
LEADRE: Multi-Faceted Knowledge Enhanced LLM Empowered
Display Advertisement Recommender System

Fengxin Li∗
Renmin University of China

lifengxin@ruc.edu.cn

Yi Li
Yue Liu

Chao Zhou
Yuan Wang

sincereli@tencent.com
herculesliu@tencent.com
derekczhou@tencent.com
leoyuanwang@tencent.com

Tencent Inc.

Xiaoxiang Deng
Wei Xue

Dapeng Liu
reesedeng@tencent.com
weixue@tencent.com
rocliu@tencent.com

Tencent Inc.

Lei Xiao
Haijie Gu
Jie Jiang

shawnxiao@tencent.com
jerrickgu@tencent.com
zeus@tencent.com

Tencent Inc.

Hongyan Liu†
hyliu@tsinghua.edu.cn
Tsinghua University

Biao Qin†
Jun He†

qinbiao@ruc.edu.cn
hejun@ruc.edu.cn

Renmin University of China

ABSTRACT
Display advertising plays a crucial role in benefiting advertisers,
publishers, and users. Traditional display advertising systems em-
ploy a multi-stage architecture comprising retrieval, coarse ranking,
ranking, and re-ranking. However, conventional retrieval methods
primarily rely on ID-based learning-to-rank mechanisms, often
underutilizing the content information of ads, like ads’ title, and
description. This limitation reduces the ability to generate diverse
and relevant recommendation lists.

To address this challenge, we propose leveraging the extensive
world knowledge of large language models (LLMs). However, effec-
tively integrating LLMs into advertising systems presents three key
challenges: (i) How to accurately capture user interests, (ii) How to
bridge the knowledge gap between LLMs and advertising systems, and
(iii) How to efficiently deploy LLMs at scale. To overcome these
challenges, we introduce LEADRE—the LLM Empowered Dis-
play ADvertisement REcommender system. LEADRE consists of
three core components. The Intent-Aware Prompt Engineering
module introduces multi-faceted knowledge and constructs intent-
aware <Prompt, Response> pairs, fine-tuning LLMs to generate ads
tailored to users’ personal interests. The Advertising-Specific
Knowledge Alignmentmodule incorporates auxiliary fine-tuning
tasks and Direct Preference Optimization (DPO) to align LLMs with
advertising semantics and business objectives. The Latency-Aware
Model Deploymentmodule integrates a hybrid service framework
that balances latency-tolerant and latency-sensitive service, ensur-
ing seamless online deployment.

Extensive offline experiments validate the effectiveness of LEADRE,
demonstrating significant improvements across multiple evaluation
metrics. Furthermore, online A/B tests reveal a 1.57% and 1.17%

∗Work was done while Fengxin Li was intern at Tencent.
†Corresponding authors.

increase in Gross Merchandise Value (GMV) for serviced users on
WeChat Channels and Moments, respectively. LEADRE has been
successfully deployed on both platforms, handling tens of billions
of requests daily.

PVLDB Reference Format:
Fengxin Li, Yi Li, Yue Liu, Chao Zhou, Yuan Wang, Xiaoxiang Deng, Wei
Xue, Dapeng Liu, Lei Xiao, Haijie Gu, Jie Jiang, Hongyan Liu, Biao Qin,
and Jun He. LEADRE: Multi-Faceted Knowledge Enhanced LLM
Empowered Display Advertisement Recommender System . PVLDB, 18(12):
4763 - 4776, 2025.
doi:10.14778/3750601.3750602

1 INTRODUCTION
Online display advertising plays a crucial role in facilitating tar-
geted content delivery and meeting users’ personal interest, bene-
fiting advertisers, publishers, and users [40, 41]. Traditional display
advertising systems employ a multi-stage architecture, including
retrieval, coarse ranking, ranking, and re-ranking. The retrieval
stage, which initiates the process, is critical for identifying user in-
terests and mitigating the "information cocoon" effect by providing
a diverse set of ad options [5, 25].

Conventional retrievalmethods primarily rely on ID-based learning-
to-rank mechanisms to learn collaborative semantics for efficient ad
filtering. However, these methods often underutilize ad content in-
formation, such as the title and description of the ads, which limits

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750602

4763

https://doi.org/10.14778/3750601.3750602
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750602

in generating diverse recommendations, particularly in scenarios
with sparse user behaviors and long-tail ads [10, 48].

Recently, large language models (LLMs) have demonstrated re-
markable capabilities in understanding, generalization, and reason-
ing by leveraging vast amounts of general knowledge [27, 31, 62].
Researchers have explored incorporating LLMs into recommender
systems [37, 47] to enhance retrieval performance. However, apply-
ing LLMs in industrial-scale display advertising presents several
critical challenges:

(1) Capturing user interests in scenarios with implicit in-
tents and sparse behaviors: While LLMs exhibit strong capabili-
ties in understanding user intent, display advertising often lacks
explicit queries, making it difficult to infer user intent. Additionally,
user interactions in the ad domain are typically sparse, necessitating
effective utilization of limited data and supplementary behaviors to
enhance commercial intentmodeling. (2) Bridging the knowledge
gap between LLMs and advertising systems: Although LLMs
excel in generating natural language responses based on general
knowledge, display advertising requires the generation of relevant
ads from a predefined inventory. It is essential to bridge the gap
between the general knowledge of LLMs and the specific require-
ments of advertising systems. Furthermore, the generated ads must
align with business objectives, requiring tailored fine-tuning strate-
gies to optimize LLMs for advertising-specific goals. (3) Efficiently
deploying LLMs in large-scale advertising systems serving
billions of requests per day: Integrating LLMs into an online
advertising system imposes substantial computational demands,
potentially conflicting with cost efficiency requirements. Thus, op-
timizing LLM deployment is essential to balance computational
costs while maintaining scalability and real-time responsiveness.

To address these challenges, we propose LEADRE—a multi-
faceted knowledge enhancedLLMEmpowered displayADvertisement
REcommender system. LEADRE consists of three core components:

(1) Intent-Aware Prompt Engineering: This module designs
intent-aware <Prompt, Response> pairs that fine-tune LLMs to gen-
erate ads tailored to users’ interests. To mitigate data sparsity, user
behaviors from related content domains, such as micro-videos and
news, are integrated. Furthermore, commercial intent is modeled
by incorporating both long-term interests (from user profiles and
historical behaviors) and short-term interests (from recent inter-
actions) into the prompt. (2) Advertising-Specific Knowledge
Alignment: To bridge the semantic gap between natural language
and advertising data, this module introduces auxiliary fine-tuning
tasks. Additionally, Direct Preference Optimization (DPO) is applied
to balance user intent with business objectives, ensuring that the
generated ads have high commercial value. (3) Latency-Aware
Model Deployment: LEADRE is deployed using a hybrid archi-
tecture that integrates both latency-tolerant and latency-sensitive
services. To further enhance computational efficiency, we optimize
deployment using TensorRT LLM Acceleration.

We implement LEADRE using Hunyuan with 1B parameters
and evaluate its performance through extensive offline and online
experiments in Tencent’s display advertising system. The offline
results validate the contributions of the individual modules, demon-
strating their effectiveness. In online A/B tests, LEADRE achieved
a 1.57% increase in Gross Merchandise Value (GMV) on Tencent

WeChat Channels and a 1.17% increase on Tencent WeChat Mo-
ments. Currently, LEADRE is deployed on both platforms, serving
billions of users and processing tens of billions of requests per day.

The retrieved ads are further incorporated into the ranking phase
as additional features. Specifically, on the user side, retrieved ads
extend user interest representations, while on the item side, match
scores between retrieved ads and target ads serve as new item-level
features. These enhancements contribute to an additional 1.43%
improvement in GMV on Tencent WeChat Channels.

The contributions of this work can be summarized as follows:

• To the best of our knowledge, this is the first study to de-
ploy LLMs in an online display advertising system. We
introduce LEADRE, a novel LLM-based generative retrieval
framework, and deploy it through a hybrid architecture
that integrates both latency-tolerant and latency-sensitive
service.

• LEADRE integrates Intent-Aware Prompt Engineering and
Advertising-Specific Knowledge Alignment to ensure the
generated ads are accurate, diverse, commercially valuable,
and aligned with user interests.

• Extensive offline and online experiments demonstrate the
effectiveness of our approach. We observe substantial im-
provements in offline metrics such as HitRatio, as well as
in online metrics like GMV.

2 RELATEDWORK
2.1 Sequential Recommendation
Sequential recommendation leverages the user behavior sequence
on items (ads) to predict the next item that user is likely to click or
convert on [54, 66]. Early approaches in sequential recommendation
primarily focused on ID-based methods. These methods typically
assign a unique ID to each item and employ sequential deep learning
models, such as RNNs [53], CNNs [55], and Transformers [21, 42], to
learn sequence representations for next-item prediction. However,
these approaches often struggle with issues related to cold start and
data sparsity. To address these challenges, subsequent research has
incorporated additional feature information, including categorical
features, numerical features, and graph structure features [4, 23,
30, 59]. Some studies have also explored the integration of multi-
modal information, such as item text descriptions and images [26,
29, 52]. By leveraging this supplementary information, sequential
recommendation methods can effectively mitigate cold start and
data sparsity problems.

Moreover, some researchers have begun to adopt large language
models (LLMs) to comprehend item features and infer user pref-
erences, enabling direct recommendations without relying on tra-
ditional sequential recommendation methods [1, 2, 14, 47]. In this
paper, we introduce LLMs into a large-scale display advertising
system to tackle challenges encountered in industrial scenarios,
such as implicit user intent and high computational costs.

2.2 Large Language Models-based
Recommender

Large Language Models (LLMs) have demonstrated remarkable
capabilities in both understanding and generation tasks [18, 57],

4764

making them widely applicable across various domains, including
document summarization [22, 64], conversational agents [15, 45],
code completion [13, 63], and others [60, 67]. Recently, researchers
have begun exploring the application of LLMs in recommender
systems [50]. These efforts can be broadly categorized into two
roles for LLMs: feature encoder and ranker.

As feature encoders, LLMs leverage their deep understanding of
textual content to generate rich representations of users and items.
Typically, user or item features are transformed into structured
textual descriptions using pre-designed templates, which are then
processed by LLMs to obtain feature embeddings [1, 39, 47]. These
embeddings can subsequently be utilized for downstream tasks
such as candidate retrieval or ranking, improving personalization
and recommendation quality.

As rankers, LLMs leverage their generative capabilities to pre-
dict user preferences based on historical behavior sequences. In
this paradigm, user behavior sequences are represented as textual
sequences, and LLMs are trained to predict the next likely item (or
user action) based on context [14, 61]. To adapt LLMs effectively
for ranking tasks, fine-tuning on domain-specific recommendation
datasets is typically required, ensuring the models acquire rele-
vant domain knowledge and effectively capture user preferences
[2, 14, 28].

Despite these advancements, the direct application of LLMs in
industrial display advertising remains challenging due to several
factors, including implicit user intent, high computational costs,
and the need for real-time inference. In this work, we present the
first application of LLM-based generative retrieval in an industrial
display advertising system. To address these challenges, we intro-
duce intent-aware prompt engineering and ad-specific knowledge
alignment, enabling LLMs to generate diverse, business-aligned,
and user-tailored ad recommendations. Furthermore, we mitigate
computational overhead by deploying LLMs in a hybrid architec-
ture that integrates latency-tolerant and latency-sensitive services.
This approach ensures that the benefits of LLM-based retrieval can
be realized in a scalable and cost-efficient manner.

2.3 Retrieval in Advertising Systems
Display advertising systems typically follow a multi-stage architec-
ture composed of multiple stages, including retrieval, corse-ranking,
ranking, re-ranking, and others[8, 12]. The retrieval stage, posi-
tioned at the top of the funnel, plays a critical role in identifying
user interests and generating a pool of candidate ads for further
processing [20, 51]. Most advertising systems adopt ID-based learn-
ing to ranking mechanisms to recall all ads that users may find
appealing. These methods often rely on a two-tower model, where
one tower encodes user features and the other encodes item (ad)
features [3, 19].

Display advertising systems typically follow a multi-stage archi-
tecture consisting of retrieval, coarse ranking, ranking, re-ranking,
and others [8, 12]. The retrieval stage, positioned at the entry of the
process, is crucial for identifying user interests and generating an
initial pool of candidate ads for subsequent ranking stages [20, 51].
Most advertising systems employ ID-based learning-to-rank mecha-
nisms to retrieve relevant ads for users. These methods often utilize
a two-tower model, where one tower encodes user features and the

other encodes item (ad) features [3, 19]. While efficient, ID-based
retrieval approaches exhibit several limitations: (1) Information
Cocoon Effect: The reliance on past interactions can reinforce ex-
isting preferences, leading to a lack of novelty in recommendations.
(2) Limited Content Awareness: ID-based approaches often fail to
leverage rich ad content, missing potential signals for better person-
alization. (3) Reduced Diversity: The retrieved candidate set may
be dominated by frequently interacted items, limiting exposure to
new and diverse ads.

To address these challenges, we propose incorporating LLMs into
the retrieval process. Unlike traditional ID-based methods, LLMs
can analyze contextual information and generate a more diverse set
of candidate ads by expanding retrieval beyond strict collaborative
filtering signals. By leveraging their generative capabilities and
semantic understanding, LLMs enhance retrieval diversity, improve
content-awareness, and ultimately increase user engagement and
advertising effectiveness.

3 PRELIMINARY
3.1 Problem Definition
Let U and A denote the sets of users and advertisements (ads),
respectively, within the target advertising system. Given the limited
user interactions with ads, we introduce a content domain to enrich
user behavior data. Let C denote the set of content items in the
system. The sequence of user behaviors is represented as S𝑢 =

[𝑖1𝑢 , 𝑖2𝑢 , . . . , 𝑖𝐿𝑢] in chronological order, where 𝑢 ∈ U, 𝑖𝑢 ∈ A ∪ C,
and 𝐿 = |S𝑢 | is the length of the user’s behavior sequence. Given
this user behavior sequence, the goal of generative retrieval is to
generate the next relevant ad, 𝑎𝐿+1𝑢 ∈ A, optimizing both user
engagement and business objectives.

3.2 Ads Indexing
Traditional advertising systems typically index ads incrementally
and learn dense embeddings for each ad [4, 49]. However, this
indexing lacks semantic information, creating a gap between the
advertising system and human understanding. To bridge this gap,
we introduce Semantic IDs (S-IDs) based on ad features, inspired
by previous works on item indexing [11, 37, 65].

To learn S-IDs, we first define a feature mapping rule in the
form of a template string to generate text description of each ad, as
follows:

The name of the ad is <ads_name>; The product type is
<ads_type>; The first-level category is <first_cat>; The second-
level category is <second_cate>; The attributes include: <ba-
sic_att>.

For each ad 𝑎 ∈ A, all its features are filled in above template
string to generate a textual description 𝑡𝑎 . For example:

The name of the ad is SAIC Volkswagen-New Energy-ID.3;
The product type is Automobile Products; The first-level
category is Automobile; The second-level category is SAIC
Volkswagen·New Energy; The attributes include: automobile
brand_Volkswagen, automobile series_Volkswagen ID.3.

4765

Quantization

a_12

b_6 b_7

c_22 c_4 c_14

Ad_112 Ad_66 Ad_245

Trie Tree

Ad_112

Title Type

SAIC Volkswagen-
New Energy-ID.3

Automobile
Products

The name of ad is: SAIC
Volkswagen-New Energy-ID.3;
Type: Automobile Products;

a_12,

b_6,

c_22

Mapping

Encoding

- =

- =

+

+

Em
b

M
odel

Figure 1: Overall Framework of Ads indexing in LEADRE.

After obtaining the textual description 𝑡𝑎 , we employ a pre-
trained language model (e.g. Hunyuan [43], E5 [46]) to encode
𝑡𝑎 , bridging the gap between the advertising system and human
understandable text. This step can be formulated as

x𝑎 = 𝑓𝑃𝐿𝑀 (𝑡𝑎 ;𝜃𝑃𝐿𝑀) (1)

where 𝑓𝑃𝐿𝑀 represents the pre-trained language model parameter-
ized by 𝜃𝑃𝐿𝑀 , and x𝑎 ∈ R𝑑𝑃𝐿𝑀 is the textual embedding of ad 𝑎, and
𝑑𝑃𝐿𝑀 denotes the output dimension of the pre-trained language
model.

After that, we employ a Residual-Quantized Variational AutoEn-
coder (RQ-VAE) [24] to generate concise semantic IDs for the ads.
The RQ-VAE takes the ad’s embedding x𝑎 as input and uses an
encoder-quantization-decoder mechanism to generate a list of
discrete semantic tokens. In the encoding phase, the textual embed-
ding x𝑎 is encoded by an encoder, 𝑓𝐸𝑛 (·;𝜃𝐸𝑛), to obtain a hidden
embedding, formulated as ẑ𝑎 = 𝑓𝐸𝑛 (x𝑎 ;𝜃𝐸𝑛), where ẑ𝑎 ∈ R𝑑𝑅𝑄

denotes the hidden embedding, and 𝑑𝑅𝑄 is the hidden embedding’s
dimension. During the quantization phase, we apply 𝑀 layers of
residual vector quantization. For each layer 𝑙 , we maintain a code-
book C𝑙 = {e𝑙

𝑘
}𝐾
𝑘=1, where e

𝑙
𝑘
∈ R𝑑𝑅𝑄 and 𝐾 denotes the number

of codes in the codebook. The quantization process is defined as
follows:

𝑐𝑙𝑎 =argmin𝑘 | |r𝑙𝑎 − e𝑙𝑘 | |
2
2 (2)

r𝑙+1𝑎 = r𝑙𝑎 − e𝑙𝑐𝑙𝑎 (3)

z𝑎 =

𝑀∑︂
𝑙=1

e𝑙
𝑐𝑙𝑎

(4)

where r𝑙𝑎 ∈ R𝑑𝑅𝑄 is the 𝑙-th layer residual embedding of ad 𝑎, r1𝑎 =

ẑ𝑎 , 𝑐𝑙𝑎 is the index from the 𝑙-th codebook for ad 𝑎, and z𝑎 ∈ R𝑑𝑅𝑄
is the final quantized embedding of ad 𝑎. In the decoding phase,
the quantized embedding z𝑎 is used to reconstruct the original
textual embedding x𝑎 through a decoder 𝑓𝐷𝑒 (·;𝜃𝐷𝑒),formulated as
x̂𝑎 = 𝑓𝐷𝑒 (z𝑎 ;𝜃𝐷𝑒)

To train the encoder 𝜃𝐸𝑛 , decoder 𝜃𝐷𝑒 , and codebooks {C𝑙 }𝑀
𝑙=1,

we introduce two loss components: the reconstruction loss and the

Algorithm 1 Trie-Tree Construction
Require: Set of all ads’ S-IDs C𝐴 = {c1, c2, . . . , c𝑎, . . . , c|A| }, where each

S-IDs sequence c𝑎 = [𝑐1𝑎, 𝑐2𝑎, . . . , 𝑐𝑙𝑎, . . . , 𝑐
(𝑀+1)
𝑎].

Ensure: Trie-Tree𝑇 representing all ads in A.
1: Initialize: Create a head node ℎ for the trie-tree.
2: for each S-IDs sequence c𝑎 ∈ C𝐴 do
3: Set current node 𝑐𝑢𝑟 ← ℎ

4: for each S-ID 𝑐𝑙𝑎 in c𝑎 do
5: if 𝑐𝑙𝑎 is not a child of 𝑐 then
6: Create a new node 𝑛
7: Add 𝑛 as a child of 𝑐𝑢𝑟 with label 𝑐𝑙𝑎
8: end if
9: Set 𝑐 ← child of 𝑐𝑢𝑟 labeled by 𝑐𝑙𝑎
10: end for
11: Mark node 𝑐𝑢𝑟 as the end of ad 𝑎
12: end for
13: return Trie𝑇

quantization loss. The overall loss function for RQ-VAE is given by:

L𝑟𝑒𝑐𝑜𝑛𝑠 =
∑︂
𝑎

| |x𝑎 − x̂𝑎 | |22 (5)

L𝑞𝑢𝑎𝑛𝑡 =
∑︂
𝑎

𝑀∑︂
𝑙=1

(︂
| |sg[r𝑙𝑎] − e𝑙𝑐𝑙𝑎 | |

2
2 + 𝛽𝑞𝑢𝑎𝑛𝑡 | |r

𝑙
𝑎 − sg[e𝑙𝑐𝑙𝑎] | |

2
2

)︂
(6)

where sg[·] is the stop-gradient operator, and 𝛽𝑞𝑢𝑎𝑛𝑡 is a weight
factor for the loss term.

This process ensures that ads are represented by discrete S-IDs,
which allows the LLMs to generate valid ads from the predefined
ads set during constrained decoding. In the ad indexing process,
each ad 𝑎 is represented by a list of semantic tokens, denoted as
ĉ𝑎 = [𝑐1𝑎, 𝑐2𝑎, . . . , 𝑐𝑀𝑎]. To address potential collisions where different
ads map to the same S-IDs, we introduce an additional code to
distinguish them [37]. Consequently, the S-IDs for each ad are
updated to c𝑎 = [𝑐1𝑎, 𝑐2𝑎, . . . , 𝑐𝐿𝑎 , 𝑐

(𝑀+1)
𝑎], where 𝑐 (𝑀+1)𝑎 serves as the

disambiguation code for ads with identical S-ID lists. To distinguish
between different levels of semantic tokens, we use prefixes such
as < 𝑎_, 𝑏_, 𝑐_, · · · > for various S-ID levels.

4766

Algorithm 2 Constrained Decoding Using Trie-Tree
Require: Trie-tree 𝑇 representing all ads, Beam search size 𝐵, S-

IDs list length (𝑀 + 1) , Current token probability distribution
𝑃𝐿𝐿𝑀 (𝑐𝑙 |c1:𝑙−1;𝜃𝐿𝐿𝑀) from the LLM.

Ensure: Generated ad set of ads B.
1: Initialize generated ad set B ← {[ℎ] × 𝐵}, where ℎ is the head node

of the trie-tree.
2: for 𝑙 = 1 to𝑀 + 1 do
3: Set current layer 𝑐𝑢𝑟_𝑙𝑎𝑦𝑒𝑟 as the 𝑙-th layer of trie-tree𝑇 .
4: Initialize new generated set B′ ← ∅.
5: for each candidate list c ∈ B do
6: Retrieve valid next S-IDs from the children of node 𝑐𝑙−1 in
𝑐𝑢𝑟_𝑙𝑎𝑦𝑒𝑟 : C𝑣𝑎𝑙𝑖𝑑 ← children of(𝑐𝑙−1) .

7: for each S-ID 𝑐𝑙 ∈ C𝑣𝑎𝑙𝑖𝑑 do
8: Obtain the score for S-ID 𝑐𝑖 from the LLM:

𝑃𝑣𝑎𝑙𝑖𝑑 (𝑐𝑙) ← 𝑃𝐿𝐿𝑀 (𝑐𝑙 |c1:𝑙−1;𝜃𝐿𝐿𝑀) .
9: Append 𝑐𝑙 to the candidate list: c← c ∪ 𝑐𝑙 .
10: Add the updated list (c, 𝑃𝑣𝑎𝑙𝑖𝑑 (𝑐𝑙)) to new set B′ .
11: end for
12: end for
13: Update the generated ad set: B ← select_top_B(B′, 𝐵) .
14: end for
15: return Generated ad set of ads B.

3.3 Trie-Tree Construction
We organize all ads using a trie-tree, where each path from the
root to a leaf represents the S-IDs of an ad. This structure enables
efficient ad organization and supports fast retrieval and prefix-based
searches. The Trie-Tree Construction Algorithm (Algorithm 1)
builds the trie by sequentially adding each S-ID from an ad as a
child node, creating new nodes as needed, and marking the end of
each ad’s S-ID sequence.

Example: Suppose we have the following ads, each represented
by a sequence of S-IDs: Ad_66: [𝑎_12, 𝑏_7, 𝑐_4]; Ad_245: [𝑎_12, 𝑏_7, 𝑐_14];
Ad_112: [𝑎_12, 𝑏_6, 𝑐_22]. We construct the trie-tree as follows:

(1) Initialize the trie with an empty root node.
(2) Insert Ad_66: Add 𝑎_12 as a child of root, then 𝑏_7 under

𝑎_12, and 𝑐_4 under 𝑏_7 (mark as ad end).
(3) Insert Ad_245: 𝑎_12 and 𝑏_7 already exist; add 𝑐_14 under

𝑏_7 (mark as ad end).
(4) Insert Ad_112: 𝑎_12 exists; add 𝑏_6 under 𝑎_12, then 𝑐_22

under 𝑏_6 (mark as ad end).
The resulting trie-tree (Figure 1) allows for efficient ad retrieval
and prefix-based searches, since ads sharing S-ID prefixes follow
the same path from the root.

3.4 Constrained Decoding
Unlike conventional LLM-based chatbots, generative retrieval in
advertising requires generating a list of valid ads from a predefined
set, ensuring both diversity and validity. To achieve this, we use
constrained decoding with a trie-tree [16, 17, 32]. This method
ensures that generated ads are both likely according to the LLM and
valid within the ad set. The Constrained Decoding Algorithm
(Algorithm 2) expands candidate S-ID lists layer by layer through
the trie-tree, selecting the top 𝐵 candidates at each step based on
their scores, until all layers or the maximum length is reached.

Example: Suppose trie-tree is built from the following S-ID se-
quences: Ad_66: [𝑎_12, 𝑏_7, 𝑐_4]; Ad_245: [𝑎_12, 𝑏_7, 𝑐_14]; Ad_112:
[𝑎_12, 𝑏_6, 𝑐_22]. Using constrained decoding with a beam size
𝐵 = 2:

(1) Initialization: Start with an empty beam set at the root.
(2) First Layer: Valid first S-ID from the trie-tree is 𝑎_12 with

𝑃 (𝑎_12) = 0.6. Beam: [𝑎_12] (score 0.6).
(3) Second Layer: For [𝑎_12], valid next S-IDs are 𝑏_7 and

𝑏_6 with 𝑃 (𝑏_7) = 0.5, 𝑃 (𝑏_6) = 0.4:
• [𝑎_12, 𝑏_7] (score 0.6 × 0.5 = 0.3)
• [𝑎_12, 𝑏_6] (score 0.6 × 0.4 = 0.24)

Keep both as 𝐵 = 2.
(4) Third Layer:

• For [𝑎_12, 𝑏_6]: valid next S-ID is 𝑐_22with 𝑃 (𝑐_22) =
0.8, yielding [𝑎_12, 𝑏_6, 𝑐_22] (score 0.24×0.8 = 0.192).

• For [𝑎_12, 𝑏_7]: valid next S-IDs are 𝑐_4 and 𝑐_14 with
𝑃 (𝑐_4) = 0.8, 𝑃 (𝑐_14) = 0.4:

– [𝑎_12, 𝑏_7, 𝑐_4] (score 0.3 × 0.8 = 0.24)
– [𝑎_12, 𝑏_7, 𝑐_14] (score 0.3 × 0.4 = 0.12)

After scoring, keep the top 𝐵 = 2: [𝑎_12, 𝑏_7, 𝑐_4] and
[𝑎_12, 𝑏_6, 𝑐_22].

The algorithm returns the final beam set of S-ID sequences, ensuring
that the generated ads are valid according to the trie-tree and have
the highest predicted probabilities.

4 METHOD
In this section, we present a detailed explanation of multi-faceted
knowledge enhanced LLM Empowered display ADvertisement
REcommender system (LEADRE), which integrates large language
models (LLMs) into our display advertising system.

4.1 Overview
LEADRE effectively aligns user intent with business objectives, im-
proving the generation of relevant and high-value ads in advertising
environments. It’s framework consists of three novel modules:

(1) Intent-Aware Prompt Engineering: This module designs
intent-aware <Prompt, Response> pairs that incorporate user profiles
and behavior sequences, serving as a fine-tuning corpus for LLMs
to learn user interests effectively.

(2) Advertising-Specific Knowledge Alignment: This mod-
ule integrates auxiliary fine-tuning tasks and Direct Preference
Optimization (DPO) to bridge the knowledge gap between LLMs
and the advertising system, enhancing ad generation quality.

(3) Latency-Aware Model Deployment: This module com-
bines both latency-tolerant and latency-sensitive service systems to
ensure scalable and real-time performance during LLM deployment.

4.2 Intent-Aware Prompt Engineering
To accurately capture user intent and predict the next relevant ad,
the LLM should be fine-tuned with proper corpus first. We build
textual <Prompt, Response> pairs with user behavior sequences
and ad descriptions as the corpus. Unlike search advertising [37],
where user queries explicitly express intent and could be used as
the prompt, display advertising operates in a low-intent environ-
ment where explicit queries are absent and user behavior is often
sparse. As a result, the prompt must effectively leverage available

4767

LLMs
[Instruction]: What ad will the user
be interested in next time?
[Answer]:

Prompt
Engineer

User profile

User behavior

The name of ad is: SAIC Volkswagen-
New Energy-ID.3; Type: Automobile
Products; What is this ad?

Title Type

SAIC Volkswagen-
New Energy-ID.3

Automobile
Products

<a_12,b_ 6, c_22,
d_36,e_0 >

Ad_112

[Answer]: <a_12, b_6,c_22, d_36, e_0 >
ECPM = 2 ECPM = 5

a_12

b_6

b_7

c_22

c_4

c_14

Ad_112

Ad_245

a_8

a_19

b_3

Constrained Decoding

Advertising-Specific Knowledge Alignment

Semantic Alignment Business Objective Alignment

User behavior

[Instruction]: Assuming you are an ad recommendation system. 22-year-old male, resident in Haidian, Beijing, with a bachelor’s
degree, working in Internet industry. The categories that have been frequently interacted recently are (format: categoryˆinteraction
times): emotionˆ115 times; entertainmentˆ28 times; mental healthˆ8 times; educationˆ6 times;financeˆ6 times;
The most recent interaction behavior sequence details (format: timeˆbehavior typeˆtitle) are 32 days agoˆplay short videoˆreality; 31
days agoˆclick on adˆ<a_51, b_10, c_67, d_93, e_0>; 27 days agoˆplay short videoˆshuttlecock;25 days agoˆPlay short
videoˆEmotional test;22 days agoˆConversion adˆ<a_243, b_136, c_23,d_245, e_0>; 16 days agoˆConversion adˆ<a_51, b_10,
c_67,d_93, e_0>. What ad will the user be interested in next time?

Gender Age Resident Degree Occupation

Male 23 Haidian, bachelor Internet

[Answer]: <a_12,b_6,c_22,d_36,e_0>Target Ad

User profile

Intent-Aware Prompt Engineering

Ad
domain

Content
domain

[Instruction]: …The recent interaction behavior sequence details are 32
days agoˆplay short videoˆreality; 31 days agoˆclick on adˆ<a_51, b_10,
c_67, d_93, e_0>; 27 days agoˆplay short videoˆ shuttlecock;22 days agoˆ
Conversion adˆ<a_243, b_136, c_23,d_245, e_0>; …

[Instruction]: …The recent interaction behavior sequence details are 32 days
agoˆplay short videoˆreality; 31 days agoˆclick on adˆtable tennis; 27 days
agoˆplay short videoˆ shuttlecock;22 days agoˆ Conversion adˆhair dryer; …

Long Interest / Short Interest

Figure 2: Overall Framework of Ads Constrained Generation Module and LLM Fine-tuning Module.

user data within the advertising system and supplement it with
user data outside of the advertising system, such as user behaviors
in the content domain, to adequately capture commercial intent.
Considering the affordable prompt length is quite limited, user data
should be encoded concisely enough. Below, we detail the prompt
engineering process.

4.2.1 Prompt Components. To enable LLMs to capture user com-
mercial intent effectively, we incorporate both long-term interests
(derived from user profiles and historical behaviors) and short-
term interests (based on recent behaviors) into prompt design.
Short-term interests model dynamic, immediate preferences. For
example, a user planning to purchase a phone would likely click
phone or phone accessory ads within a brief period. However, such
interests are inherently noisy and transient (e.g., after purchasing
the phone, the user would cease clicking similar ads). Conversely,
long-term interests capture stable, enduring preferences. For ex-
ample, a student user would consistently engage with educational
coaching ads over extended periods. Specifically, The prompt is
assembled with the following key components:

(1) Task Instruction: This part describes the task for the LLM
to perform. Furthermore, it provides a learnable token for all fine-
tuning tasks, similar to Soft Prompt formats [33, 44], helping the
LLM recognize instructions related to ad generation and retrieval.
The template of the task description is shown below:

The following is an instruction describing a task. Please give a
response to complete this request appropriately.
[Instruction]:<Learnable Token>Assuming you are an ad rec-
ommender system, <Prompt>, what ad will the user be inter-
ested in next time?

(2) User Profiles: This part provides demographical information
about the user, such as age, gender, and region. The template is
shown below:

<age><sex>, resident in <residence>, with a <educa-
tion_level> degree, working in <occupation>, with a <con-
sumption_level>

(3) User Interest Summary: This part summarizes the user’s
long-term positive and negative feedbacks on commercial interest
categories and standard product units (SPUs) across the ad and
content domains. The template is shown below:

The categories that have been frequently interacted re-
cently are (format: categoryˆinteraction times): <cate-
gory_1>ˆ<count_1> times; <category_2>ˆ<count_2> times;
<category_3>ˆ<count_3> times;

(4)User Ad Domain Behavior Sequence: This part expresses
the user’s short-term behaviors in the ad domain. To filter the noise
signals in the sequence, only positive user actions like clicks and
conversions are considered. As discussed in Section 3.1, each ad is
represented by a list of semantic tokens denoted as Semantic-IDs

4768

(S-IDs). To distinguish different level semantic tokens, we use <a_ ,
b_, c_, · · · > as prefix of different S-IDs level.

(5) User Content Domain Behavior Sequence: This part cap-
tures the user’s short-term behaviors in the content domain. Each
interaction is described in terms of the commercial category and
SPU. Similarly, only positive actions like watching full videos and
searching are considered. The ad and content domain behaviors
are merged and presented in chronological order. The template is
shown below:

The most recent interaction behavior sequence details
(format: timeˆbehavior typeˆtitle) are <time_1> days
agoˆ<type_1>ˆ <title_1>/<SIDs_1>; <time_2> days
agoˆ<type_2>ˆ<title_2>/<SIDs_2>; <time_3> days ago ˆ
<type_3> ˆ <title_3>/<SIDs_3>

By concatenating the previous components, we obtain a complete
prompt. An example prompt is shown below:

The following is an instruction describing a task. Please give
a response to complete this request appropriately. 22-year-
old male, resident in Haidian, Beijing, with a bachelor’s
degree, working in Internet industry, with a medium con-
sumption level. The categories that have been frequently inter-
acted recently are (format: categoryˆinteraction times): emo-
tionˆ115 times; entertainmentˆ28 times; mental healthˆ8
times; educationˆ6 times; financeˆ6 times; The most recent
interaction behavior sequence details (format: timeˆbehavior
typeˆtitle) are 32 days agoˆplay short videoˆreality; 31
days agoˆclick on adˆ<a_51, b_10, c_67, d_93, e_0>; 27
days agoˆplay short videoˆshuttlecock; 25 days agoˆPlay
short videoˆEmotional/psychological age test;22 days
agoˆConversion adˆ<a_243, b_136, c_23, d_245, e_0>;19
days agoˆClick adˆ<a_164, b_243, c_38, d_88, e_0>;16 days
agoˆConversion adˆ<a_51, b_10, c_67, d_93, e_0>. what ad
will the user be interested in next time?

For the 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 , the last click or conversion ad in the user
behavior sequence is used as a supervisory signal for fine-tuning
the LLM. A sample response is shown below:

[Response]: <a_122, b_28, c_35, d_15, e_0>

4.2.2 Prompt Augmentation. We develop a series of prompt aug-
mentation strategies to enhance the fine-tuning process. These
strategies are outlined below:

Multiple Prompt Templates:We introduce a variety of prompt
templates to map a single user behavior sequence into multiple
prompts. By altering the arrangement of sequence components and
varying the instruction descriptions, these templates facilitate a
broader understanding of user intentions. This diversification al-
lows the model to capture different aspects of user intent, enriching
the generation process.

User Profile Reordering: To prevent LLMs from simply memo-
rizing specific token sequences or orders, we propose a user profile
reordering method. It reshuffles user profile descriptions, encour-
aging the model to focus on the semantic meaning rather than the
fixed order of inputs.

Ad Positive Interaction Reuse: Inspired by auto-regressive
mechanisms, We augment the original user behavior sequence into
multiple prompt samples by reusing positive interaction, enhancing
the model’s ability to generalize from limited interaction data. For
example, Assuming that user behavior sequence is denoted by
S𝑢 = [𝑐1𝑢 , 𝑎2𝑢 , 𝑎3𝑢 , 𝑐4𝑢 , 𝑎5𝑢], where 𝑐1𝑢 , 𝑐4𝑢 ∈ C denote content domain
items and 𝑎2𝑢 , 𝑎3𝑢 , 𝑎5𝑢 ∈ A denote ads. We augment the original
sequence into prompt samples: <[𝑐1𝑢 , 𝑎2𝑢 , 𝑎3𝑢 , 𝑐4𝑢], 𝑎5𝑢>, <[𝑐1𝑢 , 𝑎2𝑢], 𝑎3𝑢>,
<[𝑐1𝑢], 𝑎2𝑢>.

4.3 Advertising-Specific Knowledge Alignment
The advertising system poses a great gap with LLMs, which hurts
the ad generation ability of LLMs. To bridge this gap, we conduct
semantic alignment by auxiliary tuning tasks to align the ad’s
Semantic-IDs (S-IDs) with the LLM, and business objectiveness
alignment by Direct Preference Optimization (DPO) [35, 58] to
encourage the generation of ads with higher Effective Cost Per
Mille (ECPM).

4.3.1 Semantic Alignment. Since LLM lacks prior knowledge of
ads and their S-IDs, direct training on the main task encourages
rote memorization rather than genuine understanding. This likes
teaching calculus to students without foundational mathematics,
which often results in solution memorization instead of conceptual
comprehension. To address this, we introduce auxiliary tasks to
guide LLMs learn the basic understand of advertising system and
S-IDs of ads[65]. The auxiliary tasks consist of two components: an
explicit alignment task and an implicit alignment task.

The explicit alignment task enables LLM to acquire S-ID
knowledge by predicting S-IDs from detailed ad descriptions. This
task directly aligns the language model with the ad system by
making the LLMs understand how textual descriptions map to the
corresponding ad S-IDs. A sample prompt-response pair for this task
is shown below:

[Prompt]: Given the ad’s detailed description "The name of
the ad is SAIC Volkswagen-New Energy-ID.3; The prod-
uct type is Automobile Products; The first-level category
is Automobile; The second-level category is SAIC Volk-
swagen·New Energy; The attributes include: automobile
brand_Volkswagen, automobile series_Volkswagen ID.3.",
what is the corresponding ad?
[Response]: <a_12, b_22, c_50, d_25, e_0>

In this example, LLM is provided with a detailed textual de-
scription of an ad, including the product’s name, type, brand, and
category. The model’s task is to map this description to the corre-
sponding S-IDs, which are internal identifiers used by the ad system.
By adopting this task, LLM will have a better understanding about
the S-IDs and ads’ feature, which plays a basic ability of generating
ads.

The implicit alignment task develops advertising knowledge
within user interaction contexts. This task builds on the Next Ad
Generation mechanism described in the main task but replaces the
S-IDs in the user’s ad interaction history with the ad descriptions.
Instead of predicting the next ad based on a sequence of S-IDs (as
in the main task), the model now predicts the next ad using textual

4769

descriptions of the ads. A sample <Prompt, Response> pair for this
task is shown below:

[Prompt]: The following is an instruction describing a task.
Please give a response to complete this request appropri-
ately. · · · The most recent interaction behavior sequence de-
tails (format: timeˆbehavior typeˆtitle) are 32 days agoˆplay
short videoˆreality; 31 days agoˆclick on adˆBali 7-
Day Tour; 27 days agoˆplay short videoˆshuttlecock;
25 days agoˆPlay short videoˆEmotional/psychological
age test;22 days agoˆConversion adˆpsychological test;19
days agoˆClick adˆEducational Counseling;16 days
agoˆConversion adˆTarot reading. What ad will the user
be interested in next time?
[Response]: <a_122, b_28, c_35, d_15, e_0>

This subtle modification enhances the LLMs’ ability to associate
ad descriptions with user behaviors, further aligning the model
with the advertising system in a more implicit manner.

Task Order: The tasks are conducted in the following order:
explicit alignment task→ implicit alignment task→ main task. It
is essential to prioritize alignment tasks, both explicit and implicit,
before addressing the main task. These alignment tasks, particularly
the explicit alignment task, serve as crucial preparatory steps that
equip the LLMs to understand the mapping between textual ad
descriptions and the S-IDs used by the ad system. By completing
these tasks first, the model gains a deeper comprehension of the
structural and semantic aspects of the ad domain, ensuring that
it is properly aligned with the system’s internal representations.
This alignment process is not merely a supplementary step but a
foundational one, directly influencing the model’s effectiveness in
the primary task. In essence, the explicit and implicit alignment
tasks establish the groundwork necessary for the model’s success
in predicting the next ad, making them indispensable for optimal
performance in the main task.

4.3.2 Business Objectiveness Alignment. Since LLMs inherently
lack business context, they may treat all advertisements as having
equivalent value. However, in advertising systems, each ad pos-
sesses distinct business value that directly impacts system revenue.
When tuned exclusively using prior tasks, the generated ads often
demonstrate limited commercial value, contributing minimally to
both cost and Gross Merchandise Volume (GMV). To address this
limitation, we employ Direct Preference Optimization (DPO) to
encourage generating ads with higher business value.

Since LLMs inherently lack business context, they may treat all
advertisements as having equivalent value. However, in advertising
systems, each ad possesses distinct business value that directly
impacts system revenue. When tuned exclusively using prior tasks,
the generated ads often demonstrate limited commercial value,
contributing minimally to both cost and Gross Merchandise Volume
(GMV). To address this limitation, we employ Direct Preference
Optimization (DPO) to encourage generating ads with higher
business value.

As defined in Section 3.1, for a specific user 𝑢, we aim to predict
the next interacted ad 𝑎𝐿+1𝑢 based on user behavior sequence S𝑢 .
When considering two equally appealing ads 𝑎1 and 𝑎2 where 𝑎1

holds greater business value, recommending 𝑎1 is preferable due
to its higher revenue potential. We therefore implement DPO to
increase the probability of generating high-value ads (𝑎ℎ) while
reducing probability for lower-value ads (𝑎𝑙). DPO preference pairs
⟨𝑢, 𝑎ℎ, 𝑎𝑙 ⟩ are constructed using the Expected Cost PerMille (ECPM)
metric from the ranking phase.

Specifically, for a given user 𝑢, we select two potential ads, 𝑎1
and 𝑎2, that are likely to result in a click or conversion. We then
calculate the ECPM for each ad. The ad with the higher ECPM is
considered the high-value ad 𝑎ℎ , while the ad with the lower ECPM
is considered the low-value ad 𝑎𝑙 . The training loss associated with
DPO can be defined as:

L𝐷𝑃𝑂 = −E(𝑢,𝑎ℎ,𝑎𝑙)∼D

[︄
log𝜎

(︄
𝛽
𝜋𝜃 (𝑎ℎ |𝑢)
𝜋𝑟𝑒 𝑓 (𝑎ℎ |𝑢)

− 𝛽 𝜋𝜃 (𝑎𝑙 |𝑢)
𝜋𝑟𝑒 𝑓 (𝑎𝑙 |𝑢)

)︄]︄
whereD is the set of collected DPO training triplets, 𝜋𝜃 is the LLM
tuned by DPO loss, 𝜋𝑟𝑒 𝑓 is the LLM tuned by primary and auxiliary
tasks, 𝜎 (·) is the sigmoid function, and 𝛽 is a hyper-parameter. This
loss function aims to maximize the likelihood of generating high-
value ads while minimizing the likelihood of low-value ads, thereby
aligning the LLM’s output more closely with business objectives.

4.4 Latency-Aware Model Deployment
In this section, we detail the deployment framework and engi-
neering techniques for LLM inference used to ensure efficient and
responsive ad generation.

4.4.1 Deployment Framework. Typical LLMs exhibit high latency,
which is inadequate for real-time display advertising services. To
address this, we implement a hybrid system by integrating latency
tolerant service module and latency sensitive service module [5, 25].
The deployment consists of the following components:

(1) Inference:
Latency Sensitive Service Module : This component is activated

when a user makes a request. A Mixer receives the user request and
queries the User Server for the ad retrieval list. The User Server
retrieves the pre-computed retrieval list from the user feature data-
base and sends it to the Mixer and further responds to the user.
After that, the user behaviors update and ad feature update will be
stored in the user feature database and ad feature database.

Latency Tolerant Service Module: This module adopts nearline
computing for LLM inference and is triggered after a user request.
This component receives the fine-tuned LLM and the Trie-Tree from
the offline stage for inference. It inquiries users’ recent behavior to
construct prompt samples and generates a list of ads for the users.
The generated ad list is stored in the user feature database and
made available for online service.

Even for nearline inference, GPU resources are relatively scarce
and cannot be allocated to every request. To address this, we intro-
duce theAdaptive Resource Distribution Strategy. This strategy
categorizes users into 25 user groups according to Average Revenue
Per User (ARPU) value, prioritizing GPU inference for high-value
users.

(2) Training: The training stage is responsible for LLM fine-
tuning, and it is updated daily. The process begins with engineering
samples from the user feature database to extract ad features to con-
struct <Prompt, Response> pairs for LLM fine-tuning. The <Prompt,

4770

Latency Sensitive Service Module

Mixer

Latency Tolerant Service Module

User/Ad
Feature

User profile
User behavior in ads domain

User behavior in content domain
Ad feature …

Tuned LLMs Beam Search

User x Ads

User
Server

(1)Request

Prompt Engineer

(2)Request

(4)Response
(5)Update

(3)Query & Response

Figure 3: Framework of Latency-Aware Model Deployment.

Response> pairs are utilized to fine-tune the LLM, enabling it to gen-
erate ads effectively. Once the training is complete, the fine-tuned
LLM is deployed to the latency tolerant service module.

4.4.2 TensorRT LLM Acceleration. To further enhance the compu-
tational efficiency of nearline LLM inference, we employ TensorRT
1 for inference acceleration. This approach leverages several opti-
mization techniques to significantly reduce latency and improve
performance, particularly in advertising scenarios:
1) TensorRT-LLM Kernel Optimization

Softmax Kernel Optimization: The softmax kernel, which ac-
counts for over 80% of decoding time, is optimized by using ’float4’
for vectorized memory access, reducing bandwidth usage and dou-
bling kernel performance. This reduces end-to-end time by 5%.
Additionally, for the prefill step, we introduced a ‘ComputeMode‘
to calculate softmax only for beam 0, improving prefill performance
by 3-4 times.

Finalize Kernel Optimization: In beam search, the finalize kernel
recursively obtains token IDs. Initially, it used a single thread, un-
derutilizing GPU resources. By assigning a block per beam width,
performance improved by 50 times, reducing latency by 10%.
2) TensorRT-LLM Quantization: LLM inference generally in-
volves two stages: prefill and generate. Prefill is typically the com-
putational bottleneck, while the generate stage is more memory-
bound. However, in advertising scenarios with a large beam width
and batching functionality supported by the inference engine, the
generate stage also becomes a computational bottleneck. Therefore,
we adopt quantization schemes that focus on activation values, such
as smooth quantization (‘w8a8c8‘) and FP8 quantization (‘w8a8c8‘),
to mitigate these bottlenecks.

Smooth Quantization (‘w8a8c8‘): We apply smooth quantization
(int8 precision for weights and activations), doubling the computa-
tional power for operations like matrix multiplication. This results
in a 50% performance improvement in search advertising.

FP8 Quantization (‘w8a8c8‘): FP8 quantization offers a simpler al-
ternative to smooth quantization and achieves similar performance
on H20 GPUs without sacrificing precision.
3) Proxy Load Balancing for Multi-GPU Utilization: Previous
optimizations, such as proxy global load balancing, mainly focused
on improving the performance of individual GPUs. To enhance the

1https://github.com/NVIDIA/TensorRT-LLM/tree/release/0.5.0

Table 1: Comparison of performances under different compo-
nents of prompt. "w.o. content" variant removes the content
domain behaviors from the prompt, retaining only the ad
domain behaviors, and "w.o. summary" removes the user in-
terest summary from the prompt.

Variants HR@1 HR@4 HR@8 NDCG@4 NDCG@8
LEADRE 0.0764 0.1567 0.2021 0.1199 0.1360

w.o. content 0.0660 0.1343 0.1773 0.1029 0.1181
-13.60% -14.28% -12.26% -14.19% -13.15%

w.o. summary 0.0760 0.1543 0.2043 0.1181 0.1358
-0.62% -1.54% +1.08% -1.52% -0.18%

utilization of multiple GPUs, we optimized the scheduling strategy
to better distribute workloads across the GPU cluster. In our system,
multiple proxies interact with multiple TensorRT-LLM instances.
Without coordination, multiple proxies may send requests to the
same TensorRT-LLM instance, leading to uneven load distribution.

TensorRT-LLM is highly sensitive to queries per second (QPS).
If one instance processes even a couple more requests than others,
it can become the bottleneck for the entire cluster. To mitigate
this, we introduced Redis-based global counters to evenly distribute
requests across all TensorRT-LLM instances, ensuring balanced load
distribution. As a result, the TensorRT-LLM cluster now achieves
over 90% of its theoretical maximum load capacity.

5 EXPERIMENT
In this section, we verify the effectiveness of LEADRE by conducting
extensive offline and online experiments.

5.1 Experiment Setup
5.1.1 Dataset. We conducted all experiments using industrial-scale
datasets on display advertising of Tencent WeChat Channels, as
public datasets were deemed unsuitable due to gaps in applicability
to our serving system and significant discrepancies with our in-
ternal models. The experiment process is suitable for all industrial
display advertising systems.

We created user behavior sequences in chronological order and
applied the "leave-one-out" strategy for dataset splitting [4, 14, 49].
Specifically, the last ad interaction in each user’s sequence was
designated as the test set, while the remaining interactions were

4771

0.10

0.12

0.14

0.16

0.18

0.20

HR@8 NDCG@8

LEADRE w. SoftPrompt

0.42

0.44

0.46

0.48

0.50

Diversity

RRHF LEADRE DPO

0.00

0.04

0.08

0.12

0.16

LTRR@8

(a) Performance of different prompt structure. (b) Performance of different RLHF tuning.

Figure 4: Ablation Studies Results on (a) Soft Prompt and (b)
DPO tuning.

Table 2: Comparison of performances under different tun-
ing tasks and order. "Main" denotes the main task (Next Ad
Generation), "EX" denotes the explicit alignment task, "IM"
denotes the implicit alignment task, and "mix" denotes mix
the tuning < 𝑃𝑟𝑜𝑚𝑝𝑡, 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 > pairs and random sample
pairs to tune the LLM.

Tasks and Order HR@1 HR@4 HR@8 NDCG@4 NDCG@8
EX→ IM→Main 0.0780 0.1610 0.2062 0.1232 0.1391

EX→Main 0.0767 0.1566 0.1998 0.1201 0.1354
-1.71% -2.74% -3.09% -2.50% -2.67%

Main+IM+EX mix 0.0745 0.1523 0.2009 0.1165 0.1337
-4.60% -5.43% -2.55% -5.39% -3.90%

Main+EX mix 0.0766 0.1516 0.1948 0.1174 0.1327
-1.91% -5.84% -5.49% -4.64% -4.59%

Main only 0.0707 0.1444 0.1879 0.1107 0.1260
-9.42% -10.32% -8.87% -10.16% -9.42%

used for training. The maximum user behavior window was set to
90 days and the maximum prompt token length was set to 2096,
covering user behavior in both the ads and content domains.

5.1.2 Evaluation Metric. We used the Hit Ratio (HR@K) and Nor-
malized Discounted Cumulative Gain (NDCG@K) as the primary
metrics to evaluate the offline predictive performance of the models.
Hit Ratio measures whether the model successfully retrieves the
clicked or converted ads for users. NDCG accounts for both the
relevance of items and their positions in the ranked list.

5.1.3 Implementation Details. The LEADRE is implemented on
the Hunyuan with 1B parameters [43]. Training was conducted on
16 A100Pro GPUs, while inference was performed on hundreds of
L40S GPUs. For the Ads indexing, we employed the Hunyuan to
encode ad features. The number of residual quantization steps was
set to 4, with each layer containing 1024 code vectors, each having
a dimension of 8. The length of the S-ID sequence was set to 5.
For LLM fine-tuning, we employed the AdamW optimizer, setting
the learning rate to 6e-5, weight decay to 0.9, and a minimum
learning rate of 6e-6. By leveraging data parallelism and gradient
accumulation, the batch size was set to 64. To avoid overfitting,
training was performed for 3 epochs.

5.2 Offline Performance
5.2.1 Effectiveness of Prompt Components. We perform ablation
studies on the different components of the prompt in the main task
(Section 4.2) to assess their individual contributions.

Content Domain Behaviors and Interest Summary: To evaluate
the impact of content domain behaviors and user interest summary,
we design two variants: "w.o. content" and "w.o. summary". The
"w.o. content" variant removes the content domain behaviors from
the prompt, retaining only the ad domain behaviors, while "w.o.
summary" removes the user interest summary from the prompt.
As shown in Table 1, both variants lead to a performance drop
across all metrics. This demonstrates the effectiveness of including
both content domain behaviors and the user interest summary in
capturing user preferences and intent.

Soft Prompt: To investigate the effectiveness of adding an instruction-
based task description, we introduce a learnable token at the be-
ginning of the prompt, referred to as "w. SoftPrompt". The results,
depicted in Figure 4(a), show a performance improvement after
incorporating the learnable token, confirming the positive impact
of the SoftPrompt on the task.

5.2.2 Effectiveness of Tuning Tasks and Their Order. To study the
effect of various tuning tasks and their order, we design several
tuning strategies: "EX→ IM→Main", "EX→Main", "Main+IM+EX
mix", "Main+EX mix", and "Main only". The "EX→ IM→ Main"
strategy refers to tuning the LLM sequentially on the explicit align-
ment task, implicit alignment task, and then the main task. The "EX
→Main" strategy skips the implicit task and directly tunes on the
explicit task followed by the main task. "Main+IM+EX mix" and
"Main+EX mix" represent mixed-tuning strategies where pairs are
randomly sampled and tuned together. "Main only" refers to tuning
solely on the main task, without alignment tasks.

Table 2 presents the tuning results, leading to the following ob-
servations: (1) The explicit and implicit alignment tasks enhance
the performance of the main task by bridging the gap between the
language model and the ad system. (2) The order of tuning matters,
as the fixed-order strategies outperform the mixed strategies. This
suggests that the alignment tasks provide a foundational under-
standing of the ad system, which better prepares the LLM for the
main task.

5.2.3 Effectiveness of DPO. After tuning the LLM on the auxiliary
and main tasks, we apply Reinforcement Learning from Human
Feedback (RLHF) to align the language model with business objec-
tives, using both RRHF [58] and DPO [35] techniques. To evaluate
the alignment with business values, we use two metrics: Diversity
score and LTRR@K.

The Diversity score is calculated based on TopK List Concentra-
tion and TopK List Abundance. Concentration is the mean propor-
tion of themost frequent category across all users, while Abundance
refers to the mean number of categories present in the top-K list
for all users. The Diversity score combines both metrics, where a
higher score indicates a more diverse top-K list with lower Concen-
tration and higher Abundance. LTRR@K is computed by Recall@K
based on Learning-to-Rank (LTR) labels provided by other retrieval
strategies, with higher LTRR@K indicating better alignment with
business objectives.

4772

Table 3: Comparison of different emb models.

Emb model Accuracy
Top1 Top10 Top50 Top100

Hunyuan Embedding[43] 98.03% 96.46% 86.61% 65.67%
E5-large-instruct [46] 97.21% 96.48% 87.42% 66.38%

bge-m3[6] 95.00% 91.07% 78.76% 59.64%
Bert-Chinese[9] 97.24% 92.65% 74.12% 50.20%

Electra_Chinese[7] 94.60% 85.98% 63.09% 43.62%
Sentence-Bert/L12[38] 95.40% 90.11% 70.15% 48.44%
Sentence-Bert/L6[38] 81.97% 72.65% 53.61% 37.97%
XLNet Chinese[56] 80.31% 63.32% 38.27% 26.14%

CLIP-32[34] 80.32% 67.91% 45.90% 29.87%
CLIP-16[34] 81.57% 67.40% 45.20% 30.33%

T5[36] 67.10% 51.22% 33.90% 23.89%

Table 4: Performance comparison of different emb models.

S-IDs HR@4 HR@8 LTRR@4 LTRR@8
Hunyuan S-IDs 0.1070 0.2140 0.0294 0.0443

E5 S-IDs 0.1052 0.2140 0.0256 0.0407

The RLHF results, shown in Figure 4, lead to the following con-
clusions: (1) RLHF improves the alignment of the language model
with business values. (2) DPO outperforms RRHF, likely due to
the constraints imposed by the tuned model during the alignment
process.

5.2.4 Effectiveness of Feature Embedding. To assess the effective-
ness of the ads’ feature embedding used in ads indexing, we compare
the performance of different embedding models (emb. models). We
first sampled 100 ads from each of the 48 ad categories and retrieved
the Top-K nearest ads for each sampled ad based on embedding
similarity. The accuracy is defined as the proportion of Top-K re-
trieved ads that belong to the same category as the original ad.
The performance comparison is presented in Table 3. Our observa-
tions indicate that the E5 model demonstrates the best performance
on this task, while the Hunyuan embedding achieves competitive
results.

Subsequently, we trained the VQ-VAE using both the E5 and
Hunyuan embeddings to infer the ads’ S-IDs. We then constructed a
trie tree and fine-tuned the LLM using these S-IDs. The performance
of the tuned LLM is shown in Table 4. The results indicate that
Hunyuan S-IDs exhibit competitive performance in terms of HR@K
and outperform in LTRR@K, attributed to their enhanced capability
in understanding the ad system.

5.2.5 Sensitivity and Effectiveness of S-IDs. To evaluate the sensi-
tivity of the ads’ Semantic IDs (S-IDs), we varied the codebook size
and quantity, assessing the trained ads indexing using three metrics:
Collision Rate↓, Max Collision Number↓, and Average Codebook
Usage Rate↑. As shown in Table 5, increasing the codebook size
and quantity reduces ad collisions, indicating that different ads are
assigned distinct S-IDs. Notably, the codebook usage rate remains
at 100%, signifying no occurrence of "codebook collapse."

Table 5: Performance comparison of different codebook size
and quantity.

Quantity Size Collision Rate↓ Max collision
Number↓

Average
Usage Rate↑

3
1024 4.79% 44 1.0
512 7.95% 46 1.0
256 16.38% 67 1.0

4 1024 1.74% 25 1.0
256 3.34% 25 1.0

Table 6: Performance comparison of different S-Ids variants.

Variants HR@1 HR@4 HR@8 NDCG@4 NDCG@8
S-IDs 0.0800 0.1526 0.1975 0.1194 0.1353

Original Text 0.0306 0.0551 0.0679 0.0439 0.0487
-61.75% -63.89% -65.62% -63.23% -64.01%

Compressed Text 0.0572 0.1102 0.1317 0.0861 0.0967
-28.50% -27.79% -33.32% -27.89% -28.53%

1.0

0.8

0.6

0.4D
ic

e
Si

m
ila

rit
y

0 20 40 60 80 100
Truncated Sequence Length (From Recent to Old)

(c) LLM User Action Response w.r.t Sequence Length.

Figure 5: LLM User Action Response w.r.t Sequence Length.

Additionally, to assess the effectiveness of the S-IDs, we removed
them and generated both the original and compressed text of ads us-
ing the LLM. The performance results are presented in Table 6. The
findings indicate a significant performance drop when generating
either the original or compressed text, highlighting the importance
of S-IDs. Furthermore, the compressed text outperformed better
than the original, suggesting that the original text contains redun-
dancy and noise.

5.2.6 Effectiveness of User Behavior. To assess how user behavior
contributes to LEADRE’s ad generation process, we conducted
a user study to gain a deeper understanding of the generation
mechanism.

To investigate the impact of different positions within user behav-
ior sequences, we conducted the following experiment: For a user
𝑢 with a behavior sequence S𝑢,1 = [𝑖1𝑢 , 𝑖2𝑢 , . . . , 𝑖𝐿𝑢], we sequentially
truncated the sequence by removing earlier interactions, forming
sequences such as S𝑢,2 = [𝑖2𝑢 , 𝑖3𝑢 , . . . , 𝑖𝐿𝑢] and S𝑢,3 = [𝑖3𝑢 , 𝑖4𝑢 , . . . , 𝑖𝐿𝑢].

4773

LEADRE then made predictions using each truncated sequence,
generating top-K lists denoted by R𝑢,1, R𝑢,2, and so on. To quan-
tify the similarity between these lists, we used the Dice similarity
coefficient:

Dice(R𝑢,1,R𝑢,𝑙) =
2|R𝑢,1 ∩ R𝑢,𝑙 |
|R𝑢,1 | + |R𝑢,𝑙 |

(7)

A higher Dice similarity score indicates that the retrieved list gen-
erated from the truncated sequence is more similar to that of the
complete sequence. This, in turn, suggests that the removed inter-
action is of lesser importance in influencing the retrieval outcome.
We computed the Dice similarity for all users, grouped by the par-
titioning of their ad behaviors, and plotted the results as a function
of truncated sequence length (Figure 5). The following key observa-
tions were made: (1) Longer behavior sequences capture more user
preference information. (2) LEADRE places more emphasis on the
earlier parts of the sequence, particularly the first 20 behaviors, and
less emphasis on more recent behaviors. (3) Ad domain behaviors
have a stronger influence on the generated outcomes compared to
content domain behaviors, and they encourage LEADRE to focus
more on the beginning of the sequence.

5.2.7 Summary. In this section, we evaluated the impact of vari-
ous components, including prompt engineering, tuning tasks, and
S-IDs. Our findings are summarized as follows: (1) The S-IDs and
the main tuning task are fundamental for ad generation; removing
either results in the largest performance drops. (2) Auxiliary tasks,
such as explicit and implicit alignment tasks and Direct Preference
Optimization (DPO), contribute less than the S-IDs and main task,
but still provide a crucial 9% performance increase. (3) User be-
haviors from the content and advertising domains are the most
significant contributors to ad generation compared to other prompt
components.

5.3 Online Performance
We conducted a 20% traffic A/B test on both the Tencent WeChat
Channels and Tencent WeChat Moments display advertising sys-
tems to evaluate the effectiveness of LEADRE. LEADRE acts as
a complementary retrieval sub-brunch. Over several weeks’ A/B
test on WeChat Channels, LEADRE demonstrated a 1.57% increase
in Gross Merchandise Value (GMV) for serviced users. Similarly,
several weeks’ A/B test on WeChat Moments showed a 1.17% in-
crease in GMV for serviced users. These results highlight LEADRE’s
capability to generate accurate, diverse, and high-value ads that
contribute positively to business outcomes.

LEADRE operates as a retrieval sub-branch, collaborating with
other LTR branches to complete the retrieval process. To highlight
the competition between branches, we introduce the consumption.
Consumption is the proportion of exposed ads exclusively retrieved
by a specific branch relative to all exposed ads. Online A/B test
shows that LEADRE achieves a consumption ratio of 7.33% (Wechat
Channels). This demonstrates its ability to retrieve ads missed by
other branches, directly contributing to the increase in GMV.

To effectively leverage the capability of LLMs in breaking the
"information cocoon" effect, the retrieved ads are further incor-
porated into the ranking phase as new features. Specifically, on
the user side, the retrieved ads are used as additional features to
enhance user profiling, while on the item side, the match scores

between the retrieved ads and the target ad are introduced as new
item-level features. These new features contribute to an extra 1.43%
improvement in GMV on Tencent WeChat Channels.

Currently, LEADRE has been deployed as a complementary re-
trieval sub-brunch on both TencentWeChat Channels andMoments,
serving billions of users and processing tens of billions of requests
each day, highlighting its scalability and practical impact within a
large-scale advertising system.

6 CONCLUSION
In this work, we present the first industrial application of generative
retrieval in display advertising. To address the challenges of "How to
capture user commercial intent", "How to bridge the gap between LLMs
and ad-Specific knowledge", and "How to efficiently deploy LLMs",
we introduce a novel LLM-based framework called Multi-Faceted
Knowledge Enhanced LLM Empowered Display ADvertisement
REcommender system (LEADRE). LEADRE comprises three core
modules: the Intent-Aware Prompt Engineering, the Advertising-
Specific Knowledge Alignment, and the Latency-Aware Model De-
ployment. To evaluate the effectiveness of LEADRE, we conducted
extensive experiments, including both offline and online evalua-
tions. The results demonstrate its ability to generate more accurate
and diverse ads. Moreover, online A/B test revealed that LEADRE
resulted in a 1.57% increase on TencentWeChat Channels, as well as
a 1.17% increase on Tencent WeChat Moments in GMV for serviced
users.

Looking ahead, our future work will explore the following di-
rections: (1) Next-N Generation for LLMs: Next-N ad prediction
provides a deeper understanding of user intent and offers a more
accurate and diverse retrieval list. However, LEADRE currently
supports only the generation of a single ad due to its reliance on
a statistical trie-tree and fixed tuning tasks. Future efforts will fo-
cus on designing appropriate trie-tree structures and constructing
tuning tasks for the next-N generation. (2) Development of More
Reasonable S-IDs: Current results indicate that the RQ-VAE tends
to allocate most information to the first codebook, while the subse-
quent codebooks retain limited information. Future research will
aim to design an information-controllable quantization model to
construct more effective S-IDs.

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation
of China (62436010, 62172421) and the Tencent Innovation Fund.
Biao Qin is the first corresponding author.

REFERENCES
[1] Keqin Bao, Jizhi Zhang, Xinyu Lin, Yang Zhang, Wenjie Wang, and Fuli Feng.

2024. Large Language Models for Recommendation: Past, Present, and Future.
In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2993–2996.

[2] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan
He. 2023. Tallrec: An effective and efficient tuning framework to align large
language model with recommendation. In Proceedings of the 17th ACMConference
on Recommender Systems. 1007–1014.

[3] Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, and Jie Tang.
2020. Controllable multi-interest framework for recommendation. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2942–2951.

[4] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng
Jin, and Yong Li. 2021. Sequential recommendation with graph neural networks.

4774

In Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval. 378–387.

[5] Jun Chen, Cheng Chen, Huayue Zhang, andQing Tan. 2022. AUnified Framework
for Campaign Performance Forecasting in Online Display Advertising. arXiv
preprint arXiv:2202.11877 (2022).

[6] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. 2024.
BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text
Embeddings Through Self-Knowledge Distillation. arXiv:2402.03216

[7] K Clark. 2020. Electra: Pre-training text encoders as discriminators rather than
generators. arXiv preprint arXiv:2003.10555 (2020).

[8] Zhihua Cui, Xianghua Xu, XUE Fei, Xingjuan Cai, Yang Cao, Wensheng Zhang,
and Jinjun Chen. 2020. Personalized recommendation system based on collabo-
rative filtering for IoT scenarios. IEEE Transactions on Services Computing 13, 4
(2020), 685–695.

[9] Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018).

[10] Manqing Dong, Feng Yuan, Lina Yao, Xiwei Xu, and Liming Zhu. 2020. Mamo:
Memory-augmented meta-optimization for cold-start recommendation. In Pro-
ceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining. 688–697.

[11] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022.
Recommendation as language processing (rlp): A unified pretrain, personalized
prompt & predict paradigm (p5). In Proceedings of the 16th ACM Conference on
Recommender Systems. 299–315.

[12] Zhabiz Gharibshah, Xingquan Zhu, Arthur Hainline, and Michael Conway. 2020.
Deep learning for user interest and response prediction in online display adver-
tising. Data Science and Engineering 5, 1 (2020), 12–26.

[13] Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and JulianMcAuley. 2023. Longcoder:
A long-range pre-trained language model for code completion. In International
Conference on Machine Learning. PMLR, 12098–12107.

[14] Jesse Harte, Wouter Zorgdrager, Panos Louridas, Asterios Katsifodimos, Diet-
mar Jannach, and Marios Fragkoulis. 2023. Leveraging large language models
for sequential recommendation. In Proceedings of the 17th ACM Conference on
Recommender Systems. 1096–1102.

[15] Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck, Dawen Liang, Yesu Feng,
Bodhisattwa Prasad Majumder, Nathan Kallus, and Julian McAuley. 2023. Large
language models as zero-shot conversational recommenders. In Proceedings of the
32nd ACM international conference on information and knowledge management.

[16] Chris Hokamp and Qun Liu. 2017. Lexically constrained decoding for sequence
generation using grid beam search. arXiv preprint arXiv:1704.07138 (2017).

[17] J Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick Xia, Tongfei Chen, Matt
Post, and Benjamin Van Durme. 2019. Improved lexically constrained decoding
for translation and monolingual rewriting. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). 839–850.

[18] Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun
Yu, and Jiawei Han. 2022. Large language models can self-improve. arXiv preprint
arXiv:2210.11610 (2022).

[19] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2553–2561.

[20] Houye Ji, Ye Tang, Zhaoxin Chen, Lixi Deng, Jun Hu, and Lei Su. 2024. Neural
Graph Matching for Video Retrieval in Large-Scale Video-driven E-commerce.
arXiv preprint arXiv:2408.00346 (2024).

[21] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[22] Huan Yee Koh, Jiaxin Ju, Ming Liu, and Shirui Pan. 2022. An empirical survey on
long document summarization: Datasets, models, and metrics. ACM computing
surveys 55, 8 (2022), 1–35.

[23] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1269–1278.

[24] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. 2022.
Autoregressive image generation using residual quantization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[25] Jin Li, Jie Liu, Shangzhou Li, Yao Xu, Ran Cao, Qi Li, Biye Jiang, Guan Wang,
Han Zhu, Kun Gai, et al. 2021. Truncation-Free Matching System for Display
Advertising at Alibaba. arXiv preprint arXiv:2102.09283 (2021).

[26] Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian
McAuley. 2023. Text is all you need: Learning language representations for
sequential recommendation. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 1258–1267.

[27] Kunze Li and Yu Zhang. 2024. Planning First, Question Second: An LLM-Guided
Method for Controllable Question Generation. In Findings of the Association for
Computational Linguistics ACL 2024. 4715–4729.

[28] Xinyu Lin, Wenjie Wang, Yongqi Li, Fuli Feng, See-Kiong Ng, and Tat-Seng
Chua. 2024. Bridging items and language: A transition paradigm for large
language model-based recommendation. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 1816–1826.

[29] Chang Liu, Xiaoguang Li, Guohao Cai, Zhenhua Dong, Hong Zhu, and Lifeng
Shang. 2021. Noninvasive self-attention for side information fusion in sequential
recommendation. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 35. 4249–4256.

[30] Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. 2016. Context-
aware sequential recommendation. In 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 1053–1058.

[31] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2024. Using an llm to help with code understanding. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering. 1–13.

[32] Matt Post andDavid Vilar. 2018. Fast lexically constrained decodingwith dynamic
beam allocation for neural machine translation. arXiv preprint arXiv:1804.06609
(2018).

[33] Guanghui Qin and Jason Eisner. 2021. Learning how to ask: Querying LMs with
mixtures of soft prompts. arXiv preprint arXiv:2104.06599 (2021).

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
International conference on machine learning. PMLR, 8748–8763.

[35] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano
Ermon, and Chelsea Finn. 2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neural Information Processing
Systems 36 (2024).

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

[37] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan,
Trung Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al.
2024. Recommender systems with generative retrieval. Advances in Neural
Information Processing Systems 36 (2024).

[38] N Reimers. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. arXiv preprint arXiv:1908.10084 (2019).

[39] Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei
Yin, and Chao Huang. 2024. Representation learning with large language models
for recommendation. In Proceedings of the ACM on Web Conference 2024.

[40] Vinay Singh, Brijesh Nanavati, Arpan Kumar Kar, and AgamGupta. 2023. How to
maximize clicks for display advertisement in digital marketing? A reinforcement
learning approach. Information Systems Frontiers 25, 4 (2023), 1621–1638.

[41] Derun Song, Enneng Yang, Guibing Guo, Li Shen, Linying Jiang, and Xingwei
Wang. 2024. Multi-scenario and multi-task aware feature interaction for recom-
mendation system. ACM Transactions on Knowledge Discovery from Data 18, 6
(2024), 1–20.

[42] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[43] Xingwu Sun, Yanfeng Chen, Yiqing Huang, Ruobing Xie, Jiaqi Zhu, Kai Zhang,
Shuaipeng Li, Zhen Yang, Jonny Han, Xiaobo Shu, et al. 2024. Hunyuan-Large:
An Open-Source MoE Model with 52 Billion Activated Parameters by Tencent.
arXiv:2411.02265

[44] Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. 2021. Spot:
Better frozen model adaptation through soft prompt transfer. arXiv preprint
arXiv:2110.07904 (2021).

[45] Bryan Wang, Gang Li, and Yang Li. 2023. Enabling conversational interaction
with mobile ui using large language models. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. 1–17.

[46] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang,
Rangan Majumder, and Furu Wei. 2022. Text embeddings by weakly-supervised
contrastive pre-training. arXiv preprint arXiv:2212.03533 (2022).

[47] Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng
Wang, Dawei Yin, and Chao Huang. 2024. Llmrec: Large language models
with graph augmentation for recommendation. In Proceedings of the 17th ACM
International Conference on Web Search and Data Mining. 806–815.

[48] Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, and Tat-Seng
Chua. 2021. Contrastive learning for cold-start recommendation. In Proceedings
of the 29th ACM International Conference on Multimedia. 5382–5390.

[49] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. 2020. SSE-PT:
Sequential recommendation via personalized transformer. In Proceedings of the
14th ACM conference on recommender systems. 328–337.

[50] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen,
Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, et al. 2024. A survey on large
language models for recommendation. World Wide Web 27, 5 (2024), 60.

4775

https://arxiv.org/abs/2402.03216
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2411.02265

[51] Ruobing Xie, Qi Liu, Liangdong Wang, Shukai Liu, Bo Zhang, and Leyu Lin. 2022.
Contrastive cross-domain recommendation in matching. In Proceedings of the
28th ACM SIGKDD conference on knowledge discovery and data mining.

[52] Yueqi Xie, Peilin Zhou, and Sunghun Kim. 2022. Decoupled side information
fusion for sequential recommendation. In Proceedings of the 45th international
ACM SIGIR conference on research and development in information retrieval. 1611–
1621.

[53] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, Victor S Sheng S. Sheng,
Zhiming Cui, Xiaofang Zhou, and Hui Xiong. 2019. Recurrent convolutional
neural network for sequential recommendation. In The world wide web conference.
3398–3404.

[54] Mingming Xu, Fangai Liu, and Weizhi Xu. 2019. A survey on sequential recom-
mendation. In 2019 6th international conference on information science and control
engineering (ICISCE). IEEE, 106–111.

[55] An Yan, Shuo Cheng, Wang-Cheng Kang, Mengting Wan, and Julian McAuley.
2019. CosRec: 2D convolutional neural networks for sequential recommenda-
tion. In Proceedings of the 28th ACM international conference on information and
knowledge management. 2173–2176.

[56] Zhilin Yang. 2019. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. arXiv preprint arXiv:1906.08237 (2019).

[57] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. 2024.
A survey on large language model (llm) security and privacy: The good, the bad,
and the ugly. High-Confidence Computing (2024), 100211.

[58] Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei
Huang. 2024. RRHF: Rank responses to align language models with human
feedback. Advances in Neural Information Processing Systems 36 (2024).

[59] Xu Yuan, Dongsheng Duan, Lingling Tong, Lei Shi, and Cheng Zhang. 2021. Icai-
sr: Item categorical attribute integrated sequential recommendation. In Proceed-
ings of the 44th international ACM SIGIR conference on research and development
in information retrieval. 1687–1691.

[60] ChengXiang Zhai. 2024. Large language models and future of information
retrieval: Opportunities and challenges. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval.

[61] Jizhi Zhang, Keqin Bao, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan
He. 2023. Is chatgpt fair for recommendation? evaluating fairness in large
language model recommendation. In Proceedings of the 17th ACM Conference on
Recommender Systems. 993–999.

[62] Jing Zhang, Hui Gao, Peng Zhang, Boda Feng, Wenmin Deng, and Yuexian Hou.
2024. LA-UCL: LLM-augmented unsupervised contrastive learning framework
for few-shot text classification. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language Resources and Evaluation
(LREC-COLING 2024). 10198–10207.

[63] Mingxuan Zhang, Bo Yuan, Hanzhe Li, and Kangming Xu. 2024. LLM-Cloud
Complete: Leveraging cloud computing for efficient large language model-based
code completion. Journal of Artificial Intelligence General science (JAIGS) ISSN:
3006-4023 5, 1 (2024), 295–326.

[64] Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and
Tatsunori B Hashimoto. 2024. Benchmarking large language models for news
summarization. Transactions of the Association for Computational Linguistics 12
(2024), 39–57.

[65] Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming
Chen, and Ji-Rong Wen. 2024. Adapting large language models by integrating
collaborative semantics for recommendation. In 2024 IEEE 40th International
Conference on Data Engineering (ICDE). IEEE, 1435–1448.

[66] Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. 2022. Filter-enhanced
MLP is all you need for sequential recommendation. In Proceedings of the ACM
web conference 2022. 2388–2399.

[67] Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong
Deng, Haonan Chen, Zhicheng Dou, and Ji-Rong Wen. 2023. Large language
models for information retrieval: A survey. arXiv preprint arXiv:2308.07107
(2023).

4776

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Large Language Models-based Recommender
	2.3 Retrieval in Advertising Systems

	3 Preliminary
	3.1 Problem Definition
	3.2 Ads Indexing
	3.3 Trie-Tree Construction
	3.4 Constrained Decoding

	4 Method
	4.1 Overview
	4.2 Intent-Aware Prompt Engineering
	4.3 Advertising-Specific Knowledge Alignment
	4.4 Latency-Aware Model Deployment

	5 Experiment
	5.1 Experiment Setup
	5.2 Offline Performance
	5.3 Online Performance

	6 Conclusion
	References

