [34] and only 
executes long-running read queries. While the workload is 
running, we add one column to the “LINEITEM” table 
which is used by several queries.  

3) A production workload from Microsoft Dynamics, one of 
the biggest customers of Azure SQL Database. This is a 
workload from the Finance and Operations service of 
Dynamics that combines operational reads and writes with 
reporting queries. While the workload is running, we add a 
column to one of the tables that is used by both the 
operational workload as well as reporting queries. 

Figure 6 demonstrates how each workload was impacted by the 
DDL operation with and without MD-MVCC: 

• In the TPC-E workload, the improvement with MD-MVCC 
is marginal. All operations are short (under 1 second) and 
do not introduce extensive blocking. The throughput drops 
for a small window of time when the DDL is executed but 
quickly recovers, as ongoing queries complete, allowing the 
DDL to acquire the exclusive lock and complete the 
operation. Since MD-MVCC allows read queries to proceed 
while the DDL is waiting and executing, the drop is less 
pronounced there. 

• In the TPC-H workload, MD-MVCC introduces a significant 
improvement. Given that the workload only includes read 
queries, MD-MVCC allows them to execute concurrently 
with the DDL, eliminating any impact to the user workload. 
In the baseline run, however, long-running queries cause 
the DDL to wait, blocking all new requests for over 150 
seconds until all ongoing queries complete. 

• In the Dynamics workload, we also see a significant 
improvement with MD-MVCC. There is still a drop in 
throughput when the DDL is executed, but it is not as deep 
and only lasts less than 10 seconds, compared to more than 
200 seconds in the baseline run. This is because of the 
relatively short duration of data modifications as compared 
to long-running reporting queries. With MD-MVCC, all 
read queries were able to continue uninterrupted without 
any blocking. Data modifications blocked the DDL for a 
short time, also blocking new requests, but, then, the DDL 
completed quickly and the workload recovered in seconds. 
On the contrary, in the baseline run, reporting queries 
caused the DDL to wait for more than 3 minutes, blocking 
any new requests for an extended amount of time. 

Although the exact improvements vary depending on the profile 
of the workload, in all cases, MD-MVCC improves data 
availability and minimizes the impact of schema changes to the 
user workload. 
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4.2 User Workload Performance 
As a next step, we evaluate how MD-MVCC affects the 
performance of the system during online transaction processing. 
Metadata is accessed during query compilation and execution, so 
any additional overheads could negatively impact performance. 
We measure the throughput and latency of the user workload 
with and without MD-MVCC to assess if our versioned 
algorithms introduce any substantial overheads or scalability 
bottlenecks that would impact the workload. 

4.2.1 Throughput 

Since all query execution must access metadata and will, 
therefore, exercise the MD-MVCC logic, we evaluate the 
throughput of the system using two high-concurrency, OLTP 
workloads that are simulating TPC-C [32] and TPC-E. In these 
experiments, we do not perform any schema changes as we want 
to evaluate the throughput of the system in steady state. Given 
that OLTP workloads are highly repetitive, all query plans and 
row accessors should be cached and reused across executions.  
However, metadata must still be accessed to validate that the 
query plan and accessors are consistent with the visible version 
of the schema. Thus, these workloads will stress the MD-MVCC 
cache retrieval and synchronization logic. 

Table 3 presents the throughput degradation introduced by MD-
MVCC for our TPC-C and TPC-E-like workloads. Since TPC-C 
queries are extremely short, metadata access will be very 
frequent and we consider this a worst-case scenario, whereas 
TCP-E represents a more common type of workload. Given that 
there is some variability in the measured throughput, we also 
capture the standard deviation for our runs. The impact of MD-
MVCC is minimal for both workloads and well below the 
standard deviation. This indicates that our algorithms do not 
introduce any visible overheads or scalability bottlenecks. 

Table 3. Throughput degradation for TPC-C and TPC-E. 

Workload Degradation Std Deviation 

TPC-C 0.2% 1.8% 

TPC-E 0.18% 1.5% 

4.2.2 Latency 

For this set of experiments, we measure the impact of MD-
MVCC on the latency of query compilation and execution. Given 
that metadata is accessed in the same way for all objects 
referenced by the query, regardless of the query complexity or 
how objects are used, we execute a simple query that performs a 
“UNION ALL” among N tables containing ten columns and only 
one row each. Our goal is to capture a worst-case scenario where 
the cost of compiling and executing the query is minimal and 
metadata access represents a bigger portion of the overall 
execution time. Before executing the queries, we perform a 
schema change on the tables so that the query must traverse two 
versions, further increasing the cost of metadata access. 

Figure 7 demonstrates the latency of query compilation and 
execution with and without MD-MVCC for a varying number of 
tables and depending on whether the metadata cache is already 
populated. As we expected, compilation and execution times are 

proportional to the number of tables used in the query. MD-
MVCC does not introduce any noticeable overhead when the 
metadata cache is warm. The right version of the object is 
quickly identified in the in-memory version chain and the query 
executes as usual. When the metadata cache is cold, we can see 
that there is an additional overhead of ~200us to load the 
necessary metadata for each table. This increases by another 
~20us when MD-MVCC is enabled which is caused by the 
additional cost of performing a snapshot scan on the system 
tables and loading the “version metadata” for the different 
versions of the object, as described in Section 3.2.2. Overall, even 
in this worst-case scenario, the overhead of MD-MVCC is 
negligible in all cases. 

 

Figure 7. Latency of query compilation and execution for 
varying number of tables and state of the metadata cache. 

4.3 Garbage Collection Performance 
As described in Section 3.2.4, as older snapshot transactions 
commit/abort, earlier schema versions become permanently 
invisible and are lazily cleaned up by a background garbage 
collection (GC) process. In this experiment, we evaluate the 
performance of our GC process in the presence of heavy volume 
of DDL operations. Specifically, we use a common pattern we 
have observed in production where users will frequently create 
and drop tables that are used as temporary tables by the 
workload. We establish 32 connections that create and drop such 
tables in a loop and measure the number of versions in our 
metadata caches over time. Given that we do not introduce any 
long-running snapshot transactions, we expect GC to 
periodically collect all earlier versions.  

 

Figure 8. Number of metadata versions over time under 
heavy DDL workload. 
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Figure 8 presents the number of metadata versions over time 
under this heavy DDL workload. As we anticipated, the GC 
process periodically wakes up and removes all invisible versions, 
guaranteeing that the memory footprint of the cache remains 
bounded. 

5 FUTURE WORK 

5.1 Concurrency with Data Modifications 
Although our initial goal is to enable concurrency between 
schema changes and read queries, our longer-term plan is to 
leverage the MD-MVCC capabilities to also support concurrency 
with data modifications. This would allow schema changes to be 
deployed without any data unavailability or impact to the user 
workload. In the current implementation of MD-MVCC, schema 
changes a) synchronize with data modifications using locks and 
b) introduce write-write conflicts between data modifications 
and schema changes. Although schema changes and data 
modifications are conceptually both updating the same object, 
some of the most common schema changes do not technically 
perform conflicting modifications with data updates. For 
example, adding or dropping a column are only updating the 
metadata of the table and would not conflict with concurrent 
updates, neither physically nor semantically. The same is true 
for creating or dropping an index. Dropping an index only 
removes the index from the table metadata and enqueues it for 
deferred deallocation (see Section 3.6). Even though creating an 
index needs to insert all rows to the new index, hence 
performing some row updates, per our Online Index Build 
algorithm [2], this is only done for rows that have not been 
updated since the index build started and, therefore, no conflict 
can occur. Based on that, we plan to extend MD-MVCC to allow 
concurrency with data modifications for some of the most 
popular schema changes needed by applications. 

5.2 AS OF Queries 
The ability to execute queries “as of” a certain point in time has 
been a common ask from our users. This is typically needed for 
analytical queries that are used to generate financial or other 
reports as of a specific point in time (e.g. last day of the calendar 
or fiscal year). By leveraging our data MVCC infrastructure, we 
can retrieve the version of the data at the specified point in time. 
However, as the schema of the tables evolves, the latest version 
of the schema might no longer be compatible with that version 
of the data. For example, columns could have been added, 
dropped or altered, making it impossible to interpret an earlier 
version of the data. MD-MVCC allows us to access the right 
version of the schema for the point in time the query specifies. In 
this way, schema and data can be consistent and safely serve any 
query. Based on that, we plan to leverage MD-MVCC to enable 
AS OF query capabilities. 

6 RELATED WORK 
Database schema management has been an active area of 
research for over three decades with main focus on: 

a) Reducing the blocking introduced by schema modifications 
[10, 11, 19, 30, 31, 35, 37]. 

b) Schema evolution which enables different versions of the 
application to operate on different versions of the schema, 
simplifying the deployment of new application code that 
requires schema changes [5, 6, 7, 20, 27, 28, 29]. 

Although there has been extensive work in the academia around 
schema evolution, Oracle is the only commercial RDBMS that 
currently provides a native capability for managing schema 
versions [24]. This is largely because application developers have 
managed to work around this challenge by carefully 
orchestrating the deployment of their application code together 
with the corresponding schema changes.  

On the contrary, the data unavailability caused by schema 
changes which block concurrent user workload is a fundamental 
problem that the RDMBS needs to address. Over the years, there 
have been significant advancements across all database products 
to either a) support common operations, like adding/dropping a 
column, as an instant metadata update [12, 22, 26] or b) make 
schema changes “online”, where the operation must still process 
all data but can allow user access for the majority of its duration 
[2, 9, 11, 21, 25]. Although these solutions reduce the blocking 
introduced by schema modifications, they still need to 
synchronize with concurrent access, at least for a small window 
of time. This introduces extensive blocking in the presence of 
long-running queries which force the schema changes to wait 
and, in the meantime, block all new requests.  

MD-MVCC leverages MVCC and the semantics of Snapshot 
Isolation to eliminate all synchronization between schema 
changes and queries, and support full concurrency. MVCC has 
been studied extensively since the 80s [3, 4, 36] but mainly in the 
context of user data. MD-MVCC exploits the same ideas but for 
metadata to address concurrency for schema changes. Tesseract 
[8] employs a similar technique to allow both reads and writes in 
the presence of ongoing schema changes but is not integrated in 
a commercial RDBMS and, therefore, does not address the 
complexities introduced by the large variety of DDL operations, 
security and other features in these environments. Oracle is the 
only other commercial RDBMS to support concurrency between 
queries and schema changes [23]. However, it does not address 
the scenarios around different isolation levels and how their 
semantics can be preserved, given the more limited isolation 
level support in their system as compared to SQL Server and 
other popular RDBMSs. Unfortunately, details about the Oracle 
implementation are not available to further compare the two 
solutions and their trade-offs. Finally, our algorithm for 
reasoning about security, presented in Section 3.8, is a novel 
contribution that has not been covered by prior work in this 
space and is critical for correctly applying access control under 
MVCC. 
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