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ABSTRACT

The graph edit distance (GED) is among the most widely used graph

similarity measures in practice. It asks for a minimum cost edit path

between two given labeled graphs 𝐺 and 𝐻 , where the edit path is

defined as a sequence of operations (e.g., node and edge insertions,

deletions or substitutions) that successively transform the graph 𝐺

into 𝐻 .

In this work, we suggest a new ILP formulation (FORI) based on

orienting the corresponding edge variables. Moreover, we suggest

enhancing two state-of-the-art ILP formulations by incorporating

additional inequalities. We theoretically compare the strength of the

formulations with respect to their Linear Programming relaxations.

The result is a hierarchy with (FORI) at the top.

Our extensive evaluation on widely used benchmark sets shows

that our improved formulations run significantly faster than the

previous ones. These allow to solve to proven optimality all the

reference instances from common databases, such as the IAMGraph

Database, many of which were prohibitive with state-of-the-art

methods. Moreover, we are able to compute the GED of a small

pattern and a large graph such as CORA and PUBMED, having up

to 19,717 nodes and 44,327 edges.
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1 INTRODUCTION

Graph data has become ubiquitous for many disciplines ranging

from semantic data modeling, over cheminformatics, to computer

vision. Rather than strictly determining if two graphs are struc-

turally identical, graph similarity measures are able to provide a

quantitative assessment of the (dis)similarity between two graphs

and can thus be viewed as an error-tolerant extension of graph

isomorphism. Graph similarity measures are the basis for major

machine learning tasks such as classification, clustering, associated

pattern mining, and outlier detection for data with network struc-

ture. For example, they are essential for graph database applications,

enabling the user to retrieve, e.g., a small set of graphs that are most

similar to a queried graph, placing them at the center of numerous

disciplines such as data-driven drug discovery, social network anal-

ysis, pattern recognition, and fraud detection. In computer vision,

graph similarity often occurs in imagematching [35], (multi-) object

tracking [23] and pedestrian re-identification [38]. In rational drug

design usage of graph similarity is tied to the assumption that struc-

turally similar molecules frequently have similar properties [11]. In

fraud detection, graph similarity measures are employed to identify

subgraphs similar to a graph pattern of fraudulent behavior or con-

nections among entities [26]. Searching small query graphs in large

database graphs, or performing subgraph isomorphism queries is

important, e.g., for graph-based data management [12], analogy

reasoning in knowledge graphs [13], and for identifying motifs in

biological and chemical networks [28, 29, 33].

A widely used graph similarity measure in practice is the graph

edit distance (GED), since it is conceptually simple and highly flexi-

ble. The GED of two graphs 𝐺 and 𝐻 with node and/or edge labels

is defined as the minimum cost of a sequence of edit operations that

transforms 𝐺 into a graph that is isomorphic to 𝐻 . Edit operations

consist of insertion, deletion or substitution of nodes and edges,

each associated with a non-negative (often dataset-specific) cost.

Computing the GED is NP-hard, even for planar graphs or when

using unit edit costs (every operation has a cost of 1) [22, 39].

The exact computation of the GED has been the subject of numer-

ous contributions in the literature from various research communi-

ties. Complete surveys on exact and approximate GED algorithms

are given in [4, 14, 30]. Riesen et al. [32] apply the well-known 𝐴∗
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search algorithm to compute the GED exactly. The algorithm ex-

plores a search tree, where each node of the tree represents a partial

edit path, i.e., a sequence of operations applied so far. Complete

edit paths that transform one graph into the other correspond to

leaves of this tree. The exploration of the tree is guided by travers-

ing the most promising path on the basis of a heuristic estimation

of the GED. Unfortunately, in practice it performs poorly due to

the large search space it needs to explore, thus yielding too large

time and space requirements [5, 21]. Recent developments in 𝐴∗-
search-based algorithms have been obtained, e.g., by Chen et al.,

who applied the beam-stack-search paradigm to 𝐴∗-search [9], or

by exploiting the isomorphism between vertices in order to avoid

repeated computations, as done in [20]. However, experimental

evaluation of these methods is limited to graphs with up to 30

nodes. In 2023, Chang et al. [7, 8] proposed two improvements of

the 𝐴∗-search paradigm, namely 𝐴∗+-LSa and 𝐴∗-BMao. By lever-

aging on improved lower bound estimations and specialized data

structure that stores graph node labels compactly, the authors man-

aged to run their algorithms on larger GED instances with up to 64

nodes per graph, establishing novel state-of-the-art algorithms for

computing the exact GED. 𝐴∗-based search algorithm are also the

basis for many heuristic-aided search algorithms [2, 15].

Integer Linear Programming techniques are considered some of

the best methods for exactly computing the GED (see, e.g., [1, 5, 21]).

Justice and Hero [19] developed an ILP formulation which is fast

in practice. However, its applicability is limited because it cannot

account for edge labels. Lerouge et al. [21] introduced two different

ILP formulations (called (F1) and (F2)) that also take into account

the edge labels. In practice, their formulation (F2) outperforms all

other methods for exactly computing the GED on general labeled

graphs [5], and is thus used as subroutine in many pattern recogni-

tion applications (see e.g. the recent work of Xu et al. [37]). Recently,

Blumenthal and Gamper [5] have suggested a Mixed Integer Linear

Programming formulation for the GED problem. In their practical

experiments they confirmed the dominance of the (F2) formulation

given in [21]. However, up to now, exact approaches have shown

to regularly solve instances of sizes up to ∼ 20 nodes on the used

benchmark sets, only [5].

Therefore, in practice often heuristics, like local-search and beam-

search [4] are used, although they may lead to an arbitrarily poor

solution. Recent advancements have focused on neural GED esti-

mators that approximate the GED by leveraging data distribution

characteristics [3, 18, 27, 28, 40]. A recent study [17] has pointed out

that these methods are constrained by the commonly used datasets

for training, since the GED values are known for very small or

for trivial instances, only. Finally, often heuristics and learning-

based approaches are not designed to also provide the sequence of

operations that transform one of the input graphs in the other.

In this work, wemake amajor step forward on exactly computing

the GED based on ILPs. Indeed, ILP based methods (i) are able to

compute the exact GED; (ii) are designed to provide both the GED

distance and the sequence of edit operations; (iii) do not require

preprocessing or training/test phases; (iv) known formulationswork

on both labeled and unlabeled graphs and on general cost functions;

(v) can also be used to train neural networks to provide better

performance [37].

Our contribution:

• We introduce a novel ILP formulation (FORI), based on

orienting the corresponding edge variables, which theoret-

ically and practically outperforms all state-of-the-art ap-

proaches. Unlike previous ILP formulations, which typically

establish correspondences between subsets of edges in the

two input graphs, our approach introduces variables that

encode directed edges. This representation more accurately

captures both edge directionality and structural dependen-

cies between the corresponding node pairs. As a result, it

enables a decomposition of certain constraints present in

existing ILP models, leading to a stronger formulation.

• Furthermore, we improve known state-of-the-art ILP for-

mulations, namely (F1) and (F2) from Lerouge et al. [21],

by adding additional inequalities leading to formulations

(F1+) and (F2+), respectively.

• We theoretically analyze the strength of state-of-the-art

and our new ILP models by studying and comparing their

LP relaxations. Our analysis shows that our new formula-

tions (F1+) and (F2+) are strictly stronger than the existing

ILP formulations (F1) and (F2), in the sense that their LP

relaxations yield tighter lower bounds. Among all formula-

tions considered, (FORI) emerges as the strongest, with its

LP relaxation producing the tightest lower bounds overall,

including improvements over (F1+) and (F2+).

• Our theoretical findings are confirmed by practical exper-

iments. An extensive experimental study shows that our

formulations run significantly faster than the previous ones,

allowing to solve to proven optimality many instances

whose GED computation was prohibitive with state-of-the-

art methods. In particular, our new model (FORI) is able to

solve all instances from the IAM Graph Database considered

in [5]. Indeed, the model can optimally solve GED instances

of significantly larger dimensions. Notably, our method

makes it possible — for the first time — to routinely solve

instances involving graphs with up to 100 nodes, a scale

previously considered intractable for exact approaches. We

also document the computation of the GED of a small pat-

tern and a large graph such as IMDB, CORA and PUBMED,

having up to 19,717 nodes and 44,327 edges.

2 PRELIMINARIES

We follow the notation used in [5]. Let 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐿𝑉 , 𝐿𝐸 ) be an
undirected, labeled, simple graph with node set 𝑉𝐺 , edge set 𝐸𝐺 ,

and labeling functions 𝐿𝑉 : 𝑉𝐺 → Σ𝑉 and 𝐿𝐸 : 𝐸𝐺 → Σ𝐸 assigning

labels to nodes and edges.
1

We say that a node𝑢 ∈ 𝑉𝐺 is a neighbor of (or adjacent to) a node

𝑣 ∈ 𝑉𝐺 if there is an edge {𝑢, 𝑣} ∈ 𝐸𝐺 . Sometimes, the notation 𝑢𝑣

will be used instead of {𝑢, 𝑣}. The neighborhood 𝛿𝐺 (𝑢) of a node
𝑢 ∈ 𝑉𝐺 is the set of all neighbors of 𝑢, i.e., 𝛿𝐺 (𝑢) = {𝑣 ∈ 𝑉𝐺 |
{𝑢, 𝑣} ∈ 𝐸𝐺 }. For deletion and insertion we consider the node set as

extended by a dummy node 𝜀𝑉 , the edge set extended by a dummy

edge 𝜀𝐸 , with 𝑉𝐺+𝜀 = 𝑉 ∪ {𝜀𝑉 } and 𝐸𝐺+𝜀 = 𝐸𝐺 ∪ {𝜀𝐸 }. Node and

1
Throughout this paper, we use the term label to denote node or edge annotations,

which are also commonly referred to as attributes in other communities.
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edge labels as well as the cost function with respect to these labels

are specific to each dataset and application.

Note that the definitions and notations can be straightforwardly

extended to directed graphs. In particular, we will denote an edge

directed from node 𝑢 to node 𝑣 by (𝑢, 𝑣), the set of outgoing neigh-

bors of a node 𝑢 ∈ 𝑉𝐺 by 𝛿+
𝐺
(𝑢), and the set of ingoing neighbors

of a node 𝑢 ∈ 𝑉𝐺 by 𝛿−
𝐺
(𝑢).

Two labeled graphs𝐺 and𝐻 , on common label alphabets 𝐿𝑉 and

𝐿𝐸 , are called isomorphic if there exists a bijection 𝜋 : 𝑉𝐺 → 𝑉𝐻 ,

such that for each node 𝑣 ∈ 𝑉𝐺 we have 𝐿𝑉 (𝑣) = 𝐿𝑉 (𝜋 (𝑣)), and
for each pair of nodes 𝑢, 𝑣 ∈ 𝑉𝐺 we have that 𝜋 (𝑢) and 𝜋 (𝑣) are
adjacent in 𝐻 if and only if 𝑢 and 𝑣 are adjacent in 𝐺 . Moreover,

for all adjacent pairs of nodes {𝑢, 𝑣} ∈ 𝐸𝐺 we have 𝐿𝐸 ({𝑢, 𝑣}) =
𝐿𝐸 ({𝜋 (𝑢), 𝜋 (𝑣)}).

The GED is characterized by the application of edit operations to

the graph G until one obtains a graph that is isomorphic to H. Edit

operations 𝑜𝑖 consist of:

• insertion or deletion of an isolated, labeled node;

• insertion or deletion of a labeled edge;

• substitution of a node (label) by another one;

• substitution of an edge (label) by another one.

with a non-negative edit cost associated with each edit operation:

𝑐𝑉 : Σ𝑉 × Σ𝑉 → R≥0 for node operations, 𝑐𝐸 : Σ𝐸 × Σ𝐸 → R≥0

for edge operations.

An edit path 𝑃 = (𝐺,𝑜1,𝐺
1, . . . , 𝑜𝑘 ,𝐺

𝑘 ), alternatively denoted

as 𝑃 = (𝑜1, . . . , 𝑜𝑘 ), encodes a sequence of graphs 𝐺𝑖 , (1 ≤ 𝑖 ≤ 𝑘),
where each𝐺𝑖

is obtained from𝐺𝑖−1
by applying the edit operation

𝑜𝑖 . This sequence transforms the graph 𝐺 into a graph 𝐺𝑘
that is

isomorphic to 𝐻 . The cost of an edit path is equal to the sum of the

costs of its edit operations. The graph edit distance 𝐺𝐸𝐷 (𝐺,𝐻 ) is
defined as the minimum cost 𝑐 (𝑃) of an edit path 𝑃 between𝐺 and

𝐻 . Edit paths are in general not unique under this definition. Given

two labeled graphs𝐺 and 𝐻 , the GED problem is to find a minimum

cost edit path.

In all the published algorithmic approaches, the GED problem is

restricted to edit paths that are induced by complete node maps [5].

Such a node map is defined as a relation 𝜋 ⊂ 𝑉𝐺+𝜀 ×𝑉𝐻+𝜀 that is an
injective function when restricted to 𝑉𝐺 and 𝑉𝐻 , and every node

𝑖 ∈ 𝑉𝐺 is mapped either to a node 𝑘 ∈ 𝑉𝐻 or to the dummy node

𝜀𝑉𝐻 (deleted), and every node 𝑘 ∈ 𝑉𝐻 is either the mapping of a

node 𝑖 ∈ 𝑉𝐺 or the dummy node 𝜀𝑉𝐺 (inserted). This restriction,

which we also accept, is justified, since it has been shown that for

metric cost functions, the node map induced GED is equivalent to

the original GED defined above (see [25] and [6]). Moreover, in the

case that the given cost function is not metric, it can be transformed

into a metric cost function [5].

Given a GED problem instance 𝐷 = (𝐺,𝐻, 𝑐) with substitution,

insertion, and deletion costs 𝑐 for node and edge pairs, a complete

node map 𝜋 ⊂ 𝑉𝐺+𝜀 ×𝑉𝐻+𝜀 , defines a unique mapping 𝜋 ′ between
the edges from 𝐸𝐺+𝜀 to 𝐸𝐻+𝜀 . Then the (node map induced) GED

can be derived as follows:

• If 𝜋 (𝑖) = 𝑘 for two nodes 𝑖 ∈ 𝑉𝐺 and 𝑘 ∈ 𝑉𝐻 , then the costs

are given by the node label substitution costs 𝑐𝑖,𝑘 .

• If node 𝑖 is deleted (i.e, assigned to node 𝜀𝑉𝐻 ), the costs are

𝑐𝑖,𝜀 .

• If node 𝑘 is inserted (i.e, assigned from node 𝜀𝑉𝐺 ), the costs

are 𝑐𝜀,𝑘 .

• If 𝜋 ′ ({𝑖, 𝑗}) = {𝑘, 𝑙} for two edges {𝑖, 𝑗} ∈ 𝐸𝐺 and {𝑘, 𝑙} ∈
𝐸𝐻 , the costs are given by the edge label substitution costs

𝑐𝑖 𝑗,𝑘𝑙 .

• If edge {𝑖, 𝑗} ∈ 𝐸𝐺 is deleted, (i.e. 𝜋 ′ ({𝑖, 𝑗}) = 𝜀𝐸𝐻 ), then

the costs are given by the edge deletion costs 𝑐𝑖 𝑗,𝜀 .

• If edge {𝑘, 𝑙} ∈ 𝐸𝐻 is inserted, (i.e. 𝜋 ′ (𝜀𝐸𝐺 ) = {𝑘, 𝑙}), then
the costs are given by the edge insertion costs 𝑐𝜀,𝑘𝑙 .

Hence, the considered GED problem in this work is to find a com-

plete node map 𝜋 ⊂ 𝑉𝐺+𝜀 × 𝑉𝐻+𝜀 that minimizes the sum of the

above node and edge mapping costs.

2.1 Integer programming and valid inequalities

An Integer Linear Program (ILP) [10, 36]

min{𝑐𝑇 𝑥 | 𝑥 ∈ Z𝑛, 𝐴𝑥 ≥ 𝑏} (1)

consists of a system of linear inequalities and a linear objective

function with a constraint matrix 𝐴 ∈ Q𝑚×𝑛
, a cost vector 𝑐 ∈ Q𝑛

,

and a right-hand side vector 𝑏 ∈ Q𝑚
. A variable vector 𝑥 ∈ Z𝑛

satisfying all the constraints 𝑎𝑇
𝑖
𝑥 ≥ 𝑏𝑖 for all 𝑖 = 1, . . . ,𝑚 is called a

feasible solution. The set of feasible solutions to (1) is denoted by X.
The inequality 𝜋𝑥 ≥ 𝜋0 is said to be valid for X if 𝜋𝑥 ≥ 𝜋0 for all

𝑥 ∈ X.
We obtain the natural LP relaxation of an ILP by substituting the

requirement 𝑥 ∈ Z𝑛 by 𝑥 ∈ R𝑛
. The subset P = {𝑥 ∈ R𝑛 | 𝐴𝑥 ≥ 𝑏}

of R𝑛
defines a polyhedron. In the case of minimization problems,

such as the GED, the optimal value of an LP relaxation provides

a lower bound to the optimal value of the corresponding integer

formulation. In this paper, we restrict the variables 𝑥 to be in {0, 1}𝑛 .

Strength of LP relaxations. In this paper, we theoretically com-

pare the strength of ILP models. Our comparisons are based on

the natural LP relaxations which are the starting points of our

practical computations. Let 𝜈 (P𝑀 (𝐼 )) be the optimal value of the

(natural) LP relaxation for a formulation𝑀 on instance 𝐼 . We call

an ILP formulation (model) 𝑀 weakly stronger than a formulation

𝑀′, denoted by 𝑀 ⪰ 𝑀′, if the optimal value of their natural LP

relaxations fulfills 𝜈 (P𝑀 (𝐼 )) ≥ 𝜈 (P𝑀 ′ (𝐼 )) for all instances 𝐼 of the
problem. We say that 𝑀 is strictly stronger than 𝑀′, denoted by

𝑀 ≻ 𝑀′, if𝑀 is weakly stronger than𝑀′, and there exists a prob-

lem instance 𝐼 for which 𝜈 (P𝑀 (𝐼 )) > 𝜈 (P𝑀 ′ (𝐼 )), i.e., the optimal

value of the LP relaxation of 𝑀 leads to stronger (larger) lower

bounds than that of𝑀′. If𝑀 is weakly stronger than𝑀′, and𝑀′

is weakly stronger than𝑀 , we call them equivalent, and we denote

this fact by𝑀 ≡ 𝑀′.

3 STATE-OF-THE-ART ILP FORMULATIONS

FOR THE GED PROBLEM

Lerouge et al. [21] suggest two ILP-formulations for the GED prob-

lem and evaluate them in comparison with existing ILP formula-

tions.

Their first formulation (F1) (see Figure 1) is a straightforward

model using assignment variables to encode the mapping for the

nodes and for the edges. It contains two types of decision variables:

𝑥𝑖,𝑘 = 1 indicates that node 𝑖 ∈ 𝑉𝐺 is mapped to node 𝑘 ∈ 𝑉𝐻 ,
while 𝑥𝑖,𝜀 = 1 and 𝑥𝜀,𝑘 = 1 encode the deletion of node 𝑖 and
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(F1) min

∑︂
𝑖∈𝑉𝐺

∑︂
𝑘∈𝑉𝐻

𝑐𝑖,𝑘𝑥𝑖,𝑘 +
∑︂
𝑖∈𝑉𝐺

𝑐𝑖,𝜀𝑥𝑖,𝜀 +
∑︂
𝑘∈𝑉𝐻

𝑐𝜀,𝑘𝑥𝜀,𝑘

+
∑︂

𝑖 𝑗∈𝐸𝐺

∑︂
𝑘𝑙∈𝐸𝐻

𝑐𝑖 𝑗,𝑘𝑙𝑦𝑖 𝑗,𝑘𝑙 +
∑︂

𝑖 𝑗∈𝐸𝐺
𝑐𝑖 𝑗,𝜀𝑦𝑖 𝑗,𝜀 +

∑︂
𝑘𝑙∈𝐸𝐻

𝑐𝜀,𝑘𝑙𝑦𝜀,𝑘𝑙

s.t. 𝑥𝑖,𝜀 +
∑︂
𝑘∈𝑉𝐻

𝑥𝑖,𝑘 = 1 ∀ 𝑖 ∈ 𝑉𝐺 (2a)

𝑥𝜀,𝑘 +
∑︂
𝑖∈𝑉𝐺

𝑥𝑖,𝑘 = 1 ∀ 𝑘 ∈ 𝑉𝐻 (2b)

𝑦𝑖 𝑗,𝜀 +
∑︂

𝑘𝑙∈𝐸𝐻
𝑦𝑖 𝑗,𝑘𝑙 = 1 ∀ 𝑖 𝑗 ∈ 𝐸𝐺 (2c)

𝑦𝜀,𝑘𝑙 +
∑︂

𝑖 𝑗∈𝐸𝐺
𝑦𝑖 𝑗,𝑘𝑙 = 1 ∀ 𝑘𝑙 ∈ 𝐸𝐻 (2d)

𝑦𝑖 𝑗,𝑘𝑙 ≤ 𝑥𝑖,𝑘 + 𝑥 𝑗,𝑘 ∀ 𝑖 𝑗 ∈ 𝐸𝐺 , 𝑘𝑙 ∈ 𝐸𝐻 (2e)

𝑦𝑖 𝑗,𝑘𝑙 ≤ 𝑥𝑖,𝑙 + 𝑥 𝑗,𝑙 ∀ 𝑖 𝑗 ∈ 𝐸𝐺 , 𝑘𝑙 ∈ 𝐸𝐻 (2f)

𝑥 ∈ {0, 1}xcard𝐹 1
(2g)

𝑦 ∈ {0, 1}ycard𝐹 1 (2h)

Figure 1: Formulation (F1) proposed in [21].

the insertion of node 𝑘 , respectively. Similarly, 𝑦𝑖 𝑗,𝑘𝑙 = 1, 𝑦𝑖 𝑗,𝜀 =

1 and 𝑦𝜀,𝑘𝑙 = 1 correspond to the mapping, deletion, and insertion

of edges {𝑖, 𝑗} ∈ 𝐸𝐺 and {𝑘, 𝑙} ∈ 𝐸𝐻 . The formulation involves

xcard𝐹1 = |𝑉𝐺 | · |𝑉𝐻 | + |𝑉𝐺 | + |𝑉𝐻 | node assignment variables and

ycard𝐹1
= |𝐸𝐺 | · |𝐸𝐻 | + |𝐸𝐺 | + |𝐸𝐻 | edge assignment variables. The

objective function naturally reflects the total cost of the resulting

node-map-based assignment.

The constraints (2a) ensure that every node in graph 𝐺 is either

mapped to a node in graph 𝐻 or deleted. Similarly, constraints (2b)

guarantee that every node in 𝐻 is either the image of a node in 𝐺

or inserted. Similarly, constraints (2c) and (2d) enforce the same for

edges: each edge must either be matched with a corresponding edge

in the other graph, deleted or inserted. The so-called topological

constraints (2e) and (2f) link node and edge assignment variables.

These constraints ensure that an edge {𝑖, 𝑗} ∈ 𝐸𝐺 can only be

mapped to an edge {𝑘, 𝑙} ∈ 𝐸𝐻 if one of 𝑖 or 𝑗 is mapped to 𝑘 , and

the other to 𝑙 . If this condition is not satisfied, the corresponding

edge mapping variable 𝑦𝑖 𝑗,𝑘𝑙 must be zero.

Lerouge et al. [21] also suggest formulation (F2) which they

derive from (F1). In a first step, they argue that the variables for

deleting and inserting nodes and edges are not needed, since they

are implicitly given by the assignment variables. Hence they substi-

tute the equations (2a) – (2d) by inequalities, reducing the number

of variables and constraints.

Variables 𝑥𝑖,𝑘 = 1 correspond to mapping node 𝑖 ∈ 𝑉𝐺 to 𝑘 ∈ 𝑉𝐻 ,

𝑥𝑖,𝑘 = 0 otherwise. Similarly, variables 𝑦𝑖 𝑗,𝑘𝑙 = 1 correspond to

mapping edge {𝑖, 𝑗} ∈ 𝐸𝐺 to {𝑘, 𝑙} ∈ 𝐸𝐻 .

The cost function implicitly takes the deletion and insertion of

nodes and edges into consideration. The constant term

𝐾 =
∑︂
𝑖∈𝑉𝐺

𝑐𝑖,𝜀 +
∑︂
𝑘∈𝑉𝐻

𝑐𝜀,𝑘 +
∑︂

𝑖 𝑗∈𝐸𝐺
𝑐𝑖 𝑗,𝜀 +

∑︂
𝑘𝑙∈𝐸𝐻

𝑐𝜀,𝑘𝑙

(F2) min

∑︂
𝑖∈𝑉𝐺

∑︂
𝑘∈𝑉𝐻

𝑐𝑖,𝑘 · 𝑥𝑖,𝑘 +
∑︂

𝑖 𝑗∈𝐸𝐺

∑︂
𝑘𝑙∈𝐸𝐻

𝑐𝑖 𝑗,𝑘𝑙 · 𝑦𝑖 𝑗,𝑘𝑙 + 𝐾

s.t.

∑︂
𝑘∈𝑉𝐻

𝑥𝑖,𝑘 ≤ 1 ∀ 𝑖 ∈ 𝑉𝐺 (3a)∑︂
𝑖∈𝑉𝐺

𝑥𝑖,𝑘 ≤ 1 ∀ 𝑘 ∈ 𝑉𝐻 (3b)∑︂
𝑙∈𝛿𝐻 (𝑘 )

𝑦𝑖 𝑗,𝑘𝑙 ≤ 𝑥𝑖,𝑘 + 𝑥 𝑗,𝑘 ∀ 𝑘 ∈ 𝑉𝐻 , 𝑖 𝑗 ∈ 𝐸𝐺 (3c)

𝑥 ∈ {0, 1} |𝑉𝐺 | · |𝑉𝐻 | (3d)

𝑦 ∈ {0, 1} |𝐸𝐺 | · |𝐸𝐻 | (3e)

Figure 2: Formulation (F2) proposed in [21].

adds the cost for deleting and subsequently inserting every node and

edge to the objective function value. Substitution costs are defined

as 𝑐𝑖,𝑘 = (𝑐𝑖,𝑘 − 𝑐𝑖,𝜀 − 𝑐𝜀,𝑘 ) for all pairs of nodes (𝑖, 𝑘) ∈ 𝑉𝐺 ×𝑉𝐻
and 𝑐𝑖 𝑗,𝑘𝑙 = (𝑐𝑖 𝑗,𝑘𝑙 − 𝑐𝑖 𝑗,𝜀 − 𝑐𝜀,𝑘𝑙 ) for all pairs of edges (𝑖 𝑗, 𝑘𝑙) ∈
𝐸𝐺 ×𝐸𝐻 . Thus, for any variable with 𝑥𝑖,𝑘 = 1 the objective function

coefficient adds the cost of the corresponding mapping and cancels

out the cost of the deletion of 𝑖 ∈ 𝑉𝐺 and the insertion of 𝑘 ∈ 𝑉𝐻 ,
analogously for 𝑦𝑖 𝑗,𝑘𝑙 = 1. We will call this formulation (F2-).

In order to reduce the number of constraints, Lerouge et al. [21]

suggest to substitute the constraints (2e) and (2f) in (F2-) by the new

topological constraints (3c). Moreover, they show that due to this

substitution, constraints (2c) and (2d) are no longer necessary to be

a valid formulation for the GED problem. This reduces the number

of topological constraints from 2|𝐸𝐺 | · |𝐸𝐻 | to |𝑉𝐻 | · |𝐸𝐺 |. The model

(F2) suggested by Lerouge et al. [21] is shown in Figure 2.

Lerouge et al. [21] show that their new type of constraints (3c)

are valid for formulation (F1), which is equivalent to (F2-) in terms

of the set of feasible solutions. In their computational experiments,

which showed that (F2) dominates (F1) on the tested benchmark

sets, they only incorporated them into formulation (F2). We will

incorporate them also into (F1) leading to formulation (F1’).

Lemma 3.1. [Proposition 2 in [21]] Replacing inequalities (2e) and

(2f) in (F1) with (3c) leaves the set of feasible solutions untouched. I.e.

constraints (2c),(2d) plus (2e), (2f) are implied by inequality (3c).

We will show in Section 6 that using the topological constraints

(3c) strengthens the formulations in the sense that their LP relax-

ations lead to better bounds than that of (F1) and (F2-), respectively.

Additionally, we will show that both formulations (F1) and (F2-)

are equivalent with respect to their LP relaxation bounds.

4 STRENGTHENING STATE-OF-THE-ART

MODELS

In the same spirit of the inequalities (3c) in formulation (F2) that

link the 𝑦 variables with the 𝑥 variables, we introduce inequalities

over a different combination of node and edge indices. In detail,

inequalities (3c) are defined starting from the pair (𝑘 ∈ 𝑉𝐻 , 𝑖 𝑗 ∈ 𝐸𝐺 ).
Then, they involve variables 𝑦𝑖 𝑗,𝑘𝑙 , where 𝑙 ∈ 𝛿𝐻 (𝑘) is a node in
the neighborhood of 𝑘 in 𝐻 . Swapping the role of the graphs, one
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can consider the pair (𝑖 ∈ 𝑉𝐺 , 𝑘𝑙 ∈ 𝐸𝐻 ) and variables 𝑦𝑖 𝑗,𝑘𝑙 where

𝑗 is a node in the neighborhood of 𝑖 in 𝐺 , i.e., 𝑗 ∈ 𝛿𝐺 (𝑖). The new
topological constraints have the form:∑︂

𝑗∈𝛿𝐺 (𝑖 )
𝑦𝑖 𝑗,𝑘𝑙 ≤ 𝑥𝑖,𝑘 + 𝑥𝑖,𝑙 ∀ 𝑖 ∈ 𝑉𝐺 , 𝑘𝑙 ∈ 𝐸𝐻 (4)

Since the𝑦 variables in (F2) and (F1) induce a valid edge mapping,

the left hand side of (4) is either 0 or 1. If it is equal to 1, then there

exists an edge incident to 𝑖 ∈ 𝑉𝐺 , which is mapped to {𝑘, 𝑙} ∈ 𝐸𝐻 .
In this case, node 𝑖 needs to be assigned to either 𝑘 ∈ 𝑉𝐻 or 𝑙 ∈ 𝑉𝐻
showing validity of (4).

Lemma 4.1. Inequalities (4) are valid for the set of integer feasible

solutions of the ILP formulation (F2) as well as for (F1).

Proof. We show that every integral feasible solution of (F2)

and (F1), resp., satisfies the constraints (4). If the constraints (4)

would be violated for (F1), then there would exist an 𝑖′ ∈ 𝑉𝐺 and

{𝑘′, 𝑙 ′} ∈ 𝐸𝐻 for which∑︂
𝑗∈𝛿𝐺 (𝑖′ )

𝑦𝑖′ 𝑗,𝑘 ′𝑙 ′ > 𝑥𝑖′,𝑘 ′ + 𝑥𝑖′,𝑙 ′ .

Since from constraints (2a) and (3a), resp., it follows that 𝑥𝑖′,𝑘 ′ +
𝑥𝑖′,𝑙 ′ ≤ 1, we know that then there must exist at least two nodes

𝑗 ′, 𝑗 ′′ ∈ 𝑉𝐺 for which 𝑦𝑖′, 𝑗 ′,𝑘 ′𝑙 ′ = 𝑦𝑖′, 𝑗 ′′,𝑘 ′𝑙 ′ = 1. But this is in

contradiction with (2d) in (F1). For (F2), Lerouge et al. [21] have

shown that constraints (2d) are implied by (3b) and (3c). □

4.1 Formulations (F2+) and (F1+)

Our formulations (F2+) and (F1+), resp., are defined as the model

(F2) and (F1’), resp., extended by the new class of constraints (4).

Lemma 4.1 together with the fact that the new models extend (F2)

and (F1), resp., which correctly encode the set of feasible solutions

of the GED problem, leads to the correctness of both new models.

Proposition 4.2. The formulations (F2+) and (F1+), resp., cor-

rectly model the GED problem. In particular, the models (F2+) and

(F1+), resp., applied to a GED instance (𝐺,𝐻, 𝑐), provide the correct
GED and the corresponding node and edge mappings.

Both formulations (F2+) and (F1+) have the same number of vari-

ables as their basic models (F2) and (F1’), resp., and |𝑉𝐺 | · |𝐸𝐻 | ad-
ditional constraints. Despite an increase in constraints, in Section 7

we will demonstrate that our approach significantly enhances the

computational performance. Moreover, we will show in Section 6

that their LP relaxations lead to strictly stronger lower bounds.

5 A NEW ILP FORMULATION BASED ON EDGE

ORIENTATIONS

Our new formulation is based on respecting newly introduced edge

orientations of the given graphs. The 𝑥 variables are identical to

those of (F2) and induce a node map. Variable 𝑥𝑖,𝑘 = 1 if node 𝑖 ∈ 𝑉𝐺
is mapped to node 𝑘 ∈ 𝑉𝐻 , for all 𝑖 ∈ 𝑉𝐺 and 𝑘 ∈ 𝑉𝐻 . In 𝐺 , we
orient every undirected edge {𝑖, 𝑗} so that 𝑖 < 𝑗 , and denote the

resulting directed graph by

−→
𝐺 . Moreover, in 𝐻 , we introduce two

arcs (𝑘, 𝑙) and (𝑙, 𝑘) for each edge {𝑘, 𝑙} ∈ 𝐸𝐻 with 𝑘 ≠ 𝑙 , leading

to the graph

←→
𝐻 . We introduce 𝑧 variables 𝑧𝑖 𝑗,𝑘𝑙 for the set of all

arcs (𝑖, 𝑗) ∈ 𝐸−→
𝐺

(𝑖 < 𝑗 ) and all arcs (𝑘, 𝑙) ∈ 𝐸←→
𝐻
. A variable 𝑧𝑖 𝑗,𝑘𝑙 is

(FORI) min

∑︂
𝑖∈𝑉𝐺

∑︂
𝑘∈𝑉𝐻

𝑐𝑖,𝑘 ·𝑥𝑖,𝑘 +
∑︂

(𝑖, 𝑗 ) ∈𝐸−→
𝐺

∑︂
(𝑘,𝑙 ) ∈𝐸←→

𝐻

𝑐𝑖 𝑗,𝑘𝑙 ·𝑧𝑖 𝑗,𝑘𝑙 +𝐾

s.t.

∑︂
𝑘∈𝑉𝐻

𝑥𝑖,𝑘 ≤ 1 ∀ 𝑖 ∈ 𝑉𝐺 (5a)∑︂
𝑖∈𝑉𝐺

𝑥𝑖,𝑘 ≤ 1 ∀ 𝑘 ∈ 𝑉𝐻 (5b)∑︂
𝑙∈𝛿+←→

𝐻
(𝑘 )
𝑧𝑖 𝑗,𝑘𝑙 ≤ 𝑥𝑖,𝑘 ∀ 𝑘 ∈ 𝑉𝐻 , (𝑖, 𝑗) ∈ 𝐸−→

𝐺
(5c)

∑︂
𝑙∈𝛿−←→

𝐻
(𝑘 )
𝑧𝑖 𝑗,𝑙𝑘 ≤ 𝑥 𝑗,𝑘 ∀ 𝑘 ∈ 𝑉𝐻 , (𝑖, 𝑗) ∈ 𝐸−→

𝐺
(5d)

∑︂
𝑗∈𝛿+−→

𝐺
(𝑖 )
𝑧𝑖 𝑗,𝑘𝑙 +

∑︂
𝑗∈𝛿−−→

𝐺
(𝑖 )
𝑧 𝑗𝑖,𝑙𝑘 ≤ 𝑥𝑖,𝑘 ∀ 𝑖 ∈ 𝑉𝐺 , (𝑘, 𝑙) ∈ 𝐸←→

𝐻
(5e)

𝑥 ∈ {0, 1} |𝑉𝐺 | · |𝑉𝐻 | (5f)

𝑧 ∈ {0, 1} |𝐸𝐺 | ·2 |𝐸𝐻 | (5g)

Figure 3: Formulation (FORI).
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Figure 4: GED(G,H) instance used in Lemmas 6.3–6.5.
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𝑏

𝑐

1
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Figure 5: Example of

−→
𝐺 (where a < b < c) and

←→
𝐻 .

set to 1 if arc (𝑖, 𝑗) ∈ 𝐸−→
𝐺

gets mapped to arc (𝑘, 𝑙) ∈ 𝐸←→
𝐻

and zero

otherwise.

For the objective function, our newmodel (FORI) copies the costs

from (F2), where the 𝑧 variables 𝑧𝑖 𝑗,𝑘𝑙 and 𝑧𝑖 𝑗,𝑙𝑘 take over the costs

of the 𝑦 variables 𝑦𝑖 𝑗,𝑘𝑙 from (F2). The formulation (FORI) is shown

in Figure 3.

Introducing variables that explicitlymodel directed edges enables

us to enforce the relationships between corresponding nodes more

precisely. Consider the topological constraints (3c) in (F2), which

ensure that an edge {𝑖, 𝑗} ∈ 𝐸𝐺 can be mapped to an edge {𝑘, 𝑙} ∈
𝐸𝐻 only if one of the nodes 𝑖 or 𝑗 is mapped to 𝑘 , and the other to

𝑙 . Since we do not know if 𝑖 is mapped to 𝑘 or to 𝑙 , the right-hand

side of (3c) contains the sum of both assignment variables, 𝑥𝑖,𝑘 +
𝑥 𝑗,𝑘 . In contrast, our new formulation (FORI) provides directional

information: we know whether the directed edge (𝑖, 𝑗) with 𝑖 < 𝑗 in
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−→
𝐺 is mapped to (𝑘, 𝑙) or to (𝑙, 𝑘) in←→𝐻 , thus providing information

which of the nodes 𝑖 ∈ 𝑉𝐺 and 𝑗 ∈ 𝑉𝐺 is mapped to node 𝑘 ∈ 𝑉𝐻
(see, e.g., Fig. 5 with 𝑖 = 𝑎, 𝑗 = 𝑏, 𝑘 = 1, and 𝑙 = 2). This allows us

to decompose the original constraint (3c) into two distinct types,

each involving only a single assignment variable on the right-hand

side (see constraints (5c) and (5d)). For the example shown in Fig. 4,

we can consider a possible feasible solution which will map the

edge (𝑎, 𝑏) to the edge (1, 2). In formulation (F2+) this breaks down

to 𝑦𝑎𝑏,12
= 1 and due to constraints (3c) we get 𝑥𝑎,1 + 𝑥𝑏,1 ≥ 1.

However, in (FORI) we get either 𝑧𝑎𝑏,12
= 1, which will lead to

𝑥𝑎,1 ≥ 1 or we get 𝑧𝑎𝑏,21
= 1, which will lead to 𝑥𝑏,1 ≥ 1 (see

Figure 5). The following Lemma shows that at most one of both

related 𝑧-variables will be 1.

Lemma 5.1. In the model (FORI) the following holds: Given an

edge {𝑖, 𝑗} ∈ 𝐸𝐺 and an edge {𝑘, 𝑙} ∈ 𝐸𝐻 , either {𝑧𝑖 𝑗,𝑘𝑙 , 𝑧𝑖 𝑗,𝑙𝑘 } or
{𝑧 𝑗𝑖,𝑘𝑙 , 𝑧 𝑗𝑖,𝑙𝑘 } are defined. Moreover, at most one of the variables in

both sets can be 1.

Proof. The first fact follows directly from the definition of our

formulation. Consider now, w.l.o.g., the variables in {𝑧𝑖 𝑗,𝑘𝑙 , 𝑧𝑖 𝑗,𝑙𝑘 }.
Assume that 𝑧𝑖 𝑗,𝑘𝑙 = 𝑧𝑖 𝑗,𝑙𝑘 = 1. Then, constraint (5c) forces 𝑥𝑖,𝑘 to

1, while constraint (5d) pushes 𝑥 𝑗,𝑘 up to 1, violating constraint

(5b). □

Theorem 5.2. The formulation (FORI) correctly models the GED

problem. In particular, applied to a GED instance (𝐺,𝐻, 𝑐), it provides
the correct GED and the corresponding node and edge mappings.

Proof. We prove this by showing that for any feasible (FORI)

solution we can construct a feasible (F2) solution with the same

costs, and vice versa. We start with a given (F2) solution (𝑥̂, 𝑦̂) from
which we will construct a (FORI) solution (𝑥̂, 𝑧̂). Obviously, the 𝑥
variables satisfy constraints (5a) and (5b). For the construction of

the 𝑧 variables, consider a pair of edges {𝑖, 𝑗} ∈ 𝐸𝐺 (we can assume

that 𝑖 < 𝑗 ) and {𝑘, 𝑙} ∈ 𝐸𝐻 . If 𝑦̂𝑖 𝑗,𝑘𝑙 = 0, then either we have

𝑥̂𝑖,𝑘 = 𝑥̂ 𝑗,𝑘 = 0, 𝑥̂𝑖,𝑙 = 𝑥̂ 𝑗,𝑙 = 0, or the costs 𝑐𝑖 𝑗,𝑘𝑙 − 𝑐𝑖 𝑗,𝜀 − 𝑐𝜀,𝑘𝑙 ≥ 0.

In these cases, we can safely set 𝑧̂𝑖 𝑗,𝑘𝑙 = 0 without violating a

constraint of (FORI). Otherwise, 𝑦̂𝑖 𝑗,𝑘𝑙 = 1 and due to constraints

(3c) we have that either 𝑥̂𝑖,𝑘 = 𝑥̂ 𝑗,𝑙 = 1 or 𝑥̂𝑖,𝑙 = 𝑥̂ 𝑗,𝑘 = 1. In the

case 𝑥̂𝑖,𝑘 = 𝑥̂ 𝑗,𝑙 = 1 we set 𝑧̂𝑖 𝑗,𝑘𝑙 = 1 and 𝑧̂𝑖 𝑗,𝑙𝑘 = 0. Otherwise

(𝑥̂𝑖,𝑙 = 𝑥̂ 𝑗,𝑘 = 1), we set 𝑧̂𝑖 𝑗,𝑙𝑘 = 1 and 𝑧̂𝑖 𝑗,𝑘𝑙 = 0. In all cases,

constraints (5c), (5d), and (5e) are satisfied, since we set at most one

𝑧-variable on the left hand side of the constraint to 1, and we do

this only if the right hand side is also 1. Since the cost function of

(F2) and (FORI) is the same, both solutions (𝑥̂, 𝑧̂) and (𝑥̂, 𝑦̂) have
the same cost.

Next we start with a feasible solution (𝑥̂, 𝑧̂) of (FORI) and con-

struct one for (F2). Let (𝑥̂, 𝑦̂) such that 𝑦̂𝑖 𝑗,𝑘𝑙 = 𝑧̂𝑖 𝑗,𝑘𝑙 + 𝑧̂𝑖 𝑗,𝑙𝑘 for

{𝑖, 𝑗} ∈ 𝐸𝐺 , 𝑖 < 𝑗 , and {𝑘, 𝑙} ∈ 𝐸𝐻 . Obviously, the assignment

constraints (3a) and (3b) of the 𝑥 variables in (F2) are satisfied. Due

to Lemma 5.1, we have that 𝑦𝑖 𝑗,𝑘𝑙 ∈ {0, 1}. Consider the topological
constraints for a fixed 𝑘′ ∈ 𝑉𝐻 and (𝑖′, 𝑗 ′) ∈ 𝐸−→

𝐺
with 𝑖′ < 𝑗 ′.

Summing one inequality from each of the constraints (5c) and (5d)

we get: ∑︂
𝑙∈𝛿𝐻 (𝑘 ′ )

𝑦̂𝑖′ 𝑗 ′,𝑘 ′𝑙 =

=
∑︂

𝑙∈𝛿+←→
𝐻
(𝑘 ′ )

𝑧̂𝑖′ 𝑗 ′,𝑘 ′𝑙 +
∑︂

𝑙∈𝛿−←→
𝐻
(𝑘 ′ )

𝑧̂𝑖′ 𝑗 ′,𝑙𝑘 ′ ≤ 𝑥̂𝑖′,𝑘 ′ + 𝑥̂ 𝑗 ′,𝑘 ′ .

This shows that also the topological constraints (3c) are satisfied.

Also in this case, the cost functions of both solutions (𝑥̂, 𝑦̂) and
(𝑥̂, 𝑧̂) have the same cost. □

The new model (FORI) uses |𝑉𝐺 | · |𝑉𝐻 | + 2|𝐸𝐺 | · |𝐸𝐻 | variables
and has |𝑉𝐺 | + |𝑉𝐻 | + 2|𝑉𝐻 | · |𝐸𝐺 | + 2|𝑉𝐺 | · |𝐸𝐻 | linear constraints.
Although the orientation-based formulation enlarges the variable

space w.r.t. that of (F1+) and (F2+), resp., it turns out that (FORI)

outperforms the state-of-the-art formulations theoretically (see

Lemma 6.5) and practically (see Section 7).

6 THEORETICAL COMPARISON OF ILP

MODELS

In this section, we will theoretically analyze the strength of the

state-of-the-art and new ILP models suggested in this work, namely

(F1), (F2-), (F2), (F2+), (F1+), and (FORI). We will show that

(FORI) ≻ (F1+) ≡ (F2+) ≻ (F2) ≻ (F2-) ≡ (F1) .

The strength of a formulation is important for practical problem

solving, since stronger LP relaxations lead to a smaller relaxation

gap, i.e., the gap between the optimal value 𝜈 (𝑀 (𝐼 )) and the optimal

value of the linear relaxation 𝜈 (P𝑀 (𝐼 )) for a formulation𝑀 applied

to a GED instance 𝐼 = (𝐺,𝐻, 𝑐). Our theoretical findings have been
supported by our computational experiments (see Section 7).

Lemma 6.1. The formulation (F1) is equivalent to formulation

(F2-).

Proof. Formulation (F1) has one equation of type (2a) for each

𝑖 ∈ 𝑉𝐺 . In each of those equations we have the variable 𝑥𝑖,𝜀 in-

volved. Hence, we can project out the variables 𝑥𝑖,𝜀 for all 𝑖 ∈ 𝑉𝐺 ,
by removing them from the formulation, and obtain inequalities

(3a). Similarly, we can project out the variables 𝑥𝜀,𝑘 for all 𝑘 ∈ 𝑉𝐻 .

The equations of type (2c) for each {𝑖, 𝑗} ∈ 𝐸𝐺 contain the vari-

ables 𝑦𝑖 𝑗,𝜀 . Hence, we can project out the variables 𝑦𝑖 𝑗,𝜀 and get

the corresponding inequalities. Similarly, we can project out the

variables 𝑦𝜀,𝑘𝑙 for all {𝑘, 𝑙} ∈ 𝐸𝐻 . It follows that the value of the LP

relaxations of both formulations is the same. □

Lemma 6.2. The formulation (F2) is strictly stronger than (F1).

Proof. Obviously, every solution of PF2 is a feasible solution of

PF1 by adding the corresponding deletion and insertion variables.

We show that the opposite is not true. We consider a fractional

solution of (F1) with 𝑥𝑖,𝑘 = 𝑥 𝑗,𝑙 ′ = 0.3, 𝑥𝑖,𝑙 = 𝑥 𝑗,𝑙 = 0.2 and 𝑦𝑖 𝑗,𝑘𝑙 =

𝑦𝑖 𝑗,𝑘𝑙 ′ = 0.3 for the edges {𝑖, 𝑗} ∈ 𝐸𝐺 , {𝑘, 𝑙} ∈ 𝐸𝐻 , and {𝑘, 𝑙 ′} ∈ 𝐸𝐻 .

All remaining variables 𝑥𝑖,𝑘 and 𝑦𝑖 𝑗,𝑘𝑙 are set to 0. It is possible to

augment this solution to a feasible LP solution (F1) by setting the

remaining deletion, insertion and all the edge variables to 1 and

0, respectively. This solution satisfies constraints (2a)-(2f) of (F1).
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However, this solution violates constraints (3c) of (F2), since we

have

0.6 =
∑︂

𝑘𝑙∈𝐸𝐻
𝑦𝑖 𝑗,𝑘𝑙 ≥ 𝑦𝑖 𝑗,𝑘𝑙 + 𝑦𝑖 𝑗,𝑘𝑙 ′ > 𝑥𝑖,𝑘 + 𝑥 𝑗,𝑘 = 0.3.

If the variables 𝑦𝑖 𝑗,𝑘𝑙 and 𝑦𝑖 𝑗,𝑘𝑙 ′ have cost 𝑐𝑖 𝑗,𝑘𝑙 = 𝑐𝑖 𝑗,𝑘𝑙 ′ = −1, and

all other variables have cost 0, the LP relaxation bound of (F2) is

larger than that of (F1). □

Lemma 6.3. The formulation (F2+) is strictly stronger than (F2).

Proof. We show that the related polytopes of the LP relaxations

satisfy PF2+ ⊆ PF2 for all problem instances, i.e.,

min{𝑐𝑧 | 𝑧 ∈ PF2} ≤ min{𝑐𝑧 | 𝑧 ∈ PF2+},
and we provide an instance with a cost function for which optimiz-

ing over PF2+ leads to stronger lower bounds as over PF2.
Obviously, every feasible solution of PF2+ is also feasible for PF2.

Consider the graphs shown in Figure 4 (represented without labels

for the sake of simplicity) for which we want to compute the GED.

Let 𝐺 be the graph on the left, and 𝐻 be the graph on the right.

Assume that the 𝑥 variables have cost 0, while the 𝑦 variables have

cost 𝑐 = −1. The optimal solution (𝑥∗, 𝑦∗) having value −3.0 + 𝐾
to the linear relaxation of (F2) is 𝑦∗

𝑎𝑏,23
= 1, 𝑥∗

𝑎2
= 𝑥∗

𝑎3
= 𝑥∗

𝑏2
=

𝑥∗
𝑏3

= 𝑥∗
𝑐1

= 𝑥∗
𝑐4

= 𝑦∗
𝑎𝑐,12

= 𝑦∗
𝑎𝑐,34

= 𝑦∗
𝑏𝑐,12

= 𝑦∗
𝑏𝑐,34

= 0.5 (omitted

variables are set to 0). The class of valid inequalities (4) introduced

for (F2+) is able to cut off the point (𝑥∗, 𝑦∗), e.g., by the inequality

𝑦𝑎𝑐,12+𝑦𝑏𝑐,12
−𝑥𝑐1−𝑥𝑐2 ≤ 0 which becomes 0.5 > 0 when evaluated

on (𝑥∗, 𝑦∗). Indeed, the optimal solution to the linear relaxation

of (F2+) is equal to −2.5 + 𝐾 , which is strictly larger than that of

(F2). □

Lemma 6.4. The formulation (F1+) is equivalent to (F2+).

Proof. In Lemma 6.1 we have shown that formulations (F1+)

and (F2+) are equivalent. Adding the same number and type of

constraints to both formulations, leads to the same LP relaxations.

□

We show that the optimum value of the LP relaxation of our new

formulation (FORI) is strictly greater than that of (F2+). The reason

lies in the fact that the relationship between the node assignment

variables and the edge assignment variables can be represented

more accurately in (FORI).

Lemma 6.5. The formulation (FORI) is strictly stronger than (F2+).

Proof. Let PFORI (and PF2+, resp.) denote the polytope of the
LP relaxation of (FORI) (and (F2+), resp.) and let 𝜈 (PFORI (𝐼 )) (resp.
𝜈 (PF2+ (𝐼 )) be the optimal LP value for instance 𝐼 . We show that by

using the (natural) projection

𝑝𝑟𝑜 𝑗𝑦 : 𝑦𝑖 𝑗,𝑘𝑙 = 𝑧𝑖 𝑗,𝑘𝑙 + 𝑧𝑖 𝑗,𝑙𝑘 ,
we have

𝑝𝑟𝑜 𝑗𝑦 (PFORI) ⊆ PF2+ .
Moreover, there is an instance (𝐺,𝐻, 𝑐) and a cost function 𝑐 for

which optimizing over PFORI leads to stronger lower bounds as

over PF2+, i.e.,
min{𝑐𝑧 | 𝑧 ∈ PFORI} > min{𝑐𝑦 | 𝑦 ∈ PF2+}.

Consider the topological constraints for a fixed 𝑘′ ∈ 𝑉𝐻 and

(𝑖′, 𝑗 ′) ∈ 𝐸−→
𝐺
. In Theorem 5.2 we have shown that the constraints

(5c) and (5d), and using the equation 𝑦𝑖 𝑗,𝑘𝑙 = 𝑧𝑖 𝑗,𝑘𝑙 + 𝑧𝑖 𝑗,𝑙𝑘 of the

projection 𝑝𝑟𝑜 𝑗𝑦 , we get a constraint of type (3c). Next we consider

a fixed 𝑖′ ∈ 𝑉𝐺 and an edge {𝑘′, 𝑙 ′} ∈ 𝐸𝐻 . By adding the constraints

(5e) for 𝑖′ ∈ 𝑉𝐺 and (𝑘′, 𝑙 ′) ∈ 𝐸←→
𝐻

to those for 𝑖′ ∈ 𝑉𝐺 and (𝑙 ′, 𝑘′) ∈
𝐸←→
𝐻
, we get:∑︂

𝑗∈𝛿+−→
𝐺
(𝑖′ )

𝑧𝑖′ 𝑗,𝑘 ′𝑙 ′ +
∑︂

𝑗∈𝛿−−→
𝐺
(𝑖′ )

𝑧 𝑗𝑖′,𝑙 ′𝑘 ′

+
∑︂

𝑗∈𝛿+−→
𝐺
(𝑖′ )

𝑧𝑖′ 𝑗,𝑙 ′𝑘 ′ +
∑︂

𝑗∈𝛿−−→
𝐺
(𝑖′ )

𝑧 𝑗𝑖′,𝑘 ′𝑙 ′ ≤ 𝑥𝑖′,𝑘 ′ + 𝑥𝑖′,𝑙 ′

Using the projection 𝑦𝑖 𝑗,𝑘𝑙 = 𝑧𝑖 𝑗,𝑘𝑙 + 𝑧𝑖 𝑗,𝑙𝑘 results in constraints

(4). Hence, all feasible points of the LP relaxation PFORI are also
feasible for PF2+ leading to 𝜈 (PFORI (𝐼 )) ≥ 𝜈 (PF2+ (𝐼 )).

Moreover, we again consider the instance in Figure 4, and assume

that the 𝑥 variables have cost 0, and the 𝑦 and 𝑧 variables have cost

−1. Then the optimal solution obtained by optimizing over PF2+ is

equal to −2.50+𝐾 . On the other hand, optimizing the same instance

over PFORI leads to an optimal solution of value −2.25 + 𝐾 . □

7 EXPERIMENTAL EVALUATION

A comparison between the models (F2) and (F1) has been provided

by Lerouge et al. in [21]. The main finding is that formulation (F2)

performs best for graphs with more than 10 nodes. Therefore, we

decided to concentrate our practical evaluation on the most promis-

ing models (F2), (F2+), (F1+), and (FORI). In both the evaluation by

Lerouge et al. [21] and the experimental study conducted by Blu-

menthal et al. [5], the formulation (F2) has been compared also with

𝐴∗-search based approaches such as the one by Riesen et al. [32],

CSI-GED [15], and DF-GED [2]. Both studies show that these algo-

rithms become impractical when the graph size reaches 20 nodes.

To the best of our knowledge, among the most recent developments

on exact algorithms for GED computation–including the beam-

stack search algorithm by Chen et al. [9] and Kim’s approach based

on isomorphic vertices [20]–only two algorithms, namely 𝐴∗+-LSa
and𝐴∗-BMao proposed by Chang et al. [8], are capable of handling

graphs with more than 50 nodes in their experimental evaluation.

For this reason, we include both algorithms in our comparison with

the FORI formulation.

We evaluate the presented approaches with respect to the fol-

lowing research questions:

• Q1: Will the theoretical results about the strengths of the

ILP models be reflected in practice? In particular:

– Will the new models (F2+) and (F1+) be able to solve

more instances within a fixed time limit than (F2)?

– Will (FORI) be able to solve significantly more in-

stances thanmodels (F2), (F1+), and (F2+), respectively?

• Q2: How does our new model (FORI) compare to 𝐴∗+-LSa
and 𝐴∗-BMao?

• Q3: How efficient is our model (FORI) compared to the

previous models in computing the GED for a small graph

pattern and a very large graph? What are the sizes that can

be solved routinely?
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7.1 Experimental Setup

Problem instances. In order to answer question (Q1), we conduct

tests on the datasets protein, aids, and mutagenicity, taken from

the widely used IAM graph database repository [31]. In particular,

we use the instances in the test folder VLDBJ2020 from the GEDlib

library of Blumenthal et al. [4] in which each dataset is subdivided

into different bins, each one containing 10 graphs. Bins are named

dataset-p-q, where dataset is the name of the dataset and p,

q are two integers that denote the range of nodes in the graphs

within the bin. For example, prot-21-30 contains 10 graphs from the

protein dataset having between 21 and 30 nodes. Table 1 provides

a summary of the graph characteristics for each dataset.

Table 1: Datasets for Question Q1 (labeled graphs).

Dataset min |𝑉𝐺 | max |𝑉𝐺 | min |𝐸𝐺 | max |𝐸𝐺 |

p
r
o
t
e
i
n prot-21-30 22 30 40 60

prot-31-40 32 39 53 91

prot-41-50 41 50 74 98

prot-51-60 51 60 95 116

a
i
d
s

aids-21-30 22 30 23 30

aids-31-40 32 39 33 42

aids-41-50 43 50 47 55

aids-51-60 52 59 55 65

aids-61-70 62 69 68 75

aids-71-80 73 80 79 96

m
u
t
a
g
e
n
i
c
i
t
y

muta-21-30 22 30 24 32

muta-31-40 31 40 34 44

muta-41-50 42 49 44 51

muta-51-60 51 60 52 63

muta-61-70 62 70 61 74

muta-71-80 72 79 74 81

muta-81-90 82 89 86 91

muta-91-100 91 97 94 105

Graphs contained in aids and mutagenicity represent molec-

ular compounds. The nodes of the graphs contained in aids and

mutagenicity are labeled with a chemical symbol chosen out of

a set of 13 different symbols, and their edges are labeled with a

valence (either 1, 2, or 3). Node edit costs are in the range [0, 5.5],
while edge edit costs are in the range [0, 1.65]. Graphs contained
in protein represent proteins which are annotated with their EC

classes [34]. Nodes are labeled with tuples (𝑡, 𝑠), where 𝑡 is the
node’s type (helix, sheet, or loop) and 𝑠 is its amino acid sequence.

The dataset under consideration comprises 905 unique sequences.

Nodes are connected via structural or sequential edges or both,

i. e., edges {𝑢𝑖 , 𝑢 𝑗 } are labeled with tuples (𝑡1, 𝑡2), where 𝑡1 is the

type of the first edge connecting 𝑢𝑖 and 𝑢 𝑗 and 𝑡2 is the type of

the second edge connecting 𝑢𝑖 and 𝑢 𝑗 (possibly null). We count

a total of 5 distinct edge types. Node and edge edit costs are in-

stance dependent. For a complete description of the datasets and

how edit costs are computed, the reader is referred to the detailed

explanation in [4]. Note, however, that the cost function satisfies

the triangle inequality for each instance. For each dataset bin of

Table 1, GED instances are obtained by taking as inputs unordered

pairs of graphs, for a total of 45 instances from each bin.

To address (Q2), we compare (FORI) with the 𝐴∗+-LSa and 𝐴∗-
BMao algorithms proposed by Chang et al. [8]. Since both 𝐴∗+-LSa
and 𝐴∗-BMao are designed to operate under unit edit costs only,

we restrict our evaluation to this setting. As a consequence, we use

the aids and mutagenicity datasets for the comparison, as their

original cost function can be naturally translated into the unit cost

model.

In order to answer (Q3), we conduct tests on the famous imdb,

cora, and pubmed datasets, widely used as benchmark datasets in

machine learning [3, 27, 28, 40]. Each graph in imdb is an unlabeled

ego-network, where each node denotes a film actor/actress and

each edge denotes a co-star relation. We take imdb graphs from

the work of Piao et al. [27]. Specifically, a GED instance (𝐺,𝐻, 𝑐)
for imdb tests is obtained by setting 𝐺 as the largest graph in the

dataset, and 𝐻 as a so-called pattern or query graph selected from

four different bins. Each bin consists of six graphs, and graphs in

the same bin have the same number of nodes. Constructed bins

are imdb-10, imdb-20, imdb-30, imdb-43, containing graphs of 10,

20, 30, and 43 nodes, respectively. cora and pubmed are citation

networks. For both datasets, a GED instance (𝐺,𝐻, 𝑐) is obtained by
selecting𝐺 as the entire network, while 𝐻 consists of query graphs

sampled as ego-networks centered on a randomly chosen node and

constructed using BFS up to a 3-hop distance. Table 2 summarizes

graph statistics from these datasets. All such instances consist of

unlabeled graphs. Node and edge edit operations have uniform cost

equal to 1.

Table 2: Datasets for Question Q3 (unlabeled graphs).

Subscript 𝑄 denotes a query graph.

Dataset |𝑉𝐺 | |𝐸𝐺 | avg / max |𝑉𝑄 | avg / max |𝐸𝑄 |

i
m
d
b

imdb-10 89 1467 10 / 10 33 / 45

imdb-20 89 1467 20 / 20 113 / 190

imdb-30 89 1467 30 / 30 279 / 435

imdb-43 89 1467 43 / 43 435 / 719

cora 2, 708 5, 278 15 / 28 16 / 38

pubmed 19, 717 44, 327 17 / 29 16 / 29

Computational setting. The experiments were run on a workstation

with AMD EPYC 7282 32-core 3.2GHz CPU, 504GB RAM, Ubuntu

20.04.6. All algorithms are implemented in C++ and compiled using

GCC 10.5.0. We use Gurobi 12.0.0 [16] to solve the ILPs and use

5 different random seeds to mitigate the impact of performance

variability [24]. Then, we take as instance runtime the shifted geo-

metric mean
2
(𝑠 = 1) of the time spent by Gurobi over each of the 5

different seeds. The Gurobi solution time limit has been set to 600

seconds for all instances. A GED instance is declared solved by a

formulation (𝐹∗) if at least 1 out of the 5 different runs is solved to

optimality within the time limit.

For both 𝐴∗+-LSa and 𝐴∗-BMao, we used the source code pro-

vided by the authors, written in C++. As parameter configuration,

we selected pair as running-mode, astar as search paradigm, and

LSa and BMao, respectively, as lower bound methods. A GED in-

stance is considered solved by these algorithms if a provably optimal

solution is found within the time limit of 600 seconds.

Used datasets, implementation, and optimal GED solutions are

provided in the URL on the first page of the paper.

2
The shifted geometric mean, for 𝑡1, . . . , 𝑡𝑛 , is [

∏︁𝑛
𝑖=1
(𝑡𝑖 + 𝑠 ) ]

1

𝑛 − 𝑠 , where 𝑠 is the
shift term.
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Table 3: Question Q1: results on protein dataset.

Model 21-30 31-40 41-50 51-60

avg. runtime in sec.

(F2) 35.74 198.97 322.12 263.55

(F1+) 1.76 27.47 102.86 120.96

(F2+) 1.15 23.49 88.29 116.70

(FORI) 0.31 8.29 8.62 59.81

timeouts

(F2) 0 14 (31.1%) 18 (40.0%) 19 (42.2%)

(F1+) 0 0 3 (6.6%) 8 (17.7%)

(F2+) 0 1 (2.2%) 4 (8.8%) 8 (17.7%)

(FORI) 0 0 0 1 (2.2%)

avg. / max gap in %

(F2) 0 / 0 0.3 / 1.8 0.3 / 1.4 0.4 / 1.9

(F1+) 0 / 0 0 / 0 <0.1 / 0.3 0.1 / 0.5

(F2+) 0 / 0 < 0.1/0.2 0.01 / 0.3 <0.1 / 0.4

(FORI) 0 / 0 0 / 0 0 / 0 < 0.01 / 0.1

7.2 Evaluation Results

Answering (Q1). We experimentally evaluate the strengths of our

new ILP formulations (F1+), (F2+), and (FORI) against the state-of-

the-art (F2) formulation on the aids, mutagenicity, and protein

datasets. In these experiments, Gurobi was run using 8 threads with

the default settings. An upshot of the results is provided in Tables 3–

5 and in Figures 7–8. Tables 3–5 report, for each tested formulation

and for each dataset bin, (i) the average runtime in seconds; (ii)

the number of timeouts, i.e., the number of instances not solved by

Gurobi in the given time limit; (iii) the average and the maximum

gap reached by Gurobi at the end of the computation
3
. Bold font

highlights the best values over all formulations.

Surprisingly, the (F2) formulation addresses some large instances

that were previously considered unsolvable. This enhancement can

be attributed to the advancements in the Gurobi solver over time.

Nonetheless, performance statistics for the (F2) model indicate that

it is still impractical and unsatisfactory for several cases in the

benchmark set, as detailed below for each dataset.

protein dataset: Table 3 shows that (F2) struggles with larger

graphs, requiring over 3 minutes on average and failing to solve

31.1% and 42.2% of instances in the prot-31-40 and prot-51-60

bins, respectively. In contrast, (F1+) solves all instances up to 40

nodes and maintains sub-2-minute runtimes even for the largest

cases, leaving significantly smaller gaps in unsolved bins. (F2+)

further reduces times and gaps across all bins, though it solves one

fewer instance than (F1+) in the prot-31-40 and prot-41-50 bins,

still maintaining high solution quality. The results for the (FORI)

formulation are impressive: it solves all instances in the prot-41-50

bin with an average runtime of just 8.62 seconds. In the prot-51-60

bin, (FORI) solves all but one instance, achieving the lowest gap

values among all formulations within 600 seconds of computation.

aids dataset: Table 4 demonstrates the limitations of (F2) on the

aids dataset, failing over 60% of instances in bins starting from

aids-41-50 with persistently high gaps. (F1+) and (F2+) outper-

form it significantly—solving all instances up to aids-61-70 with

drastically reduced runtimes (e.g., 10× faster for aids-21-30 and

aids-41-50). Notably, (F2+) dominates (F1+), solving more instances

and lowering both time and gap values. On the other hand, the

practical effectiveness of the (FORI) formulation also stands out on

3
The percentage gap is defined as (best objective - best bound)/best objective · 100,
where best objective is the value of the best feasible solution found at time limit and best

bound is the smallest bound among unexplored subproblems in the branch-and-bound

enumeration tree.

Table 4: Question Q1: results on aids dataset.

Model 21-30 31-40 41-50 51-60 61-70 71-80

avg. runtime in sec.

(F2) 24.40 128.09 493.27 448.06 444.37 442.77

(F1+) 0.91 2.31 37.01 124.27 52.40 277.47

(F2+) 0.58 1.28 25.23 95.11 31.96 230.41

(FORI) 0.20 0.42 5.42 14.73 7.72 99.28

timeouts

(F2) 0 2 (4.4%) 34 (75.5%) 31 (68.8%) 29 (64.4%) 33 (73.3%)

(F1+) 0 0 0 3 (6.6%) 0 10 (22.2%)

(F2+) 0 0 0 2 (4.4%) 0 8 (17.7%)

(FORI) 0 0 0 0 0 3 (6.6%)

avg. / max gap in %

(F2) 0 / 0 0.2 / 5.6 10.4 / 41.7 8.4 / 24.5 9.0 / 21.8 10.5 / 23.4

(F1+) 0 / 0 0 / 0 0 / 0 0.1 / 3.4 0 / 0 0.5 / 5.2

(F2+) 0 / 0 0 / 0 0 / 0 0.1 / 2.2 0 / 0 0.4 / 4.3

(FORI) 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0.1 / 2.8

this dataset. All but three instances (from the aids-71-80 bin) are

solved to proven optimality, with a maximum average runtime of 99

seconds on the last bin. As expected, (FORI) proves to be more effec-

tive than (F1+) and (F2+) across all considered measures, achieving

a significantly lower average runtime, smaller gaps statistics, and

closing all but one unsolved instance.

mutagenicity dataset: The (FORI) formulation outperforms all

other models also on the mutagenicity dataset, as shown by the

statistics reported in Table 5. In particular, (FORI) is able to close all

the instances within ∼25 seconds, even on the largest bin muta-91-

100. Compared to our strengthened formulation (F2+), the achieved

speed-ups are at least an order of magnitude, and reach up to 73x

against (F2) on muta-21-30. On the other hand, the inadequacy

of (F2) is further highlighted in this dataset: it fails to close all

the instances starting from muta-31-40, and leaves most of them

unsolved in the muta-61-70 to muta-91-100 bins. Moreover, gaps

after 600 seconds of computation remain very high, from a max-

imum of 14.7% in muta-31-40 bin up to 44.7% maximum gap on

muta-91-100 bin. Concerning our strengthened formulations (F1+)

and (F2+), the latter confirms to be better than the former over all

measured statistics. In particular, from muta-61-70 to muta-81-90,

(F2+) leaves unsolved only half as many instances as (F1+). This is

also reflected in the average runtime and gap statistics, as those of

(F2+) are consistently smaller than those of (F1+).

(Q1) final remarks: The experimental analysis conducted to an-

swer (Q1) suggests that the (F2) formulation is not suitable when the

input graphs exceed 30 or 40 nodes. The strengthened formulations

(F1+) and (F2+) successfully solve most of the instances that are

not solved by (F2) in 600 seconds. However, (F1+) and (F2+) leave

several instances unsolved when the size of the graphs reaches 60

nodes, particularly in the protein and mutagenicity datasets.

Ultimately, (FORI) demonstrates a significant performance im-

provement over (F1+) and (F2+): (FORI) is able to solve all but four

instances within 600 seconds, while maintaining an average run-

time of under two minutes across all datasets. We also mention

that (FORI) effectively solves all the instances examined in [4] by

allowing Gurobi to run for up to ∼ 9 hours, thereby certifying the

optimality for the remaining four unsolved instances. This is one of

the most important aspects of our contribution. Indeed, Blumenthal

et al. [4] have evaluated various GED approximation techniques on

the same datasets considered in our study. The results indicate that

the best of all the tested approximation methods had gaps between

the largest lower bound and the smallest upper bound of 3.6% on
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Figure 6: Heatmap of average degree of graphs G

and H with runtime in seconds as color.

Table 5: Question Q1: results on mutagenicity dataset.

Model 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

avg. runtime in sec.

(F2) 14.62 103.05 254.77 492.80 551.61 599.96 587.13 579.81

(F1+) 1.89 3.89 23.56 103.61 198.69 329.06 291.93 349.28

(F2+) 1.25 2.50 18.82 76.92 163.01 259.99 254.63 262.17

(FORI) 0.20 0.41 1.43 2.06 6.06 8.04 8.45 25.64

timeouts

(F2) 0 1 (2.2%) 9 (20.0%) 29 (64.4%) 39 (86.6%) 44 (97.7%) 43 (95.5%) 43 (95.5%)

(F1+) 0 0 0 3 (6.6%) 8 (17.7%) 16 (35.5%) 16 (35.5%) 13 (28.8%)

(F2+) 0 0 0 3 (6.6%) 5 (11.1%) 8 (17.7%) 9 (20.0%) 10 (22.2%)

(FORI) 0 0 0 0 0 0 0 0

avg. / max gap in %

(F2) 0 / 0 14.7 / 14.7 3.0 / 22.7 6.2 / 18.9 10.7 / 35.2 13.9 / 36.5 14.4 / 40.8 21.3 / 44.7

(F1+) 0 / 0 0 / 0 0 / 0 0.1 / 2.9 0.3 / 3.0 0.6 / 3.1 0.6 / 4.2 0.7 / 6.1

(F2+) 0 / 0 0 / 0 0 / 0 0.1 / 2.0 0.2 / 2.0 0.3 / 2.5 0.4 / 4.2 0.6 / 6.1

(FORI) 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

the AIDS dataset, 4.2% on the Mutagenicity dataset, and 1.6% on the

Protein dataset. The best lower and upper bounds were determined

within a time span of a few seconds to tenths of a second, depend-

ing on the considered dataset. While more recent heuristics may

have reduced gaps and / or running time, and occasionally achieved

optimal solutions, a fundamental limitation of heuristic methods

is their inability to guarantee optimality, which is of interest for

practical applications that rely on optimal GED values.

Figure 7 presents scatter plots comparing the runtime of (F2)

(x-axis) and log-scaled (FORI) (y-axis) across datasets. Yellow dots

indicate instances solved by both formulations, while blue dots

mark those solved only by (FORI). Nearly all yellow and blue dots

lie below the 10x speed-up curve, showing (FORI) consistently

outperforms (F2), often solving previously unsolved instances in

under 60 seconds.

Figure 8 compares (F2+) and (FORI) runtimes (x- and y-axes,

respectively), with colors and the 5x speed-up line consistent with

earlier plots. In Figure 8a, almost all yellow points fall below the 5x

line, confirming (FORI)’s consistent outperformance on the protein

dataset. Blue points, representing cases solved only by (FORI), show

speed-ups from 1x to 12x. Figure 8b shows a similar blue-point

distribution, highlighting (FORI)’s ability to handle harder instances

on the aids dataset. Yellow points are split around the 5x line,

reflecting trends seen in Table 4. In Figure 8c for the mutagenicity

graphs, most yellow dots cluster below the 5x line, near the x-axis,

while all blue points lie well below it— i.e. (FORI) allows to obtain

a speed-up of at least 6x over (F2+) on unsolved instances.

Finally, we remark that the runtime of (FORI) increases with

the size of the input graphs. This is expected since the size of the

formulation increases as a function of the nodes and the edges of

the graphs. A closely related parameter that condition the computa-

tional time of our new formulation appears to be the graph density.

Indeed, protein and aids datasets, in which (FORI) reaches the

time limit in some instances, are denser than the mutagenicity

ones, where (FORI) perform extremely well (cf. the values in Ta-

ble 1 to have a glimpse on graph densities). To further highlight this

behaviour, we have run additional experiments with Erdős–Rényi

graphs. We have created a series of graphs of sizes 30 nodes (𝐺) and

10 nodes (query graphs 𝐻 ) each with increasing average degree

from 2 to 7. A heatmap of the runtime is displayed in Figure 6.

Again, the runtime increases with the average degree of the graphs.

Answering (Q2). The comparison between 𝐴∗+-LSa, 𝐴∗-BMao,

and (FORI) shows a clear picture of performance differences, in

line with known comparison between integer programming based

methods and 𝐴∗ search algorithms [5, 21]. Tables 6–7 report the

measured statistics on the aids and mutagenicity datasets, respec-

tively. As in Q1, we report the average runtime in seconds and

the number of timeouts, i.e., the number of instances not solved to

optimality within the time limit of 10 minutes. Finally, we report

the average memory required by each method instead of the gap

statistics, which could not be computed on 𝐴∗-based approaches.

Overall, 𝐴∗+-LSa exhibits significant performance degradation

as instance size grows, with runtime exceeding 586 seconds on aids-

41-50 and consistent 10-minute timeouts from muta-41-50 onward.

Timeout rates rise from 30% on small aids instances to 97.7% on

aids-41-50, and from 60% to 100% on mutagenicity starting at

muta-21-30. In contrast, 𝐴∗-BMao shows improved performance

on the first two bins of each dataset. However, as the graph size

reaches ∼ 50 nodes, 𝐴∗-BMao behavior matches that of 𝐴∗+-LSa,
leaving most of the tested instances unsolved (e.g., from muta-41-50

to muta-91-100, no instance is solved within the time limit).

On the other hand, (FORI) scales efficiently with instance size,

showing low runtime and timeout rates. On the aids dataset, it

keeps average runtime below 12 seconds—except for aids-71-80,

where it rises to 138.91 due to four unsolved cases. Even so, it solves

41 out of 45 instances, outperforming𝐴∗+-LSa and𝐴∗-BMao, which

solved only 9 on that bin. Across other aids bins, (FORI) solves all

instances. On mutagenicity, it closes every instance in under 31.77

seconds, including on the largest bin muta-91-100, where 𝐴∗-based
methods fail.

Memory usage is another area where (FORI) stands out. First

of all, while 𝐴∗+-LSa consumes tens of gigabytes—up to 50GB on

muta-51-60 —𝐴∗-BMao is significantly more efficient, having a

memory footprint that is orders of magnitude lower than that of

𝐴∗+-LSa across all tested bins. (FORI) is even leaner, peaking at just

369MB on aids and 253MB on mutagenicity, making it the most
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Figure 7: Scatter plots comparing runtimes of (F2) vs (FORI) over each dataset considered in Question Q1.
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Figure 8: Scatter plots comparing runtimes of (F2+) vs (FORI) over each dataset considered in Question Q1.

memory-efficient approach in nearly all cases, except aids-71-80,

where 𝐴∗-BMao uses slightly less.

Note that this experiment also shows that (FORI) is robust un-

der changes in the edit costs. Indeed, measured statistics on unit

edit costs (those in Tables 6–7) are comparable with the statistics

collected on non-uniform edit costs (those in Tables 4–5, resp.).

Finally, unit edit costs provide insight into the trend linking

optimal GED valueswith execution time. In Figure 9we compare the

optimal GED value with the (FORI) runtime on instances generated

over all aids (Figure 9a) and mutagenicity (Figure 9b) graphs in the

IAM graph repository having between 50 and 52 vertices. The plots

reveal an almost linear relationship between the two quantities,

highlighting a reasonable scalability of our model, even in relation

to increasing GED values.

Answering (Q3). The graph sizes of the imdb, cora, and pubmed

instances result in large ILPs for all models. This necessitates some

adjustments to the Gurobi parameters. The solver was configured

to use 32 threads, set Method to 2, NodeMethod to 2, and Crossover
to 0 to ensure it relied solely on the barrier method. Additionally,

we disabled cuts and the RINS heuristics by setting Cuts to 0 and

RINS to 0. Finally, the solution time benefits from Disconnected=2,
aggressively exploiting the LP structure. The effectiveness of (FORI)
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Figure 9: Scatter plots comparing optimal GED values under

unit edit costs vs runtime of (FORI) in seconds.

in computing the GED for a small graph pattern and a very large

graph has been compared to that of the previous state-of-the-art

model, (F2), and our best strengthening of this formulation, namely

(F2+). The results of the experiments are summarized in Table 8.
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Table 6: Question Q2: comparison on aids dataset.

Method 21-30 31-40 41-50 51-60 61-70 71-80

avg. runtime in sec.

𝐴∗+-LSa 257.83 213.73 586.66 551.77 546.48 482.04

𝐴∗-BMao 64.16 155.17 586.66 567.26 568.60 490.46

(FORI) 0.22 0.45 6.13 11.79 11.64 138.91

timeouts

𝐴∗+-LSa 13 (28.9%) 16 (35.5%) 44 (97.7%) 41 (91.1%) 40 (88.9%) 36 (80.0%)

𝐴∗-BMao 1 (2.2%) 11 (24.4%) 44 (97.7%) 42 (93.3 %) 42 (93.3%) 36 (80.0%)

(FORI) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (8.8 %)

avg. memory consumption in MB

𝐴∗+-LSa 23120 17000 42415 40121 37484 32215

𝐴∗-BMao 275 502 939 749 578 339

(FORI) 33 42 110 135 136 369

Table 7: Question Q2: comparison on mutagenicity dataset.

Method 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

avg. runtime in sec.

𝐴∗+-LSa 373.12 563.36 600.00 600.00 600.00 600.00 600.00 600.00

𝐴∗-BMao 233.75 383.39 600.00 600.00 600.00 600.00 600.00 600.00

(FORI) 0.41 0.67 1.85 2.62 6.06 14.49 18.95 31.77

timeouts

𝐴∗+-LSa 27 (60.0%) 41 (91.1%) 45 (100%) 45 (100%) 45 (100%) 45 (100%) 45 (100%) 45 (100%)

𝐴∗-BMao 14 (31.1%) 25 (55.5%) 45 (100%) 45 (100%) 45 (100%) 45 (100%) 45 (100%) 45 (100%)

(FORI) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

avg. memory consumption in MB

𝐴∗+-LSa 34210 46609 48372 48801 47661 45445 45426 46108

𝐴∗-BMao 1131 1231 1197 877 617 435 374 396

(FORI) 32 48 71 76 112 159 194 253

Table 8: Question Q3: results on imdb, cora, and pubmed.

Model imdb-10 imdb-20 imdb-30 imdb-43 cora pubmed

avg. runtime in sec.

(F2) 600.22 600.70 601.40 602.05 600.34 628.78

(F2+) 160.50 576.51 539.42 602.36 446.70 342.91

(FORI) 1.77 8.45 22.95 604.12 235.60 293.84

timeouts

(F2) 6 (100%) 6 (100%) 6 (100%) 6 (100%) 10 (100%) 10 (100%)

(F2+) 0 (0%) 5 (83.3%) 5 (83.3%) 6 (100%) 7 (70%) 3 (30%)

(FORI) 0 (0%) 0 (0%) 0 (0%) 6 (100%) 3 (30%) 2 (20%)

avg. / max gap in %

(F2) 29.2 / 29.7 56.6 / 61.6 68.7 / 78.6 84.7 / 103.6 3.8 / 10.6 0.7 / 1.6

(F2+) 0 / 0 1.5 / 2.6 4.5 / 8.1 21.8 / 52.3 0.1 / 0.7 <0.1 / <0.1

(FORI) 0 / 0 0 / 0 0 / 0 10.2 / 29.4 <0.1 / 0.2 <0.1 / 0.1
4

The ineffectiveness of (F2) stands out in this setting, as it fails to

solve any instance from each dataset within the time limit. Specifi-

cally, on the imdb dataset, even in the smallest bin imdb-10, gaps

remain as high as 29% after 600 seconds of computation, reaching a

maximum of 103.6% in the imdb-43 bin. However, the documented

gaps on the cora and pubmed datasets are smaller, on average

equal to 3.82 and 0.73, respectively.

The strengthened (F2+) formulation solves all imdb-10 instances,

a few from imdb-20, imdb-30, cora, and up to seven pubmed in-

stances. It performs efficiently on small imdb graphs (∼10 nodes), av-
eraging under three minutes. For larger query graphs (∼20+ nodes),

it rarely converges within 600 seconds but still achieves tighter gaps

than (F2). On cora and pubmed, it solves 30% and 70% of instances,

respectively, averaging under eight minutes with consistently small

gaps (∼0.1, max 0.71 for cora).

Finally, (FORI) effectively solves all instances in imdb-10 –imdb-

30 with average runtime of ∼2–23 seconds. However, it fails to

solve any instance in imdb-43, though yielding smaller gaps than

(F2+) and (F2) on imdb-43. On cora, it solves 7/10 instances in ∼4
minutes with a <0.1% average gap. For pubmed, it closes one more

instance than (F2+) in 5 minutes. Yet, a discrepancy on the average

gap values is observed in this dataset, where the (F2+) formulation

achieves a smaller gap than (FORI).

To summarize, (FORI) outperforms both (F2) and (F2+) by opti-

mally solving 33 out of 45 instances containing very large graphs,

whereas (F2) and (F2+) solve only 0 and 18 instances, respectively.

8 CONCLUSION AND FUTUREWORK

We explored a hierarchy of Integer Linear Programming models

that provide theoretical and computational improvements over the

current state-of-the-art methods for GED computation. The new

ILP model (FORI) solves all benchmark instances from common

databases to provable optimality. (FORI) is also able to solve the GED

for a small graph pattern and a very large graph, widely extending

the applicability of ILP-based methods for computing the GED.

Future research directions include investigating the polyhedral

structure of (FORI) to identify possible strengthening, exploiting

the model structure to accelerate the solution of the LP relaxation,

and developing tailored LP-based heuristics for very large instances.

We remark that the efficiency of (FORI) in computing the exact

GED may have significant practical implications, which we intend

to explore in future work. One key area is neural network-based

heuristic GED approaches, which are typically trained using GED

values [37]. However, due to the NP-hardness of the GED problem,

the training data is often based on sub-optimal approximations of

the true distance. The ability to generate exact ground-truth values

would improve the quality and accuracy of such learning-based

methods. Another impactful application lies in GED verification,

where the goal is to identify, within a (potentially large) graph data-

base, all graphs whose GED with respect to a given query graph

lies below a specified threshold. This process typically involves

a filtering phase, in which graphs are discarded based on lower

bounds that exceed the threshold, followed by exact computation

on the remaining candidates. We believe that our new formulations

can enhance both stages of this pipeline. To improve filtering effi-

ciency, we can use the dual bound from the LP relaxation as a quick

and effective criterion. In the verification step, our experimental re-

sults show that our novel methods outperform the state-of-the-art

techniques 𝐴∗-BMao and 𝐴∗+-LSa by several orders of magnitude,

highlighting their strong potential for accelerating this process.

Furthermore, using ILP solvers, we can efficiently prune the exact

computation of GED between the query graph and each graph in the

dataset by monitoring the optimization bounds: If the current best

upper bound falls below the threshold, the corresponding graph is

accepted. Conversely, if the best lower bound exceeds the threshold,

the candidate graph can be safely discarded.
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