
MD-MVCC: Multi-version Concurrency Control for Schema
Changes in Azure SQL Database

Panagiotis Antonopoulos, Mansi Chauhan, Shailender Dabas, Rajat Jain, Darshan Kaera, Wonseok
Kim, Hanuma Kodavalla, Nikolas Ogg, Prashanth Purnananda, Rahul Ranjan, Alex Swanson, Divyesh

Tikmani
 Microso

 Redmond, WA, USA
 {panant, chauhanmansi, sdabas, rajatj, dakm, wonkim, hanumak, niogg, praspu, rahranjan, alswanso,

ditikman}@microso.com

ABSTRACT
As applications and data evolve over time, the database schema
must be adjusted to accommodate their needs. Schema changes
in relational databases have traditionally required
synchronization with concurrent read and write access, causing
significant interruptions to user applications. Although, most
commercial databases have optimized common schema changes
to reduce their runtime, they have not fundamentally addressed
the requirement for synchronization which can lead to data
being inaccessible for minutes or even hours in the presence of
long running queries. MD-MVCC is a new technology in Azure
SQL Database that enables multi-version concurrency control for
schema changes. is allows schema changes to occur without
any synchronization with concurrent queries which can operate
on the earlier version of the schema until ongoing operations are
commied, following Snapshot Isolation semantics. Schema
deployments can now occur with minimal impact, increasing
data availability but also flexibility for application developers.
is required a comprehensive redesign of the schema
management and metadata components of the RDBMS that are
now multi-versioned across all layers, from query execution and
in-memory caches to the system tables where metadata is
persisted. is paper presents the overall design of MD-MVCC
and demonstrates how it fundamentally improves data
availability during schema changes without incurring any
performance overheads.

PVLDB Reference Format:
Panagiotis Antonopoulos, Mansi Chauhan, Shailender Dabas, Rajat Jain,
Darshan Kaera, Wonseok Kim, Hanuma Kodavalla, Nikolas Ogg,
Prashanth Purnananda, Rahul Ranjan, Alex Swanson, and Divyesh
Tikmani. MD-MVCC: Multi-version Concurrency Control for Schema
Changes in Azure SQL Database. PVLDB, 18(12): 4791 - 4803, 2025.
doi:10.14778/3750601.3750605

1 INTRODUCTION
Schema management has been a long-standing challenge for
relational databases. As applications evolve over time, the
database schema must be adapted for their needs and this
imposes a continuous burden for applications and developers:

1) Coordinating schema changes with the corresponding
application upgrades is complex and error prone.

2) Schema changes have traditionally required
synchronization with concurrent read and write access to
the objects being altered, leading to extensive blocking and
data unavailability.

The first problem has been extensively researched under the
areas of schema versioning and evolution [5, 6, 7, 20, 27, 28, 29],
with some commercial RDBMSs also providing solutions [24] in
this space. Despite the challenges, we have noticed that users
have been able to work around it by deploying changes
incrementally and performing manual versioning when
necessary, e.g. for views or stored procedures.

In this paper, we focus on the second problem which is a
fundamental synchronization limitation at the core of the
RDBMS and cannot be mitigated externally. This problem is
particularly impactful for:

• Mission critical applications which operate 24/7 and cannot
afford regular maintenance windows for application and
schema upgrades. This has become increasingly common
for many of our financial, retail and gaming customers.

• Reporting systems where there are overlapping, long-
running queries, blocking any window available for schema
changes. In this case, ongoing queries must be drained or
aborted, and the database must be effectively taken offline
for schema changes to be deployed.

Even though scenarios related to schema changes are generally
excluded from the availability SLAs advertised by database cloud
services, they incur significant interruptions to user applications.
According to our telemetry, every day there are:

• More than 500 databases experiencing at least 5 minutes of
continuous blocking due to schema changes.

• More than 50 databases experiencing at least 1 hour of
continuous blocking due to schema changes.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy
of this license. For any use beyond those covered by this license, obtain
permission by emailing info@vldb.org. Copyright is held by the owner/author(s).
Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750605

4791

https://creativecommons.org/licenses/by-nc-nd/4.0/

These data points, combined with several incidents where
schema changes caused hour-long blocking to some of our most
critical customer workloads, motivated us to analyse this
problem further and pursue a solution.

There are two cases where the synchronization required for
schema changes causes extensive blocking:

1) The schema change itself requires a long time to complete,
blocking concurrent user activity.

2) Long running queries or transactions are blocking a schema
change from proceeding, which, in turn, blocks other
activity on the objects being altered. This is an artifact of
the “first in, first out” (FIFO) design of database lock
managers which intends to avoid starvation of operations
that require exclusive locks, like schema changes.

It is important to note that the latter scenario does not only
impact user workload on the primary replica but also on
readable secondary replicas, which are frequently used for long-
running, reporting queries. In fact, the impact on secondaries is
higher because a blocked schema change completely stalls the
log replay (redo) process on the replica. This a) impacts the
freshness of the data available on the secondary, b) prevents the
transaction log from being truncated, potentially leading to the
database running out of log space, but also c) significantly
extends the duration of a potential failover since the replica is
not caught up with the latest log and will need to redo all the
pending operations before becoming the new primary.

Over time, SQL Server (the database engine serving Azure SQL
Database) and other RDBMSs have incrementally improved
common schema changes, like adding or removing columns, to
make them instantaneous by only modifying the table metadata
and avoiding size-of-data operations [12, 22, 26]. For operations
that require processing all data, like constructing an index, many
RDBMSs have introduced the notion of “online” schema changes
[2, 9, 21, 25] where the tables are accessible for the majority of
the operation with the exception of short synchronization points.
Although both solutions reduce the impact of long running
schema changes, they don’t fundamentally address the need for
synchronization which leads to the second blocking scenario
described above. In 2014, SQL Server introduced the concept of
Lock Priorities [14] which allow users to control how the lock
manager prioritizes requests to minimize their impact to
concurrent user workload. Even though this capability has been
widely used, it requires careful tuning and falls short in the
presence of long running queries.

MD-MVCC is a new technology introduced in Azure SQL
Database that enables multi-version concurrency control for
schema changes. This allows schema changes to occur without
any synchronization with concurrent queries which can operate
on the earlier version of the schema until ongoing schema
changes are committed, following Snapshot Isolation semantics.
User data now remains fully accessible for reads, throughout the
duration of Data Definition Language (DDL) operations that
modify the database schema. Considering data modifications are
short-lived for the majority of applications and, therefore, do not
cause extended blocking, our solution significantly improves
data availability but also flexibility for application developers
who can now deploy the necessary schema changes without the
need for maintenance windows. Finally, our solution addresses
the log replication challenges, described earlier, since replaying

schema changes on secondary replicas no longer needs to
synchronize with user queries executing there.

MD-MVCC is currently enabled on select customer workloads
and will be deployed worldwide by the second half of 2025. This
paper describes the overall design of MD-MVCC and is
organized as follows: Section 2 provides background on
traditional schema management and multi-version concurrency
control in SQL Server. Section 3 outlines the architecture of MD-
MVCC and describes the detailed design of the main components
involved. Section 4 presents our experimental results and the
real-world benefits we have observed while testing with
production customer workloads. Finally, Section 5 concludes
with our future plans to extend this technology further.

2 BACKGROUND ON SQL SERVER
This section provides an overview of the main components
involved in schema management and data versioning in SQL
Server. We expect other RDBMSs to have a very similar design
in these areas which will render MD-MVCC applicable to those
systems as well.

2.1 Metadata Manager
Metadata Manager (MM) is the main component involved in
schema management. MM stores and serves all properties of
every object in the database, such as tables, indexes, columns,
views and more. It is technically divided between the Relational
Engine (RE), which deals with the metadata of logical objects,
like tables, columns, views, etc. and the Storage Engine (SE),
which deals with physical objects, like rowsets (B+ trees or
heaps). However, the overall design is consistent across both
layers and we will, therefore, describe it as a single component.
Figure 1 demonstrates the various layers of the MM architecture.

System Tables

In-memory caches

Accessors

Figure 1. Metadata Manager Architecture.

At the lowest level, MM uses system tables to store the
properties of each object. System tables are almost identical to
regular, user tables. They are stored and accessed using the same
storage and access methods with the exception that they are not
accessible to users and have hard-coded schema that can only be
modified through code deployments. The metadata describing all
the properties of an object is serialized as a set of rows in various
system tables. For example, each table will be represented by a
row storing the table name and basic properties, multiple rows
storing each of its columns and indexes and additional rows for
other advanced properties. All of this information can then be
read and deserialized to construct the full objects and their
properties in memory.

4792

Given that every query that uses an object needs to read its
metadata, it would be highly inefficient to read all this disparate
information across system tables and deserialize it for every
access. Therefore, MM has a layer of in-memory caching where
the loaded object metadata is stored and reused across
operations. The information read from disk is deserialized into a
class that is specific to the object type, e.g. table, function, view,
etc. Complex objects, like tables, then contain sub-objects, like
columns or indexes. Each of the top-level objects is stored in a
hashtable-based cache, at the database level, which allows
efficiently retrieving the objects based on their IDs, as the
primary key, but also secondary keys, such as their names. The
caching layer guarantees the transactional consistency between
the in-memory and the on-disk states, even when transactions
roll back. It is also responsible for invalidating the metadata
caches of secondary replicas when schema changes occur on the
primary. This is done by generating special “cache invalidation”
log records that instruct the secondaries to refresh the
corresponding cache entries.

Finally, on top of the in-memory cache lies a layer of accessors
that expose the information of each object to external
components, such as the query optimizer, while abstracting all
the implementation details regarding caching, synchronization
and the object’s lifetime. Specifically, MM exposes all database
metadata as an object model that external components can
navigate, starting from top-level items, like a table, and then
drilling into sub-objects, like columns or indexes. The accessor
layer exposes a clean and safe interface for other components to
interact with the objects managed by MM and has been critical
for the health of the MM component, preventing external callers
from accidentally corrupting its state or any shared objects.

2.2 Synchronization and Locking
Since MM has traditionally maintained a single version of
metadata for each object, any schema changes must be fully
synchronized with operations accessing the metadata of the
objects being altered. The same is true for operations accessing
the data of an object, such as rows of a table, since data access
relies on the corresponding metadata to “parse” the physical
format of each row and it is, therefore, unsafe for metadata to
change in the middle of ongoing data access.

To guarantee the above synchronization, SQL Server relies on:

• A fully exclusive lock mode called “Schema Modification”
(SCH-M), that is acquired by DDL operations on an object.

• A shared lock mode called “Schema Stability” (SCH-S) that
is acquired by operations accessing the metadata of an
object.

SCH-M is the most exclusive lock mode and incompatible with
all modes, including SCH-S and SCH-M, but also the ones
acquired for data access, such as Intent Shared (IS), used by
SELECT queries, or Intent Exclusive (IX), used by data
modifications. In this way, SCH-M allows DDL operations to
fully synchronize with all schema and data access. On the
contrary, SCH-S is compatible with all lock modes other than
SCH-M. It is important to note that these locks are acquired at
the object level (table, view, stored procedure, etc.) and only
synchronize access for this specific object. [17] provides all the
details about the various lock modes and their behavior.

The accessor layer of the MM component is responsible for
acquiring these locks based on the specified intent (access or
modification) from the caller. This allows MM to fully abstract
the synchronization semantics from the calling components and
enforce the necessary synchronization without relying on the
caller.

2.3 ery Processing
Query Processing (QP) can be divided into two parts: Query
Compilation (QC) and Query Execution (QE). QC is responsible
for translating the user query into a physical execution plan.
This plan can be cached to avoid repeated compilations of the
same query when executed multiple times. To generate the
query plan, QC needs to bind all objects referenced in the query
to the corresponding database objects, such as tables or views.
For that purpose, it must access the metadata of these objects to
resolve their names but also load their properties, such as
columns and indexes. All metadata information is accessed
through the interfaces exposed by MM which will also acquire
the necessary SCH-S locks. This prevents any concurrent schema
changes, thereby stabilizing the metadata that QC will retrieve
across the entire duration of the compilation process. Every
object in metadata also tracks a timestamp of when it was last
updated. As part of the query plan generation, QC will collect
the timestamp for each object referenced by the query.

When query execution starts, QE will take the necessary locks
for each referenced object (SCH-S or higher depending on the
operation type and isolation level) and validate its current
timestamp matches what is captured in the query plan. Since all
locks are released at the end of query compilation, objects could
have been modified between the time the query was compiled
and executed. If that occurs, the query plan must be recompiled
before execution begins. Note that the query plan could have
been compiled much earlier and cached for efficiency, providing
a large window for potential schema changes.

The locks acquired at the beginning of query execution are held
until the end of the query or even the overall transaction,
depending on the operation type and isolation level. This
guarantees that the metadata of all objects is stable and the
query can be executed safely. However, it also introduces
significant blocking since a) queries must wait for ongoing
schema changes to complete before they can acquire the
necessary locks and b) schema changes are also blocked until
ongoing queries, or transactions, complete and release their
locks.

2.4 Multi-version Concurrency Control
Multi-version concurrency control was introduced in SQL Server
2005 to support Snapshot Isolation (SI). Versioning is performed
at the row level: for every row update, SQL Server updates the
row in-place and pushes the previous version of the row to an
append-only version store, linking the current row version to the
previous version. Further updates generate newer versions,
thereby creating a chain of versions that might be visible to
different transactions following the SI semantics. Each version is
associated with the transaction that generated it, using the
Transaction Id, which is then associated with the commit
timestamp of the transaction. Figure 2 provides an example of a
row linked to two earlier versions.

4793

Figure 2. Example of MVCC row version chain.

Upon visiting a row, a snapshot transaction traverses the chain
of versions and determines the visibility of each version by
comparing the transaction’s snapshot timestamp, established at
the beginning of the transaction, with the commit timestamp of
the transaction that generated the version. All this is done under
page latches without the need to acquire page or row locks
which are needed for synchronization in other isolation levels.
This allows full concurrency between snapshot queries and data
modification operations. It is important to note that Read
Committed Snapshot Isolation (RCSI) is the default isolation
level in Azure SQL Database and, therefore, the improved
concurrency benefits the vast majority of queries.

Versioning was traditionally supported exclusively for user data.
All MM layers only managed a single version of metadata for
each object. None of the system tables, caches or accessors were
versioned. Queries would always read metadata “as of now” and
synchronize with any schema changes by acquiring, at least, a
SCH-S lock to guarantee that the schema remains stable for the
duration of the query. This was true even for SI or Read
Uncommitted isolation which do not require locking and
synchronization at the data level (pages/rows). In the case of SI,
in particular, if a schema change occurs on an object between the
time the transaction snapshot is established and the time the
transaction accesses the metadata for this object, MM will detect
this and raise an error to abort the transaction.

3 MD-MVCC

3.1 Overview
MD-MVCC is a new technology in Azure SQL Database that
leverages multi-version concurrency control on metadata (MD)
to allow full concurrency between queries and schema changes.
It guarantees that “readers never block writers” (and vice versa)
which earlier only applied to data access but not schema
changes. This introduces significant benefits:

• Schema changes are no longer blocked by long-running
queries, which have traditionally been the main source of
blocking, and can proceed immediately without impacting
new user requests. Schema deployments can, therefore,
occur with minimal impact, increasing data availability but
also flexibility for application developers who can now roll
out their changes without downtime or the need for
maintenance windows.

• Schema changes that are not supported as instant metadata
updates or as “online” operations, such as adding a foreign
key constraint, still allow read access for the full duration of
the operation, both on the primary and secondary replicas.

• Replaying schema changes on secondary replicas is no
longer blocked by ongoing queries. This a) avoids
transaction log space growth, which often leads to outages
due to running out of disk space and b) keeps the replicas
up to date to guarantee data freshness and, more
importantly, instant failover in the event of a failure, since
the replica is fully caught up with the latest log.

To achieve this, we introduce the concept of versioned metadata
and extend all layers of SQL Server interacting with it to make
them version aware. Our locking scheme is also revamped to
enable the new synchronization semantics required for the
various isolation levels. In this section, we discuss the detailed
design of our solution.

3.2 Multi-version Metadata Manager
In Section 2.1, we described the various layers of SQL Server’s
Metadata Manager. Each of these layers must be extended to
support multiple versions of metadata.

3.2.1 MVCC for System Tables

Given that in-memory caches are transient (e.g. eviction due to
memory pressure), system tables are the ultimate source of all
object metadata. Therefore, their content must be versioned to
support storing and serving different versions of the schema, as
modifications occur. Since system tables use the same storage
and access methods as user tables, we can reuse the data MVCC
infrastructure, introduced in Section 2.4, to version their data. As
schema changes modify object metadata, they update system
tables, generating new versions associated with the transaction
performing the schema change. Similarly, queries that need to
retrieve the metadata of various objects can identify the right
version based on the snapshot of their transaction. Although we
can leverage our existing MVCC infrastructure, there are some
challenges that are specific to versioning system tables:

1) Synchronization and isolation semantics: Before a user
application can move from Read Committed (RC) to
Snapshot Isolation (SI), it is critical to address any
dependencies on a) the blocking semantics of RC or b) the
need to access the latest committed data, both of which are
not provided by SI. Traditionally, system table access had
always used RC (or Read Uncommitted) isolation, regardless
of the user transaction isolation level. Therefore, as we
enabled SI for system tables, we had to go through the same
evaluation for SQL Server’s code base and make sure that
we addressed any dependencies on the above properties of
RC. Although most scenarios worked as expected, there
were special cases where a) we had to force RC access to
guarantee that the latest data is read, for example when
reading the current value of a sequence object that must
always be the latest or b) introduce additional locking to
compensate for the lack of synchronization in SI, for
example for metadata updates that previously relied on row
level synchronization on the system tables.

2) Recursive access: Some of the storage engine system
tables are used when accessing the version store, to load its
metadata. Given that these system tables are now versioned,
accessing their data might lead to accessing the version
store, which introduces the possibility of recursive access to
their pages, causing latching problems. To address that, we

4794

handle version store metadata differently from regular
tables: a) we preload all version store metadata during the
database initialization and b) we maintain its metadata in
memory, in all cases, to avoid having to access the
problematic system tables.

3.2.2 In-memory caches

One of the most intricate areas of our work was introducing
version support for the in-memory metadata caches, which had
previously only stored the latest version of each object. As
described in Section 2.1, the metadata cache stores complex
objects that contain multiple sub-objects, such as a table with
multiple columns. Based on that, we had the option to maintain
versions of a) the top-level objects or b) individual sub-objects.
The latter is theoretically optimal since it:

1) Allows for concurrent modifications to different sub-objects
of the same top-level object which would otherwise cause a
“fork” in the version chain of a top-level object and require
some form of reconciliation when the modifications
commit.

2) Requires storing multiple versions only for the sub-objects
that are being modified, and not the full objects.

Despite its benefits, this approach requires special handling for
each type of object and is prohibitively expensive to implement
and test given the large variety of metadata objects and DDL
operations supported by SQL Server (and most commercial
DBMSs). Instead, we decided to generate versions at the top-
level object granularity, such as a table or a view. This is an
important design decision because it allowed us to introduce the
concept of versioning directly in the cache infrastructure,
without having to reason about individual object types and
scenarios. We believe this is the right approach given that:

1) The vast majority of schema changes are serialized at the
object level, i.e. there can only be one schema change for a
specific object at a time. For these, versioning at lower
granularity does not introduce any concurrency benefits.
Cases of concurrent modifications to sub-objects are very
limited (e.g. creating statistics on different columns of a
table) and we handle them in a targeted way by versioning
at the sub-object granularity, as needed.

2) The size of metadata is small (less than 100KB per object at
P99) and schema changes do not occur at high frequencies
to generate a large number of versions. So, the memory
overhead for versioning top-level objects should be
minimal.

Based on this design decision, we modified the cache structure to
introduce the notion of “containers” that store a list of multiple
versions for each object, each associated with the ID of the
transaction that generated them. This is done for the main cache,
that stores the metadata objects indexed on their primary key
(object ID), but also for its secondary indexes, which index
objects based on their name or other properties that can also be
altered. An additional lock is introduced for each container to
synchronize concurrent requests accessing or modifying
versions of the object. Since read access is orders of magnitude
more common than modifications, we opted for reader-writer
locks which allow concurrent read access. Figure 3 provides an
example of our caching structure after a schema change has
occurred, creating a second version for an object.

At the high level, the versioning logic is simple: when a schema
change occurs, instead of modifying the cached object in-place, it
first generates a new version in the container, associated with
the current transaction. It then modifies the newly created
version which is invisible to any concurrent transactions until
the schema change gets committed. If the transaction rolls back,
any versions it generated are marked as “ghosted” and will be
discarded by new transactions until the cleanup process
eventually removes them (more details in Section 3.2.4). Similar
logic applies when invalidating the caches of secondary replicas.
The schema changing transaction generates special “cache
invalidation” log records that notify the secondary replica to
generate a new version associated with this transaction, instead
of updating the earlier version in-place. This allows concurrent
queries to safely access the earlier versions of the object
metadata both on the primary and any secondary replicas.

Object ID 1

Object ID 2

…

Object ID N

Version Container

Version Metadata (V2)

Transaction ID 2

Version Payload

Full Object Metadata

Main Cache

Object Name 1

Object Name 2

…

Object Name N

Secondary Cache Index

Version Metadata (V1)

Transaction ID 1

Version Payload

Full Object Metadata

Null

Version Container (for secondary index)

Version Metadata (Vs1)

Transaction ID 1 NullObject ID 2

Figure 3. Example of the caching structure after a schema
change has occurred.

Metadata retrieval also benefits from our decision to version top-
level objects. The version lookup logic is introduced at the
caching layer, returning the appropriate version of the entire
object. Its sub-objects and properties can, then, be accessed
directly without additional versioning logic. Specifically:

• When retrieving an object based on its primary key (object
ID), we lookup directly into the main cache based on the
key and locate the corresponding container (cases of cache
misses are described below). We traverse the version chain
and identify the visible version based on the snapshot of the
transaction performing the retrieval and the corresponding
version information. This logic is effectively identical to the
MVCC version traversal described in Section 2.4.

• When retrieving an object based on a secondary key, such
as the name, we first perform a version lookup on the
secondary index based on that key. This retrieves the
corresponding container and identifies the appropriate
version using the same version traversal logic. From there,
we retrieve the primary key of the object and perform the
lookup on the main cache. It is important to note that the
container of a specific secondary key might contain
versions pointing to different primary keys, for example if

4795

there were two different objects with the same name at
different points in time.

Since cached entries are transient and can be evicted under
memory pressure, the cache eviction and reload logic must also
be extended to support versioning. Specifically, each container
must maintain information for all versions of the object to allow
transactions accessing it to evaluate which version is visible
according to their snapshot. This information must be preserved
even if the full object metadata for a specific version is evicted.
For that purpose, we decouple the “version metadata”, which is
needed for visibility checks, from the “version payload”, which
stores all the schema information for this version. When the
system is under memory pressure, the payload of individual
versions can be evicted, while the version metadata remains in
the version chain. This is important because version metadata
only contains the transaction ID and the lookup keys for the
entry (e.g. the name and ID) whereas the version payload
contains the full schema information and is significantly larger.
The payload for evicted versions can be reloaded dynamically
when requested by a transaction that must retrieve this version
based on its snapshot. Figure 4 demonstrates the state of a
container containing two versions when the payload of the older
version has been evicted.

Version Container

Version Metadata (V2)

Version Payload

Full Object Metadata

Version Metadata (V1)

Transaction ID NullTransaction ID

Version Payload

Figure 4. The state of a container with multiple versions
under memory pressure.

Finally, since under heavy memory pressure, a container can be
fully evicted, including all versions and their payload, we need
the ability to reload all versions of an object from disk. To
achieve that, we introduce a new access methods API that allows
traversing the version chain of a specified system table row and
retrieving the version metadata (Transaction ID, lookup keys) for
all versions in the chain. When there is a cache miss for a
specific object, this API is called on the system table row that
corresponds to this object. It retrieves the necessary version
information and populates the newly created container with all
the versions, including their metadata but not their payload. This
allows any transactions accessing this object to traverse the
version chain, in-memory, and identify the version that is visible
to them. Finally, the payload of the visible version is dynamically
loaded to serve the transaction.

3.2.3 Accessors

Even though the MM component is now multi-versioned, across
all its layers, we do not want to expose this complexity to
external components that only intend to access or modify the
schema of an object. From their perspective, they should simply
interact with the object and its properties, without having to
reason about its multiple versions and their visibility. The layer

of indirection provided by the MM accessor interfaces allows us
to abstract all this complexity.

When a caller expresses their intent to access metadata, they
must provide the transaction under which the access will be
performed. This protocol predates our work because the MM
accessors need to acquire the necessary locks in the context of
the provided transaction. We now leverage this to retrieve the
transaction snapshot and identify the correct version of the
objects the caller is requesting. The version lookup is only done
when retrieving top level objects, such as a table, from the cache.
Any sub-objects or properties are strictly associated with this
version and can be directly accessed without any additional
version traversals.

3.2.4 Version Garbage Collection

As older snapshot transactions commit or abort, older schema
versions become permanently invisible and can be garbage
collected. For row versions in system tables, this occurs
automatically, leveraging the storage engine garbage collection
(GC) mechanism of the MVCC infrastructure that was earlier
only responsible for cleaning up user tables. This identifies the
oldest active snapshot in the system and then visits each
versioned row to evaluate what is the version that is visible to it.
It then removes any older versions since they are guaranteed to
be invisible to all active transactions.

For the in-memory MM caches, we introduce a new GC process.
This wakes up periodically, every few seconds, and visits all
containers in the cache. Similar to the storage engine GC, it
traverses the version chain in each container and identifies the
version that is visible to the oldest snapshot transaction in the
system. Any older versions can be safely discarded. This process
is also responsible for removing versions that correspond to
aborted transactions. These versions are clearly marked as
“ghosted” and can be safely removed.

3.3 Synchronization and Locking
As part of our Constant Time Recovery (CTR) [1] work, any
schema changes that modify the underlying data, such as
altering the type of a column, were adjusted to perform these
modifications in a versioned manner, leveraging the pre-existing
MVCC infrastructure. With MD-MVCC, metadata is also
versioned, allowing snapshot queries to access a stable version of
the schema, even in the presence of ongoing schema changes. By
combining these two technologies, snapshot queries can now
safely access the data versions that are visible to their
transaction and interpret them using the corresponding snapshot
of metadata. This enables full concurrency between snapshot
queries and schema changes but the locking scheme must be
adjusted to allow that. Our locking scheme needs to satisfy the
following requirements:

1) Only one schema change should be allowed for an object at
any point in time.

2) Only snapshot queries and query compilation should be
allowed to execute while there are ongoing schema changes
on the object being accessed. All other isolation levels must
be blocked. Data modifications must also be blocked.

3) Some operations cannot be versioned and must block even
snapshot queries. For example, shrinking the database files
which temporarily affects the physical structure of indexes.

4796

To satisfy these requirements, we preserved the existing SCH-S
and SCH-M lock modes but also introduce SCH-A (“Schema
Access”) and SCH-C (“Schema Create”). SCH-C is an exclusive
lock that conflicts with all lock modes other than SCH-A. SCH-A
is a shared lock that only conflicts with SCH-M. Table 1
demonstrates the compatibility matrix for these lock modes.

Table 1. Lock mode compatibility matrix. (C) indicates
conflict and (N) indicates no conflict.

 SCH-A SCH-S Other
modes

SCH-C SCH-M

SCH-A N N N N C
SCH-S N N N C C
Other
modes

N N … C C

SCH-C N C C C C
SCH-M C C C C C

These lock modes are used as follows:

• Snapshot queries and query compilation acquire a SCH-A
lock on the objects they access.

• Queries using other isolation levels acquire SCH-S or more
restrictive locks on the accessed objects. Data modifications
also acquire more restrictive locks, like IX.

• Schema changes acquire a SCH-C lock on the objects they
modify. This allows them to run concurrently with
snapshot queries but not queries using other isolation
levels, data modifications or other schema changes.

• Non-versioned operations acquire SCH-M on the associated
objects to fully synchronize with all other operations.

This logic allows us to meet our requirements and achieve the
necessary synchronization depending on the operation types and
isolation levels.

3.4 Snapshot Management
In this section, we discuss how snapshots are managed in
different stages of query execution.

3.4.1 Query Compilation

Since compiling a query involves retrieving the schema of
multiple objects, some of which might be connected to each
other, such as tables linked with a foreign key, query
compilation must have a consistent view of the schema of the
objects it accesses. Otherwise, the schema inconsistencies might
lead to access violations or unexpected results since references
between the objects could be broken. For example, in a foreign
key relation, if the referenced column is dropped while the query
is compiling, we could attempt to retrieve a column that no
longer exists.

Traditionally, schema locks acquired during query compilation
protected us from such inconsistencies. However, since MD-
MVCC allows schema changes to occur while the corresponding
metadata is accessed, we must address this problem differently.
Specifically, query compilation will now establish a snapshot
that is used throughout the compilation process and retrieve all

metadata using that. This guarantees that all properties and
relations for all objects referenced by the query are accessed as
of a consistent point in time. If the compilation occurs in the
context of an SI transaction, the transaction snapshot is used for
the query compilation to guarantee that we compile the query
with the same snapshot as the one that will be used during
execution. In the case of RCSI or other isolation levels, query
compilation will establish its own snapshot that will only be
used for compiling the query.

It is important to note that, with MD-MVCC, query compilation
will always use snapshot semantics, even for isolation levels that
might not use snapshot when executing the query. This design
choice was made for two reasons:

1) Query compilation only accesses metadata and its semantics
are not impacted by the isolation level that will be used
during query execution. Therefore, using snapshot allows
for improved concurrency, since no query compilation will
need to synchronize with ongoing schema changes.

2) In many cases, the isolation level that will be used at query
execution is not known during compilation. Therefore, we
do not want query compilation to block behind a schema
change for a query that will later use snapshot and execute
successfully.

3.4.2 Query Execution

To safely access a table undergoing schema changes, a
transaction must have a consistent view between its data and
metadata, so that the data can be interpreted correctly. For that
purpose, we establish a single snapshot at the beginning of query
execution and use that throughout the query. In the case of SI,
we first check if a snapshot has already been established for the
transaction and use that. If not, a new snapshot is established
and associated with the transaction for the entirety of its
lifetime. In the case of RCSI, a new snapshot is established for
every query and only used for the duration of that query.

As described in Section 2.3, at the beginning of query execution,
we first check whether the timestamp of each referenced object
matches the one captured in the query plan we are attempting to
use. If not, the query must be recompiled. This check must occur
using the same snapshot that will be used for executing the
query. This guarantees that we perform the checks based on the
exact version of the schema that we are going to use to access
the data during query execution.

3.5 Isolation Level Support
Similar to other RDBMSs, SQL Server supports a variety of
isolation levels and even allows users to combine them by using
isolation level hints [16]. Over the years, this capability has
become critical for a large number of applications, whose
correctness depends on the specified isolation semantics, both in
terms of synchronization (e.g. blocking in Read Committed
(RC)), as well as data visibility (e.g. latest committed version in
RC). Because of that, preserving these semantics in all scenarios
is a key requirement for our solution.

3.5.1 Session Isolation Level

The majority of applications configure the isolation level at the
session (connection) level, changing that for different
transactions and stored procedures to meet their needs. The

4797

session level setting remains consistent for query compilation
and execution, allowing us to compile and execute the query
with the same semantics. The locking scheme described in
Section 3.3 guarantees the necessary blocking semantics: Only
snapshot transactions (SI/RCSI) will acquire a SCH-A lock and
execute concurrently with schema changes, whereas
transactions in other isolation levels will be blocked. In terms of
data visibility, MD-MVCC is only employed for snapshot
transactions. Transactions in other isolation levels will access the
latest version of the schema, as they have historically done.

3.5.2 Table Level Hints

Isolation level hints at the table level introduce additional
complexity since they only control the isolation semantics for
individual tables and not the overall query and its compilation,
which occurs based on session level setting. This introduces the
risk that the version of the schema used to compile and execute
the query might be different than the version of the data the
query will access in a specific table, leading to correctness issues.
Table 2 indicates the problematic combinations of isolation levels
set at the session level and through query hints. Specifically, the
risk is present when the session isolation level uses different
snapshot semantics than the query hint. Even between SI and
RCSI, the snapshots are established at different points in time
and can, therefore, lead to inconsistencies.

Table 2. Problematic combinations of session isolation
levels and query hints.

 Isolation Level Hint
Session Isolation Level SI RCSI Other iso. levels
SI - X X
RCSI X - X
Other isolation levels X X -

To eliminate this problem, when we detect such isolation level
mismatch, we perform additional checks at the beginning of
query execution to verify that the version of the schema as seen
by the snapshot access is the same as the latest version of the
object, as seen by the non-snapshot access. This is done by
comparing the latest timestamp of each object to the timestamp
visible by the snapshot. If the former is higher, it means the
object has been altered after the snapshot was established and,
therefore, access is unsafe. In the case of SI, this results in an
error that aborts the transaction. In the case of RCSI, however,
since the snapshot is established at the query level, we can
internally retry the query without any user impact by
establishing a new snapshot. This is important because RCSI is
the default isolation level, used by more than 70% of queries, and
this optimization can significantly improve the user experience.

3.6 Deferred Data Deallocation
With MD-MVCC, a snapshot transaction can potentially access a
table (or index) that has been dropped if the transaction snapshot
was established before the transaction dropping the table was
committed. When a table is dropped, the underlying data pages
must be deallocated, so that the space can be reclaimed and
reused for other purposes. Once a page is allocated to a new
table, it gets formatted to a clean state and any earlier data is

permanently erased. If pages were synchronously deallocated
when a table is dropped, earlier snapshot transactions that can
still access the table might attempt to access data pages that are
no longer valid.

To address that, we leverage the concept of “deferred data
deallocation”. When a table is dropped, the underlying data
pages are not synchronously deallocated but, instead, the table
gets registered for deferred deallocation. A background task
periodically checks for tables that are pending deallocation and
evaluates if they might still be visible to active snapshot
transactions. This is done by comparing the commit timestamp
of the transaction that dropped each table to the minimum
snapshot timestamp across all active transactions in the system.
Once older snapshot transactions commit or abort, the minimum
snapshot timestamp advances and, eventually, the background
task can safely deallocate the pages of any dropped tables.

3.7 Query Plan Cache
As mentioned in Section 2.3, once a query is compiled, it can be
cached and reused for multiple executions. Traditionally, both
query compilation and execution always accessed the latest
version of the schema. Based on that, the query plan cache
maintained only one query plan for each query. With MD-
MVCC, however, the schema version used by query compilation
or execution might not be the latest. In fact, two concurrent
snapshot transactions with different snapshots might be using
different versions of the schema. When these transactions
attempt to execute the exact same query, they need to use a
different query plan and, if the right plan is not available in the
cache, they would need to recompile, leading to increased
recompilations.

One way to address this scenario would be to allow the plan
cache to preserve multiple query plans for every query, each
reflecting a different version of the schema. Although this
solution minimizes query recompilations, it would require a
broader redesign of the plan cache to introduce a version chain
for each plan, similar to what was done for the metadata caches.
Furthermore, since a query can reference multiple objects, each
of which has a different version history, we would need to
globally order the versions of the plan based the referenced
object versions. Snapshot transactions would then identify the
appropriate plan version by checking the commit timestamps
associated with every object referenced by the query. This would
introduce significant complexity but also increase the memory
footprint of the plan cache, which is already one of the highest
memory consumers in our service. To avoid that, we decided to
retain the current behavior where the cache only stores a single
plan for each query. This could theoretically cause repeated
recompilations, if two transactions with different snapshots
repeatedly executed the same query. However, in reality, this
should be an extremely rare case because:

• In RCSI, which is the default isolation level, snapshots are
established at the beginning of the query and are,
therefore, very recent, reducing the probability of a
version mismatch. Even if a mismatch is identified and the
query is recompiled, a new snapshot will be established
allowing the query to use the latest version and proceed.

• In SI, although there is a possibility of repeated recompiles
among two transactions, it is very uncommon that two

4798

long-lived snapshot transactions would repeatedly execute
the same query.

Based on this rationale and the fact that we have not identified
any problematic cases as we enabled MD-MVCC in production,
we believe that our approach is sufficient to address this scenario
without introducing additional complexity.

3.8 Security
Although our goal is to apply snapshot isolation across schema
and data to improve concurrency, we must guarantee that the
latest security configuration is always applied for all
transactions, regardless of when their snapshot was established.
Otherwise, users with old active transactions could, maliciously
or accidentally, execute queries bypassing the latest security
settings. The MD-MVCC design needs to account for these
semantics for the following reasons:

1) Schema properties of tables and other objects affect the
authorization checks applied when they are accessed. For
example, a table might have Row Level Security (RLS) [15]
or Dynamic Data Masking [13] enabled, which limit the
data each user can access. Similarly, objects have a specific
user assigned as their owner. Owners can grant other users
indirect access to objects they own through views or stored
procedures. This capability is known as Ownership
Chaining [18]. Ownership information is also stored as part
of the object metadata.

2) Various security related entities and configurations,
including users, roles, permissions and auditing settings, are
stored as database metadata, fully managed by the Metadata
Manager component, as any other schema information.

By default, MD-MVCC would version all this information and
incorrectly apply snapshot semantics for authentication,
authorization or auditing purposes, violating the principle that
all transactions should access the latest version of any security
information. A naïve solution to this problem would be to detect
any modifications to security information and abort snapshot
transactions that attempt to access it. However, this would lead
to a large number of transaction aborts for scenarios that can
simply access the latest metadata and execute successfully. For
example, changes to role membership or the permissions of a
role are common and would cause unnecessary aborts when
accessing the latest version of this information is perfectly safe.

To address this issue, we allow the Metadata Manager to
suppress snapshot isolation when exposing security related
information and return its latest committed version. This,
however, creates the risk that a transaction might see an
inconsistent state between elements that are accessed with
different isolation semantics. We avoid this problem by
introducing the ability to selectively abort snapshot transactions
based on what modifications have been made to the entities they
are accessing. Specifically, for each schema or security
modification, we decide whether it should abort snapshot
transactions based on the following logic:

1) We distinguish regular, versioned objects, like tables, where
snapshot isolation applies, from non-versioned security
metadata, where snapshot isolation should not apply.

2) We construct a directed acyclic graph (DAG) which has the
above entities as nodes and their relations as edges. The

referencing entities point to the referenced ones. For
example, a table (versioned) references an RLS policy (non-
versioned) which in turn references a function (versioned)
that applies the necessary security logic. Figure 5
demonstrates a sample graph with all the possible
relationships between versioned and non-versioned entities.

3) Modifications to properties of an entity (versioned or not)
that do not affect its relations with other entities should not
abort any transactions. For example, users can safely
modify the nullability of a column (versioned) or the
destination of audit records (non-versioned). For the
following scenarios, we only consider modifications that
affect relations of an entity, such as dropping the entity the
relation relies on.

4) Modifications affecting relations between two versioned or
two non-versioned entities should not abort any
transactions since entities of the same type would be
accessed using the same isolation semantics.

5) Modifications to a non-versioned entity that is referenced
by a versioned entity must abort snapshot transactions that
access an earlier version of the versioned entity since it is
unsafe for them to access the latest state of the non-
versioned entity. For example, dropping the RLS policy
(non-versioned, security metadata) of a table (versioned)
should abort transactions accessing the table with a
snapshot established before this modification occurred.

6) Modifications to a versioned entity that is referenced by a
non-versioned entity must abort snapshot transactions that
access an earlier version of the versioned entity since it is
unsafe for them to access its earlier state. For example,
dropping a table (versioned) that is referenced by
permissions granted to various users (non-versioned)
should invalidate snapshot transactions that started before
the table was dropped since it is unsafe to access the
inconsistent state between the two entities.

Versioned object A
(referencing)

Non-versioned
security metadata A

Versioned object B
(referenced)

Non-versioned
security metadata B

(referenced)

Versioned object C
(referenced)

Figure 5. A DAG representing various schema and security
entities and their relationships. Relationships that can
trigger snapshot transaction aborts are indicated in red
whereas safe relationships are indicated in green.

To selectively abort the necessary transactions, we maintain the
commit timestamp of the last operation that performed an
unsafe modification (per the rules above) for each entity. When a
snapshot transaction accesses an entity, we check if the snapshot
timestamp is lower than the timestamp for this entity. If so, the

4799

Figure 6. The impact of a DDL operation with and without MD-MVCC for different types of workloads.

transaction is aborted. It is important to note that the transaction
is fully aborted only in the case of SI. In RCSI, which is more
commonly used, transaction aborts can be avoided. The
timestamp checks occur before the query execution begins and,
if there is a need to abort, we establish a new snapshot and retry
the operation without any visible interruptions to the users.

4 EXPERIMENTAL AND PRODUCTION
RESULTS
This section presents experimental results regarding the
performance of the system when MD-MVCC is enabled. All our
experiments are executed on a workstation with 2 sockets, 52
cores (Intel® Xeon® Platinum 8171M Processor, 2.60GHz) and
575GB of RAM. External storage consists of six 1TB SSDs.

4.1 Concurrency During Schema Changes
In our first set of experiments, we evaluate how MD-MVCC
improves concurrency during schema changes and reduces their
impact to the user workload. Given that all common DDL
operations are either instant, through a metadata update, or
implemented as “online” operations, they only acquire an
exclusive, SCH-M, lock for a very short window of time, in the
order of few milliseconds. As described in Section 1, most of the
blocking is introduced due to long running queries that cause the
DDL to wait, further blocking new requests. Based on that, the
exact type of DDL does not affect this experiment and we will
demonstrate the concurrency improvements using an ADD
COLUMN operation, which is the most common operation
according to our production telemetry. However, the results
would be identical for any other DDL, like dropping a column or
creating/dropping indexes.

On the contrary, the concurrency benefits heavily depend on the
shape of the workload, the ratio between reads and writes and
the duration of these operations. Based on that, we evaluate MD-
MVCC using three different types of workloads:

1) An operational workload that simulates TPC-E [33] and
involves short read and write operations. While the
workload is running, we add one column to the “TRADES”
table which is heavily used by most operations.

2) An analytical workload that simulates TPC-H [34] and only
executes long-running read queries. While the workload is
running, we add one column to the “LINEITEM” table
which is used by several queries.

3) A production workload from Microsoft Dynamics, one of
the biggest customers of Azure SQL Database. This is a
workload from the Finance and Operations service of
Dynamics that combines operational reads and writes with
reporting queries. While the workload is running, we add a
column to one of the tables that is used by both the
operational workload as well as reporting queries.

Figure 6 demonstrates how each workload was impacted by the
DDL operation with and without MD-MVCC:

• In the TPC-E workload, the improvement with MD-MVCC
is marginal. All operations are short (under 1 second) and
do not introduce extensive blocking. The throughput drops
for a small window of time when the DDL is executed but
quickly recovers, as ongoing queries complete, allowing the
DDL to acquire the exclusive lock and complete the
operation. Since MD-MVCC allows read queries to proceed
while the DDL is waiting and executing, the drop is less
pronounced there.

• In the TPC-H workload, MD-MVCC introduces a significant
improvement. Given that the workload only includes read
queries, MD-MVCC allows them to execute concurrently
with the DDL, eliminating any impact to the user workload.
In the baseline run, however, long-running queries cause
the DDL to wait, blocking all new requests for over 150
seconds until all ongoing queries complete.

• In the Dynamics workload, we also see a significant
improvement with MD-MVCC. There is still a drop in
throughput when the DDL is executed, but it is not as deep
and only lasts less than 10 seconds, compared to more than
200 seconds in the baseline run. This is because of the
relatively short duration of data modifications as compared
to long-running reporting queries. With MD-MVCC, all
read queries were able to continue uninterrupted without
any blocking. Data modifications blocked the DDL for a
short time, also blocking new requests, but, then, the DDL
completed quickly and the workload recovered in seconds.
On the contrary, in the baseline run, reporting queries
caused the DDL to wait for more than 3 minutes, blocking
any new requests for an extended amount of time.

Although the exact improvements vary depending on the profile
of the workload, in all cases, MD-MVCC improves data
availability and minimizes the impact of schema changes to the
user workload.

4800

4.2 User Workload Performance
As a next step, we evaluate how MD-MVCC affects the
performance of the system during online transaction processing.
Metadata is accessed during query compilation and execution, so
any additional overheads could negatively impact performance.
We measure the throughput and latency of the user workload
with and without MD-MVCC to assess if our versioned
algorithms introduce any substantial overheads or scalability
bottlenecks that would impact the workload.

4.2.1 Throughput

Since all query execution must access metadata and will,
therefore, exercise the MD-MVCC logic, we evaluate the
throughput of the system using two high-concurrency, OLTP
workloads that are simulating TPC-C [32] and TPC-E. In these
experiments, we do not perform any schema changes as we want
to evaluate the throughput of the system in steady state. Given
that OLTP workloads are highly repetitive, all query plans and
row accessors should be cached and reused across executions.
However, metadata must still be accessed to validate that the
query plan and accessors are consistent with the visible version
of the schema. Thus, these workloads will stress the MD-MVCC
cache retrieval and synchronization logic.

Table 3 presents the throughput degradation introduced by MD-
MVCC for our TPC-C and TPC-E-like workloads. Since TPC-C
queries are extremely short, metadata access will be very
frequent and we consider this a worst-case scenario, whereas
TCP-E represents a more common type of workload. Given that
there is some variability in the measured throughput, we also
capture the standard deviation for our runs. The impact of MD-
MVCC is minimal for both workloads and well below the
standard deviation. This indicates that our algorithms do not
introduce any visible overheads or scalability bottlenecks.

Table 3. Throughput degradation for TPC-C and TPC-E.

Workload Degradation Std Deviation

TPC-C 0.2% 1.8%

TPC-E 0.18% 1.5%

4.2.2 Latency

For this set of experiments, we measure the impact of MD-
MVCC on the latency of query compilation and execution. Given
that metadata is accessed in the same way for all objects
referenced by the query, regardless of the query complexity or
how objects are used, we execute a simple query that performs a
“UNION ALL” among N tables containing ten columns and only
one row each. Our goal is to capture a worst-case scenario where
the cost of compiling and executing the query is minimal and
metadata access represents a bigger portion of the overall
execution time. Before executing the queries, we perform a
schema change on the tables so that the query must traverse two
versions, further increasing the cost of metadata access.

Figure 7 demonstrates the latency of query compilation and
execution with and without MD-MVCC for a varying number of
tables and depending on whether the metadata cache is already
populated. As we expected, compilation and execution times are

proportional to the number of tables used in the query. MD-
MVCC does not introduce any noticeable overhead when the
metadata cache is warm. The right version of the object is
quickly identified in the in-memory version chain and the query
executes as usual. When the metadata cache is cold, we can see
that there is an additional overhead of ~200us to load the
necessary metadata for each table. This increases by another
~20us when MD-MVCC is enabled which is caused by the
additional cost of performing a snapshot scan on the system
tables and loading the “version metadata” for the different
versions of the object, as described in Section 3.2.2. Overall, even
in this worst-case scenario, the overhead of MD-MVCC is
negligible in all cases.

Figure 7. Latency of query compilation and execution for
varying number of tables and state of the metadata cache.

4.3 Garbage Collection Performance
As described in Section 3.2.4, as older snapshot transactions
commit/abort, earlier schema versions become permanently
invisible and are lazily cleaned up by a background garbage
collection (GC) process. In this experiment, we evaluate the
performance of our GC process in the presence of heavy volume
of DDL operations. Specifically, we use a common pattern we
have observed in production where users will frequently create
and drop tables that are used as temporary tables by the
workload. We establish 32 connections that create and drop such
tables in a loop and measure the number of versions in our
metadata caches over time. Given that we do not introduce any
long-running snapshot transactions, we expect GC to
periodically collect all earlier versions.

Figure 8. Number of metadata versions over time under
heavy DDL workload.

4801

Figure 8 presents the number of metadata versions over time
under this heavy DDL workload. As we anticipated, the GC
process periodically wakes up and removes all invisible versions,
guaranteeing that the memory footprint of the cache remains
bounded.

5 FUTURE WORK

5.1 Concurrency with Data Modifications
Although our initial goal is to enable concurrency between
schema changes and read queries, our longer-term plan is to
leverage the MD-MVCC capabilities to also support concurrency
with data modifications. This would allow schema changes to be
deployed without any data unavailability or impact to the user
workload. In the current implementation of MD-MVCC, schema
changes a) synchronize with data modifications using locks and
b) introduce write-write conflicts between data modifications
and schema changes. Although schema changes and data
modifications are conceptually both updating the same object,
some of the most common schema changes do not technically
perform conflicting modifications with data updates. For
example, adding or dropping a column are only updating the
metadata of the table and would not conflict with concurrent
updates, neither physically nor semantically. The same is true
for creating or dropping an index. Dropping an index only
removes the index from the table metadata and enqueues it for
deferred deallocation (see Section 3.6). Even though creating an
index needs to insert all rows to the new index, hence
performing some row updates, per our Online Index Build
algorithm [2], this is only done for rows that have not been
updated since the index build started and, therefore, no conflict
can occur. Based on that, we plan to extend MD-MVCC to allow
concurrency with data modifications for some of the most
popular schema changes needed by applications.

5.2 AS OF Queries
The ability to execute queries “as of” a certain point in time has
been a common ask from our users. This is typically needed for
analytical queries that are used to generate financial or other
reports as of a specific point in time (e.g. last day of the calendar
or fiscal year). By leveraging our data MVCC infrastructure, we
can retrieve the version of the data at the specified point in time.
However, as the schema of the tables evolves, the latest version
of the schema might no longer be compatible with that version
of the data. For example, columns could have been added,
dropped or altered, making it impossible to interpret an earlier
version of the data. MD-MVCC allows us to access the right
version of the schema for the point in time the query specifies. In
this way, schema and data can be consistent and safely serve any
query. Based on that, we plan to leverage MD-MVCC to enable
AS OF query capabilities.

6 RELATED WORK
Database schema management has been an active area of
research for over three decades with main focus on:

a) Reducing the blocking introduced by schema modifications
[10, 11, 19, 30, 31, 35, 37].

b) Schema evolution which enables different versions of the
application to operate on different versions of the schema,
simplifying the deployment of new application code that
requires schema changes [5, 6, 7, 20, 27, 28, 29].

Although there has been extensive work in the academia around
schema evolution, Oracle is the only commercial RDBMS that
currently provides a native capability for managing schema
versions [24]. This is largely because application developers have
managed to work around this challenge by carefully
orchestrating the deployment of their application code together
with the corresponding schema changes.

On the contrary, the data unavailability caused by schema
changes which block concurrent user workload is a fundamental
problem that the RDMBS needs to address. Over the years, there
have been significant advancements across all database products
to either a) support common operations, like adding/dropping a
column, as an instant metadata update [12, 22, 26] or b) make
schema changes “online”, where the operation must still process
all data but can allow user access for the majority of its duration
[2, 9, 11, 21, 25]. Although these solutions reduce the blocking
introduced by schema modifications, they still need to
synchronize with concurrent access, at least for a small window
of time. This introduces extensive blocking in the presence of
long-running queries which force the schema changes to wait
and, in the meantime, block all new requests.

MD-MVCC leverages MVCC and the semantics of Snapshot
Isolation to eliminate all synchronization between schema
changes and queries, and support full concurrency. MVCC has
been studied extensively since the 80s [3, 4, 36] but mainly in the
context of user data. MD-MVCC exploits the same ideas but for
metadata to address concurrency for schema changes. Tesseract
[8] employs a similar technique to allow both reads and writes in
the presence of ongoing schema changes but is not integrated in
a commercial RDBMS and, therefore, does not address the
complexities introduced by the large variety of DDL operations,
security and other features in these environments. Oracle is the
only other commercial RDBMS to support concurrency between
queries and schema changes [23]. However, it does not address
the scenarios around different isolation levels and how their
semantics can be preserved, given the more limited isolation
level support in their system as compared to SQL Server and
other popular RDBMSs. Unfortunately, details about the Oracle
implementation are not available to further compare the two
solutions and their trade-offs. Finally, our algorithm for
reasoning about security, presented in Section 3.8, is a novel
contribution that has not been covered by prior work in this
space and is critical for correctly applying access control under
MVCC.

ACKNOWLEDGMENTS
We would like to thank all members of the MD-MVCC team for
their contributions to the project. Without their commitment
and hard work, the technology described in this paper would not
have been possible. Additionally, we would like to thank our
leadership team for sponsoring the project and continuing to
invest in our work in this area.

4802

REFERENCES
[1] Panagiotis Antonopoulos, Peter Byrne, Wayne Chen, Cristian Diaconu,

Raghavendra Thallam Kodandaramaih, Hanuma Kodavalla, Prashanth
Purnananda, Adrian-Leonard Radu, Chaitanya Sreenivas Ravella, and Girish
Mittur Venkataramanappa. 2019. Constant time recovery in Azure SQL
database. Proc. VLDB Endow. 12, 12 (August 2019), 2143–2154.
https://doi.org/10.14778/3352063.3352131

[2] Panagiotis Antonopoulos, Hanuma Kodavalla, Alex Tran, Nitish Upreti,
Chaitali Shah, and Mirek Sztajno. 2017. Resumable online index rebuild in SQL
server. Proc. VLDB Endow. 10, 12 (August 2017), 1742–1753.
https://doi.org/10.14778/3137765.3137779

[3] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O'Neil, and
Patrick O'Neil. 1995. A critique of ANSI SQL isolation levels. In Proceedings of
the 1995 ACM SIGMOD international conference on Management of data
(SIGMOD '95). Association for Computing Machinery, New York, NY, USA, 1–
10. https://doi.org/10.1145/223784.223785

[4] Philip A. Bernstein and Nathan Goodman. 1983. Multiversion concurrency
control—theory and algorithms. ACM Trans. Database Syst. 8, 4 (Dec. 1983),
465–483. https://doi.org/10.1145/319996.319998

[5] Souvik Bhattacherjee, Gang Liao, Michael Hicks, and Daniel J. Abadi. 2021.
BullFrog: Online Schema Evolution via Lazy Evaluation. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD '21).
Association for Computing Machinery, New York, NY, USA, 194–206.
https://doi.org/10.1145/3448016.3452842

[6] Carlo A. Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2010.
Update rewriting and integrity constraint maintenance in a schema evolution
support system: PRISM++. Proc. VLDB Endow. 4, 2 (November 2010), 117–128.
https://doi.org/10.14778/1921071.1921078

[7] Kai Herrmann, Hannes Voigt, Andreas Behrend, Jonas Rausch, and Wolfgang
Lehner. 2017. Living in Parallel Realities: Co-Existing Schema Versions with a
Bidirectional Database Evolution Language. In Proceedings of the 2017 ACM
International Conference on Management of Data (SIGMOD '17). Association
for Computing Machinery, New York, NY, USA, 1101–1116.
https://doi.org/10.1145/3035918.3064046

[8] Tianxun Hu, Tianzheng Wang, and Qingqing Zhou. 2022. Online schema
evolution is (almost) free for snapshot databases. Proc. VLDB Endow. 16, 2
(October 2022), 140–153. https://doi.org/10.14778/3565816.3565818

[9] IBM, IBM DB2, Rebuild Index Online Utility.
https://www.ibm.com/support/knowledgecenter/en/SSEPEK
_11.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html

[10] Jørgen Løland and Svein-Olaf Hvasshovd. 2006. Online, non-blocking
relational schema changes. In Proceedings of the 10th international
conference on Advances in Database Technology (EDBT'06). Springer-Verlag,
Berlin, Heidelberg, 405–422. https://doi.org/10.1007/11687238_26

[11] Meta, Online Schema Change for MySQL.
https://www.facebook.com/notes/10157508558976696

[12] Microsoft, Add columns as an online operation in SQL Server.
https://learn.microsoft.com/en-us/sql/t-sql/statements/alter-table-transact-
sql?view=sql-server-ver16#adding-not-null-columns-as-an-online-operation

[13] Microsoft, Dynamic data masking. https://learn.microsoft.com/en-
us/sql/relational-databases/security/dynamic-data-masking?view=sql-server-
ver16

[14] Microsoft, How It Works: SQL Server Locking
WAIT_WITH_LOW_PRIORITY.
https://techcommunity.microsoft.com/blog/sqlserver/how-it-works-sql-server-
locking-wait-with-low-priority/3122713

[15] Microsoft, Row-level security. https://learn.microsoft.com/en-
us/sql/relational-databases/security/row-level-security?view=sql-server-ver16

[16] Microsoft, Table hints (Transact-SQL). https://learn.microsoft.com/en-us/sql/t-
sql/queries/hints-transact-sql-table?view=sql-server-ver16

[17] Microsoft, Transaction locking and row versioning guide.
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-
transaction-locking-and-row-versioning-guide?view=sql-server-ver16

[18] Microsoft, Tutorial: Ownership Chains and Context Switching.
https://learn.microsoft.com/en-us/sql/relational-databases/tutorial-ownership-
chains-and-context-switching?view=sql-server-ver16

[19] C. Mohan and Inderpal Narang. 1992. Algorithms for creating indexes for very
large tables without quiescing updates. In Proceedings of the 1992 ACM
SIGMOD international conference on Management of data (SIGMOD '92).
Association for Computing Machinery, New York, NY, USA, 361–370.
https://doi.org/10.1145/130283.130337

[20] Hyun J. Moon, Carlo A. Curino, Alin Deutsch, Chien-Yi Hou, and Carlo
Zaniolo. 2008. Managing and querying transaction-time databases under
schema evolution. Proc. VLDB Endow. 1, 1 (August 2008), 882–895.
https://doi.org/10.14778/1453856.1453952

[21] MySQL, InnoDB and Online DDL.
https://dev.mysql.com/doc/refman/8.4/en/innodb-online-ddl.html

[22] Oracle, Database Administrator's Guide, Adding Table Columns.
https://docs.oracle.com/cd/B28359_01/server.111/b28310/tables006.htm#ADMI
N11005

[23] Oracle, Database Concepts, Data Concurrency and Consistency.
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/data-
concurrency-and-consistency.html

[24] Oracle, Edition-Based Redefinition. https://www.oracle.com/docs/tech/ebr-
technical-deep-dive-overview.pdf

[25] Oracle, Online Data Reorganization & Redefinition.
https://www.oracle.com/gr/database/technologies/high-availability/online-
ops.html

[26] PostgreSQL, ALTER TABLE, Notes for add and drop column operations.
https://www.postgresql.org/docs/current/sql-altertable.html

[27] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi, and Radek Vingralek. 2013.
Online, asynchronous schema change in F1. Proc. VLDB Endow. 6, 11 (August
2013), 1045–1056. https://doi.org/10.14778/2536222.2536230

[28] John F. Roddick. 1992. Schema evolution in database systems: an annotated
bibliography. SIGMOD Rec. 21, 4 (Dec. 1992), 35–40.
https://doi.org/10.1145/141818.141826

[29] John F. Roddick. 1992. SQL/SE: a query language extension for databases
supporting schema evolution. SIGMOD Rec. 21, 3 (Sept. 1992), 10–16.
https://doi.org/10.1145/140979.140985

[30] M. Ronstrom. 2000. On-line schema update for a telecom database. In
Proceedings of 16th International Conference on Data Engineering (Cat.
No.00CB37073). 329– 338.

[31] Betty Salzberg and Allyn Dimock. 1992. Principles of Transaction-Based On-
Line Reorganization. In Proceedings of the 18th International Conference on
Very Large Data Bases (VLDB '92). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 511–520.

[32] TPC, TPC-C. https://www.tpc.org/tpcc/
[33] TPC, TPC-E. https://www.tpc.org/tpce/
[34] TPC, TPC-H. https://www.tpc.org/tpch/
[35] Lesley Wevers, Matthijs Hofstra, Menno Tammens, Marieke Huisman, and

Maurice Van Keulen. 2015. Analysis of the Blocking Behaviour of Schema
Transformations in Relational Database Systems, Vol. 9282. 169–183.

[36] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An
empirical evaluation of in-memory multi-version concurrency control. Proc.
VLDB Endow. 10, 7 (March 2017), 781–792.
https://doi.org/10.14778/3067421.3067427

[37] Ling Zhang, Matthew Butrovich, Tianyu Li, et al. 2021. Everything is a
Transaction: Unifying Logical Concurrency Control and Physical Data
Structure Maintenance in Database Management Systems. In Conference on
Innovative Data Systems Research (CIDR).

4803

https://doi.org/10.14778/3352063.3352131
https://doi.org/10.14778/3137765.3137779
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/319996.319998
https://doi.org/10.1145/3448016.3452842
https://doi.org/10.14778/1921071.1921078
https://doi.org/10.1145/3035918.3064046
https://doi.org/10.14778/3565816.3565818
https://www.ibm.com/support/knowledgecenter/en/SSEPEK%20_11.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK%20_11.0.0/ugref/src/tpc/db2z_utl_rebuildindex.html
https://doi.org/10.1007/11687238_26
https://www.facebook.com/notes/10157508558976696
https://learn.microsoft.com/en-us/sql/t-sql/statements/alter-table-transact-sql?view=sql-server-ver16#adding-not-null-columns-as-an-online-operation
https://learn.microsoft.com/en-us/sql/t-sql/statements/alter-table-transact-sql?view=sql-server-ver16#adding-not-null-columns-as-an-online-operation
https://learn.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking?view=sql-server-ver16
https://techcommunity.microsoft.com/blog/sqlserver/how-it-works-sql-server-locking-wait-with-low-priority/3122713
https://techcommunity.microsoft.com/blog/sqlserver/how-it-works-sql-server-locking-wait-with-low-priority/3122713
https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tutorial-ownership-chains-and-context-switching?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tutorial-ownership-chains-and-context-switching?view=sql-server-ver16
https://doi.org/10.1145/130283.130337
https://doi.org/10.14778/1453856.1453952
https://dev.mysql.com/doc/refman/8.4/en/innodb-online-ddl.html
https://docs.oracle.com/cd/B28359_01/server.111/b28310/tables006.htm#ADMIN11005
https://docs.oracle.com/cd/B28359_01/server.111/b28310/tables006.htm#ADMIN11005
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/data-concurrency-and-consistency.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/data-concurrency-and-consistency.html
https://www.oracle.com/docs/tech/ebr-technical-deep-dive-overview.pdf
https://www.oracle.com/docs/tech/ebr-technical-deep-dive-overview.pdf
https://www.oracle.com/gr/database/technologies/high-availability/online-ops.html
https://www.oracle.com/gr/database/technologies/high-availability/online-ops.html
https://www.postgresql.org/docs/current/sql-altertable.html
https://doi.org/10.14778/2536222.2536230
https://doi.org/10.1145/141818.141826
https://doi.org/10.1145/140979.140985
https://www.tpc.org/tpcc/
https://www.tpc.org/tpce/
https://www.tpc.org/tpch/
https://doi.org/10.14778/3067421.3067427

