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ABSTRACT
Mammoth transactions, which involve long-running operations
that access many items, are common in graph workloads. Graph an-
alytics tasks, including pattern matching and graph algorithms, can
generate large read-write operations that impact signi!cant por-
tions of data, which makes their execution challenging under strict
isolation guarantees. Consequently, we face an apparent trade-o"
between ensuring high isolation and achieving high performance,
forcing users to choose between the two.

In this work, we present T!"#F$%&, an experimental graph data-
base based on Neo4j, designed to e#ciently handle mammoth trans-
actions on graphs (the technique is applicable to other models such
as relational) while maintaining existing transactional semantics.
T!"#F$%& employs a deterministic protocol that safely reorders
regular transactions around mammoths within an epoch. Our proto-
col supports parallel mammoth execution inspired by graph-parallel
algorithms. To minimize con$icts with regular transactions, T!"#’
F$%& introduces query- and workload-aware optimizations, in-
cluding graph entity tagging and partitioning. Our experiments
demonstrate that, unlike traditional protocols like two-phase lock-
ing or MVCC, T!"#F$%& avoids blocking write transactions and
improves tail latency by up to 45→.
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1 INTRODUCTION
Commercial graph database management systems (DBMSs) [2, 50,
52, 74] are rapidly growing in popularity, with the graph data-
base market projected to reach $5.1 billion by 2026 [27]. These
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Figure 1: Existing systems cannot handle mammoths block-
ing short-lived write transactions

systems allow users to model complex, highly associative data
with high-!delity as nodes and relationships. Common use cases
include route planning [82], social networks [9, 80], and retrieval-
augmented generation (RAG) for AI applications [44]. While these
systems can handle trillion-scale graphs with high transactional
performance [53, 75], long-running read-write transactions, known
as mammoths [18], can severely impact overall execution.

Very large transactions can challenge any DBMS. In traditional
workloads, the problem of handling mammoths remains only par-
tially solved [18]. Separating workloads into OLAP (long-running,
read-only) and OLTP (short and write-heavy) [40] – as adopted
in production systems from Alibaba [45, 84], Google [26, 49], or
Facebook [64] – helps avoid contention but introduces operational
complexity and causes analytics to run on stale data. The move
to HTAP systems [6, 7, 15, 75] allows some consolidation where
read-only analytical and short read-write transactions can co-exist.

Mammoths are particularly prevalent in graph databases, where
tasks like graph pattern matching [35], graph algorithms such as
community detection and degree centrality [51], cascading deletes,
and schema changes [21, 61] are routine but can con$ict with other
operations. These tasks read from and often write to large parts of
the graph, blocking the progress of many short-lived transactions
and signi!cantly degrading system performance.

To illustrate the widespread nature of the problem, Fig. 1 com-
pares the throughput of Neo4j (using two-phase locking, or 2PL [11])
and Postgres (using MVCC [10]) under a workload of 100 clients.
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Each client performs read or write transactions sequentially – each
new transaction starts only after the previous one !nishes – using
a randomly chosen relationship from the WikiTalk dataset (see Ta-
ble 1). When one mammoth transaction begins to update a property
present in all relationships (marked by the dashed vertical line),
both systems show zero throughput, as all write transactions are
blocked, preventing clients from making progress. In addition, the
tail latency for short-lived transactions spikes to over 30 s, orders
of magnitude higher than the expected (millisecond latency). For
larger graphs, the problem worsens as the queuing of con$icting
short-lived transactions can lead to time-outs. Moreover, mammoth
transactions can cause page cache pollution, further increasing the
latency of the blocked transactions.

Vanilla optimistic protocol implementations always abort the
mammoth when attempting to commit due to con$icts with short-
lived writes [18], meaning that mammoths will always fail. Pes-
simistic protocols like 2PL block all transactions, and deterministic
protocols were not designed for handling such workloads [46].

An alternative to the limitations of existing concurrency proto-
cols would be to forgo strong isolation guarantees and transactional
semantics. For example, Neo4j’s and MemGraph’s graph algorithm
libraries [50, 56] allow users to run expensive algorithms without
isolation guarantees when writing results back to the database.
This forces users to either manually maintain consistency or accept
weaker guarantees, which has numerous downsides [81].

Based on our experience at Neo4j, mammoth transactions are
frequent enough in graph use cases to motivate research into a
solution, and our working hypothesis is that both graphs and their
workloads can be part of that solution. Our goal is to design and im-
plement a transactional graph DBMS that addresses the challenges
posed by workloads containing mammoth transactions. Speci!cally,
we aim to: (i) ensure mammoths complete successfully; (ii) prevent
mammoths from blocking short-lived transactions whenever possi-
ble; (iii) maintain high throughput and low latency for short-lived
transactions; and (iv) provide strong transactional guarantees (e.g.,
serializability). Our contributions are:
(i) Deterministic concurrency protocol. We introduce the !rst
deterministic protocol designed to handle mammoth transactions
that allows short-lived transactions to be reordered before or after
mammoths’ e"ects rather than blocking them for the entire dura-
tion. By extending the Aria protocol [46], we manage transactions
without prior knowledge of their read/write sets while ensuring
con$ict serializability (i.e., equivalent to running serially).
(ii) Query- and workload-aware optimizations. To accelerate
con$ict resolution for short-lived transactions, we introduce graph
entity tagging and graph partitioning. By tagging graph entities and
labels that a mammoth transaction will access before it executes,
we can reduce unnecessary con$icts. Additionally, partitioning the
graph into "hot" and "cold" communities based on the most popular
nodes and access patterns accelerates mammoth execution and
minimizes con$icts with short-lived transactions.
(iii) Pluggable and parallel mammoth execution.We integrate
our protocol into the transaction scheduling module of a graph
database to allow the parallel execution of mammoths, mirroring
how graph-parallel algorithms are implemented. Here, we note that

the protocol can be adapted to relational databases by substituting
nodes and relationships with tables and graph traversals with joins.

Building on these ideas, we developed T!"#F$%&, an experi-
mental in-memory transactional graph database based on Neo4j,
designed to handle mammoth transactions e#ciently without sac-
ri!cing correctness or performance. Our experiments demonstrate
that T!"#F$%& improves throughput and tail latency for short-
lived transactions by an order of magnitude compared to traditional
methods like 2PL or MVCC, as shown in Fig. 1. Furthermore, our
micro-benchmarks con!rm that graph tagging and partitioning
techniques both reduce con$icts and lower tail latency by 3.5 to
11.5→ in the presence of mammoth transactions.

The remainder of the paper is structured as follows: we be-
gin with a short survey of state-of-the-art graph DBMSs, trans-
action protocols, graph partitioning algorithms, and mammoth use
cases (Sec. 2). We then introduce our deterministic concurrency pro-
tocol (Sec. 3) and con$ict resolution techniques (Sec. 4). T!"#F$%&’s
design is discussed in Sec. 5, followed by our evaluation (Sec. 6).
We !nish with related work (Sec. 7), and conclusions (Sec. 8).

2 BACKGROUND
This section covers the foundational concepts of graphs, transac-
tions, and mammoths relevant to the rest of the paper.

2.1 Graph Data Model
In this work, we adopt the labeled property graph (LPG) model [62],
in which nodes may have optional labels and are connected by
named, directed relationships. Both nodes and relationships can
store key-value pairs, known as properties. Similar to Cypher [35],
we de!ne an LPG as a tuple 𝐿 = ↑𝑀 ,𝑁, 𝑂𝑃𝑄, 𝑅𝑆𝑅, 𝑇, 𝑈, 𝑉↓, where 𝑀 is
the set of nodes 𝑊, and 𝑁 is the set of relationships 𝑃 . The function
𝑂𝑃𝑄 maps relationships to source nodes, while 𝑅𝑆𝑅 maps relationships
to target nodes. 𝑇 is a !nite partial function that assigns properties
to nodes or relationships, 𝑈 maps nodes to a !nite (or empty) set of
labels, and 𝑉 assigns a relationship type to each relationship. Nodes,
relationships, and property keys have unique identi!ers. Property
values can be strings, primitive data types, or arrays, while labels
and relationship types are represented as strings.

2.2 Graph Databases and Analytics
MemGraph [50], Neo4j [52], Neptune [2], and TigerGraph [74]
are graph databases designed to support OLTP workloads over
LPGs. They typically perform well for small transaction sizes and
o"er Read Committed or Snapshot Isolation. By contrast, analytical
graph engines like Pregel [48], Giraph [19], and GraphX [83] are
optimized for long-running OLAP queries on (predominantly) static
graphs and do not support writes.

To bridge the operational gap between OLTP and OLAP work-
loads, graph algorithm libraries built on top of graphDBMSs [50, 56]
permit writing the results of long-running computations (over
graph snapshots) back to the database. However, this approach
sacri!ces transactional guarantees, potentially compromising the
correctness of applications.

Ideally, these computations would run within mammoth transac-
tions, but current systems struggle to maintain good performance
at practical isolation levels, making such integration challenging.
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MATCH (n: Message) -[r]-()
WITH n, COUNT(r) AS degreeCentrality
SET n.degreeCentrality = degreeCentrality

Figure 2: Compute degree centrality with Cypher (LDBC Q0)

2.3 Transaction Protocols
Transaction decomposition and specialized protocols for
mammoths. One approach to managing long-running transac-
tions [38] is to divide them into smaller units. With nested trans-
actions [22, 47], systems can independently commit or abort these
units, known as subtransactions. Decomposition of this nature can
improve concurrency and reduce retries by utilizing savepoints [60],
but it can also perform poorly under high load [20]. Sagas [36] also
decompose long-running transactions into smaller requests but
require applications to provide compensating transactions for re-
covery, adding signi!cant overhead for graph traversals whose
updates may be large and complex. Finally, modern distributed
databases use specialized protocols [21, 61] to manage mammoths,
like schema changes or large-scale deletes. However, these proto-
cols often rely on speci!c consistency models that do not apply to
all transactions and may lack certain guarantees.
Deterministic databases [1, 71] provide serializable guarantees
(i.e., the results of concurrent transactions are equivalent to those
of a serial execution) and ensure that the re-execution of a set of
transactions will always yield the same database state. Calvin [72]
achieves this through a two-phase process: !rst, it locks data and
analyzes dependencies for con$icts based on a predetermined order;
then, transactions are executed in parallel. Aria [46], another deter-
ministic protocol, also employs two-phase execution but does not
require pre-de!ned read-write sets. In Aria, transactions reserve
reads and writes concurrently in the !rst phase, while con$icts are
detected and commit decisions are made in the second phase, all
without coordination. While these protocols prevent rollbacks, they
su"er from signi!cant performance degradation when handling
long-running transactions [46], as other transactions are blocked
until the mammoths complete within an epoch. They also incur
higher latency due to synchronization between phases and stricter
isolation levels than Read Committed or Snapshot Isolation.

2.4 Graph Partitioning Algorithms
Graph partitioning [58] aims to create 𝑋 disjoint but complete graph
partitions 𝑌 = 𝑌1, ..., 𝑌𝐿 that minimize a given cost function (e.g.,
edge-cut) while satisfying speci!c balancing constraints [41, 66, 78].
We focus on node partitioning [3], where each node 𝑊 ↔ 𝑀 is as-
signed to a unique partition 𝑌𝑀 . While existing systems use partition-
ing to reduce communication overhead in graph analytics, we apply
this technique to resolve con$icts between mammoth and short-
lived transactions. Speci!cally, we use query- and workload-aware
techniques [33, 34], like pattern matching, for OLTPworkloads. Our
goal is to improve workload-sensitive partition stability [28, 29, 33]
by reducing inter-partition traversals for a given workload.

2.5 Mammoth Use Cases
Let us introduce a set of typical use cases for mammoth transactions
that set the context for the remainder of the paper. Following a prior
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Figure 3: Mammoth queries over LDBC social network

classi!cation [18], mammoths fall into two categories: (i) balanced,
with nearly equal read and write sets; and (ii) unbalanced, where
reads signi!cantly outweigh writes.

High-level graph query languages like Cypher [35] and GQL [30]
abstract the complexity of graph operations and the high graph
connectivity such that seemingly simple queries might trigger mam-
moths. For example, the Cypher query𝑍0 in Fig. 2 uses MATCH to re-
trieve all Message-labeled nodes and their relationships in the LDBC
social network [31, 67], counts these relationships for each node
and updates the degreeCentrality property with SET. Although
this query is not computationally intensive – relying on neigh-
borhood metadata – it still blocks write transactions. Unlike re-
lational databases with localized transactions on indexed tables,
graph databases face unique concurrency challenges from traversal-
heavy workloads and supernodes (nodes with many neighbors),
which amplify contention and exacerbate the problem.

Fig. 3 illustrates two more examples of mammoth transactions
over the social network, where the red dashed lines indicate graph
entities being updated. Drawing from the Business Intelligence (BI)
workload [67] of LDBC (OLAP queries), we adapted two existing op-
erations to include writes to better re$ect our experience with real
mammoth transactions. In 𝑍1, the weight of interactions between
nodes labeled as Person is calculated and written back to the knows

relationships. An interaction is de!ned as a direct Comment on a
Message between two people. For the LBDC benchmark, this step is
typically part of the pre-computation for BI-19 and BI-20 queries;
for our mammoth use cases, we execute it alongside short-lived
read-write transactions in Sec. 6.

𝑍2 is a variation of the BI-10 query, which identi!es experts
within a person’s social network sharing common interests (repre-
sented by the Tag nodes linked to their Messages). The social clique
is speci!ed by a depth range. Our extension adds operations to up-
date each identi!ed expert at the transaction’s end. Consequently,
we classify 𝑍0 and 𝑍1 as balanced mammoths, while 𝑍2 is unbal-
anced. All three mammoth queries are representative of real-world
use cases encountered at Neo4j.

3 DETERMINISTIC MAMMOTH EXECUTION
Mammoth transactions, which perform read-write operations across
a large portion of a graph, often con$ict with short-lived transac-
tions, causing them to abort or block. This issue occurs due to
unpredictable access patterns, as nodes have varying numbers of
relationships (e.g., power-law distribution). We believe, however,
that we can do better than existing systems by monitoring and
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analyzing runtime contention. This approach would enable us to
identify when concurrent operations can safely proceed in paral-
lel with the mammoth without blocking. Intuitively, this involves
checking that an operation does not compromise serializability.
Speci!cally, we aim to ensure each short-lived transaction executes
fully either before or after the mammoth in the serialization graph.
Assumptions. Our approach relies on several key assumptions:
(i) the system runs only one mammoth at a time,1 alongside many
short-lived transactions; (ii) mammoths may be slow without strict
performance requirements, while short-lived transactions expect
millisecond-level latency; (iii) mammoths should deterministically
commit, meaning they do not abort due to integrity constraints;
(iv) once a mammoth leaves a graph region, it cannot re-enter;
(v) short-lived transactions see either previously committed changes
by the mammoth or data it has not yet or will not ever access; and
(vi) users specify if a transaction is a mammoth.2 The goal is to
complete mammoths e#ciently while ensuring high throughput,
low latency, and transactional guarantees for regular transactions.
Assumptions (i)-(iii) align with typical customer workloads, while
(iv)-(vi) simplify the transactional protocol. We now provide its
high-level overview.
Protocol overview. To facilitate dependency tracking in highly
dynamic graphs, we extend deterministic protocols for mammoths.
We chose Aria [46], which ensures con$ict serializability without
requiring the transactions’ read-write sets in advance. Aria assigns
each transaction a unique transaction identi!er (TID) using a se-
quencing layer. TIDs are used to resolve con$icts deterministically.

All transactions are processed in parallel, in any order, over two
phases within an epoch: local execution and commit. In the ex-
ecution phase (Sec. 3.1), each transaction reads from the current
database snapshot, makes reservations, and stores writes locally. In
the commit phase (Sec. 3.2), transactions use the reservations to in-
dependently commit or abort based on TIDs. The transactions with
Write-After-Write (WAW), Read-After-Write (RAW), or mammoth
con$icts are aborted and rescheduled in the next epoch. Short-lived
transactions cannot abort the mammoth.

To support mammoths without delaying epochs [46] or increas-
ing latency for short-lived transactions, we split them into smaller
tasks with a set number of operations per epoch (i.e., budget).
These tasks access localized graph areas and the protocol reorders
short-lived transactions around them – either before or after the
mammoth – preserving dependencies to detect con$icts. As the
mammoth traverses di"erent graph regions, these regions transi-
tion through mammoth states (discussed in Sec. 3.2) until they are
marked VISITED, ensuring they are not accessed again. This strat-
egy signi!cantly increases concurrency, allowing all transactions
to make progress.

3.1 Local Execution Phase
During the local execution phase, the mammoth and short-lived
transactions read from the same database snapshot at the epoch’s
start, as shown in line 11 of Alg. 1. This single-snapshot approach

1Mammoths have relaxed performance needs, and running multiple at once increases
contention and complicates dependency tracking.
2To reduce user e"ort, we explore static analysis and runtime heuristics to automati-
cally identify mammoths based on expected access patterns and execution time.

Algorithm 1: Execution and commit protocols
1 Function ExecuteTx(tx, db):
2 if tx.type == EXECUTE_LOCALLY then
3 RunLocally(tx, db)
4 tx.type↗ RUN_ON_DB
5 Schedule tx for commit phase
6 else

// Reschedule failed short-lived transactions and the
mammoth if it has more work

7 if TryToRunOnDatabase(tx, db) == false or (tx.isMammoth and
tx.hasFinished == false) then

8 tx.type↗ EXECUTE_LOCALLY
9 Schedule tx for execution phase

10 Function RunLocally(tx, db):
11 Read from the latest db snapshot
12 Execute locally (mammoths use a budget) and reserve R/Ws in tx.RWSet

// type is the record type and rid the record id
13 Function ReserveRead(tx, type, rid, db):
14 db.reservationTable[type].mergeRead(rid, tx.epoch, tx.tid)
15 Function ReserveWrite(tx, type, rid, db):
16 db.reservationTable[type].mergeWrite(rid, tx.epoch, tx.tid)
17 Function ReserveMammothRead(tx):
18 db.reservationTable[type].mergeMammothRead(rid, tx.epoch, tx.state)
19 Function ReserveMammothWrite(tx, type, rid, db):
20 db.reservationTable[type].mergeMammothWrite(rid, tx.epoch, tx.state)
21 Function TryToRunOnDatabase(tx, db):
22 if tx.isMammoth == true or HasConflicts(tx, db) == false then
23 Install tx.RWSet writes to db
24 return true
25 return false
26 Function HasConflicts(tx, db):
27 seenVisited↗ false
28 seenUnvisited↗ false
29 for entry↗ tx.RWSet do
30 reservation↗ db.reservationTable[entry.type].get(entry.rid)
31 if entry has WAW or budget and reservation.wid < tx.tid then
32 return true

// Allow reading from visited and not updated regions
33 seenVisited |= reservation.state == VISITED and

reservation.hasMammothWrite
34 isPending↗ reservation.state == PENDING_WRITE or

(reservation.state == PENDING_READ and entry.isRead == false)
// Track if we have seen unvisited regions

35 seenUnvisited↗ seenUnvisited or reservation.state ==
UNVISITED

36 if (seenVisited and seenUnvisited) or isPending then return true
37 return false

eliminates the need for multi-version storage, minimizing changes
to the Neo4j codebase. After reading, transactions execute locally,
tracking their read-write sets and reserving entries for reads and
writes in a global reservation table (line 12). These reservations are
crucial for deterministic con$ict resolution in the commit phase.

To make a reservation, each transaction speci!es the operation
type (i.e., read or write), the record type, the unique record identi-
!er, and the current epoch. For LPGs, record types include nodes,
node labels, individual relationships, relationship types, and in-
dex entries; additionally, all relationships connected to a node are
grouped as a unique record type (i.e., neighborhood). Short-lived
transactions and mammoths make reservations slightly di"erently.
Using ReserveRead and ReserveWrite (lines 13 and 15), short-lived
transactions attempt to install reads and writes (tracked separately)
in the global reservation table. The transaction with the smallest
TID always secures a reservation regardless of the execution order.
If a transaction fails to obtain a write reservation, it can skip the
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UNVISITED PENDING_READ PENDING_WRITE VISITED

Figure 4: Mammoth protocol state machine

commit phase, as it has already encountered a WAW con$ict, but
must still install its reservations to maintain deterministic results.

The singlemammoth transaction alsomakes reservations (lines 17
and 19) but does not rely on its TID. Instead, it tracks the state of
each record it accesses, indicating whether it still has work to do
or has completed that record’s read-write operations. The mam-
moth always installs its reservations independently of short-lived
transactions. While we omit the pseudocode for brevity, during the
execution phase, mammoths are broken down into smaller tasks
based on a prede!ned epoch budget to prevent monopolizing the
system. The budget refers to the number of accesses to various
records (e.g., reading a label or updating a property) and allows
mammoths to span multiple epochs without a"ecting other trans-
actions’ performance. We explain how it is calculated in Sec. 4.

Once all transactions complete the !rst phase, the commit phase
begins. As shown in lines 4-5 of Alg. 1, workers schedule the trans-
actions for commit after local execution.

For example, consider three transactions with the following read-
write sets in epoch 1: (i)𝑎𝑏1 writes 𝑊1; (ii)𝑎𝑏2 writes 𝑊1 and reads
𝑊2; (iii) mammoth tx reads nodes 𝑊1 through 𝑊3. After the !rst
phase, the reservation table for the node records would have three
entries: {𝑊1 : 𝑐𝑑𝑒𝑄𝑓 = 1,𝑔𝑕𝑖 = 1, 𝑂𝑅𝑗𝑅𝑐 = VISITED}, {𝑊2 : 𝑐𝑑𝑒𝑄𝑓 =
1, 𝑃𝑕𝑖 = 2, 𝑂𝑅𝑗𝑅𝑐 = VISITED}, {𝑊3 : 𝑐𝑑𝑒𝑄𝑓 = 1, 𝑂𝑅𝑗𝑅𝑐 = VISITED}.
The variables 𝑔𝑕𝑖 and 𝑃𝑕𝑖 show the earliest write and read TIDs
excluding mammoth, while 𝑂𝑅𝑗𝑅𝑐 refers to the mammoth states
discussed in the following section. In this case, 𝑎𝑏2 did not install
its write and can skip the commit phase.

3.2 Commit Phase
During the commit phase, each transaction independently makes a
deterministic decision based on the reservations from the previous
phase for a given epoch. If a short-lived transaction has no con$icts
with other short-lived transactions or the mammoth, its changes
are applied. If con$icts arise, the transaction is rescheduled to the
beginning of the next epoch (lines 7-9) unless it violates an integrity
constraint, in which case it is not retried. The order of aborted
transactions is preserved, ensuring they will eventually commit
because they have lower TIDs than transactions initiated after them.

For con$icts between short-lived transactions, if a transaction
has WAW or RAW dependencies on an earlier transaction (one with
a smaller TID), it must abort. No rollback is needed, however, as
updates are stored locally in tx.RWSet and have not yet been applied.
For con$icts with a mammoth, the short-lived transaction checks
the mammoth’s state for that record (e.g., whether the record has
already been visited by the mammoth), as shown in lines 33-36.

Mammoth Frontier

Visited

Pending 
Read

Pending 
Write

Unvisited

TX1

TX3

TX2

R
W

R

W

TX4

W

1
2

3

4

Figure 5: Mammoth con!icts with short-lived transactions

Since the mammoth is broken down into smaller tasks to dis-
tribute its work across epochs based on a set budget, it does not
process the entire graph in one pass. While the mammoth is run-
ning, records transition through distinct states shown in Fig. 4.
Initially, each record is marked as UNVISITED and can transition to
one of three states: (i) PENDING_READ, indicating the mammoth has
read but not !nished with the record; (ii) PENDING_WRITE, meaning
the mammoth is still updating the record; or (iii) VISITED, indicating
all operations on the record are complete.

We want short-lived transactions to execute strictly before or
after the mammoth’s actions, preserving a clear order in the serial-
ization graph. To ensure this property, we use the mammoth’s four
states to identify potential con$icts. Speci!cally, a short-lived trans-
action can either access fully VISITED records (line 33) or UNVISITED
ones (line 35), but not both – except for VISITED records without
writes. It also cannot interact with records in PENDING_WRITE state,
though it can read records marked as PENDING_READwithin an epoch.

Fig. 5 shows an example involving four transactions while a
mammoth updates the graph, moving from the left side of the graph
to the right (see the dashed line indicating its frontier).𝑎𝑏1 ( 1 ) can
write to the VISITED section of the graph, and 𝑎𝑏4 ( 4 ) can write
to the UNVISITED part.𝑎𝑏3 ( 3 ) can read from a PENDING_READ node
but cannot modify it (e.g., properties or relationships), as updating
requires reserving the node for a write, which would result in a
con$ict. 𝑎𝑏2 ( 2 ) con$icts with the mammoth because it attempts
to operate on parts of the graph that the mammoth is currently
processing (i.e., PENDING) and has already VISITED. The same would
apply to both VISITED and UNVISITED sections.

Recall that only one mammoth is allowed at a time to ensure it
always makes progress. The mammoth is guaranteed to commit
its updates to the database (line 22) deterministically, meaning
no validation step (e.g., constraint violations) or other transaction
will abort it. At the end of the commit phase (line 7), the worker
responsible for the mammoth checks for any remaining work and,
if so, schedules it for the next epoch. The mammoth uses local data
structures to track its execution progress, allowing it to pause and
resume similar to suspendable tasks [37].
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3.3 Determinism and Serializability
Compared to the Aria protocol [46], the mammoth can be logically
viewed as the transaction with the smallest TID in all epochs. It
performs a prede!ned number of operations using a budget, pauses,
and gets scheduled for the next epoch. Since the mammoth cannot
be aborted, its execution is deterministic, ensuring that our protocol
maintains con$ict serializability. Reordering transactions around
mammoth actions is safe due to the assumptions (iii) and (iv).

Regardless of the transaction execution order, the reservation
table will always store the smallest TID that read or wrote a record
during that epoch, along with information about its mammoth
state. A transaction can only install its TID if it is smaller, while
the mammoth independently installs its state without considering
other transactions. This ensures the !rst phase is deterministic.

The same principle applies to the commit phase, as the reserva-
tion table remains unchanged and serves as the single source of
truth for detecting con$icts. Each transaction independently uses its
read-write set to make decisions in parallel with other transactions.

To ensure clients have a consistent view of the graph within
a session, we also introduce bookmarks [54]. Bookmarks prevent
clients from accessing UNVISITED or PENDING sections after reading
results from VISITED mammoth sections. In other words, transac-
tions within a session cannot time-travel and must wait for the
mammoth to complete before proceeding.

3.4 Applicability and Limitations
The logic of a mammoth transitioning through the states of Fig. 4
is straightforward. Similar to graph traversal, the process starts
from a set of nodes, and as their neighbors are accessed for reads
or writes, they are marked as PENDING. Once all operations on a
node are complete, it transitions to VISITED and will not be accessed
again by the mammoth. This method e#ciently handles supernodes,
allowing the mammoth to pause and resume processing across
multiple epochs rather than completing them in a single epoch.

The mammoth cannot update an already VISITED region, compli-
cating certain graph algorithms. For example, iterative algorithms
like PageRank [48] maintain many nodes in the PENDING state until
completion, as nodes need to be revisited across multiple iterations.
Nonetheless, our approach can still support such cases. We can
extend T!"#F$%& with !ner-grained record management at the
property level (e.g., updating only one property in PageRank) or use
commutative operations (e.g., incrementing a counter) to enhance
concurrency. Relaxing isolation could boost performance but risks
correctness, a trade-o" we intentionally avoid. Our protocol aligns
well with our customers’ mammoth workloads, with expensive
iterative graph algorithms handled by the Neo4j GDS library [56].

While epochs simplify con$ict resolution, they also increase
latency (equal to the epoch duration) compared to traditional non-
deterministic protocols like 2PL or MVCC. Additionally, the mam-
moth’s budget must be chosen carefully to avoid workload imbal-
ances within an epoch. In some cases, adding timeouts for short-
lived transactions could enhance client experience when latency
exceeds acceptable limits.

The phantom problem [32] can be handled with standard tech-
niques as in [39, 46]. Overall, our protocol allows regular transac-
tions to run concurrently with the mammoth, reducing tail latency.
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has_tag

T2
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P3 M4
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Figure 6: Partitioning based on accesses and patterns: P =
Person, M = Message, T = Tag.

In the following section, we will discuss how the graph structure
and workloads can further increase concurrency.

Finally, the above mechanisms are not exclusive to graph DBMSs;
we observe that they could also be applied to relational systems.
In simple terms, graph traversals map to table joins, nodes and
relationships become tables, and the protocol proceeds similarly.

4 ACCELERATING CONFLICT RESOLUTION
Many real-world graphs have an irregular structure, often following
a power-law distribution [31, 67]. This results in some neighbor-
hoods being more densely connected than others (e.g., social or
road networks). Updating high-degree nodes, or supernodes, can
lead to unpredictable access bursts, making it hard to evenly distrib-
ute the processing load. A small number of these supernodes can
become hotspots, causing workload skew and a higher frequency
of con$icts. Handling con$icts in read-write graph traversals (i.e.,
chained data accesses) is more challenging than resolving con$icts
in simple point lookups. In some pathological cases, a short-lived
transaction may be blocked inde!nitely if its path overlaps with
both VISITED and UNVISITED regions. Dense graphs exacerbate this
problem, as the higher chance of overlap with mammoths increases
the likelihood of contention, signi!cantly degrading performance.

To address this, we need to use the structural properties of graphs
to improve con$ict resolution. In this section, we introduce tech-
niques aimed at this goal: (i) applying workload- and query-aware
partitioning to prioritize the mammoth’s access to regions that
are less likely to block short-lived transactions due to VISITED-
UNVISITED con$icts; (ii) parallelizing mammoths to shorten their
duration and tuning the deterministic protocol to reduce the epoch
span, lowering the latency of short-lived transactions; (iii) annotat-
ing parts of the graph accessed by the mammoth before execution
to eliminate unnecessary con$icts; and (iv) reordering short-lived
transactions to minimize aborts caused by RAW dependencies.

4.1 Query- and Workload-aware Partitioning
In our work, creating disjoint graph partitions serves a dual purpose:
(i) they function as work units for parallelizing mammoths across
workers (in parallel or distributed execution), and (ii) they prioritize
"hot" graph regions, allowing mammoths to visit them !rst and
reduce early contention with short-lived transactions. However,
existing partitioning algorithms like Fennel [78] and LGD [66] are
workload-agnostic and aim only to reduce communication over-
head between partitions (i.e., relationships spanning two partitions).
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Algorithm 2: R()#*)+PM partitioner
1 Function partition(db, patterns, numberOfPartitions):

// Sort node ids by accesses
2 nodeIds↗ sort(db.getNodeIds(), db.getNodeAccesses())
3 partitionSize↗ nodeIds.size() / numberOfPartitions
4 partitions↗ {↘}, curPartition↗ ↘, visited↗ ↘, idx↗ 0
5 while visited.size() ω nodeIds.size() do
6 if curPartition.size() ≃ partitionSize then
7 partitions.add(curPartition)
8 curPartition↗ ↘
9 nodeId↗ nodeIds[idx++]

10 if visited.contains(nodeId) == false then
11 visited.add(nodeId)
12 curPartition.add(nodeId)
13 for pattern↗ patterns do
14 update curPartition and visited based on pattern
15 if curPartition.isEmpty() == false then partitions.add(curPartition)
16 return partitions

These algorithms assume a uniform traversal likelihood for each
relationship, which is realistic for o%ine graph algorithms like
PageRank [48] but not for transactional workloads [33].

To identify graph hotspots, we track frequent access and traversal
patterns. Although Neo4j does not track this metadata by default, it
can be e#ciently collected through sampling (see Sec. 5.1). Ranking
"hot" records allows the mammoth to prioritize con$ict resolution
for frequent accesses. Additionally, using recurring graph patterns
improves the workload-sensitive partition stability [33] by forming
communities that reduce VISITED-UNVISITED con$icts. The patterns
capture labels, properties, and relationship directions in LPGs.

Fig. 6 illustrates a subgraph of LDBC where Person labeled nodes
𝑌1 to 𝑌3 are linked to Messages 𝑘 they authored. These Messages

may have Tags 𝑎 or be Comments on other Messages. Consider the
scenario that the most frequent pattern submitted to the data-
base involves reading or updating the messages of a single person
((p:P)<-[is_author_of]-(m:M)), and 𝑌1 and 𝑌3 are accessed more
often than 𝑌2. To create (for simplicity) two partitions that prior-
itize frequent accesses, we would include the "hot" nodes 𝑌1, 𝑌3,
𝑘1, and𝑘4 in the !rst partition, as well as𝑘2, since it is likely to
be accessed when visiting 𝑌1. The second partition would contain
the remaining nodes, which are less frequently accessed due to
workload skew and query patterns (e.g., no queries access the Tags).

Building on the above idea, we introduce a novel partitioning
heuristic called R()#*)+PM3, which accounts for both record ac-
cess frequency and recurring graph patterns. Alg. 2 outlines the
algorithm’s logic: (i) it !rst sorts all node IDs by access frequency,
from most to least frequent (line2); (ii) then, it iterates over these
nodes, checking if they have not been visited4 (line 10) and adds
them to the current partition (line 12); (iii) for each node, even if
already visited, the algorithm uses the most frequent graph pat-
terns starting from that node to add more nodes to the partition,
marking them as visited. This ensures that each partition is disjoint
by excluding previously visited nodes.

In lines 6-8, if the current partition exceeds a prede!ned size of
|𝑁 |

#𝑂𝑃𝑄𝑅𝑀𝑅𝑀𝑆𝑇𝑈 , it is considered complete and added to the list of parti-
tions. This can result in varying-sized partitions, potentially leading

3Named from the steps involved: Ranking and PatternMatching.
4It also checks if the nodes satisfy a !lter predicate based on labels and property values
(e.g., include only Person labeled nodes), which we omit for simplicity.

to imbalanced execution. We handle this at the transaction protocol
level by pausing and resuming work, as discussed in Sec. 3.4.

R()#*)+PM is an o%ine algorithm that requires graph reparti-
tioning when the graph structure changes signi!cantly, which is
generally rare in typical transactional workloads that support a spe-
ci!c user-level application. In Sec. 6.3, we show that repartitioning
can be completed within tens of seconds, enabling frequent execu-
tion. However, we can avoid the overhead of full repartitioning by
applying a streaming repartitioning strategy [33, 41]. New nodes
are placed into "cold" partitions by default, while deletions remove
nodes from their partitions, allowing mammoths to bypass them.

4.2 Parallel Mammoths and Parameter Tuning
The end-to-end latency of short-lived transactions is closely tied to
both the duration of the mammoth and the length of each epoch.
While the mammoth is running, short-lived transactions are more
likely to be aborted because of contention with themammoth. More-
over, a longer epoch span means that short-lived transactions take
longer to commit, even without con$icts. To address this challenge,
we must speed up mammoths by executing them in parallel and
responsively tuning the epoch duration.
Parallel execution. Since a single mammoth is structured into
smaller tasks over disjoint graph partitions, a natural solution is to
execute these tasks in parallel. The epoch-based structure of the
deterministic protocol aligns well with parallel graph algorithms,
such as Breadth-First Search (BFS) [68] or Single-Source Shortest
Path (SSSP). For example, LDBC 𝑍1 from Fig. 3 can compute rela-
tionship weights in parallel, while𝑍2 can perform a parallel BFS to
!nd experts connected to a person and update their properties. In
both cases, parallel tasks may perform redundant operations since
they synchronize at the epoch’s end, with only one task ultimately
installing its writes for a given record. The tasks use compare-
and-swap (CAS) operations to reserve writes within an epoch for
di"erent records and consolidate to skip already visited nodes.

Our evaluation shows that parallelizing mammoth tasks not only
reduces the tail latency of short-lived transactions but also allows
the system to return to regular execution faster. This prevents the
database from becoming overloaded with blocked transactions.
The parameters in$uencing epoch duration are: (i) the epoch size,
the batch size of transactions per epoch; (ii) themammoth budget, or
the operations it performs within an epoch; and (iii) the number of
parallel mammoth tasks. A small epoch size may cause short-lived
transactions to queue waiting for the mammoth, while an overly
large size can prolong the duration unnecessarily. Our experiments
in Sec. 6.5 suggest that an optimal epoch size is about !ve times
the average transaction throughput (𝑅𝑙/ s), balancing e#ciency
with recovery from aborts. The mammoth budget and parallel task
count depend on workload and hardware con!guration. A general
guideline is to set the budget as a multiple (e.g., 10→) of the average
transaction throughput and assign all workers for parallelism.

4.3 Graph Tagging and Transaction Reordering
When running the transactional protocol for mammoths, an initial
assumption would be that they will access any graph record (e.g.,
nodes, relationships, neighborhoods), meaning every entity should
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be marked as UNVISITED. However, this does not hold true for many
workloads and can often lead to unnecessary con$icts.

For example, in LDBC query 𝑍1, it is known that only nodes
labeled as Messages are accessed, or in another case, 𝑍1 updates
only the knows relationship. Thus, we can optimize execution by
extracting the labels, relationship types, and record accesses spec-
i!ed in mammoth queries. By focusing solely on these entities,
we can more accurately detect mammoth con$icts. This approach
signi!cantly prunes the graph regions considered irrelevant to the
mammoth, minimizing con$icts.

Transaction reordering [10, 11, 59] can enhance performance
by reducing aborts for short-lived transactions. To keep our proto-
col deterministic and serializable without coordination, we apply
the reordering algorithm from [46], which converts RAW to WAR
(Write-After-Read) dependencies. The only modi!cation required is
to add a check to the protocol in Alg. 1. Speci!cally, after line 31, we
ensure that a transaction does not have WAR or RAW dependencies
with earlier transactions (in addition to WAW) by using the read
and write TIDs already recorded in each reservation entry.

5 TUSKFLOW ARCHITECTURE
While integrating our protocol into a deterministic database is
straightforward, commercial graph databases [2, 50, 52, 74] are not
designed to easily support deterministic transactions. To establish
an easy future path to production and minimize the changes for
Neo4j, we chose to adapt our protocol to existing databases by
integrating it into the transaction scheduling subsystem.

In this section, we introduce T!"#F$%&, an experimental graph
database based on Neo4j that uses two execution modes: (i) 2PL
for short-lived transactions; and (ii) our deterministic protocol
from Sec. 3 for mixedmammoth and short-lived transactions.We be-
gin with an overview of the system (Sec. 5.1) and then explain how
T!"#F$%& transitions between its two execution modes (Sec. 5.2).

5.1 Overview
Fig. 7 illustrates the components of T!"#F$%&, implemented as a
standalone 14 K-line Java codebase, separate from Neo4j. To reduce
the memory footprint of transactional queries, it uses statically allo-
cated object pools for tasks, primitive collections [25], and roaring
bitmaps [14] as in [68].

Before clients can submit queries, they connect to the Connec-
tion Manager, which determines when a transaction is ready for
submission or when results can be returned based on bookmarks.
As explained in Sec. 3.3, users cannot time-travel between VISITED

and UNVISITED regions, which ensures session consistency.
For Concurrency Protocols, T!"#F$%& supports both (strict) 2PL

and deterministic execution. To implement 2PL, it uses Forseti,
Neo4j’s open-source lock manager [55]. For the reservation table
needed from Alg. 1, T!"#F$%& maintains a concurrent hashmap
for each record type, with workers installing updates using CAS
operations based on TIDs. TIDs are assigned through a monotoni-
cally increasing counter at transaction submission. Fig. 8 shows a
reservation entry that uses: (i) 64 bits for the epoch; (ii) 64 bits for
the earliest read-write TIDs; and (iii) 3 bits for the mammoth state.

Currently, T!"#F$%& supports pre-compiled stored procedures
to simplify integration with Neo4j [57], similar to other determin-
istic databases [72, 79]. Written in Java, these procedures express
arbitrary read-write logic over the graph and allow T!"#F$%& to
extract "hot patterns" for R()#*)+PM. For short-lived transactions,
both 2PL and the deterministic protocol use a uni!ed API with sim-
ple read and write calls, abstracting away locking or reservation
details based on the executionmode. However, for mammoths, users
must explicitly manage the execution and state transitions using
the ReserveMammothRead and ReserveMammothWrite calls. We plan to
develop a compiler [70] that parses Cypher [35] and automatically
generates mammoth logic.

The Query Manager schedules transactions and manages transi-
tions between the two execution modes (see Sec. 5.2). The Graph
Storage Layer contains: (i) a node vector; (ii) a relationship vector;
(iii) two vectors of incoming and outgoing relationship IDs; and (iv)
auxiliary data structures on labels and relationship types.

The Monitoring Manager tracks system metrics like end-to-end
latency, average throughput (a"ecting epoch size), and the count
of committed and aborted transactions. During execution, workers
pro!le a subset of read-write accesses and report to the Monitoring
Manager. Pro!ling occurs per transaction (all operations recorded
or none), improving the collocation of neighboring graph entities
for the R()#*)+PM partitioner.

The Partition Storemanages graph partitions for mammoth trans-
actions and supports hash, Fennel, and R()#*)+PM partitioners.
Parallel mammoth tasks retrieve disjoint partitions from the store,
and any new nodes post-partitioning go to "cold" partitions. T!"#’
F$%& triggers repartitioning periodically, based on a con!gurable
interval and metrics from the Monitoring Manager.

5.2 Transaction Scheduling
Alg. 3 outlines the scheduling logic of the Query Manager. During
the regular execution mode, when no mammoth transactions are
submitted, workers retrieve and execute short-lived transactions
from the txQueue using 2PL. However, when one or more mammoth
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Algorithm 3: Query manager transaction scheduling
// txQueue stores short-lived txs
// mQueue stores mammoth txs
// p1Queue/p2Queue stores txs for protocol’s 1st/2nd phase

1 Function run(txQueue, mQueue, p1Queue, p2Queue):
2 while true do
3 if mQueue.isEmpty() == false then

// Schedule tasks until there is no mammoth
4 ScheduleInEpochs(txQueue, mQueue, p1Queue, p2Queue)

// Aborted queries use regular execution from here
5 ResetExecutionMode(txQueue, p1Queue)
6 Function ScheduleInEpochs(txQueue, mQueue, p1Queue, p2Queue):
7 while mQueue.isEmpty() == false do
8 mammoth↗ mQueue.poll()
9 p1Queue.add(mammoth)

10 while mammoth.hasFinished == false do
11 size↗ min(epochSize - p1Queue.size(), txQueue.size())
12 for i↗ 0 to size do
13 tx↗ txQueue.poll()
14 move tx to p1Queue and set its protocol to deterministic
15 p1Counter↗ p1Queue.size()

// start phase 1 and wait until p1Counter == 0
16 p2Counter↗ p2Queue.size()

// start phase 2 and wait until p2Counter == 0
17 Function ResetExecutionMode(txQueue, p1Queue):
18 for tx↗ p1Queue do move tx to txQueue and set its protocol to 2PL

transactions arrive, theQuery Manager switches to deterministic ex-
ecution mode (line 4) and processes them one at a time. In this mode,
workers handle transactions from two queues: p1Queue and p2Queue,
corresponding to the two protocol phases.

Based on the epoch size, a !xed number of transactions from
the txQueue are moved to the p1Queue (lines 12-14), along with the
mammoth transaction (line 9), and a barrier is set. Once all tasks in
the !rst phase are completed, they are moved to the p2Queue, and
the second phase begins with a new barrier (see Sec. 3.2). Aborted
transactions are moved back to p1Queue before new transactions
from txQueue can be added based on available slots within the
epoch size (line 11). After all mammoth transactions are processed,
the Query Manager resets any aborted transactions to 2PL, places
them back in txQueue, and resumes regular execution mode.

Table 1: Evaluation datasets

Dataset Domain |V| |E| |E|/|V|

WikiTalk [43] communication net. 1 M 7.8 M 7.8
DBPedia [8] hyperlink 18 M 172 M 9.5
USRoad [63] rail network 24 M 58 M 4.8
LDBC SF10 [31, 67] social network 34 M 165 M 9.8

6 EVALUATION
In this section, we evaluate the performance of T!"#F$%& with
mammoths. We show that it does not block short-lived transactions
and delivers lower tail latency compared to 2PL andMVCC (Sec. 6.2).
Next, we analyze the impact of graph partitioning (Sec. 6.3) and
present an optimization breakdown of the con$ict resolution tech-
niques (Sec. 6.4) from Sec. 4. Lastly, we o"er guidelines for tuning
the deterministic protocol (Sec. 6.5) and demonstrate how T!"#’
F$%& performs as the transaction throughput increases (Sec. 6.6).

6.1 Experimental Setup
All experiments were performed on an m5.8xlarge AWS EC2 in-
stance with 32 physical cores, 35.8 MiB LLC, and 128 GiB memory,
using Amazon Linux 2023 (kernel v. 6.1) and Corretto OpenJDK17.
Datasets and workloads. For our evaluation, we use two real-
world graph datasets and a synthetic one to provide a diverse set of
scenarios: (i) DBPedia[8], a hyperlink network of Wikipedia where
pages are nodes and hyperlinks are relationships; (ii) USRoad [63],
a low-degree road network graph with a grid-like structure; and
(iii) LDBC [31, 67], which simulates real-world interactions over
a social network. Since USRoad is undirected, we create two rela-
tionships for each original one, and for LDBC, we store only the
properties required for our queries. Table 1 summarizes the graphs.

The LDBC SNB benchmark represents an OLTP workload, yet it
only covers short-lived transactions. To simulate mammoths on the
LDBC network, we also use the three queries described in Sec. 2.5.
These queries represent typical production workloads for both
balanced and unbalanced mammoths. Speci!cally, 𝑍1 and 𝑍2 are
(o%ine) analytical LDBC-BI queries [67], which we run as (online)
mammoth transactions alongside regular ones. Since DBPedia and
USRoad do not have labeled nodes, we only use a variation of 𝑍0.
Database systems. We compare our deterministic protocol to 2PL
using T!"#F$%& instead of Neo4j5 for fairness [69]. For MVCC,
we use Postgres v.15.0, con!gured according to best practices. Aria
performs similarly to 2PL but with higher latency due to blocking all
transactions until the mammoth completes. Unless stated otherwise,
we set the epoch budget to 2M ops, use 32 parallel tasks, and set
the epoch size to 5→ the average transaction throughput.
Metrics. The main performance metrics in the benchmarks are
throughput and end-to-end tail latency, measured at the 99th per-
centile (p99). Candlesticks in the plots represent the 5th, 25th, 50th,
75th, and 99th latency percentiles.

Table 2: p99 latency

Workload p99 latency (Mammoth duration) in s
T!"#F$%& 2PL Postgres

DBpedia 0.9 (4.1) 10.5 (11.7) 40.9 (71.6)
USRoad 0.8 (4.8) 13.7 (14.9) 19.2 (91.7)

6.2 Comparison with 2PL and Postgres
To study the e#ciency of T!"#F$%&, we use the LDBC social
network with queries 𝑍0-𝑍2 and measure the throughput of short-
lived transactions. In this experiment, we !x the input rate of
short-lived transactions at 10K per second, which is a ballpark
representative of a modest real system. All clients submit either
read-only or read-write 1-hop queries, with 80% being read-only.
These queries start from a random Person (uniform distribution)
and either read or update ten random Messages based on the pat-
tern (p:P)<-[is_author_of]-(m:M). We compare our deterministic
protocol to 2PL by starting a single mammoth at the 60 s mark.

For the simplest query, 𝑍0, which updates all nodes labeled
as Messages, Fig. 9 shows that T!"#F$%& completes the mammoth
execution in under 8 s, thanks to the optimizations discussed in

52PL provides con$ict serializability, whereas Neo4j o"ers Read Committed isolation.
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Figure 9: LDBC Q0
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Figure 10: LDBC Q1
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Figure 11: LDBC Q2
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Figure 12: Latency comparison
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Figure 13: Optimizations breakdown
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Figure 14: Latency with increasing tx/s

Sec. 4, in particular the parallel execution. In contrast, 2PL blocks
all transactions for 21 s, whereas T!"#F$%& allows both read-only
and read-write transactions to make progress and commit.

For 𝑍1, the most compute-intensive query, Fig. 10 shows that
T!"#F$%& completes the mammoth in 60 s while maintaining a
throughput close to the input rate. However, there are two points
where throughput temporarily drops to zero. This happens because
many transactions are aborted due to the mammoth, causing the
protocol to spend considerable time scheduling them. During these
periods, the epoch duration exceeds 1 s, leading to a temporary stall
in throughput. In contrast, 2PL fails to complete due to transaction
overload, eventually causing an out-of-memory exception, further
demonstrating the importance of parallelizing mammoths.

𝑍2 in Fig. 11 exhibits a similar pattern to 𝑍0. T!"#F$%& com-
pletes the mammoth in under 15 s, compared to 68 s with 2PL.
Although some epochs temporarily block short-lived transactions,
the average throughput remains close to 10K tx/s.

Next, we evaluate the impact of mammoths on the end-to-end
latency of short-lived transactions, using the LDBC social network
with𝑍0-𝑍2, and the DBpedia and USRoad graphs. For DBpedia and
USRoad, the mammoth behaves as LDBC 𝑍0 and updates all nodes,
while the 1-hop queries start from any random node and either
read or update ten random outgoing neighbors. Fig. 12 shows that
2PL results in up to 6→ higher median and p75 latency. Additionally,
p95 (not shown here) and tail latency can be up to 180→ and 17.2→
higher. This translates into waiting minutes instead of hundreds of
milliseconds, which is critical for responsive systems.

To simplify workloads for Postgres, we use the unlabeled DB-
pedia and USRoad graphs, create hash indexes for in- and out-
relationships, and reduce the input rate to 2.5K tx/s, as Postgres
cannot otherwise handle the 1-hop traversals. As shown in Table 2,
Postgres experiences 24-45→ higher tail latency than T!"#F$%& and
performs worse than 2PL, which completes the mammoth faster.

In summary, choosing the right protocol signi!cantly impacts
both the throughput and latency of short-lived transactions and
T!"#F$%& greatly improves concurrency. Finally, our pro!ling
of 2PL revealed that the lock manager is a major bottleneck for
mammoth transactions.

Table 3: Partitioning with point and 1-hop queries

Workload Read ratio
p99 latency in s

Point queries 1-hop queries
Serial Ranking Serial Ranking R1hop

DBpedia
80% 1.53 1.86 0.86 0.87 0.50
90% 1.75 2.01 0.54 0.62 0.34
100% 1.72 1.92 0.23 0.48 0.28

LDBC
80% 3.27 3.91 2.30 2.41 1.04
90% 3.62 3.61 1.58 1.99 0.67
100% 4.14 3.62 2.41 1.47 0.93

USRoad
80% 3.74 3.80 1.16 1.02 0.71
90% 3.68 3.86 1.31 0.93 0.79
100% 3.45 3.23 1.19 1.02 0.73

6.3 Graph Partitioning with Skewed Workloads
Given most graph workloads will exhibit skewed access patterns,
we now evaluate the bene!ts of the R()#*)+PM partitioner in
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Table 4: Partitioning with multi-hop queries

Workload Read
ratio

p99 latency in s
Serial Rank- R1hop R2hop R3hop RPatterns

ing

DBpedia -
2-hops

80% 0.67 0.73 0.40 0.47 - -
90% 0.53 0.78 0.32 0.36 - -
100% 2.05 3.65 0.57 1.29 - -

LDBC -
2-hops

80% 2.05 3.65 0.57 1.29 - -
90% 1.71 3.45 0.82 1.08 - -
100% 2.81 2.79 0.76 1.67 - -

USRoad -
2-hops

80% 0.99 1.14 0.81 0.88 - -
90% 1.10 1.02 0.72 0.65 - -
100% 0.98 0.87 1.04 0.76 - -

DBpedia -
3-hops

80% 0.53 0.80 0.31 0.49 0.32 -
90% 0.53 0.65 0.27 0.34 0.25 -
100% 0.49 0.65 0.25 0.24 0.42 -

LDBC -
3-hops

80% 1.75 3.41 0.92 0.98 5.50 -
90% 1.53 3.75 0.75 1.01 5.20 -
100% 2.87 3.79 1.15 1.93 7.63 -

USRoad -
3-hops

80% 0.99 1.49 1.11 0.76 0.78 -
90% 0.90 1.18 1.04 0.85 0.83 -
100% 0.82 1.06 0.90 0.73 0.65 -

DBpedia -
mixed

80% 0.70 0.71 0.63 0.62 0.72 0.59
90% 0.74 0.90 0.50 0.89 0.80 0.79
100% 0.29 0.35 0.27 0.22 0.21 0.29

LDBC -
mixed

80% 3.24 2.98 1.41 2.48 5.66 0.89
90% 2.39 3.33 0.83 1.79 4.95 1.05
100% 3.13 3.26 1.35 2.00 5.17 1.36

USRoad -
mixed

80% 1.06 1.36 0.93 0.95 0.66 0.41
90% 0.68 1.13 0.89 0.65 0.65 0.70
100% 0.95 1.55 0.83 0.95 1.03 1.01

these scenarios. Speci!cally, we aim to understand which types of
patterns can enhance performance for various query workloads. As
a baseline, we use serial partitioning, where nodes are assigned to
partitions based on their IDs. This approach can o"er good average
performance due to its memory-friendly node access, particularly
for synthetic graphs like LDBC SNB, where a person’s messages are
often collocated within the same partition. We omit comparisons
with hash and Fennel partitioning algorithms, as they are workload-
agnostic and signi!cantly degrade performance in our evaluation.

For this experiment, we use LDBC SNB, DBpedia, and USRoad
graphs, with 𝑍0 as the mammoth. Short-lived transactions start at
a node selected using a Zip!an distribution (𝑚 = 1) applied to ran-
domly shu%ed node IDs, and results are averaged across 5 runs. The
short-lived transactions have 5 di"erent con!gurations: (i) point
queries; (ii) 1-hop queries; (iii) 2-hop queries; (iv) 3-hop queries;
and (v) mixed transactions, which consist of 25% point queries, 55%
1-hop queries, 15% 2-hop queries, and 5% 3-hop queries – similar
to common production workloads. In LDBC SNB, multihop queries
use the pattern (p1:P)-[:know]{hops-1}->(p2:P) to access a Person
within their social circle and read/write 10 of its Messages. In DBpe-
dia and USRoad, the queries traverse hops-1 outgoing relationships
and then access 10 direct relationships from the !nal node.

For each con!guration, we evaluate di"erent variations of R()#’
*)+PM: (i) Rankingwithout using patterns for partitioning; (ii) R1hop,
which leverages the most frequent 1-hop patterns; (iii) R2hop, using
2-hop patterns; (iv) R3hop, using 3-hop patterns; and (v) RPatterns,
which uses all available patterns. Lastly, we vary the percentage of
read-only queries between 80% and 100% while keeping the input

rate at the maximum capacity that the lock manager can handle.
Tables 3 and 4 summarize the results regarding tail latency, with
the best approach for each workload highlighted in green.

Starting with point queries and only Ranking (no patterns) as
shown in Table 3, serial partitioning results in tail latencies that
are 2-21% lower. The exception is for 100% read-only workloads
with LDBC SNB and USRoad, where Ranking improves latency by
up to 13%. This indicates that relying solely on node accesses for
partitioning does not always enhance performance if the reduction
in con$icts does not outweigh the bene!ts of sequential memory
accesses. However, with 1-hop queries, utilizing the most frequent
1-hop pattern signi!cantly reduces tail latency by 1.6-2.6→.

For 2-hop queries (Table 4), R1hop generally delivers the best
performance, outperforming Serial by 1.5-3.5→ for most workloads.
The exception is USRoad, where R2hop surpasses R1hop due to
the graph’s low-degree structure, which favours partitioning that
collates long paths. Using the most common 2-hop patterns requires
at least 30% more time for partitioning. A similar trend is found
with 3-hop queries: R1hop achieves nearly 2→ lower tail latency
than Serial, except for USRoad, where R3hop performs best, albeit
with longer partitioning times. We also observe that using 2- or
3-hop patterns can have negative e"ects on performance (see LDBC-
3-hops), as it can split neighboring nodes that should have been
collocated (e.g., a Person not connected to her Messages).

For mixed workloads, RPartitions, which uses all available pat-
terns regardless of length, generally achieves lower or similar tail
latency compared to R1hop. However, RPartitions requires at least
3→ more time for partitioning, which can be expensive for large
graphs andmultiple patterns. Despite this, even R1hop still provides
up to 3.6→ lower tail latency compared to Serial partitioning.

Overall, using ranking with the most frequent 1-hop patterns
(R1hop) o"ers the best balance between partitioning cost and perfor-
mance. The e"ectiveness of the "hot" patterns improves when they
include label information – note that only LDBC SNB has labels.
Finally, Serial partitioning is expected to perform worse on real-
world graphs, where frequent updates can disrupt the collocation
of neighboring nodes with numerically close IDs.

6.4 Optimization Breakdown
We study T!"#F$%&’s con$ict optimization techniques from Sec. 4
using the LDBC SNB, DBpedia, and USRoad datasets with 𝑍0 and
1-hop read-write queries (80% read-only, at 10K tx/s). We measure
the tail latency of short-lived transactions across 5 con!gurations:
(i) no optimizations (baseline); (ii) parallel execution; (iii) graph
tagging on top of parallel execution; (iv) transaction reordering
with the previous optimizations; and (v) emulating an ideal pro-
tocol that resolves all con$icts (no-con$icts). Fig. 14 shows that
parallel execution reduces tail latency by 2.7-5.2→ by shortening the
mammoth duration. Graph tagging cuts tail latency by roughly 50%,
while transaction reordering improves performance for DBpedia
and USRoad by 62% and 49%, respectively. Transaction reorder-
ing has no e"ect on the LDBC SNB graph, as it has fewer write
con$icts between regular transactions, though it does help with
skewed workloads. Finally, the no-con$icts con!guration further
reduces latency by 3.5→, indicating the potential of more advanced
techniques, such as better transaction reordering algorithms [16].
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Table 5: Parameter tuning

Budget
(#ops)

#Tasks p99 latency (Mammoth duration) in s
10K tx/s 20K tx/s 40K tx/s

125K

1 18.8 (30.8) 30.5 (45.5) 62.5 (83.4)
8 8.3 (15.8) 20.7 (30.9) 53.3 (72.3)
16 8.9 (15.9) 22 (32.1) 53 (72)
32 7.9 (14.9) 21.8 (31.8) 48.7 (65.9)
64 8.6 (15.6) 21.2 (31.2) 50.9 (69)

500K

1 12.2 (22.3) 15.6 (26.4) 22.5 (35.4)
8 5 (10.9) 6.6 (12.8) 12.7 (20.8)
16 4.2 (9.5) 4.4 (10.7) 10.6 (18.0)
32 3.2 (8.7) 5.6 (11.2) 10.6 (17.8)
64 3.9 (9.1) 4.4 (10.3) 10.7 (17.7)

2M

1 12.4 (20.5) 13.8 (22) 16.1 (25.9)
8 4 (8.5) 4.1 (9.1) 5.7 (11.4)
16 3.1 (7) 2.9 (7.6) 4.5 (9.4)
32 2.1 (5.9) 3.2 (7.6) 4.5 (9.1)
64 2.4 (6.4) 3.3 (7.8) 4.5 (8.9)

4M

1 14.3 (20.3) 14.7 (21.3) 15.3 (22)
8 4.6 (8.7) 5.1 (9.2) 5.3 (9.5)
16 3.9 (7.8) 4.3 (8.1) 3.5 (7.7)
32 3 (6.5) 3.5 (7.4) 3.9 (8.1)
64 3.4 (7.2) 3.4 (7.3) 4.6 (8.4)

6.5 Parameter Tuning
Since the duration of mammoth transactions and epoch length im-
pact the performance of short-lived transactions, this experiment
explores how di"erent protocol parameters a"ect tail latency. Ta-
ble 5 summarizes the results, varying the epoch budget from 125K
to 4M ops per epoch and the number of parallel tasks from 1 to 64.
We set the epoch size to 5→ the average transaction throughput,
using input rates of 10K, 20K, and 40K tx/s, with the best con!gura-
tion for each highlighted in green. All experiments use the LDBC
SNB graph with 1-hop traversals (80% read-only) and 𝑍0 as the
mammoth query. We observe that increasing the epoch budget from
125K to 2M reduces tail latency and overall transaction duration,
but further increase show diminishing returns. Similarly, increasing
the number of parallel mammoth tasks within an epoch improves
performance, but only up to 16 or 32 tasks. Based on these results,
we conclude that the number of tasks should not exceed the number
of available workers, and the mammoth budget should be around
10→ the average transaction throughput.

6.6 T!"#F$%&’s Scalability
Finally, we examine the scalability of T!"#F$%& using the LDBC
SNB graph with 𝑍0 and 1-hop read-write queries (80% read-only).
We measure the end-to-end latency of short-lived transactions
while varying the input rate from 10K to 500K tx/s. At 50K tx/s,
the median and p75 latency increase by nearly 18→, but tail latency
remains largely una"ected compared to 10K tx/s. Doubling the rate
to 100K tx/s raises all latency percentiles by around 5.9→, again
with only a small impact on tail latency. Even at this rate, latencies
remain at the granularity of a second, which is acceptable for many
applications. However, when the input rate reaches 500K tx/s, la-
tency increases by up to two orders of magnitude, revealing the
limitations of our epoch-based approach due to the high scheduling
overhead. A distributed extension could help mitigate this issue
by partitioning the load across multiple nodes. However, this in-
troduces new challenges – like ensuring partition consistency and
scheduling distributed queries – which we leave for future work.

7 RELATEDWORK
Transactional benchmarks for mammoths. Most existing rela-
tional database benchmarks overlook mammoth transactions, even
though they play a crucial role in many applications [18]. For exam-
ple, HTAP benchmarks [6, 23, 24] combine OLTP queries [76] with
read-only queries fromOLAPworkloads [77]. Only OLxPBench [42]
introduces mammoth transactions that consist of read-write opera-
tions with analytical reads and demonstrates how they signi!cantly
impact the performance of HTAP systems.

Graph benchmarks have primarily focused on analytics [5, 13],
with only LDBC [31, 67] attempting to capture short update queries
alongside complex read-only ones. TAOBench [17] from Meta is
also limited to a small set of large write transactions. The queries
introduced in Sec. 2.5 aim to simulate typical production mammoth
workloads. In Sec. 6, we highlight that tail latency, in addition
to throughput, are both critical metrics to consider, and we also
emphasize the signi!cance of skewed access patterns for short-lived
transactions when running a mammoth.
Locking techniques. Fine-grained locking [39] is a common strat-
egy to increase concurrency while preserving transactional seman-
tics. While this approach cannot address issues with mammoth
transactions, our protocol could adopt similar !ne-grained record
management at the graph property level [4]. This would help pre-
vent unnecessary con$icts caused by common graph algorithms,
like PageRank, which update only a few properties.

Another recent approach for mammoths is lock escalation [18],
which locks based on communities and motifs rather than individ-
ual graph entities or properties. While this can improve the abil-
ity of existing lock managers to handle mammoths, it still blocks
short-lived transactions from making progress. Our query- and
workload-aware partitioning approach was inspired by this idea,
but it constructs communities based on access patterns, enabling
concurrency without blocking other transactions.
Transaction scheduling is orthogonal to our epoch-based ap-
proach. LDSF [73], a hotspot-aware scheduling algorithm, might
help to prioritize transactions that block others within an epoch.
Other techniques schedule transactions by identifying "hot" keys
and postponing requests [12] or by learning abort patterns between
transactions [65]. As discussed in Sec. 6.4, we could achieve at least
a 3.5→ improvement in tail latency by exploring more advanced
reordering algorithms [16]. However, it is crucial to consider how
these methods might impact determinism and serializability.

8 CONCLUSION
In this work, we introduce the !rst deterministic concurrency proto-
col for mammoths, very large online transactions, that ensures con-
$ict serializability by strategically reordering regular transactions
around a mammoth. To further reduce con$icts with short-lived
transactions, we propose techniques that exploit graph properties,
including query- and workload-aware partitioning, graph entity
tagging, mammoth decomposition and parallel execution. These
techniques, implemented in T!"#F$%&, dramatically improve con-
currency and reduce latency by up to 45→ compared to 2PL or
MVCC. Finally, while designed for graph databases, our protocol
also applies to relational systems, which face similar problems with
very large transactions.
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