
Turbocharging Vector Databases using Modern SSDs
Joobo Shim

Seoul National University

jbshim@snu.ac.kr

Jaewon Oh

Seoul National University

jaewon.oh@snu.ac.kr

Hongchan Roh

Dnotitia

hongchan.roh@dnotitia.com

Jaeyoung Do
∗

Seoul National University

jaeyoung.do@snu.ac.kr

Sang-Won Lee

Seoul National University

swlee69@snu.ac.kr

ABSTRACT
Efficient and scalable vector search is critical for modern AI applic-

ations, particularly in retrieval-augmented generation (RAG) and

large-scale semantic search. However, disk-based vector databases

often suffer from significant I/O bottlenecks due to suboptimal

cache hit ratios and inefficient use of modern SSD architectures. In

this work, we introduce a suite of optimizations to enhance the per-

formance of disk-resident Approximate Nearest Neighbor (ANN)

indices, specifically focusing on hierarchical graph-based indexing

such as HNSW. Our approach leverages three key strategies: (1)

Parallel I/O leveraging io_uring to exploit SSD concurrency and

reduce retrieval latency, (2) Spatially-aware insertion reordering to

improve cache efficiency by dynamically adjusting insert execution

order based on locality, and (3) Locality-preserving colocation to

restructure index layouts and minimize costly random disk accesses.

We implement these techniques within pgvector, a PostgreSQL
extension for vector search, and conduct extensive evaluations us-

ing real-world datasets. Our optimizations yield up to 11.1× im-

provement in query throughput, a 3.23× increase in cache hit ratio,

and a 98.4% reduction in index build time. Moreover, our findings

underscore the importance of SSD-aware indexing strategies for

scalable vector retrieval. By integrating hardware-aware I/O op-

timizations with intelligent data placement techniques, this work

paves the way for more efficient, high-performance disk-based vec-

tor search engines that could fully leverage modern SSD’s high

parallelism.

PVLDB Reference Format:
Joobo Shim, Jaewon Oh, Hongchan Roh, Jaeyong Do and Sang-Won Lee.

Turbocharging Vector Databases using Modern SSDs. PVLDB, 18(11): 4710 -

4722, 2025.

doi:10.14778/3749646.3749724

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/FlashSQL/io-optimized-pgvector.

∗
Corresponding Author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.

doi:10.14778/3749646.3749724

1 INTRODUCTION
Recent advancements in test-time scaling [16, 48] have significantly

improved AI accuracy, pushing performance closer to near-AGI

levels. This advancement, coupled with the emergence of com-

pact yet high-performance large language models (LLMs) built on

open-model frameworks [8, 15, 22, 42], is reshaping the LLM ser-

vice landscape. As a result, there is increasing interest in custom

data-driven Retrieval-Augmented Generation (RAG) systems and

advanced retrieval techniques. Central to this transformation is

dense embedding-based vector database technology, which facilit-

ates semantic search tailored to user queries—an essential capability

for modern LLM applications.

To meet the responsiveness and scalability demands of such vec-

tor databases, approximate nearest neighbor (ANN) search is widely

adopted. ANN algorithms strike a balance between accuracy and ef-

ficiency by approximating exhaustive k-NN search while drastically

reducing query latency. However, as the volume of vector datasets

scale to hundreds of millions or more, storing vector embedding

and indices entirely in DRAM becomes prohibitively expensive.

In response, disk-based vector databases have emerged as an ef-

fective alternative. Systems such as DiskANN [21, 33], ScaNN [17],

SPANN [11], and FreshDiskANN [39] achieve high performance by

compressing indices using product quantization (PQ) or inverted

file indexing (IVF)-based clustering, enabling partial in-memory

storage with selective disk I/O for accessing full vectors only when

necessary during search.

However, a critical limitation of such systems is that they are

inherently static [45]. Their reliance on compression and cluster-

ing makes incremental updates either infeasible or highly ineffi-

cient. When updates are allowed, recall performance often degrades

rapidly as the index becomes outdated [44], eventually requiring

expensive periodic index rebuilds to restore quality. For example,

FreshDiskANN, which allows lazy deletions, must eventually con-

solidate the index offline to maintain recall quality, which incurs

latency spikes and operational overhead. These limitations are es-

pecially problematic for RAG and hybrid search integrated with

relational databases, where updates occur continuously as new doc-

uments are ingested, modified, or removed. In such scenarios, static

indices become a bottleneck and file to meet practical demands.

To support such dynamic workloads, graph-based ANN indices

such as HNSW (Hierarchical Navigable Small World) [29] offer a

compelling alternative due to their natural support for efficient in-

sertions and deletions. However, adapting HNSW for disk-resident

execution is nontrivial. Its greedy graph traversal, for example,

requires following multiple edges across non-contiguous nodes,

4710

https://doi.org/10.14778/3749646.3749724
https://github.com/FlashSQL/io-optimized-pgvector
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749724
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: HNSW index search and I/O process. (a) HNSW
search traversal from the entry point to the lowest layer.
The red path indicates the search sequence. (b) HNSW index
storage layout, showing buffer cache usage and index page
structure on flash SSD.

leading to frequent random disk I/O and poor cache locality, par-

ticularly in deeper layers of the graph where cache hit ratios are

lowest. Disk-based implementations such as pgvector [25], des-

pite allocating substantial buffer memory (e.g., 50% of the dataset),

often suffer from these inefficiencies. The problem is compoun-

ded by the sequential and synchronous I/O model, which fails to

utilize the inherent parallelism of modern SSDs, resulting in signi-

ficant I/O bottlenecks. Moreover, spatially correlated queries are

typically processed non-consecutively, hindering effective caching,

while frequently co-accessed nodes are often stored on separate

physical pages, exacerbating disk access overhead. Without careful

system-level optimization, such implementations fail to deliver the

performance required by large-scale vector search systems, falling

short of static yet highly optimized systems like DiskANN.

To address these inefficiencies, this paper introduces a compre-

hensive set of optimizations designed to enhance I/O performance

in disk-based vector databases employing graph-based ANN indices

(such as HNSW). In this paper, our approach mainly focuses on

reducing the number of costly I/O operations and improving cache

hit ratios through the following strategies:

• Exploiting SSD Parallelism via io_uring:We leverage the

high parallelism of modern SSDs by utilizing io_uring to over-
lap asynchronous I/O operations and enhance pipelining effects,

thereby reducing latency and increasing throughput (Section 4).

• Spatially-aware Insertion Reordering: By reordering insert

query processing to group similar insertions together, we aim

to improve spatial locality and boost cache hit ratios (Section 5).

• Locality-Preserving Colocation: We propose pre-clustering

vectors likely to be accessed together during index construction,

enhancing spatial locality and reducing disk accesses in query

processing (Section 6).

To our best knowledge, this work presents the first comprehens-

ive study on I/O optimization for graph-based HNSW indices in

SSD-based vector databases, providing an in-depth analysis of I/O

inefficiencies and proposing a systematic approach to overcoming

these challenges. By leveraging SSD parallelism, insertion reorder-

ing, and locality-preserving colocation, the proposed optimizations

significantly reduce query latency and enhance throughput. An im-

plementation of such optimization within pgvector demonstrates

that these techniques could drastically boost the query throughput

of disk-based vector databases, 11.1x improvement in read perform-

ance, a 3.23× increase in cache hit ratio, and a 98.4% reduction

in indexing time. These results suggest that, with proper I/O op-

timizations, it is feasible to build a new class of disk-based vector

databases that not only support dynamic updates but also deliver

query performance comparable to highly optimized static indices

such as DiskANN. Additionally, unlike static PQ-based systems that

suffer from high indexing costs, our system achieves an order-of-

magnitude faster index construction. Furthermore, while pgvector
serves as the primary evaluation platform, the proposed optimiza-

tions are broadly applicable to other disk-based vector databases,

highlighting their potential to enhance the scalability and efficiency

of retrieval-augmented AI systems leveraging disk-based vector

databases for large-scale datasets.

2 MOTIVATIONS AND OPPORTUNITIES
2.1 HNSW-based index in VectorDB
Many vector databases [1–3] utilize ANN indices, which enables

fast similarity search while balancing accuracy and computational

efficiency [34]. Among various ANN index alternatives, HNSW is

widely used due to its robustness in handling high-dimensional data

while maintaining efficient search [29]. For example, pgvector [25],
which is an open-source PostgreSQL extension [37], supports vec-

tor data types and enables ANN search, including HNSW.

In this paper, we chose pgvector over other vector database

solutions not only for its seamless integration with PostgreSQL but
also for its dynamic index support and compatibility with the DBMS

environment. Unlike static ANN systems based on PQ or clustering,

pgvector supports incremental updates, making it well-suited for

real-world applications that require both large-scale vector search

and transactional integrity.

HNSW index search and construction HNSW is a hierarch-

ical graph-based index that searches nearest neighbors efficiently by

organizing data points into multiple small-world graph layers [29].

The search starts from sparsely connected top layer (Figure 1a),

enabling fast traversal across distant regions. At each layer, it per-

forms neighbor-scan, evaluating neighbors and retaining themost

promising candidates. The process iteratively descends to lower

layers until the final nearest neighbor is selected.

A key parameter, ef_search, controls the trade-off between

accuracy and speed: higher values increase recall but require more

computation. The algorithm scans neighbors leveraging spatial

locality, and its efficiency depends on the graph structure. Well-

connected nodes improve traversal, and high-locality queries access

overlapping graph regions, enhancing cache reuse.

HNSW constructs its hierarchical graph probabilistically, keep-

ing higher layers sparse. Insertion involves two key steps: 1) finding

nearest nodes and 2) selecting neighbors to maintain navigability.

This process is governed by two parameters: max neighbors per

node (m) and candidate pool size (ef_construction). Higher values
for both lead to better search recall but incur longer build times.

While HNSW delivers high search efficiency, its index construc-

tion is inherently slower than hash- or tree-based approaches due to

search on each insertion. In pgvector, this issue is further exacer-
bated by PostgreSQL ’s delayed deletion, which can temporarily

4711

Table 1: Sequential vs. parallel read performance across dif-
ferent SSDs. The table presents the throughput of single-
threaded (Seq.) vs. multi-threaded (Par.) I/O operations. All
measurements were obtained using FIO with an 8KB request
size and ioengine=sync, with 1 job for 𝑆𝑒𝑞. and 64 concurrent
jobs for 𝑃𝑎𝑟 ..

Storage Read MB/s Parallel Ratio Capacity Release

Device Seq. Par. (𝑃𝑎𝑟 ./𝑆𝑒𝑞.) Year

SSD-A† 118.0 5,606 47.5 4TB 2022

SSD-B¶ 93.2 3,355 36.0 2TB 2021

SSD-C⋄ 121.0 2,484 20.5 1TB 2020

SSD-D∗ 74.1 473 6.4 512GB 2014

†
Samsung PM1743,

¶
Fadu Delta,

⋄
Samsung 980 pro,

∗
Samsung 850 pro

disconnect the graph and degrade recall, requiring periodic recon-

struction. Therefore, optimizing build time is critical. Similar to

query execution, insertion order affects index locality. Addition-

ally, vector layout matters: frequently co-accessed nodes should be

colocated within the same pages to minimize I/O. Poor locality can

cause excessive random accesses, increasing query latency.

HNSW Index I/O process Figure 1b shows that pgvector’s
index pages follow a slotted format, where each page stores a graph

node along with its vector, and neighbor tuple IDs. The graph is

first built entirely in memory (maintenance_work_mem), enabling
efficient connectivity without incurring I/O. Once the memory

budget is exceeded, the index is flushed to disk, and remaining

nodes are integrated incrementally. This phase involves loading

pages into buffer_cache, potentially leading to I/O bottlenecks.

During neighbor-scan, neighbor pages are fetched via

buffer_cache. Since each node has dozens of neighbors, cache

misses are frequent, making search I/O-bound. Although distance

calculations (e.g., L2, cosine similarity) are costly, modern CPUs

handle them efficiently using SIMD and compiler optimizations [4].

Consequently, I/O efficiency—including the buffer_cache hit

ratio—is the main bottleneck for both index construction and

search. However, pgvector uses sequential blocked I/O during

neighbor-scan, underutilizing SSD parallelism (see Section 2.2).

Moreover, vectors are stored by insertion order, ignoring spatial

locality and graph connectivity relationships. This lack of locality-

aware storage results in suboptimal I/O patterns, further exacerbat-

ing random access overhead.

2.2 Parallelism in Flash SSDs
Modern flash storage architectures leverage internal parallelism

at multiple levels to maximize I/O efficiency. Inside a flash SSD,

NAND flash packages consist of multiple chips, each further divided

into multiple planes [10, 23]. The flash controller manages these

packages through multiple communication channels, allowing con-

current access to different blocks across chips [24]. This enables

SSDs to handle multiple I/O requests simultaneously, significantly

improving throughput when the host system issues concurrent

operations.

To quantify parallelism in modern SSDs, we conducted an em-

pirical study using four commercial drives, measuring random read

throughput with FIO [6]. The test compared single-threaded se-

quential reads to 64-threaded random reads on a 5GB file.

Table 2: Hit ratio and SSD utilization (GloVe, 50% buffer cache)

Cache Hit Ratio SSD Throughput SSD Utilization

Value 59.24% 111MB/s 1.98%

Table 3: HNSW traversal statistics (GloVe, 50% buffer cache)

Layer Number of Nodes Node Visits Hit Ratio (%)

3 80 40.66 99.98

2 1,785 47.86 95.26

1 41,405 48.94 70.21

0 1,000,000 1823.57 57.49

As shown in Table 1, newer SSDs exhibit substantial internal

parallelism. For example, SSD-A achieves 118 MB/s with one thread,

but scales to 5,606 MB/s with 64 threads—a 47.5× improvement.

In contrast, the older SSD-D shows only a 6.4× gain, limited by its

legacy controller and fewer NAND channels. These results highlight

the importance of exploiting SSD parallelism in high-performance

storage systems, especially as newer devices adopt more channels

and higher capacities.

2.3 I/O Inefficiencies of HNSW Index on SSDs
In this section, we evaluate pgvector’s performance and I/O in-

efficiencies on flash SSD using the GloVe dataset [36] (1M vectors,

200 dimensions). We built an HNSW index and executed random

queries on 1% of the dataset on SSD-A (i.e., the highest-generation

SSD model), with the buffer cache set to 50% of index size. An in-

depth examination of pgvector ’s I/O patterns, including source

code analysis and empirical profiling, revealed significant ineffi-

ciencies that hinder overall performance. As shown in Table 2, SSD

utilization was only 1.98%, indicating substantial underutilization

of available bandwidth. Furthermore, the cache hit ratio remained

at only 59.24%, highlighting inefficiencies in memory usage as well.

For more details about the experimental setup, see Section 3.

Opportunity 1: Low Temporal Locality Table 2 shows that

despite of a 50% buffer allocation, the cache hit ratio remains at only

59.24%, indicating inefficient cache reuse. This stands in contrast to

benchmark workloads like TPC-C, where 80% of accesses typically

target just 20% of the data [26].

Ideally, the HNSW index should naturally encourage temporal

locality, as similar query vectors tend to traverse overlapping re-

gions in the graph, leading to frequent reuse of cached nodes. How-

ever, a deeper examination of the execution path (as shown in

Table 3), reveals a key inefficiency. Specifically, Layer 0 (the lowest

layer) experiences the highest number of traversals while simultan-

eously exhibiting a low cache hit ratio. Since this layer is responsible

for fine-grained nearest-neighbor refinement, it is the dominant

factor in overall search performance and I/O overhead. In contrast,

upper layers of the HNSW hierarchy contain fewer nodes and ex-

hibit near 100% cache hit ratios, as they remain resident in memory

for longer periods. This disparity suggests that the current query

execution order does not maximize temporal locality, especially

at lower layers. By strategically reordering query execution to in-

crease locality-aware access patterns, cache utilization could be

significantly improved, thereby reducing buffer cache misses and

unnecessary disk I/O operations.

4712

Opportunity 2: Low Spatial Locality To analyze the impact

of spatial locality on pgvector ’s cache efficiency and I/O perform-

ance, we measured the number of HNSW nodes accessed during

a search and the corresponding index pages holding such nodes.

Given that each vector has 200 dimensions (i.e., 800 bytes per vec-

tor), a single page (i.e., 8KB) can accommodate up to 10 vectors.

Despite this, in our search experiment, on average, to process a

single query, about 1961 HNSW nodes have to be visited by loading

about 1887 index pages. In other words, the observed number of

pages per not visit ratio is about 0.96, indicating that nearly every

node visit results in a new page read, leading to a high cache miss

rate.

This pattern suggests that, although multiple nodes are stored

within the same page, they are rarely accessed together, prevent-

ing effective page reuse. Consequently increasing the frequency of

page replacements in the buffer cache and amplifying I/O overhead.

Ideally, the HNSW index, being graph-based, should naturally pro-

mote spatial locality, as adjacent nodes in the graph are likely to be

visited together during nearest-neighbor searches. However, the

current search strategy does not fully exploit this characteristic,

resulting in suboptimal cache performance. Therefore, optimizing

the storage layout to group frequently co-accessed nodes within

the same pages could improve spatial locality.

Opportunity 3: Underutilization of SSD bandwidth An-

other notable observation is the significant underutilization of SSD

bandwidth, as shown in Table 2, where only 1.98% of the maximum

available bandwidth is achieved. This indicates a severe inefficiency

in leveraging the SSD’s internal parallelism, leading to suboptimal

I/O performance.

The primary cause of this inefficiency lies in the sequential access

pattern used during neighbor visits in the HNSW index search.

Since neighbor visits in HNSW are inherently independent, they do

not require a strict access order. In an optimized design, multiple

SSD channels could be utilized concurrently to retrieve different

parts of the index in parallel. However, the current implementation

enforces a sequential access order, which significantly limits I/O

parallelism. As a result, SSD operations fail to exploit modern SSD

architectures capable of handling multiple concurrent requests.

By restructuring the access pattern to enable parallel neighbor

visits, the system could distribute I/O requests across multiple SSD

channels, substantially improving bandwidth utilization and query

performance.

3 EXPERIMENTAL SETUP
Hardware All experiments were conducted on an Ubuntu ma-

chine in Samsung Memory Research Center (SMRC) [14] equipped

with 64GB DRAM and an Intel Xeon Gold 6442Y CPU with 24 phys-

ical cores. The system storage comprised four SSDs with distinct

performance characteristics: Samsung PM1743, Fadu Delta SSD,

Samsung 980 Pro, and Samsung 850 Pro. The Samsung PM1743,

Fadu Delta SSD, and Samsung 980 Pro are high-performance NVMe

SSDs, connected to the system via PCIe, while the Samsung 850 Pro,

a SATA-based SSD, was used as a non-NVMe baseline. This config-

uration allowed for a comprehensive evaluation of SSD parallelism

and I/O performance across different SSDs.

Table 4: Datasets used in the experiments

Dataset Dimensions # of Vectors # of Queries

DBpedia 1,536 100K, 1M 10K

Deep 96 100K, 1M, 10M, 100M 10K

GloVe 200 100K 10K

NYTimes 256 100K 10K

COCO 512 100K 10K

C4 1,536 100K, 5M 10K

Software For database management, we used PostgreSQL
17 [37] with pgvector 0.8.0 [25] as the main baseline. The system

was configured to support asynchronous I/O using liburing 2.9 [7],

while FIO 3.38 [6] was employed for low-level I/O benchmarking.

The HNSW index was constructed with ef_construction = 200

and m = 24 (See Section 2 for the detailed description of the HNSW

index parameters), ensuring a balanced trade-off between index

quality and construction time. The database page size was set to

8KB, a standard PostgreSQL configuration. To optimize I/O hand-

ling, io_uring depth was set to 2×m. This configuration was chosen
to maximize I/O concurrency while maintaining efficient queue

depth for storage interactions. Direct I/O was enabled to minimize

OS-level caching, allowing accurate measurement of the direct im-

pact of disk I/O on query performance. Any deviations from this

default configuration are explicitly noted in the relevant sections.

Datasets and Evaluation Benchmark To ensure robustness

and generality of our evaluation, we used a diverse set of datasets

spanning various domains and characteristics, as listed in Table 4.

This includes DBpedia [5], Deep [46], GloVe [36], NYTimes [31],

COCO [27] and C4 [13]. For evaluation, we used ANN-Benchmarks

to evaluate ANN search performance. Each dataset was randomly

split into training and test sets, with the training set used exclusively

for index construction and the test set for benchmarking.

4 BOOSTING I/O PARALLELISM
In pgvector, index search accesses multiple neighbor nodes to

compute distances from the query vector. When these nodes are

not present in the buffer cache, they must be loaded from SSD,

introducing I/O latency. Since pgvector relies on PostgreSQL ’s

buffer management layer, data is loaded sequentially, which fails to

leverage SSD parallelism effectively. Performing page access and

distance calculations in a purely sequential manner significantly

limits throughput as visualized in Figure 2a (pgv-orig) even though
modern SSDs are optimized for parallel I/O processing.

4.1 Adapting HNSW Search to SSDs
To improve the impact of I/O parallelization, wemodified pgvector
to incorporate parallel I/O using io_uring, a high-performance

asynchronous I/O interface in the Linux kernel. Unlike traditional

I/O mechanisms such as epoll [41] and AIO [40], io_uring offers
lower overhead and higher throughput by enabling batched I/O re-

quests through shared memory queues (i.e., Submission Queue and

Completion Queue) between user space and the kernel. This mech-

anism allows multiple read operations to be processed concurrently,

maximizing SSD parallelism [12].

Adapting HNSW search to fully leverage such parallelism intro-

duces additional challenges that go beyond simply batching read

4713

Figure 2: Comparison of query execution strategies. (a)
pgv-orig (vanilla): Sequential query execution with high I/O
overhead, (b) pgv-iou (ours): Parallelized I/O reduces execu-
tion time, (c) pgv-async-iou (ours): Asynchronous I/O further
optimizes by overlapping distance calculations with I/O op-
erations. Note that V1 and V2 undergo page I/O, while V3 and
V4 (marked with asterisks) are assumed to be cached.

Figure 3: Comparison of I/O request flow. (a) pgv-orig: Se-
quential I/O, handling one request at a time, (b) pgv-iou: Par-
allelized I/O with submission and completion queues, en-
abling concurrent execution for higher efficiency.

requests. A core difficulty lies in orchestrating computation and

I/O in a tightly pipelined fashion. Specifically, to avoid CPU idle

time, the systemmust issue asynchronous reads for uncached neigh-

bors as early as possible—before CPU-bound distance computations

for cached neighbors begin. This requires careful integration of

io_uring into the execution pipeline, ensuring early I/O issuance

and seamless overlap between compute and I/O phases.

Further complexity arises from the asymmetric distribution of

pages across SSD channels. If the system waits for all outstanding

I/O requests to complete, CPU resources may remain underutilized.

To address this, we adopt a responsive polling strategy that triggers

distance computation as soon as any page becomes available, avoid-

ing full-batch synchronization delays. Additionally, we tune the

min_complete parameter in io_uring to balance I/O responsiveness

and CPU overhead. Empirical tuning reveals that a moderate setting

(e.g., min_complete = 6) achieves robust performance across diverse

workloads.

We applied I/O parallelization to the neighbor-scan, which runs
to compute distances between the query node and its neighbors.

The neighbor list serves as the candidate set for I/O operations, ex-

cluding already visited nodes and cached pages. Then asynchronous

read requests are added to the Submission Queue. Once the batch

of requests is prepared, parallel read operations are initiated. Upon

Algorithm 1 Asynchronous Parallel Neighbor Retrieval

1: 𝑄 : Query Vector

2: 𝑁 : Unvisited Neighbor nodes

3: 𝑐𝑎𝑐ℎ𝑒𝑑 ← {𝑛 ∈ 𝑁 | 𝑛 ∈ buffer_cache} ⊲ Cached neighbors

4: 𝑢𝑛𝑐𝑎𝑐ℎ𝑒𝑑 ← 𝑁 \ 𝑐𝑎𝑐ℎ𝑒𝑑 ⊲ Uncached neighbors

5: function EvaluateNeighbors

6: Submit 𝑢𝑛𝑐𝑎𝑐ℎ𝑒𝑑 to io_uring
7: for 𝑐 ∈ 𝑐𝑎𝑐ℎ𝑒𝑑 do
8: Compute Distance(𝑄 , 𝑐)

9: end for
10: while 𝑢𝑛𝑐𝑎𝑐ℎ𝑒𝑑 ≠ ∅ do
11: 𝑟 ← wait for any I/O completion

12: Compute Distance(𝑄 , 𝑟)

13: Remove 𝑟 from 𝑢𝑛𝑐𝑎𝑐ℎ𝑒𝑑

14: end while
15: end function

completion, retrieved pages are placed in the Completion Queue

and made available to the search process only after all outstanding

I/O requests have been finalized. An example of the scan process

of such improvement is shown in Figure 2b (pgv-iou), and the I/O

request flows of pgv-orig and pgv-iou are depicted in Figure 3.

In pgv-iou, I/O overlapping significantly reduces overall exe-

cution time compared to pgv-orig. However, this also shifts the

relative time distribution, increasing the proportion spent on page

access and distance calculation. Since page I/O is handled by the

storage layer and distance calculations by the CPU, these two pro-

cesses can theoretically be executed in parallel. Despite this, even

in pgv-iou, the CPU remains idle while waiting for I/O operations

to complete, introducing performance inefficiencies.

To address this issue, we implemented pipelined distance calcu-

lation, a technique that dynamically overlaps I/O operations with

computation. Instead of treating I/O and distance computation as

distinct sequential phases, this approach enables concurrent execu-

tion, ensuring that CPU cycles are utilized efficiently while I/O op-

erations are in progress as visualized in Figure 2c (pgv-async-iou).
More details are demonstrated in Algorithm 1. The system im-

mediately processes cached pages upon submitting I/O requests,

minimizing CPU idle time (LN 8). Additionally, rather than waiting

for all I/O requests to complete, the system processes pages as soon

as any I/O request is finalized (LN 12). This is achieved through

continuous monitoring of the io_uring submission queue, using

a real-time polling mechanism known as peeking. By detecting

completed I/O requests dynamically, the system avoids unneces-

sary blocking and schedules distance calculations opportunistically,

maximizing CPU utilization.

4.2 Evaluation
To assess the impact of I/O parallelization in pgvector, we meas-

ured both search performance (in queries per second, QPS) and

index creation efficiency (in elapsed time) using the DBpedia-1M

dataset. The HNSW index was configured with ef_search = 40.

Experimental results demonstrated that search performance im-

proved by up to 8.55×, while index creation time was reduced by

85.07%, highlighting the significant performance gains achieved

through parallelization.

The traditional read approach struggles to fully utilize SSD band-

width due to CPU overhead from frequent context switching and

system calls, even at high concurrency levels. In contrast, io_uring
minimizes these inefficiencies by leveraging a ring buffer to batch

4714

(a) (b) (c) (d) (e)

Figure 4: Effect of I/O parallelization across different SSD architectures and datasets. (a) Query performance with varying buffer
sizes on SSD-A, (b) Performance comparison across SSDs, (c) Cache miss penalty reduction through parallel I/O, (d) Improved
index construction speed with I/O parallelization, (e) Impact of high concurrency on various datasets. Note that (a–d) results
are based on the DBpedia-1M dataset.

and process I/O requests asynchronously, significantly reducing sys-

tem call overhead and context switching costs. To validate this, we

compared pgv-orig and pgv-async-iou under a 10% buffer condi-

tion, measuring SSD read bandwidth as concurrency increased until

performance saturation. In our tests, pgv-orig reached 7,984MB/s

at a concurrency level of 200, whereas pgv-async-iou achieved

8,902MB/s with only 30. This demonstrates that io_uring enables

higher SSD utilization with lower concurrency requirements, effect-

ively preventing the performance saturation observed in traditional

methods.

Effect of Buffer Size on Query Performance Figure 4a

presents the effect of I/O parallelization on query throughput per

second (QPS) as the buffer size increased from 10% to 50% on

SSD-A. The largest performance difference was observed in 10%

buffer size, where the original pgvector (pgv-orig) recorded 13.02
QPS, while pgv-iou reached 105.81 QPS (an 8.12× improvement),

and pgv-async-iou further improved to 111.4 QPS (an 8.55× in-

crease). The gap between pgv-iou and pgv-async-iou was most

pronounced when the buffer size was 50%, with the Pipeline method

delivering an additional 10% performance improvement due to its

overlapping execution strategy.

As the buffer cache size increased, all approaches exhibited con-

sistent QPS improvements. However, the relative performance gain

of pgv-iou over pgv-orig diminished (e.g., from 8.12× with 10%

buffer to 5.14× with 50% buffer). This trend occurs because a lar-

ger buffer size increases the hit ratio, reducing the number of I/O

requests via io_uring, thereby limiting the effectiveness of SSD

parallelism. In contrast, the Pipeline method became more effect-

ive as the buffer cache grew, since a larger cache allowed for more

pages to be preprocessed before the first I/O request was completed.

Effect of SSD Parallelism on Query Performance Figure 4b

compares the impact of SSD parallelism on query performance

across different SSD models. Despite variations in maximum read

speeds, pgv-orig showedminimal performance variation, as it does

not leverage SSD parallelism, resulting in low SSD utilization. In

contrast, higher level of I/O parallelization showed greater benefits

on SSDs with higher internal parallelism. For example, on SSD-D
(lowest parallelism) performance improved by 3.82× compared to

pgv-orig, whereas on SSD-A (highest parallelism) performance

increased by 8.55×. Figure 4c illustrates the cache miss penalty (i.e.,

page access latency) across different SSDs. As shown in the figure,

I/O parallelization significantly reduced average I/O latency during

cache misses, leading to lower penalty costs. With pgv-async-iou,
the cache miss penalty reduction compared to pgv-orig was 80.5%
on SSD-D and 94.1% on SSD-A, demonstrating that higher SSD par-

allelism amplifies the benefits of parallelized I/Os. These results

indicate that as SSD architectures continue evolving, newer models

with superior parallelism will further enhance the effectiveness of

I/O parallelization, making them increasingly valuable in modern

vector databases.

Effect of I/O Parallelization on Index Construction In vec-

tor databases handling massive datasets, index construction is just

as critical as search performance, particularly in environments that

require continuous data updates. I/O parallelization also improves

index creation speed by reducing the time spent in neighbor-scan,
which are I/O-intensive operations. To quantify this effect, we meas-

ured the time required to insert an additional 1% of data into an

existing index that had already been built with 99% of 1M DBpedia

vectors. As shown in Figure 4d, reducing I/Owait times significantly

accelerated index updates, improving the efficiency of large-scale

vector processing. For example, pgv-async-iou completed the in-

sertion in 383.04 seconds on SSD-A, an 85.07% reduction compared

to pgv-orig, which required 2,566.29 seconds.

Concurrency, Scalability, and Dataset Diversity Figure 4e

shows the performance across diverse datasets under concurrency

10 using SSD-A. The datasets vary in size and dimensionality: DB-

pedia (1,536 dim, 100K/1M), Deep (96 dim, 10M/100M), NYTimes

(256 dim, 100K), GloVe (200 dim, 100K), COCO (512 dim, 100K)

and C4 (1,536 dim, 5M). I/O parallelization consistently improved

performance, with gains ranging from 4.63× (COCO) to 6.34×
(GloVe)—levels that pgv-orig would require 60–70 concurrency

to match. For DBpedia-1M, the gain dropped from 8.55× (single-

threaded) to 5.29×. This decline is attributed to performance de-

gradation caused by page locking and other contention within the

shared buffer among multiple threads.

5 SPATIALLY-AWARE INSERTION
REORDERING

As discussed in Section 2.3, executing queries in an arbitrary order

leads to inefficient cache utilization, as the cache state for each

query is influenced by the execution sequence of preceding quer-

ies. The execution order directly affects the degree of overlapping

traversal paths, which in turn impacts cache hit rates. To quantify

4715

Figure 5: Correlation between vector similarity and overlap-
ping search paths. Higher semantic similarity leads to greater
path overlap, reinforcing the effectiveness of spatially-aware
insertion reordering.

this effect, we analyze the relationship between vector distance

and path overlap. Specifically, we randomly selected 500,000 pairs

from the DBpedia dataset and computed their cosine similarity. The

path overlap ratio represents the proportion of nodes visited by a

later query that were also traversed by an earlier query. Figure 5

illustrates this relationship by depicting the correlation between

vector pairwise distances and the number of overlapping nodes

encountered at the search. Even when two queries are not identical,

they frequently traverse shared neighbors or similar regions of the

graph, enhancing spatial locality and improving cache efficiency.

To address this issue, we implement spatially-aware insertion

reordering, an optimization technique that adjusts insert query

execution order to maximize page reuse. By ensuring that upcoming

queries are spatially closer to previous ones, this approach reduces

redundant page loads, improves cache efficiency, and therefore

minimizes I/O overhead.

5.1 Effectiveness of Insertion Reordering
Figure 6 presents the reordering time (log scale) and cache hit ratio

improvements for various reordering approaches. The red diamond

markers denote projection-based reordering techniques, including

Random Projection [18], Centroid-Based Reordering (based on data-

set centroid), First-Element Reordering (based on the first element

of each vector), and PCA-Based Reordering utilizing Randomized

SVD [9]. The blue circle markers indicate cluster-based reorder-

ing methods, such as K-means Clustering [28], Gaussian Mixture

Model Clustering [38], Spectral Clustering [32], and Hierarchical

Clustering [35].

The experimental results reveal a fundamental trade-off between

reordering strategies. Projection-based reordering achieves lower

computational overhead, enabling faster reordering times. In con-

trast, cluster-based reordering leverages the intrinsic structure of

the data, leading to improved spatial locality and higher cache hit

ratios. The key rationale behind this difference is that cluster-based

reordering groups semantically similar vectors together, making

query access patterns more spatially aware, thereby enhancing

cache efficiency.

Among projection-based approaches, PCA-based reordering ex-

hibited the highest cache hit ratio, as it effectively reduces dimen-

sionality while preserving important data variance. Meanwhile,

among cluster-based methods, K-means clustering achieved the

fastest reordering speed, striking a balance between computational

efficiency and spatial awareness in query execution.

Figure 6: Performance impact of embedding reordering
strategies. Comparison of projection-based (red, diamond)
and cluster-based (blue, circle) reordering techniques in
terms of cache hit ratio and preprocessing time. Note that the
cache hit ratio of pgv-orig without reordering was 22.36%

5.2 Index Building with Insertion Reordering
The most time-consuming aspect of index construction is page

I/O operations, which occur when traversing partially constructed

graph layers to locate the nearest existing nodes. As shown in Fig-

ure 6, reordering insert queries before indexing improves buffer hit

ratio by enhancing spatial locality and minimizes expensive page

accesses. In scenarios where data is primarily appended, rebuild-

ing the entire index from scratch is computationally prohibitive.

Therefore, in such cases (e.g., LN 1 of Algorithm 2), only newly in-

serted data is reordered, leaving the existing index structure intact.

This approach ensures that newly added vectors are organized to

improve locality and index efficiency.

The trade-off between reordering speed and cache hit ratio must

be carefully managedwhen selecting an optimal reordering strategy.

For smaller datasets, more fine-grained reordering techniques can

be employed to maximize spatial locality. However, for larger data-

sets, the computational cost of reordering increases significantly,

making it crucial to adjust the reordering granularity to balance

efficiency and performance.

5.3 Evaluation
To evaluate the impact of reordering on index construction, we

examined two reordering strategies: PCA reordering (Projection-

based) and K-means reordering (clustering-based). The experiments

were conducted under two indexing scenarios. In the full reorder-

ing scenario, the entire dataset was reordered before insertions.

In the incremental reordering scenario, only the newly inserted

portion was reordered before incorporating it into the pre-existing

index. In this way, even without knowing the full workload in ad-

vance, reordering can still effectively reduce I/O and accelerate

index construction.

All experiments were conducted on SSD-A, with the buffer cache

size set to 20% of the dataset size. 95% of the dataset was pre-

indexed, and the remaining 5% was inserted incrementally. For

K-means reordering, data was clustered in chunks of 10,000 vectors

to maintain linear computational complexity, with the number of

clusters set to 10. After reordering the vectors accordingly, the

index was constructed, and the performance of both scenarios was

compared and analyzed.

Figure 7a shows that reordering significantly reduces index con-

struction time while improving buffer cache locality, even when

considering the additional preprocessing overhead. For instance,

4716

Algorithm 2 Insertion with multiple insert pages

Require: Nodes to insert 𝑁 , Multiple Insert Pages I, Fallback Insert Page F
Ensure: All nodes in 𝑁 are inserted in an appropriate page

1: 𝑁 ′ ← sort 𝑁 using spatially-aware insertion reordering
2: for each node 𝑛 ∈ 𝑁 ′ do
3: 𝐶 ← ∅ ⊲ Candidate partitions

4: for each partition 𝑝 ∈ P do
5: 𝑐𝑜𝑢𝑛𝑡 ← count_neighbor_overlap(𝑛, 𝑝)

6: 𝐶 ← 𝐶 ∪ (𝑝, 𝑐𝑜𝑢𝑛𝑡)
7: end for
8: Sort𝐶 in descending order of count

9: for each (𝑃, 𝑐𝑜𝑢𝑛𝑡) in𝐶 do
10: if 𝑃 ∈ I then
11: 𝑝𝑎𝑔𝑒 ← find_available_page(𝑃)

12: if is_page_full(𝑝𝑎𝑔𝑒) then
13: 𝑝𝑎𝑔𝑒 ← create_extended_page(𝑃)

14: end if
15: insert_into_page(𝑛, 𝑝𝑎𝑔𝑒)

16: return
17: end if
18: end for
19: insert_into_page(𝑛, F) ⊲ If no valid partition exists, use fallback insert page

20: end for

PCA and K-means reduced index build time by 68.2% and 67.5%

when full indexing, respectively, compared to pgv-orig. PCA re-

quired only 10.39 seconds for reordering, whereas K-means reorder-

ing took 510.97 seconds. However, K-means achieved a slightly

higher buffer cache hit ratio (86.62%) compared to PCA (86.58%),

both significantly improving over pgv-orig (53.37%). For incre-

mental indexing, K-means reduced build time by 67.3%, while PCA

achieved a 42% reduction. Reordering times remained low, at 0.588

seconds for PCA and 25.2 seconds for K-means, having little effect

on total indexing time. The buffer cache hit ratio reached 74.35%

for PCA and 86.58% for K-means, indicating that clustering-based

reordering preserved better cache efficiency.

A higher buffer cache hit ratio reduces buffer eviction frequency,

lowering the amount of data written to disk. Since SSDs have asym-

metric read/write performance, where writes are slower than reads,

a reduction in write volume directly contributes to shorter index

build times. Additionally, minimizing write operations extends SSD

lifespan, reducing long-term storage costs. Figure 7b shows the

write volume for each indexing scenario. Higher cache hit ratios

and shorter build times correlated with lower total write volume.

The greatest reduction was observed in the PCA with full reorder-

ing case, where total write volume decreased by 46.4% compared to

pgv-orig. This improvement is attributed to increased page reuse,

which minimizes redundant disk writes.

While reordering improved buffer cache hit ratio and reduced

indexing time, a significant portion of indexing time was still spent

on I/O operations. To further reduce indexing overhead, we ap-

plied I/O parallelization (i.e., pgv-async-iou) alongside reordering
and measured its impact on index build time. As shown in Fig-

ure 7c, applying PCA under pgv-async-iou resulted in a 90.3%

reduction in index build time, completing the indexing process in

1,226 seconds, including reordering time. Similarly, K-means under

pgv-async-iou reduced build time by 84.9%, completing in 1,915

seconds. These results demonstrate that combining reordering with

I/O parallelization accelerates index construction by more than

10× compared to the vanilla approach, making it a highly effective

optimization strategy for large-scale vector indexing. Figure 7d

presents an evaluation of the scalability and effectiveness of in-

sertion reordering in reducing index construction time (including

sorting time) under concurrent ingestion with five parallel threads

across multiple datasets. In each dataset, 95% was pre-indexed, and

5% was newly inserted. For large datasets (Deep-10M, Deep-100M,

and C4), 50,000 vectors were inserted. The results show 8.05× to

13.82× reduction in indexing time, with the best performance when

full sorting was applied. In addition, we examined whether spatially-

aware insertion reordering affects the structure of the graph and,

consequently, query throughput. However, it had no meaningful

impact in the graph structure itself. The sorting did not lead to any

explicit colocation effects, and its influence on cache hit ratio and

query performance was negligible.

6 LOCALITY-PRESERVING COLOCATION
In disk-based vector search, maintaining spatial locality on disk is

critical for reducing disk I/O. Traditional database indexes, such as

B+ trees, inherently preserve locality by sorting data keys, ensuring

that adjacent keys are stored within the same disk pages. How-

ever, graph-based vector indexes, such as HNSW, rely on nearest-

neighbor relationships rather than a fixed ordering, so even pre-

reordering cannot ensure that graph neighbors will be physically

stored together.

To address this challenge for preserving locality when storing

vectors in disk-based indexes, we employ BlockNeighbor Frequency

(BNF)-based partitioning during initial index construction [43]. BNF

iteratively assigns each node to the page that contains most of its

neighbors, ensuring that strongly connected nodes are colocated.

In its standard form, BNF operates at the page level, where each

page contains a fixed number of nodes. To improve flexibility, we

extend BNF by introducing partition-based computation, allowing

the number of nodes per partition to be dynamically adjusted. This

generalized approach preserves the core principles of BNF while

providing greater adaptability in organizing and storing data.

In addition, while the original BNF-based partitioning improves

locality during initial index construction, it does not account for

incremental insertions. When new vectors are appended without

considering the existing partition structure, locality degrades over

time, leading to increased random disk accesses. This issue is partic-

ularly problematic when datasets exceed memory limits or vectors

are frequently updated, disrupting the original data organization.

In disk-based HNSW implementations such as pgvector, newly
inserted nodes are sequentially appended to a designated insert

page after the initial index is flushed to disk, with no regard for

graph connectivity. This leads to several structural inefficiencies.

First, inserted nodes are stored in a single page rather than near their

graph neighbors, increasing random access costs. Second, unlike B+

trees, which split nodes upon insertion to maintain locality, HNSW

does not dynamically adjust partitions. Once a page is written to

disk, modifying its structure requires extensive rewrites, which

are impractical. Third, as more insertions occur, neighbors become

increasingly distributed across multiple pages, further increasing

random disk accesses and degrading retrieval performance. Thus,

a locality-aware insertion strategy is required to preserve local-

ity on disk without necessitating full re-partitioning. By ensuring

that newly inserted nodes are physically placed in proximity to

their graph neighbors, disk-based vector search can maintain high

retrieval efficiency while minimizing I/O overhead.

4717

(a) (b) (c) (d)
Figure 7: Influence of reordering on index construction. (a) Indexing time and cache hit ratio, (b) Total write volume during
index construction (c) Acceleration of index construction, (d) Indexing time with various datasets under high-concurrency

6.1 Insertion Strategy
To mitigate locality degradation caused by insertions, we introduce

a locality-aware insertion strategy (as described in Algorithm 2)

that dynamically selects insertion pages based on graph structure.

Unlike conventional approaches that append all new nodes to a

single insert page, our method assigns insert pages to specific par-

titions, ensuring that newly inserted nodes remain close to their

nearest neighbors in the graph. When inserting a new node, the

strategy first analyzes its neighboring nodes to determine the most

suitable partition (LN 5-6). If the selected partition already has an

insert page, the node is placed there (LN 15). If the insert page is

full, a new page is allocated and linked to the partition (LN 12-14).

If no partition-based insert page is available, the node is stored in a

fallback insert page, preventing excessive fragmentation (LN 19).

Additionally, when inserting new data, we can apply the insertion

reordering strategy from Section 5 to improve spatial locality dur-

ing insertion (LN 1). This serves as an orthogonal optimization that

complements our method, which focuses on preserving locality

during retrieval.

To ensure efficient insert page management, we dynamically

adjust the proportion of partitions using insert pages, preventing

excessive page expansion while maintaining query locality. This

approach extends BNF principles beyond initial index construction,

applying them to incremental insertions without the computational

overhead of full re-partitioning. By dynamically distributing new

data based on graph connectivity, our method ensures that disk-

based HNSW maintains spatial locality, supporting efficient query

performance even as new data is continuously inserted.

In our implementation within pgvector, insertions are managed

through a Partition Page structure which is newly introduced to

maintain a mapping of partition IDs to their corresponding insert

page numbers. Since each 8KB Partition Page can store roughly

1,000 partition-to-insert page mappings, it supports large-scale

indexing without excessive memory usage. During an insertion,

Partition Pages are first loaded to retrieve the mapping between

partitions and their associated insert pages. If a new insert page is al-

located for a partition, the Partition Page gets updated by recording

the newly assigned page number.

The computational complexity of the multiple insert pages ap-

proach is analyzed as follows𝑂 (𝑃 ·𝑜 · |𝑉 |), where 𝑃 is the number of

insert pages, 𝑜 is the average out-degree of nodes, |𝑉 | is the number

of inserted nodes. Since most operations involve simple lookups

rather than complex graph traversals or distance computations,

disk I/O remains the primary bottleneck in insertion rather than

CPU processing. Each insertion involves reading all partition pages

to locate the correct insert page, and only one of them is updated if

necessary. Since these pages store only metadata and are relatively

small, they are likely to be cached, reducing disk accesses. Writes

are infrequent, as new insert pages are allocated only when needed,

keeping I/O overhead low. As the number of insert pages increases,

the total number of index pages grows accordingly. Each insert page

may also contain unused space, leading to potential inefficiencies in

storage utilization. However, our locality-aware insertion reduces

fragmentation by keeping related data clustered.

We note that deletion is handled via PostgreSQL’s standard va-

cuum mechanism. Deleted nodes are first marked in the heap and

later physically removed by vacuum, during which the graph edges

referencing them are also updated to maintain HNSW connectiv-

ity. The resulting freed index slots can be reused by subsequent

insertions. While our system does not explicitly reassign these slots

based on partition locality, fallback insertions that overwrite freed

space may still help preserve spatial locality after deletions.

6.2 Evaluation
In this section, we evaluate the impact of partitioning strategies

and locality-aware insertions on query performance and storage

efficiency. We first analyze how varying the number of nodes per

partition and page sizes affects hit ratio and query throughput. We

then examine how locality-aware insertion maintains efficiency as

new data is added to the index.

Impact of Partitioning Figure 8a analyzes how partitioning

influences hit ratio by varying the number of nodes per partition.

The vanilla setting in pgv-orig, where each partition contains

only one node, is incrementally increased to assess the impact on

locality and cache efficiency. Results show that hit ratio improves

as more nodes are stored together, but the effect saturates at 64

nodes per partition across datasets, with diminishing gains beyond

this threshold. However, the maximum hit ratio gains vary across

datasets. For example, in the Deep dataset, hit ratio increases from

15.84% to 51.19% (3.23×), while in COCO, it rises from 22.1% to

41.02% (1.86×). However, datasets like NYTimes and GloVe exhibit

lower gains, with NYTimes improving from 13.25% to 18.71% (1.41×)
and GloVe from 13.99% to 27.95% (2.00×). This variation could be

explained by two possible factors: (1) HNSW clustering coefficient,

which quantifies how well a node’s neighbors are interconnected,

and (2) nodes per page, which determines how many nodes are

stored together within a single disk page. For instance, datasets like

NYTimes and GloVe, with relatively low clustering coefficients of

4718

(a) (b) (c) (d)
Figure 8: Impact of partitioning on hit ratio and query throughput. (a) Impact of the number of nodes belonging to one partition
on hit ratio, measured using various datasets of 100K vectors, (b) Impact of page size on hit ratio, measured using the same
datasets as in (a), (c) Impact of buffer cache size on query throughput, measured using the DBpedia 100K dataset with a 32KB
page size, (d) Impact of dataset size on cache hit ratio, measured using the Deep dataset with sizes ranging from 100K to 100M.

0.02, require more search hops, limiting partitioning effectiveness.

In contrast, COCO and Deep, which exhibit stronger connectivity

at 0.08 and 0.05, respectively, improve locality and reduce disk

accesses. Furthermore, a larger number of nodes per page enhances

locality by minimizing disk I/O. Deep-100K benefits from storing

10 nodes per page, whereas NYTimes and GloVe, with only 7 and 6

nodes per page, respectively.

Figure 8b further shows that larger page sizes improve hit ratio,

as fewer I/O operations are required when more nodes fit within

a single page. To assess the combined impact of partitioning and

I/O parallelism, we evaluate the DBpedia-100K dataset. Figure 8c

demonstrates that partitioning alone improves data locality, while

integrating pgv-async-iou further accelerates query throughput

by reducing disk bottlenecks. This effect is particularly pronounced

when buffer size is limited. At 10% buffer capacity, for example,

query throughput improves significantly (i.e., 6.6×) compared to

the vanilla setting in pgv-orig. To evaluate scalability, we extended
our experiments to datasets with up to 100million vectors. Figure 8d

shows how the hit ratio changes as the dataset size increases. Al-

though the absolute gain slightly decreases due to increased graph

sparsity, partitioning still achieves a meaningful 2.7× improvement

over pgv-orig at 100M, confirming its effectiveness at scale.

Impact of Locality-aware Insertion Next, we evaluate

locality-aware insertion under a scenario where 90% of the dataset

is pre-indexed, and the remaining 10% is inserted incrementally. As

more partitions adopt locality-aware insertions, additional insert

pages are allocated, leading to index page growth.

Figure 9a shows that when insert pages are assigned to 90% of

partitions, the total number of index pages increases by approxim-

ately 7%. Despite this increase in index size, insertion performance

remains stable. More interestingly, as Figure 9b illustrates, insertion

throughput continues to improve despite the minor computational

overhead introduced by locality-aware insertion (i.e., Lines

4–18 in Algorithm 2), which involves lightweight operations such

as neighbor-overlap counting, candidate partition sorting, and page

availability checks, rather than expensive disk I/O or memory copy-

ing. For instance, in disk I/O-bound settings, the measured overhead

across all datasets is negligible, ranging from 0.05% to 0.1% of total

insertion time. Even in the worst-case in-memory scenario, the

overhead remains below 1%. This minimal cost is outweighed by

the benefits of enhanced data locality and cache-friendly partition-

ing, which boost the buffer cache hit ratio and ultimately result in

a net performance gain. Figure 9c further supports this by showing

that increasing the number of insert pages substantially improves

the buffer cache hit ratio, thereby reducing page access latency.

As the insertion ratio increases, maintaining locality becomes

more challenging, since newly inserted nodes are increasingly dis-

persed across multiple pages. This issue becomes more pronounced

as the proportion of partitions using insert pages grows, amplifying

the benefits of locality-aware insertion. Figure 9d illustrates that

locality-aware insertion maintains a higher hit ratio, while vanilla

insertions in pgv-orig experience a steady decline. When only

10% of the index is pre-built, and 90% of data is inserted increment-

ally, for example, the hit ratio in the vanilla setting in pgv-orig
continuously declines, reaching 19.14%. In contrast, locality-aware

insertion sustains a significantly higher hit ratio of 44.16%—approx-

imately 2.31× higher than vanilla, demonstrating its effectiveness

in preserving spatial locality over time.

As shown in Figure 10, the integration of our proposed tech-

niques (i.e., pgv-ours) leads to a substantial improvement in data

locality. In particular, the holistic insertion method achieves up

to 7.6× higher insertion throughput compared to pgv-orig, while
improving the insert hit ratio from 43.5% to 79.1%. These find-

ings indicate that combining pre-insertion sorting with locality-

aware placement accelerates ingestion (with improvements in re-

trieval performance discussed in Section 7.) It is worth noting that

DiskANN does not support incremental insertions and is therefore

excluded from this comparison; its end-to-end index build time

from scratch is analyzed separately in Section 7.

7 QUANTITATIVE COMPARISONWITH
DISKANN

In this section, we quantitatively compare our approach with

DiskANN, a state-of-the-art disk-based ANN systems, focusing on

search performance and index build time. Importantly, the two

systems differ fundamentally in architecture: DiskANN loads a PQ-

compressed vectors into DRAM and accesses full vectors from

storage, while the HNSW-based pgvector operates directly on

full-precision vectors using DRAM as a shared buffer. As a result,

DiskANN and similar systems like SPANN and ScaNN are optim-

ized for static data and lack efficient update support. In contrast,

4719

(a) (b) (c) (d)
Figure 9: Impact of locality-aware insertions (i.e., w/ partitioning, locality) on indexing efficiency and search performance,
measured using the Deep 100K dataset. (a) Growth in the number of normalized index pages with increasing partitions using
insert pages, (b) Stable insertion throughput despite index growth, (c) Comparable buffer cache hit ratio due to optimized insert
locality, (d) Long-term preservation of spatial locality in the index

Figure 10: Impact of individual strategies in our holistic
approach (i.e., pgv-ours) on the Deep-100K dataset. Each
strategy is applied during the incremental insertion of 10%
of the dataset. Results are shown for both pgv-orig and
pgv-async-iou.

pgvector delivers comparable search performance with the ad-

ded benefit of efficient updates. Under cache-friendly workloads, it

even surpasses DiskANN in query throughput. Moreover, the index

build time differs by approximately an order of magnitude, with

pgvector being significantly faster.

Search Performance Comparison To ensure a fair com-

parison, we configured DiskANN with parameters aligned to our

approach: max_degree was set to 48 (matching the number of

neighbors in HNSW Layer 0), and Lbuild to 200 (analogous to

ef_construction). During search, pgvector used a buffer size of

10% of the dataset, while DiskANN was given unlimited memory

via search_DRAM_budget. Beam width was set to 4, following the

original DiskANN paper. For evaluation, we used the C4 dataset.

Alongside randomly sampled queries, we included queries from the

MMLU benchmark [19]—a widely used dataset for LLM and RAG

evaluation. MMLU contains over 17,000 questions across diverse,

thematically grouped domains, making it a realistic, cache-friendly

workload for assessing performance under practical conditions.

As shown in Figure 11a, the baseline pgv-orig falls far behind
DiskANN on randomly selected queries, whereas pgv-async-iou
achieves comparable performance. Notably, pgvector-based meth-

ods improve with larger buffer sizes, as the low cache hit ratio

(<20%) leaves room for further gains. In contrast, DiskANN cannot
benefit from additional memory due to limits for efficiency in its

PQ representation, which is capped at 512 bytes per vector or 1

byte per dimension [30]. Figure 11b shows results for the MMLU

query set, where high inter-query locality leads to a cache hit ra-

tio exceeding 80%. In this cache-friendly scenario, pgv-async-iou

significantly outperforms both DiskANN and pgv-orig, highlight-
ing its ability to leverage shared buffer reuse—something DiskANN
is not designed to exploit. On the Deep-1M dataset (Figure 11c)

and the Deep-100M dataset (Figure 11d), DiskANN outperforms

pgvector-based systems overall. However, our optimized variant

(pgv-async-iou with partitioning) significantly narrows this per-

formance gap. For example, on Deep-100M, it achieves an 11.1×
speedup over pgv-orig and reduces the original 19.1× gap with

DiskANN. These improvements stem from I/O optimization through

parallelization and an enhanced cache hit ratio enabled by locality-

preserving colocation, demonstrating strong scalability even under

large-scale, low-locality workloads.

In summary, our system supports mutable indexes and SQL integ-

ration—capabilities absent in DiskANN —while delivering competit-

ive or superior performance across varying workloads. Moreover,

pgvector-based search benefits from increased memory and local-

ity, making it well-suited for realistic workload environments.

End-to-End Index Build Time Comparison As summar-

ized in Table 5, we compare the end-to-end index build time from

scratch for three methods—the original pgvector (i.e., pgv-orig),
DiskANN, and our holistic approach (i.e., pgv-ours), which incor-

porates pgv-async-iou ingestion, full PCA-based reordering, and

locality-aware insertions. To reflect realistic ingestion scenarios for

disk-resident indexes, all systems were evaluated under the same

memory and high-concurrency settings to fully utilize available

CPU cores and SSD bandwidth. Although DiskANN avoids signific-

ant I/O during index construction by relying on static in-memory

sharding, we ensured a fair comparison by providing sufficient

memory and evaluating DiskANN as a single in-memory shard. On

the other hand, the pgvector-based methods, including our hol-

istic approach, were tested under disk-bound conditions in which

part of the data (5% for Deep-1M and C4-100K, and 50K vectors for

the other datasets) was ingested through an I/O-intensive on-disk

phase using a 95%memory buffer. Even though DiskANNwas given

a favorable setup, pgv-ours achieves more than 10× faster index
construction on high-dimensional datasets such as C4-100K, mainly

because DiskANN incurs substantial overhead when calculating

centroids for each subspace during the quantization process. At

larger scales such as Deep-100M, pgv-ours still achieves a 3.6×
speedup, demonstrating its scalability for large-scale vector work-

loads.

4720

(a) C4 5M (query: random) (b) C4 5M (query: MMLU) (c) Deep 1M (query: random) (d) Deep 100M (query: random)

Figure 11: Search Performance Comparison with DiskANN

Table 5: End-to-End Index build time from scratch (seconds)

Dataset C4 100K C4 1M C4 5M Deep 1M Deep 10M Deep 100M

DiskANN 823 2,451 7,353 416 2,520 13,821

pgv-orig 103 734 4,035 147 787 6,017

pgv-ours 78 454 3,534 77 513 3,887

8 RELATEDWORK
Disk-basedVectorANN Disk-based vector databases address the

limitations of DRAM-bound indexing for large-scale vector search.

Systems such as DiskANN [21], ScaNN [17], and SPANN [11] store

compressed indices in memory and retrieve raw vectors from disk,

using graph- or tree-based quantized indexing to enable high-recall

search under low memory budgets. However, their static designs

limit support for dynamic updates. DiskANN++[33] improves I/O ef-

ficiency by optimizing prefetching and node traversal, reusing pages

and colocating related nodes. In parallel, FreshDiskANN[39] sup-

ports dynamic updates through periodicmerges and index freshness

guarantees. While extending DiskANN, both still rely on quantiza-

tion and require significant engineering. In contrast, our work tar-

gets dynamic, disk-resident vector databases using uncompressed

graph-based indices like HNSW. Rather than modifying index struc-

tures or relying on quantization, we focus on optimizing graph

traversal patterns and query execution to fully leverage SSD paral-

lelism and cache locality within a DBMS-integrated environment.

In a related direction, Neos [20] presents a user-space vector

buffer engine for real-time search over unindexed streaming data. It

performs GPU-based brute-force search and bypasses the Linux I/O

stack via SPDK. This enables low-latency retrieval for ephemeral

or streaming workloads. In contrast, our work targets disk-resident

HNSW indices, optimizing I/O by leveraging io_uring for asyn-

chronous, parallel I/O scheduling.

Insertion Reordering In traditional indexes like B+-Tree, sor-

ted insertions improve efficiency by reducing node splits and page

reads, while in HNSW, insertion order influences traversal patterns

and page access locality. Nodes with similar neighbors often ac-

cess overlapping pages, indicating that reordering insertions could

improve page locality and reduce I/O costs. Supporting this idea,

RUMMY [47] showed that query reordering reduces cache misses

and improves execution efficiency. Similarly, in HNSW, grouping

insertions with similar traversal paths can improve cache locality

and reduce redundant I/O, thereby accelerating index construction.

Index Partitioning Graph-based indexing in disk-based envir-

onments needs to consider neighbor relationships to maintain loc-

ality. Starling [43] and DiskANN++ [33] propose block layouts that

colocate highly connected nodes within the same storage blocks.

But their static designs degrade over time as insertions cause frag-

mentation, often requiring costly repartitioning. To address this,

we propose a locality-aware insertion strategy that dynamically

places nodes to preserve neighbor proximity and sustain query

performance without excessive overhead.

9 CONCLUSION
This paper addresses key performance challenges in disk-based vec-

tor databases when using modern SSDs, and introduces a compre-

hensive set of optimization techniques, which includes leveraging

flash memory parallelism, clustering vector embeddings, and optim-

izing embedding order, to enhance efficiency. Our implementation

within pgvector demonstrates that each method independently

achieves substantial performance gains, while their combined ap-

plication leads to even greater improvements.

Experimental evaluations confirm that our approach signific-

antly reduces I/O overhead, maximizes SSD parallelism, and en-

hances query throughput. These findings underscore the import-

ance of optimizing storage access patterns and leveraging mod-

ern hardware capabilities for scalable vector search. Future work

includes further refining SSD-aware indexing mechanisms, and

extending these optimizations to other vector database frameworks.

We believe these advancements will contribute to the next genera-

tion of high-performance, SSD-based vector retrieval systems.

ACKNOWLEDGMENTS
This work was supported in part by the Institute of Informa-

tion & Communications Technology Planning & Evaluation (IITP)

grant (MSIT) (No. RS-2024-00454666, Developing a Vector DB for

Long-Term Memory Storage of Hyperscale Al Models, NO.RS-2021-

11211343, Artificial Intelligence Graduate School Program (Seoul

National University)); by an Industry- Academia collaborative pro-

ject with Dnotitia (Project No. 2025-SNU-001); by the National Re-

search Foundation of Korea (NRF) grant (MSIT) (RS-2024-00414981);

by the Korea Institute of Science and Technology Information

(KISTI) (No. K25L1M1C1), aimed at developing KONI (KISTI Open

Neural Intelligence), a LLM specialized in science and technology;

by Samsung Electronics; and by research facilities provided by the

SamsungMemory Research Center (SMRC); by Creative-Pioneering

Researchers Program through Seoul National University. J. Do is

with ASRI, Seoul National University.

4721

REFERENCES
[1] http://pinecone.io. Accessed: 2025-03-01.
[2] http://trychroma.com. Accessed: 2025-03-01.

[3] http://milvus.io. Accessed: 2025-03-01.
[4] H. Amiri and A. Shahbahrami. Simd programming using intel vector extensions.

J. Parallel Distrib. Comput., 135(C):83–100, Jan. 2020.
[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A

nucleus for a web of open data. In international semantic web conference, pages
722–735. Springer, 2007.

[6] J. Axboe. FIO (Flexible IO Tester). https://github.com/axboe/fio. Accessed:

2025-03-01.

[7] J. Axboe. liburing (library providing helpers for the linux kernel io_uring support).

https://github.com/axboe/liburing. Accessed: 2025-03-01.
[8] J. Bai and S. B. et al. Qwen technical report, 2023.

[9] E. Bingham and H. Mannila. Random projection in dimensionality reduction:

applications to image and text data. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 245–250,
2001.

[10] F. Chen, R. Lee, and X. Zhang. Essential roles of exploiting internal parallelism

of flash memory based solid state drives in high-speed data processing. In 2011
IEEE 17th International Symposium on High Performance Computer Architecture,
pages 266–277, 2011.

[11] Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li, M. Yang, and J. Wang. Spann:

Highly-efficient billion-scale approximate nearest neighborhood search. Ad-
vances in Neural Information Processing Systems, 34:5199–5212, 2021.

[12] D. Didona, J. Pfefferle, N. Ioannou, B. Metzler, and A. Trivedi. Understanding

modern storage apis: a systematic study of libaio, spdk, and io_uring. In Pro-
ceedings of the 15th ACM International Conference on Systems and Storage, pages
120–127, 2022.

[13] J. Dodge, M. Sap, A. Marasović, W. Agnew, G. Ilharco, D. Groeneveld, M. Mitchell,

and M. Gardner. Documenting large webtext corpora: A case study on the

colossal clean crawled corpus. arXiv preprint arXiv:2104.08758, 2021.
[14] S. Electronics. Samsung memory research center. https://smrc.biz.samsung.com/,

2024.

[15] G. T. et al. Gemma: Open models based on gemini research and technology, 2024.

[16] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi,

et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement

learning. arXiv preprint arXiv:2501.12948, 2025.
[17] R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and S. Kumar. Acceler-

ating large-scale inference with anisotropic vector quantization. In Proceedings
of the 37th International Conference on Machine Learning, ICML’20. JMLR.org,

2020.

[18] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM review, 53(2):217–288, 2011.
[19] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Stein-

hardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[20] Y. Huang, X. Fan, S. Yan, and C. Weng. Neos: A nvme-gpus direct vector ser-

vice buffer in user space. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE), pages 3767–3781, 2024.

[21] S. Jayaram Subramanya, F. Devvrit, H. V. Simhadri, R. Krishnawamy, and

R. Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a

single node. Advances in Neural Information Processing Systems, 32, 2019.
[22] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas,

F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux,

P. Stock, T. L. Scao, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7b,

2023.

[23] M. Jung and M. T. Kandemir. Sprinkler: Maximizing resource utilization in

many-chip solid state disks. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA), pages 524–535, 2014.

[24] M. Jung, E. H. Wilson, and M. Kandemir. Physically addressed queueing (paq):

Improving parallelism in solid state disks. In 2012 39th Annual International
Symposium on Computer Architecture (ISCA), pages 404–415, 2012.

[25] A. Kane. pgvector (Open-source vector similarity search for Postgres). https:
//github.com/pgvector/pgvector. Accessed: 2025-03-01.

[26] S. T. Leutenegger and D. Dias. A modeling study of the tpc-c benchmark. In

Proceedings of the 1993 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’93, page 22–31, New York, NY, USA, 1993. Association for

Computing Machinery.

[27] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll

ár, and C. L. Zitnick. Microsoft coco: Common objects in context. In D. Fleet,

T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision – ECCV 2014,
pages 740–755, Cham, 2014. Springer International Publishing.

[28] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[29] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neigh-

bor search using hierarchical navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence, 42(4):824–836, 2018.

[30] Microsoft. DiskANN: Fast, Accurate Billion-Scale Nearest Neighbor Search on a

Single Node. https://github.com/microsoft/DiskANN. Accessed: 2025-03-01.
[31] D. Newman. Bag of Words. UCI Machine Learning Repository, 2008. DOI:

https://doi.org/10.24432/C5ZG6P.

[32] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: analysis and an al-

gorithm. In Proceedings of the 15th International Conference on Neural Information
Processing Systems: Natural and Synthetic, NIPS’01, page 849–856, Cambridge,

MA, USA, 2001. MIT Press.

[33] J. Ni, X. Xu, Y. Wang, C. Li, J. Yao, S. Xiao, and X. Zhang. Diskann++: Efficient

page-based search over isomorphic mapped graph index using query-sensitivity

entry vertex. arXiv preprint arXiv:2310.00402, 2023.
[34] J. J. Pan, J. Wang, and G. Li. Survey of vector database management systems.

The VLDB Journal, 33(5):1591–1615, 2024.
[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
[36] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word

representation. In Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

[37] PostgreSQL. The World’s Most Advanced Open Source Relational Database.

https://www.postgresql.org/. Accessed: 2025-03-01.
[38] D. A. Reynolds et al. Gaussian mixture models. Encyclopedia of biometrics,

741(659-663), 2009.

[39] A. Singh, S. J. Subramanya, R. Krishnaswamy, and H. V. Simhadri. Freshdiskann:

A fast and accurate graph-based ann index for streaming similarity search. arXiv
preprint arXiv:2105.09613, 2021.

[40] The Linux Kernel Developers. aio(7) Linux User’s Manual, 6.10 edition, March

2025. Accessed: 2025-03-01.

[41] The Linux Kernel Developers. epoll(7) Linux User’s Manual, 6.10 edition, March

2025. Accessed: 2025-03-01.

[42] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roz-

ière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and

G. Lample. Llama: Open and efficient foundation language models, 2023.

[43] M. Wang, W. Xu, X. Yi, S. Wu, Z. Peng, X. Ke, Y. Gao, X. Xu, R. Guo, and

C. Xie. Starling: An i/o-efficient disk-resident graph index framework for high-

dimensional vector similarity search on data segment. Proc. ACM Manag. Data,
2(1), Mar. 2024.

[44] D. Xu, I. W. Tsang, and Y. Zhang. Online product quantization. IEEE Transactions
on Knowledge and Data Engineering, 30(11):2185–2198, 2018.

[45] H. Xu, M. D. Manohar, P. A. Bernstein, B. Chandramouli, R. Wen, and H. V.

Simhadri. In-place updates of a graph index for streaming approximate nearest

neighbor search, 2025.

[46] A. B. Yandex and V. Lempitsky. Efficient indexing of billion-scale datasets of deep

descriptors. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2055–2063, 2016.

[47] Z. Zhang, F. Liu, G. Huang, X. Liu, and X. Jin. Fast vector query processing for

large datasets beyond GPU memory with reordered pipelining. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24), NSDI’24,
USA, 2024. USENIX Association.

[48] T. Zhong, Z. Liu, Y. Pan, Y. Zhang, Y. Zhou, S. Liang, Z. Wu, Y. Lyu, P. Shu, X. Yu,

et al. Evaluation of openai o1: Opportunities and challenges of agi. arXiv preprint
arXiv:2409.18486, 2024.

4722

http://pinecone.io
http://trychroma.com
http://milvus.io
https://github.com/axboe/fio
https://github.com/axboe/liburing
https://smrc.biz.samsung.com/
https://github.com/pgvector/pgvector
https://github.com/pgvector/pgvector
https://github.com/microsoft/DiskANN
https://www.postgresql.org/

	Abstract
	1 INTRODUCTION
	2 MOTIVATIONS AND OPPORTUNITIES
	2.1 HNSW-based index in VectorDB
	2.2 Parallelism in Flash SSDs
	2.3 I/O Inefficiencies of HNSW Index on SSDs

	3 EXPERIMENTAL SETUP
	4 BOOSTING I/O PARALLELISM
	4.1 Adapting HNSW Search to SSDs
	4.2 Evaluation

	5 SPATIALLY-AWARE INSERTION REORDERING
	5.1 Effectiveness of Insertion Reordering
	5.2 Index Building with Insertion Reordering
	5.3 Evaluation

	6 LOCALITY-PRESERVING COLOCATION
	6.1 Insertion Strategy
	6.2 Evaluation

	7 Quantitative Comparison with DiskANN
	8 RELATED WORK
	9 CONCLUSION
	Acknowledgments
	References

