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ABSTRACT
Decentralized social graphs, where no single entity possesses the

information of the entire graph, and each user maintains only a

limited view of the graph, contain great value for different applica-

tions. However, simply collecting local views for analytics raises

privacy concerns due to the sensitive information of social relation-

ships they capture. To address this, a canonical approach involves

privately fitting a generative graph model to the decentralized so-

cial graph, generating a differentially private synthetic graph that

serves as a proxy for analytics. Existing solutions, however, often

fail to capture the inherent directionality of edges and attribute-

edge correlations when dealing with decentralized directed social

graphs, leading to synthetic graphs with poor utility. To bridge this

gap, we present PrivAGM, a new solution that harnesses the syner-

gies among differential privacy, secure multiparty computation, and

generative graph models, enabling the secure construction of differ-

entially private directed attributed graph models on decentralized

social graphs while ensuring the privacy preservation of individu-

als. We evaluate PrivAGM on three real-world directed social graph

datasets. The results show that PrivAGM outperforms the state-

of-the-art methods, generating synthetic graphs with significantly

higher utility.
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1 INTRODUCTION
With the continuous advancements in graph analytics, a multitude

of valuable applications can stem from the in-depth exploration
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of a social graph. However, social graph analytics becomes quite

challenging when the entire graph is not available to a single en-

tity and stored in a decentralized manner. In this scenario, each

user possesses only a limited local view comprising its attributes

and neighbor list (i.e., a list of the indices of users directly con-

nected to them) in the social graph, and the complete information

of the social graph is formed by the collective views of all users.

Decentralized social graphs exist in various practical applications

[19, 34, 41]. One prominent example is contact-tracing applications

(e.g., Apple/Google Exposure Notification framework [2]) for infec-

tious disease control, which are installed on users’ personal devices.

These applications log interactions between devices via Bluetooth,

resulting in a contact-tracing network that is inherently decen-

tralized. Each user sees only their direct contacts, and the global

contact network exists only in the union of all these local datasets.

Another example is emerging decentralized social networking plat-

forms like Scuttlebutt [40], which represent a new generation of

social network architectures focused on providing strong privacy

guarantees through user-controlled data distribution.

In the context of decentralized social graphs, the collection of

individual users’ local views for analytics may raise significant

privacy concerns, particularly when these local views contain sen-

sitive information about social interactions, political preferences,

and religious affiliations [2, 19, 20, 34, 41]. If users’ local views are

not sufficiently protected, it would discourage them from partici-

pating in such analytics. Thus, it is crucial to incorporate security

measures into analytics over decentralized social graphs from the

outset, facilitating the development and deployment of valuable

applications without compromising users’ privacy.

Privacy-preserving analytics over decentralized social graphs has

received significant attention in recent years [5, 19–21, 34, 41, 48].

Most existing methods [19–21, 41] have adopted local differential

privacy (LDP) mechanisms [23] to collect certain noisy statistics

from the decentralized social graph for use. However, this line of

work suffers from a major deficiency that limits their practical

usability. Specifically, as more statistics are collected from the de-

centralized social graph, the total amount of revealed information

monotonically increases, eventually reaching a threshold where

collecting any new statistics leads to an excessive privacy risk [11].

Alternatively, a more promising direction is to privately fit a

generative graphmodel to the decentralized social graph, producing

a differentially private generative graph model. A synthetic graph

is then generated from the model, emulating key characteristics

4682

https://doi.org/10.14778/3749646.3749722
https://github.com/songleiW/PrivAGM
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749722
https://www.acm.org/publications/policies/artifact-review-and-badging-current


of the original decentralized graph—such as degree distribution,

attribute–edge correlation distribution, and community structure—

and serving as a reliable proxy for conducting social graph analytics

tasks. For example, synthetic graphs built from decentralized social

networking services (e.g., Scuttlebutt [40]) can be used to detect the

presence of malicious users by analyzing the connection strength

between vertices, or to simulate community message dissemination

mechanisms and validate community dissemination algorithms.

Synthetic graphs built from contact-tracing applications (such as

the Apple/Google Exposure Notification framework [2]) can be

used to detect the presence of disease hotspots or simulate disease

propagation mechanisms. Note that based on the post-processing

invariance property of differential privacy (DP) [13], the synthetic

graph remains differentially private.

Existing solutions. In the literature, there have been a number

of works considering the setting of centralized graphs for the con-

struction of differentially private generative graph models (e.g.,

[6, 22, 51], to list a few). On the contrary, little work [5, 34, 48, 53] has

been done for constructing differentially private generative graph

models over decentralized social graphs. The works in [5, 34, 53]

concentrate solely onmodeling graph structure, disregarding vertex

attributes and their correlations with the graph structure. Neverthe-

less, real-world social graphs possess vertex attributes and exhibit

such correlations. These correlations can be leveraged in various

analyses; for instance, in the field of relational machine learning,

they are used to predict missing or future attribute values [22]. The

prior work most closely related to ours is AsgLDP [48], which aims

to construct differentially private attributed graph models (AGMs)

on decentralized social graphs.

However, AsgLDP, as well as other works [5, 34, 53], focus on

idealized decentralized undirected social graphs, where each user

holds its complete neighbor list. In practice, however, decentral-

ized social graphs can also be directed, where each user holds the

neighbor list consisting of only “one-sided relationships”. For exam-

ple, in decentralized social networking platforms like Scuttlebutt

[40], a user can follow another user unilaterally, without requiring

any reciprocal action. Another example is the contact tracing net-

work, which can be either directed or undirected, depending on

the specific application context. For instance, in the Apple/Google

Exposure Notification framework [2], each device independently

records only the identifiers of nearby devices it detects, resulting in

inherently one-sided contact logs that do not require mutual con-

sent. In this case, device A may detect device B, but device B does

not necessarily detect device A. However, all previous works do not

consider the inherent directionality of the edges when construct-

ing the generative graph model, leading to synthetic graphs with

poor utility when dealing with directed graphs. Therefore, secure

construction of differentially private directed AGMs (dAGMs) on

decentralized directed social graphs remains to be fully explored.

Our contributions. We address the following three challenges

when endeavoring to design PrivAGM.

Challenge 1: How to collect neighbor lists while striking a balance
between privacy, utility, and efficiency?

To privately collect neighbor lists, a widely-used method is the

randomized neighbor list (RNL) method [34], which enables users to

flip each bit in their neighbor lists by a certain probability to achieve

pure edge LDP. However, the RNLmechanism significantly disrupts

the structure of the decentralized social graph, as it requires flipping

a considerable number of bits in each neighbor list to achieve the

desired level of privacy protection. Another plausible method is

to let users conceal each bit of their neighbor lists using secure

multiparty computation (MPC) techniques (e.g., additive secret

sharing [9]). However, this incurs significant performance overhead

as the neighbor lists are normally sparse [8]. To strike a balance

between privacy, utility, and efficiency, we instead propose layering

the concept of selective MPC [18] with RNL to protect the neighbor

lists. Unlike typical secret sharing-based MPC techniques, where

all computing parties receive shares for all private values, selective

MPC works by randomly selecting a subset of parties to receive

shares for each private value. With our sparsity-aware neighbor list

secret sharing method, PrivAGM achieves pure edge LDP for the

neighbor lists without introducing any noise that would compromise
their utility or incurring significant performance overhead.

Challenge 2: How to securely extract the differentially private char-
acteristics essential for dAGM from the collected secret-shared social
graph while ensuring their utility?

Constructing the differentially private dAGM requires the addi-

tion of calibrated noises to the extracted characteristics from the

original graph. However, for certain characteristics (e.g., triangle

subgraph count), the global sensitivity of the calibrated noises is

large, which could severely compromise the utility of the extracted

characteristics. To overcome this challenge, we develop techniques

for oblivious edge clipping, enabling the oblivious restriction of the

maximum degree of the secret-shared social graph. This helps miti-

gate the worst-case impact of a single vertex or edge and achieve

a small global sensitivity. Moreover, we develop a suite of MPC-

based secure components, including degree sequence extraction,

attribute-edge correlation distribution extraction, attribute distri-

bution extraction, and triangle counts extraction. Their integration

allows to securely produce the differentially private characteristics

essential for constructing the dAGM.

Challenge 3: How to construct the dAGM to effectively capture the
inherent directionality of the edges in the decentralized social graph?

The existing AGMs [6, 22, 33, 48] have mainly focused on undi-
rected graphs, resulting in a lack of capability to capture the inherent
directionality of edges within the original graph. This directional-

ity is of utmost importance for various analytics tasks on directed

graphs, such as the discovery of social roles [12] and prediction of

disease outbreaks [22]. However, no existing AGMs can be trivially

adapted to capture the inherent directionality of edges. To address

this, we identify key graph characteristics—such as vertex degrees,

attribute-edge correlations, and triangle subgraph counts—that can

capture the directionality, filling the gap in the field of AGMs. Specif-

ically, we begin with the widely used Chung-Lu (CL) model [7],

which operates on undirected graphs, and develop a directed ver-

sion of the CL model to incorporate edge directionality as reflected

in vertex degrees. Building on this directed CL model, we modify

the classical AGM framework [22] to capture the directionality in

attribute-edge correlations and triangle subgraph counts.

Evaluation results. Our results clearly demonstrate that, in terms

of utility of synthetic graphs, PrivAGM not only outperforms the

state-of-the-art decentralized setting-based method AsgLDP [48]

but also surpasses the state-of-the-art centralized setting-based

method CAGM [6]. For instance, in terms of the Hellinger distance
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between the degree distribution of the synthetic and input social

graphs, PrivAGM is 58.3% lower than AsgLDP, and also is 42.9%

lower than CAGM, with the privacy budget 𝜀 = 1 on the Gplus

dataset [28]. We also evaluate the system cost. Notably, with 𝜀 =

1.2, PrivAGM’s sparsity-aware neighbor list secret sharing method

achieves about 70% savings in the size of resulting shares over the

simple method of secretly sharing every bit of the neighbor lists.

2 PRELIMINARIES
2.1 Attributed Graphs
This paper focuses on directed and unweighted attributed graphs.

An attributed graph is represented as 𝐺 = (A, F). Here, A ∈
{0, 1}𝑁×𝑁

is the asymmetric binary adjacency matrix of size 𝑁 ×𝑁 ,

where 𝑁 is the number of vertices. Each vertex is denoted by

𝑖 ∈ [1, 𝑁 ]. A[𝑖, 𝑗] = 1 indicates the presence of a directed edge

from vertex 𝑖 to vertex 𝑗 , while A[𝑖, 𝑗] = 0 indicates the absence of

such a directed edge.We exclude self-connected edges in our consid-

eration, meaning thatA[𝑖, 𝑖] = 0, 𝑖 ∈ [1, 𝑁 ]. The number of edges in

𝐺 is denoted as𝑀 . We useA[𝑖, :] to denote the 𝑖-th row ofA, which

corresponds to the out-neighbors of vertex 𝑖 . The number of vertex

𝑖’s out-neighbors (resp. in-neighbors) is named as its out-degree

(resp. in-degree), denoted as 𝑑+
𝑖
(resp. 𝑑−

𝑖
). F ∈ {0, 1}𝑁×𝐿

is the at-

tribute matrix, where 𝐿 is the dimensions of each vertex’s attribute

vector. F[𝑖, :] is vertex 𝑖’s attribute vector. The attribute vectors are
assumed to be binary, following previous works [6, 22, 33, 48].

We use {𝜎𝑖 }𝑖∈[1,𝛾 ] to denote the set {𝜎1, · · · , 𝜎𝛾 }, and omit the

subscript 𝑖 ∈ [1, 𝛾] when it does not impact the presentation.

2.2 Attributed Graph Model (AGM)
We provide an overview of the classical and widely adopted AGM

[33] as a foundational approach to demonstrate AGM’s underlying

principles. Given the input graph, the AGM learns:

• The degree sequence of all vertices: D = {𝑑𝑖 }𝑖∈[1,𝑁 ] .

• The attribute distribution Θ𝐹 : Θ𝐹 (y) =
𝑛y
𝑁
, where 𝑛y is the

number of vertices in the graph that have attribute vector y.
• The attribute-edge correlation distribution Θ𝑋 : Θ𝑋 (y − y′) =
𝑛y−y′
𝑀

, where y − y′ is named as attribute-edge correlation (i.e., an

edge connecting two vertices with attribute vector y and y′, respec-
tively), 𝑛y-y’ is the number of y − y′ in the input graph.

To generate a graph, the AGM samples an attribute vector for each

vertex from Θ𝐹 . It then iteratively samples edges based on the new

attributes from D and Θ𝑋 .

2.3 Differential Privacy for Graphs
In this paper, we consider two variants of DP in the context of

attributed graphs: edge LDP [34] and edge DP [22].

Definition 1. (Edge LDP [34]) A randomized mechanism M
satisfies 𝜀-edge LDP, if and only if for any two neighbor lists A[𝑖, :
],A′ [𝑖, :] that differ in one bit, we have: ∀b ∈ 𝑅𝑎𝑛𝑔𝑒 (M),

𝑃𝑟 [M(A[𝑖, :]) = b] ≤ 𝑒𝜀 · 𝑃𝑟 [M(A′ [𝑖, :]) = b],

where 𝑅𝑎𝑛𝑔𝑒 (M) isM’s possible outputs; 𝜀 is the privacy budget.

Definition 2. (Edge DP [22]) A randomized mechanism M sat-
isfies (𝜀, 𝛿)-edge DP, if and only if for any two neighboring attributed

Users

Aggregators

Differentially private 
dAGM

3. Directed attributed graphs generation

Synthetic directed 
attributed graph

1. Secure decentralized social graph collection

2. Differentially private dAGM construction
P1 P2 P3

Decentralized directed attributed social graph

Figure 1: The system architecture of PrivAGM.

graphs 𝐺 and 𝐺 ′ that differ in the presence of a single edge or in the
attribute associated with a single vertex, we have: ∀G ∈ 𝑅𝑎𝑛𝑔𝑒 (M),

𝑃𝑟 [M(𝐺) = G] ≤ 𝑒𝜀 · 𝑃𝑟 [M(𝐺 ′) = G] + 𝛿.

If 𝛿 = 0, we say that M provides pure edge DP. The discrete

Laplace distribution 𝐿𝑎𝑝 (·) is commonly employed to draw discrete

noises to provide DP.

Definition 3. (Discrete Laplace distribution [17]) A discrete
random variable follows 𝐿𝑎𝑝 (𝜀, 𝛿,Δ) if its probability mass function:

𝑃𝑟 [𝑥] = 𝑒
𝜀
Δ − 1

𝑒
𝜀
Δ + 1

· 𝑒
−𝜀 · |𝑥−𝜇 |

Δ . (1)

where 𝜇 is the mean of the distribution and Δ is the sensitivity.

2.4 Additive Secret Sharing
In 2-out-of-2 additive secret sharing (ASS) [9], a secret value 𝑥 ∈ Z

2
𝑙

is split into two secret shares ⟨𝑥⟩1 and ⟨𝑥⟩2, which are distributed to
two parties 𝑃1 and 𝑃2, respectively. We denote the ASS of 𝑥 as 𝑥. If
only certain values in an entityΩ (e.g., set or table) are secret-shared,

we represent the entity as [Ω]. The basic secure operations in the

ASS domain are as follows: (1) Linear operations: Given constants

𝑐, 𝑐′ and secret-shared values 𝑥, 𝑦, computing 𝑧 = 𝑐 ·𝑥 +𝑐′ ·𝑦
involves 𝑃𝑖∈{1,2} locally computing ⟨𝑧⟩𝑖 = 𝑐 · ⟨𝑥⟩𝑖 + 𝑐′ · ⟨𝑦⟩𝑖 . (2)
Multiplication operations: To compute 𝑧 = 𝑥 · 𝑦, 𝑃1,2 prepare
a Beaver triple (𝑤, 𝑢, 𝑣) offline, where 𝑤 = 𝑢 · 𝑣 . 𝑃𝑖∈{1,2}
computes ⟨𝑒⟩𝑖 = ⟨𝑥⟩𝑖 − ⟨𝑢⟩𝑖 , ⟨𝑓 ⟩𝑖 = ⟨𝑦⟩𝑖 − ⟨𝑣⟩𝑖 , then communicates

with each other to reveal 𝑒, 𝑓 . Finally, 𝑃1,2 compute ⟨𝑧⟩1 = 𝑒 · 𝑓 + 𝑓 ·
⟨𝑢⟩1 +𝑒 · ⟨𝑣⟩1 + ⟨𝑤⟩1 and ⟨𝑧⟩2 = 𝑓 · ⟨𝑢⟩2 +𝑒 · ⟨𝑣⟩2 + ⟨𝑤⟩2, respectively.

3 PROBLEM STATEMENT
3.1 System Architecture
PrivAGM’s system architecture is illustrated in Figure 1. In the

system, there are two types of entities: users and aggregators. The

𝑁 users, along with the connections among them, form the decen-

tralized social graph 𝐺 = (A, F). Each user corresponds to a vertex

𝑖 ∈ [1, 𝑁 ] and holds a local view (A[𝑖, :], F[𝑖, :]), where A[𝑖, :] rep-
resents user 𝑖’s neighbor list held by it (named as local neighbor
list) and F[𝑖, :] represents user 𝑖’s attribute vectors. In contrast to

previous studies [34, 48] that focus on idealized decentralized social
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graphs where each user’s local neighbor list completely includes

its out/in-neighbors, i.e., A is symmetric, our attention is directed

towards a more realistic directed social graph scenario. Here, each

user’s local neighbor list only includes its out-neighbors, i.e., A is

asymmetric. Such decentralized social graphs are more commonly

encountered in practice (e.g., the phone networks [34] and the

Google-Apple Exposure Notification framework [2]).

The aggregators collect decentralized social graph data from

users to perform various graph analytics tasks, and users can remain

offline after uploading their data. However, privacy concerns hinder

users’ participation in the tasks [34, 51]. In this paper, we leverage

a distributed trust framework where three aggregators (referred to

as 𝑃{1,2,3} ) from different trust domains cooperatively construct the

dAGM. Such framework has recently gained significant attentions

in both academia [36, 42–44, 46, 52] and industry [16, 29, 31].

3.2 Threat Model and Security Guarantees
Threat model.We consider a semi-honest and non-colluding ad-

versary model, where each aggregator honestly follows the pro-

tocol, but may individually infer users’ local views. In practice,

such non-colluding aggregators could be cloud servers hosted by

different competitive commercial cloud providers (e.g., Amazon,

Microsoft, and Google). The competitive nature of these providers

creates strong incentives for them to maintain independent and

non-collusive operations. Such non-colluding multi-server model

has also been widely adopted for building secure database appli-

cations (e.g., [36, 44, 46, 52]) and is also utilized in industry (e.g.,

Safeheron Wallet [37]). Additionally, we assume that the users are

trusted, as they only provide their local views.

Security guarantees. From the view of individual aggregators, Pri-

vAGM guarantees the following: (1) during the decentralized social

graph collection phase, the local neighbor lists are differentially

private (edge LDP); (2) during the dAGM construction phase, the

learned dAGM is differentially private (edge DP). Based on the post-

processing invariance of DP [13], the synthetic graphs generated

by the differentially private dAGM are still differentially private.

4 SECURE SOCIAL GRAPH COLLECTION
Motivation. To protect A[𝑖, :], a simple method is to directly apply

lightweight ASS over the entireA[𝑖, :] of length𝑁 (i.e., dense encod-

ing). However, this method is inefficient due to the sparsity of social

graphs. According to Facebook’s statistics [8], the average user has

around 130 friends in a social network, which is much less than the

total number of vertices, i.e., 𝑁 . As a result, A[𝑖, :] will be mostly

filled with zeros, leading to high sparsity. Therefore, applying ASS

over A[𝑖, :] would result in significant uplink communication cost,

as well as unnecessary workload during the subsequent dAGM con-

struction. Another simple method is to consider only the non-zero

bits in A[𝑖, :] (i.e., sparse encoding) and apply ASS solely to the

indices of these non-zero bits. Specifically, user 𝑖 stores A[𝑖, :] in
sparse encoding: 𝐸𝑖 = {(𝑖, 𝑗) |A[𝑖, 𝑗] = 1, 𝑗 ∈ [1, 𝑁 ]}, and then se-

cretly shares 𝐸𝑖 as [𝐸𝑖 ] = {(𝑖,  𝑗) |A[𝑖, 𝑗] = 1, 𝑗 ∈ [1, 𝑁 ]}. However,
the secret sharing of indices makes it difficult to securely access the

neighbors of each user. Since accessing neighbors is a fundamental

operation required to extract parameters necessary for dAGM, the

method also imposes a heavy workload on the aggregators.

Observation. We observe that while both offering privacy protec-

tion, the two aforementioned methods represent two extremes: the

first one allows efficient accessing of neighbors but sacrifices spar-

sity, while the second one preserves sparsity but hinders efficient

neighbor accessing. This indicates that the challenge here lies in

balancing the preservation of privacy and the benefits of sparsity,

while facilitating efficient neighbor accessing. We note that employ-

ing edge LDP [34] is a strategic approach to address the challenge.

To achieve edge LDP, our starting point is the randomized neigh-

bor list (RNL) mechanism. RNL applies randomized response [47],

allowing each user to flip each bit of its local neighbor list with a

certain probability. However, to achieve the desired level of privacy

protection, RNL must flip a considerable number of bits in each

local neighbor list, which significantly disrupts the structure of the

decentralized social graph. To address this issue, our insight is to

layer the concept of selective MPC [18] with RNL to achieve pure

edge LDP for the local neighbor lists without compromising their
utility or incurring significant performance overhead. Unlike typi-

cal secret sharing-based MPC techniques [9], where all computing

participants receive secret shares for all private values, selective

MPC randomly selects a subset of participants to receive secret

shares for each private value.

Layering selective MPC with RNL. Given A[𝑖, :], user 𝑖 first
constructs the set 𝐸𝑖 = {(𝑖, 𝑗, 1) |A[𝑖, 𝑗] = 1, 𝑗 ∈ [1, 𝑁 ]} to fully

capture the nonzero bits in A[𝑖, :]. Next, for every zero bit A[𝑖, 𝑗] =
0, 𝑗 ∈ [1, 𝑁 ], user 𝑖 includes (𝑖, 𝑗, 0) to 𝐸𝑖 with a probability of 𝑝 . The
resulting local neighbor list is denoted as 𝐸𝑖 = {(𝑖, 𝑗, 𝑏𝑖 𝑗 )}, where
𝑏𝑖 𝑗 = 1 or 0. User 𝑖 then applies ASS over each 𝑏𝑖 𝑗 in 𝐸𝑖 to obtain

the secret shares [𝐸𝑖 ] = {(𝑖, 𝑗, 𝑏𝑖 𝑗 )}. After that, a straightforward
method is to distribute {(𝑖, 𝑗, ⟨𝑏⟩1)} and {(𝑖, 𝑗, ⟨𝑏⟩2)} to 𝑃1 and 𝑃2,
respectively. However, this approach cannot achieve pure edge

LDP in the view of 𝑃1 or 𝑃2 because it solely adds zero bits to 𝐸𝑖
and does not remove nonzero bits from 𝐸𝑖 , thereby capturing only

additive noise without accounting for subtractive noise. Our insight

to address this issue is to leverage the concept of selective MPC [18].

Specifically, for each (𝑖, 𝑗, 𝑏𝑖 𝑗 ) ∈ [𝐸𝑖 ], user 𝑖 sends (𝑖, 𝑗, ⟨𝑏⟩1) and
(𝑖, 𝑗, ⟨𝑏⟩2) to two randomly selected aggregators, respectively. Thus,

each aggregator only has access to a random subset of [𝐸𝑖 ]. In other

words, our method simulates removing some nonzero bits from

the view of each aggregator, capturing subtractive noise (similar to

how adding zero bits captures additive noise), thereby achieving

pure edge LDP in each aggregator’s view (as proved in Section 7.2)

without compromising the utility.

For each (𝑖, 𝑗, 𝑏𝑖 𝑗 ) ∈ [𝐸𝑖 ], user 𝑖 allows the two selected ag-

gregators to be aware of each other to facilitate subsequent com-

putations in the ASS domain. We use {[𝐸𝑖 ] (1,2) }, {[𝐸𝑖 ] (2,3) }, and
{[𝐸𝑖 ] (3,1) } to represent the secret-shared local neighbor lists of

all users jointly held by the pairs of aggregators (𝑃1, 𝑃2), (𝑃2, 𝑃3),
and (𝑃3, 𝑃1), respectively, and use {[𝐸𝑖 ]} = {[𝐸𝑖 ] (1,2) ∪ [𝐸𝑖 ] (2,3) ∪
[𝐸𝑖 ] (3,1) } to represent the complete secret-shared neighbor lists.

Secretly sharing the attributes. Before encrypting the attribute

vector F[𝑖, :], user 𝑖 first parses it into a value:

𝑓𝑖 =
∑︁

𝑙∈[1,𝐿]F[𝑖, 𝑙] · 2𝑙 . (2)

User 𝑖 secretly shares 𝑓𝑖 into 𝑓𝑖 and distributes ⟨𝑓𝑖 ⟩1 to 𝑃1; ⟨𝑓𝑖 ⟩2
to 𝑃2. Finally, the secret-shared graph is ({[𝐸𝑖 ]}, {𝑓𝑖}).
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Figure 2: Running example of private dAGM construction.

5 PRIVATE DAGM CONSTRUCTION
Next, we describe how the aggregators securely construct a differ-

entially private dAGM on the collected graph. Note that during the

graph collection phase, users do not add any true noise to perturb

their local views. As a result, if the aggregators directly recover

the dAGM parameters extracted from the secret-shared graph, the

resulting dAGM will not be differentially private. Therefore, the ag-

gregators should add secret-shared noise to the dAGM parameters

before recovering them, ensuring the construction of a differentially

private dAGM. Figure 2 provides an overview of the process.

Parameters necessary for dAGM. Our dAGM is built on the

widely adopted AGM [33], which involves learning three sets of

parameters from the input attributed graph: the degree sequence

D, the attribute-edge correlation distribution Θ𝑋 , and the attribute

distribution Θ𝐹 . However, it focuses on undirected graphs, whereas

PrivAGM specifically addresses directed graphs. Hence, we extend

it by adapting its parameters, enabling to capture the directionality

in the input directed graph. Since the attribute does not possess

directionality, we only focus on adapting the pther parameters.

When considering the degree sequence, we note that in directed

graphs, each vertex has both out/in-degree. Hence, to capture the di-

rectionality by the degree sequence, we tailor PrivAGM to learn the

sequence of (out-degree, in-degree) pairs: D± = {(𝑑+
𝑖
, 𝑑−

𝑖
)}𝑖∈[1,𝑁 ] .

When considering the attribute-edge correlation distribution, we

tailor our dAGM to learn Θ 𝑋 : Θ 𝑋 (𝑓 → 𝑓 ′) = 𝑛𝑓 →𝑓 ′
𝑀

, 𝑓 → 𝑓 ′ ∈
Z
2
𝐿 × Z

2
𝐿 , where 𝑛𝑓→𝑓 ′ is the number of edges from a vertex with

attribute value 𝑓 (mapped from an attribute vector by Eq. 2) to a
vertex with attribute value 𝑓 ′. The distinction between our Θ 𝑋 and

the AGM [33]’sΘ𝑋 lies in our consideration of attribute-edge corre-

lations 𝑓 → 𝑓 ′ and 𝑓 ′→ 𝑓 as distinct, whereas the AGM [33] treats

them as equivalent. Hence, Θ 𝑋 can capture the edge directionality.

The work [22] points out that the count of triangles in the input

graph plays a pivotal role in refining the structure of synthetic

graphs. However, it considers all triangles to be identical, thus also

failing to capture the directionality of edges. To address the limi-

tation, we propose counting non-isomorphic triangles separately.

Specifically, we identify two non-isomorphic triangles “TriA” and

“TriB”, regardless of the vertex attributes:

𝑖 𝑗

𝑘
TriA

𝑖 𝑗

𝑘
TriB

Our dAGM counts the number of occurrences of TriA, TriB in the

input graph separately, denoted as 𝑛𝐴△, 𝑛
𝐵
△ , respectively.

5.1 Oblivious Edge Clipping
Motivation. Edge clipping is necessary due to the significant sen-

sitivity Δ involved in achieving edge DP for Θ 𝑋 , 𝑛
𝐴
△ , and 𝑛

𝐵
△ . For

Algorithm 1: Basic Oblivious Edge Clipping
Input: Secret-shared neighbor lists { [𝐸𝑖 ] }; clipping parameter 𝑘 .

Output: Secret-shared clipped local neighbor lists { [𝐸𝑖 ] }.
1 // 𝑃1,2 operate on { [𝐸𝑖 ] (1,2) }:
2 Initialization: 𝑑+

𝑖
 = 0; 𝑑−

𝑖
 = 0; [𝐸𝑖 ] (1,2) = ∅, 𝑖 ∈ [1, 𝑁 ].

3 for (𝑖, 𝑗, 𝑏𝑖 𝑗 ) ∈ [𝐸𝑖 ] (1,2) , 𝑖 ∈ [1, 𝑁 ] do
4 𝑑+

𝑖
 = 𝑑+

𝑖
 + 𝑏𝑖 𝑗 ; 𝑑−

𝑗
 = 𝑑−

𝑗
 + 𝑏𝑖 𝑗 .

5 isClip
1
 = secComp(𝑑+

𝑖
, 𝑘/3) . // Oblivious comparison.

6 isClip
2
 = secComp(𝑑−

𝑗
, 𝑘/3) . // Oblivious comparison.

7 isClip = isClip
1
 · isClip

2
. // Aggregate the results.

8 𝑏′
𝑖,𝑗

 = 𝑏𝑖 𝑗  · isClip. // Obliviously clip the edge.

9 [𝐸𝑖 ] (1,2) .add( (𝑖, 𝑗, 𝑏′𝑖,𝑗 ) ) . // Add the updated edge.

10 𝑃2,3 (resp. 𝑃3,1) perform the above operations on { [𝐸𝑖 ] (2,3) } (resp.
{ [𝐸𝑖 ] (3,1) }) to produce { [𝐸𝑖 ] (2,3) } (resp. { [𝐸𝑖 ] (3,1) }).

11 return { [𝐸𝑖 ] } = { [𝐸𝑖 ] (1,2) ∪ [𝐸𝑖 ] (2,3) ∪ [𝐸𝑖 ] (3,1) }.

example, the addition or removal of a single edge changes 𝑛𝐴△ or 𝑛𝐵△
by at most 𝑑𝑚𝑎𝑥 −1, where 𝑑𝑚𝑎𝑥 is the maximum (out or in)-degree

in the input graph, which can range up to 𝑁 − 1. Setting such sensi-

tivities and adding noises will completely destroy the utility of the

extracted parameters. Hence, it is crucial to mitigate the worst-case

impact of a single vertex or edge. This can be accomplished by ap-

plying edge clipping on the original graph to restrict its maximum

out/in-degree. A naive method would be for each user to locally

perform edge clipping on their local neighbor lists. However, in

decentralized graphs, each user holds an incomplete neighbor list.

Basic oblivious edge clipping.Our (basic) oblivious edge clipping
algorithm is built on the widely-used edge clipping algorithm in the

plaintext domain [3]. It projects an original graph with arbitrary

degrees onto a graph where the maximum degree is 𝑘 . Given a

graph and a clipping parameter 𝑘 , it iterates through each edge in

a random order. If either of the two vertices connected by an edge

currently has a degree larger than 𝑘 , the edge is deleted.

However, the algorithm [3] focuses on undirected graphs, mean-

ing it does not differentiate between out/in-degrees. We adapt it

to accommodate directed graphs. Specifically, when considering

an edge from vertex 𝑖 to 𝑗 , their degrees 𝑑+
𝑖
, 𝑑−

𝑖
are incremented to

1.Then, if 𝑑+
𝑖
> 𝑘 or 𝑑−

𝑖
> 𝑘 , the edge is deleted. As stated in Sec-

tion 4, each aggregator only holds a subset of each local neighbor

list. Hence, they cannot simply clip the edges using the clipping

parameter 𝑘 . Our insight is to enable each pair of aggregators to

independently perform oblivious edge clipping on their jointly held

local neighbor lists via a clipping parameter of 𝑘/3. It ensures that
the maximum out/in-degree in the subgraph held by each pair of

aggregators is restricted to 𝑘/3, and the maximum out/in-degree is

limited to 𝑘/3 + 𝑘/3 + 𝑘/3 = 𝑘 . Algorithm 1 presents the protocol.

Note that secComp(·, ·) is the oblivious comparison operation.

Specifically, secComp(𝛼, 𝛽) outputs 1 if 𝛼 ≤ 𝛽 and 0 if 𝛼 >

𝛽 . We employ the efficient function secret sharing (FSS) based

distributed comparison function (DCF) [4] to instantiate it. Finally,

𝑃1,2 execute the clipping operation (line 8). The design intuition

is that if isClip = 0, 𝑏′
𝑖 𝑗

is assigned 0, i.e., the edge is clipped; if

isClip = 1, 𝑏′
𝑖 𝑗
is assigned 𝑏𝑖 𝑗 , i.e., the edge is unchanged.

Efficient oblivious edge clipping. As Algorithm 1 iterates

through each edge sequentially, its communication rounds grow
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Algorithm 2: Efficient Oblivious Edge Clipping

Input: { [𝐸𝑖 ] }; clipping parameters 𝑘 ; batch size 𝑤.

Output: Secret-shared clipped local neighbor lists { [𝐸𝑖 ] }.
1 //𝑃1,2 operate on { [𝐸𝑖 ] (1,2) }:
2 Initialization: 𝑑+

𝑖
 = 0; 𝑑−

𝑖
 = 0; [𝐸𝑖 ] (1,2) = ∅, 𝑖 ∈ [1, 𝑁 ].

3 Restrict the out-degree of vertex 𝑖 ∈ [1, 𝑁 ] in parallel:
4 Initialize a queue𝑄𝑖 = ∅.
5 for (𝑖, 𝑗, 𝑏𝑖 𝑗 ) ∈ [𝐸𝑖 ] (1,2) do
6 𝑑+

𝑖
 = 𝑑+

𝑖
 + 𝑏𝑖 𝑗 ; 𝑄𝑖 .push( (𝑖, 𝑗, 𝑏𝑖 𝑗 ) ) .

7 if the size of the queue𝑄𝑖 ≥ 𝑤 then
8 isClip = secComp(𝑑+

𝑖
, 𝑘/3) .

9 while𝑄𝑖 ≠ ∅ do
10 (𝑖, 𝑗, 𝑏𝑖 𝑗 ) = 𝑄𝑖 .pop( ) ; 𝑏′𝑖,𝑗  = 𝑏𝑖 𝑗  · isClip.
11 [𝐸𝑖 ] (1,2) .add( (𝑖, 𝑗, 𝑏′𝑖,𝑗 ) ) .
12 Restrict the in-degrees on [𝐸𝑖 ] (1,2) in parallel as above.
13 𝑃2,3 (resp. 𝑃3,1) perform the above operations on { [𝐸𝑖 ] (2,3) } (resp.

{ [𝐸𝑖 ] (3,1) }) to produce { [𝐸𝑖 ] (2,3) } (resp. { [𝐸𝑖 ] (3,1) }).
14 return { [𝐸𝑖 ] } = { [𝐸𝑖 ] (1,2) ∪ [𝐸𝑖 ] (2,3) ∪ [𝐸𝑖 ] (3,1) }.

linearly with the number of edges. To address this issue, we pro-

pose an efficient protocol based it, as given in Algorithm 2. The

enhancement comes from the independence of the out-degree (resp.

in-degree) of each vertex from the out-degree (resp. in-degree) of

other vertices. Hence, Algorithm 2 enables the aggregators to si-

multaneously restrict each vertex’s out/in-degree in parallel (lines
3 and 12). Another performance improvement from our proposed

batch edge clipping technique. We observe that the true edges in

the secret-shared local neighbor lists are sparse. This means that

directly clipping the edges in a batch after a single check of the

current degree (incremented by the edges in the batch), will seldom

lead to clipping true edges. Hence, to reduce the number of required

oblivious comparison operations, we modify the procedure to check

whether the current secret-shared out-degree or in-degree is larger

than 𝑘/3 after iterating𝑤 edges (i.e., a batch), instead of performing

the check after iterating each edge. The edges in each batch are

updated without distinction based on the comparison result.

5.2 Secure Degree Sequence Extraction
Design rationale. Algorithm 3 presents how 𝑃1,2,3 securely extract

the noisy version of the degree sequenceD±
from the secret-shared

clipped local neighbor lists {[𝐸𝑖 ]}, while ensuring that the extracted
noisy sequence D±

is differentially private. A naive method is

to add secret-shared discrete Laplace noise to each secret-shared

out/in-degree, followed by recovering them. However, this method

introduces a significant amount of noise, particularly in low-degree

vertices, which are abundant in real social graphs [22]. Our insight

is to let 𝑃1,2,3 extract the differentially private histogram of (out-

degree, in-degree) pairs and then derive D±
from the histogram.

Secure degree histogram construction. 𝑃1,2,3 first construct the
histogram H. We observe that the primary challenge is to securely

index (𝑑+
𝑖
, 𝑑−

𝑖
) in H. Our insight is to let 𝑃1,2 obliviously

shuffle the secret-shared degree pairs by a random permutation

unknown to them to break the mappings between the degree pairs

and the vertices, and then securely reveal the shuffled degree pairs.

However, simply recovering the secret-shared degree pairs after

the oblivious shuffle will directly expose H. To address this, we let

Algorithm 3: Secure Degree Sequence Extraction

Input: { [𝐸𝑖 ] }; 𝑘 ; privacy budget 𝜀D ; privacy parameter 𝛿D .

Output: Differentially private degree sequence D±
.

1 // 𝑃1, 𝑃2, and 𝑃3 locally count the secret-shared degrees:

2 Initialization: 𝑑+
𝑖
 = 0; 𝑑−

𝑖
 = 0, 𝑖 ∈ [1, 𝑁 ].

3 𝑑+
𝑖
 = 𝑑+

𝑖
 + 𝑏𝑖 𝑗 , 𝑑−

𝑗
 = 𝑑−

𝑗
 + 𝑏𝑖 𝑗 , (𝑖, 𝑗, 𝑏𝑖 𝑗 ) ∈ { [𝐸𝑖 ] }.

4 𝑃3 secret-shares its shares of degrees with 𝑃1,2.

5 𝑃1,2 add the received shares from 𝑃3 to their own shares to obtain

𝑑+
𝑖
, 𝑑−

𝑖
, 𝑖 ∈ [1, 𝑁 ] in 2-out-of-2 ASS.

6 𝑃1,2 arrange the secret-shared degrees into table T, where
T[𝑖, :] = 𝑑+

𝑖
∥𝑑−

𝑖
∥𝜌, 𝑖 ∈ [1, 𝑁 ] and 𝜌 = 1.

7 // 𝑃3 constructs dummy degree pair table T′
: T′ = [ ].//Empty table.

8 for (𝑑+, 𝑑− ), 𝑑+ ∈ [0, 𝑘 ], 𝑑− ∈ [0, 𝑘 ] do
9 𝑛 = max(0, 𝐿𝑎𝑝 (𝜀D , 𝛿D , 4) ) . // Draw a noise.

10 Append 𝑛 rows of 𝑑+ ∥𝑑− ∥𝜌 to T′
, where 𝜌 = 0.

11 𝑃3 secret-shares T′
with 𝑃1,2 to produce T′.

12 // 𝑃1,2 perform the remaining operations:

13  ˆT = T
T′

. // Vertical concatenation.

14  ˆT′ = secShuffle( ˆT) . // Oblivious row-wise shuffle.

15 Safely reveal columns 1 and 2 of  ˆT′ to obtain [ ˆT′ ].
16 Initialize degree histogram H = 0(𝑘+1)×(𝑘+1)

.

17 for 𝑑+ ∥𝑑− ∥𝜌 in [ ˆT′ ] do
18 H[𝑑+, 𝑑− ] = H[𝑑+, 𝑑− ] + 𝜌. // Index edge to histogram.

19 H[𝑑+, 𝑑− ] = H[𝑑+, 𝑑− ] + 𝐿𝑎𝑝 (𝜀D , 0, 4), 𝑑+, 𝑑− ∈ [0, 𝑘 ].
20 Safely reveal the differentially private histogram H.

21 H′ [𝑑+, 𝑑− ] = max(0, H[𝑑+, 𝑑− ] ), 𝑑+, 𝑑− ∈ [0, 𝑘 ].
22 H′′ [𝑑+, 𝑑− ] = H′ [𝑑+, 𝑑− ] · 𝑁

sum(H′ )
, 𝑑+, 𝑑− ∈ [0, 𝑘 ].

23 Initialize degree sequence D± = ∅.
24 ∀𝑑+, 𝑑− ∈ [0, 𝑘 ], add H′′ [𝑑+, 𝑑− ] tuples (𝑑+, 𝑑− ) to D±

.

25 return Differentially private degree sequence D±
.

𝑃3 secret-share a certain number of dummy entities 𝑑+∥𝑑− ∥𝜌 (with

flag 𝜌 = 0) for each possible degree pair (𝑑+, 𝑑−) with 𝑃1,2 (lines 7-

11). 𝑃1,2 then perform the oblivious row-wise shuffle [15] (denoted

as secShuffle(·)) on the real degree pairs (with 𝜌 = 1) together
with the dummy degree pairs. The oblivious shuffle ensures that

𝑃1,2 cannot distinguish between the dummy and real degree pairs.

To ensure the revealed frequency of degree pairs in the views of

𝑃1,2 is differentially private, the number of dummy entities for each

degree pair is drawn from 𝐿𝑎𝑝 (𝜀D , 𝛿D , 4) and truncated to 0 (line

9). Here, Δ is set to 4, as the addition/removal of an edge changes

the frequency of at most four degree pairs. We will prove in Section

7.2 that the revealed degree pairs are differentially private in the

individual view of 𝑃1, 𝑃2, even if the noises may be truncated to

0. Note that we cannot use the revealed frequency of degree pairs

as H due to 𝑃3 knowing the number of dummy entities, i.e., the

frequency is not differentially private in 𝑃3’s view. Instead, 𝑃1,2
add the secret-shared flag of each degree pair to the corresponding

element of H (lines 16-18).
Secure degree sequence construction. To construct D±

based on

H, 𝑃1,2 first add a secret-shared noise drawn from 𝐿𝑎𝑝 (𝜀D , 0, 4) to
each element of H (line 19). The noises can be generated offline by

the protocol in [14]. 𝑃1,2 reveal the differentially private histogram

H to obtain H. D±
can be constructed based on H (lines 21-24).
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Algorithm4:Secure Attribute-Edge Distribution Extraction

Input: Local neighbor lists { [𝐸𝑖 ] }; secret-shared attributes {𝑓𝑖};
maximum degree 𝑘 ; privacy budget, parameter 𝜀𝑋 , 𝛿𝑋 .

Output: Differentially private attribute-edge distribution Θ 𝑋 .

1 // 𝑃1,2 operate on { [𝐸𝑖 ] (1,2) } and {𝑓𝑖}: T = [ ]; T′ = [ ].
2 for (𝑖, 𝑗, 𝑏𝑖 𝑗 ) ∈ [𝐸𝑖 ] (1,2) , 𝑖 ∈ [1, 𝑁 ] do
3 Append row 𝑓𝑖∥𝑓𝑗 ∥𝜌 to T, where 𝜌 = 𝑏𝑖 𝑗 .
4 // 𝑃3 constructs dummy attribute-edge correlation table T′

:

5 for 𝑓 → 𝑓 ′ ∈ Z
2
𝐿 × Z

2
𝐿 do

6 𝑛 = max(0, 𝐿𝑎𝑝 (𝜀𝑋 , 𝛿𝑋 , 2 · 𝑘/3) ) . // Draw a noise.

7 Append 𝑛 rows of 𝑓 ∥ 𝑓 ′ ∥𝜌 to T′
, where 𝜌 = 0.

8 𝑃3 secret-shares T′
with 𝑃1,2 to produce T′.

9 // 𝑃1,2 perform the remaining operations:

10  ˆT = T
T′

. // Vertical concatenation.

11  ˆT′ = secShuffle( ˆT) . // Oblivious row-wise shuffle

12 Safely reveal columns 1 and 2 of  ˆT′ to obtain [ ˆT′ ].
13 Initialize secret-shared histogram H = 02

𝐿×2𝐿
.

14 for row 𝑓 ∥ 𝑓 ′ ∥𝜌 in [ ˆT′ ] do
15 H[ 𝑓 , 𝑓 ′ ] = H[ 𝑓 , 𝑓 ′ ] + 𝜌. // Index correlation to H.
16 H[ 𝑓 , 𝑓 ′ ]+ = 𝐿𝑎𝑝 (𝜀𝑋 , 0, 2 · 𝑘/3), 𝑓 → 𝑓 ′ ∈ Z

2
𝐿 × Z

2
𝐿 .

17 Safely reveal the differentially private histogram H.

18 H′ [ 𝑓 , 𝑓 ′ ] = max(0, H[ 𝑓 , 𝑓 ′ ] ), 𝑓 → 𝑓 ′ ∈ Z
2
𝐿 × Z

2
𝐿 . // Truncation.

19 H′′ [ 𝑓 , 𝑓 ′ ] = H′ [𝑓 ,𝑓 ′ ]
sum(H′ )

, 𝑓 → 𝑓 ′ ∈ Z
2
𝐿 × Z

2
𝐿 . // Normalization.

20 Initialize attribute-edge distribution Θ 𝑋 = {0}2𝐿×2𝐿 .
21 Θ 𝑋 (𝑓 → 𝑓 ′ ) = H′′ [ 𝑓 , 𝑓 ′ ], 𝑓 → 𝑓 ′ ∈ Z

2
𝐿 × Z

2
𝐿 .

22 return Differentially private attribute-edge distribution Θ 𝑋 .

5.3 Secure Attribute-Edge Correlation
Distribution Extraction

𝑃1,2,3 then securely extract the noisy version of attribute-edge cor-

relation distribution Θ 𝑋 . PrivAGM ensures that the extracted distri-

bution (denoted as Θ 𝑋 ) is differentially private. Algorithm 4 gives

the protocol. Its design intuition shares similarities with Algorithm

3. Since the edges held by each aggregator are incomplete, we let

a pair of aggregators to compute Θ 𝑋 on their jointly held local

neighbor lists. The sensitivity Δ is set to 2 · 𝑘/3 (lines 6 and 15), as

modifying the attribute value of a vertex can affect, at most, 𝑘/3
edges, resulting in changes to the frequency of 2 · 𝑘/3 attribute-

edge correlations. Appendix A of the full version [45] details how to

extract the differentially private attribute distribution (denoted asΘ𝐹 ). The privacy budget and parameter are 𝜀𝐹 and 𝛿𝐹 , respectively.

5.4 Secure Triangle Counts Extraction
Algorithm 5 presents how to extract the noisy version of triangle

counts 𝑛𝐴△ , 𝑛
𝐵
△ , while ensuring that the extracted noisy counts (de-

noted as𝑛𝐴△ ,𝑛𝐵△ ) are differentially private. The idea is to iterate over
every possible set of three connected edges in pairs, incrementing

the secret-shared product of flags for the three edges to the triangle

count. However, since multiplication in the secret sharing domain

requires communication between the involved parties, the method

can only count triangles whose edges are held by the same pair of
aggregators. To address this issue, our solution is based on the ob-

servation: the probability of each triangle’s edges being distributed

to the same pair of aggregators is 3 · 1
3
· 1
3
· 1
3
= 1

9
. Hence, PrivAGM

Algorithm 5: Secure Triangle Counts Extraction

Input: { [𝐸𝑖 ] }; privacy budget 𝜀𝑇 ; maximum in/out-degree 𝑘 .

Output: Differentially private triangle counts 𝑛𝐴△ and 𝑛𝐵△ .
1 Initialize 𝑛𝐴△  = 0; 𝑛𝐵△ = 0 in 3-out-of-3 ASS.

2 // 𝑃1,2 operate on { [𝐸𝑖 ] (1,2) }:
3 for 𝑖 : 𝑖 ∈ [1, 𝑁 ] in parallel do
4 for 𝑗 : 𝑗 < 𝑖 and (𝑖, 𝑗, 𝑏𝑖 𝑗 ) ∈ [𝐸𝑖 ] (1,2) do
5 for 𝑘 : 𝑘 < 𝑖 and ( 𝑗, 𝑘, 𝑏 𝑗𝑘) ∈ [𝐸 𝑗 ] (1,2) do
6 if (𝑘, 𝑖, 𝑏𝑘𝑖) ∈ [𝐸𝑘 ] (1,2) then
7 𝑛𝐴△  = 𝑛𝐴△  + 𝑏𝑖 𝑗  · 𝑏 𝑗𝑘 · 𝑏𝑘𝑖.
8 for 𝑖 : 𝑖 ∈ [1, 𝑁 ] in parallel do
9 for 𝑗, 𝑘 : 𝑗 ≠ 𝑘, (𝑖, 𝑗, 𝑏𝑖 𝑗 ), (𝑖, 𝑘, 𝑏𝑖𝑘) ∈ [𝐸𝑖 ] (1,2) do
10 if ( 𝑗, 𝑘, 𝑏 𝑗𝑘) ∈ [𝐸 𝑗 ] (1,2) then
11 𝑛𝐵△ = 𝑛𝐵△ + 𝑏𝑖 𝑗  · 𝑏𝑖𝑘 · 𝑏 𝑗𝑘.
12 𝑃2,3 (resp. 𝑃3,1) count triangles on { [𝐸𝑖 ] (2,3) } (resp. { [𝐸𝑖 ] (3,1) }) as

above and aggregate the triangle counts to 𝑛𝐴△  and 𝑛𝐵△.
13 𝑛𝐴△  = 9 · 𝑛𝐴△ ; 𝑛𝐵△ = 9 · 𝑛𝐵△.
14 𝑛𝐴△  = 𝑛𝐴△  + 𝐿𝑎𝑝 (𝜀𝑇 , 0, 𝑘 − 1). //Add secret-shared noise.

15 𝑛𝐵△ = 𝑛𝐵△ + 𝐿𝑎𝑝 (𝜀𝑇 , 0, 𝑘 − 1). //Add secret-shared noise.

16 Safely reveal the differentially private triangle counts 𝑛𝐴△ ,𝑛𝐵△ .
17 return Differentially private triangle counts 𝑛𝐴△ and 𝑛𝐵△ .
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△ñ
B
△  D̃±D̃±

Sample a new edge set

A variant of directed CL

Sample a new edge set

A variant of directed CL

Figure 3: Overview of directed attributed graphs generation.

enables each pair of aggregators to count triangles over the edges

they jointly hold. The counts are then multiplied by 9 to obtain

approximate triangle counts. The sensitivity is set to 𝑘 −1 as adding

or removing an edge change the triangle count by at most 𝑘 − 1.

Remark.We note that performing Algorithm 5 sequentially would

entail a significant number of communication rounds. As the it-

erations in the two outermost loops (i.e., lines 3 and 8) are inde-

pendent of each other, we can execute them in parallel. Moreover,

we observe that the primary cost arises from the secure 3-input

multiplication gates in lines 7 and 11. To speed up Algorithm 5, we

use the technique in [32] to reduce the communication cost of each

secure 3-input multiplication gate from 2 rounds and 8 elements to

1 round and 6 elements. Additionally, we use a random sampling

strategy to further reduce the cost. Specifically, instead of iterating

over each vertex, we only iterate over 𝜂 randomly sampled vertices,

and then multiply the secret-shared triangle counts by
𝑁
𝜂 .
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6 ATTRIBUTED GRAPHS GENERATION
Hence, our contribution is to adapt it to cater for the requirements

of generating directed graphs.

Overview. Figure 3 gives an overview. We note that the CL model

is a widely used generative graph model. However, it is designed

exclusively for undirected graphs. Therefore, we propose a directed

version of it, which is used to sample an initial directed edge set

𝐸 (0) = {(𝑖, 𝑗)} based on D±
. Next, Algorithm 6 is used to rewire the

edges to ensure that the counts of TriA and TriB formed by 𝐸 (0)
are

no less than𝑛𝐴△ and𝑛𝐵△ , respectively. The rewired edges are denoted
as 𝐸′(0) . In addition, the vertex attribute set {𝑓𝑖 }𝑖∈[1,𝑁 ] (where 𝑓𝑖 for
vertex 𝑖 ∈ [1, 𝑁 ]) is sampled from Θ𝐹 . The accept/reject sampling

technique is applied to generate new edge sets. Specifically, the edge

acceptance probabilities Θ
(0)
𝐴𝑐

are computed based on the current

graph (𝐸′(0) , {𝑓𝑖 }) and Θ 𝑋 . Then a new edge set 𝐸 (1)
is sampled

by the directed CL model and a variant of Algorithm 6 considering

Θ
(0)
𝐴𝑐

. This process iterates until Θ𝐴𝑐 converges.

6.1 Directed CL Model
In the CL model [7], each vertex is assigned a degree based on the

degree sequence {𝑑𝑖 }𝑖∈[1,𝑁 ] of the input graph. Then,

𝑖∈[1,𝑁 ] 𝑑𝑖

edges are sampled by a probability that is proportional to the desired

degrees of the vertices. Specifically, an edge between vertices 𝑖, 𝑗

is sampled with a probability of

𝑑𝑖 ·𝑑 𝑗
𝑖≠𝑗,𝑖,𝑗 ∈ [1,𝑁 ] 𝑑𝑖 ·𝑑 𝑗

. However, this

cannot capture the directionality of edges. Hence, we propose the

directed CL model (denoted as directedCL(·)).
In our directed CL model, we first assign each vertex 𝑖 a de-

sired out/in-degree pair (𝑑+
𝑖
, 𝑑−

𝑖
) based on D±

. Then, for each di-

rected edge from 𝑖 to 𝑗 , we add it into the edge set 𝐸 (0)
with a

probability proportional to 𝑖’s out-degree and 𝑗 ’s in-degree, i.e.,
𝑑+
𝑖 ·𝑑−

𝑗
𝑖≠𝑗,𝑖,𝑗 ∈ [1,𝑁 ] 𝑑

+
𝑖
·𝑑−

𝑗

. To maintain the expected degree distribution, we

sample max(𝑖∈[1,𝑁 ] 𝑑
+
𝑖
,

𝑖∈[1,𝑁 ] 𝑑

−
𝑖
) edges. Clearly, our model

can capture the edge directionality in the original graph by sam-

pling each edge based on the out-degree of the edge’s starting vertex

and the in-degree of the edge’s ending vertex.

6.2 Refining Graph Structure
The (unattributed) graphs generated by the directed CL model only

capture the degree information of the original graph. Therefore,

the AGM [22] proposes iterative edge rewiring to ensure that the

number of triangles in the generated graph is no smaller than that in

the original graph. However, the AGM overlooks the directionality

of edges in the original graph and treats all triangles as identical.

Therefore, we propose Algorithm 6 (denoted as Rewire(·)).
Algorithm 6 operates on the edge set 𝐸 generated by the directed

CL model. It iteratively rewires the edges until the counts of TriA

and TriB formed by the edges surpass 𝑛𝐴△ and 𝑛𝐵△ , respectively.
Specifically, to create a new edge for constructing TriA (lines 4-

12), the algorithm proceeds as follows: (1) sample a vertex 𝑖 from

[1, 𝑁 ] where each vertex 𝑖 ∈ [1, 𝑁 ] is sampled with a probability

of

𝑑+
𝑖

𝑖∈ [1,𝑁 ] 𝑑
+
𝑖

; (2) randomly sample a vertex 𝑗 from vertex 𝑖’s out-

neighbors; (3) randomly sample a vertex 𝑘 from vertex 𝑗 ’s out-

neighbors. If (𝑘, 𝑖) ∉ 𝐸, indicating that vertices 𝑖 , 𝑗 , and 𝑘 form an

Algorithm 6: Refining Graph Structure by Edge Rewiring

Input: Edge set 𝐸; degree sequence D±
; triangle counts 𝑛𝐴△ ,𝑛𝐵△ .

Output: The new edge set 𝐸′
after rewiring.

1 𝑛𝐴△ , 𝑛
𝐵
△ = countTriangle(𝐸 ) . // Count triangles on 𝐸.

2 while 𝑛𝐴△ < 𝑛𝐴△ and 𝑛𝐵△ < 𝑛𝐵△ do
3 // Construct TriA:

4 𝑖 = Sample( [1, 𝑁 ], D± ) . // Sample a vertex based on D±
.

5 𝑗 = SampleNbr(𝐸, 𝑖 ) ; 𝑘 = SampleNbr(𝐸, 𝑗 ) .
6 if (𝑘, 𝑖 ) ∉ 𝐸 then
7 (𝑞, 𝑟 ) = oldestEdge(𝐸 ) . // Get the oldest edge from 𝐸.

8 if replacing (𝑞, 𝑟 ) by (𝑘, 𝑖 ) boosts triangle counts then
9 𝐸.replace( (𝑞, 𝑟 ), (𝑘, 𝑖 ) ) . // Replace (𝑞, 𝑟 ) by (𝑘, 𝑖 ) .

10 Make edge (𝑘, 𝑖 ) the youngest edge in 𝐸.

11 𝑛𝐴△ , 𝑛
𝐵
△ = countTriangle(𝐸 ) .

12 else Make edge (𝑞, 𝑟 ) the youngest edge in 𝐸.

13 // Construct TriB:

14 𝑖 = Sample( [1, 𝑁 ], D± ) ; 𝑗, 𝑘 = Sample2Nbr(𝐸, 𝑖 ) .
15 If ( 𝑗, 𝑘 ) ∉ 𝐸, replacing the oldest edge by ( 𝑗, 𝑘 ) as above.
16 return The edge set 𝐸′ = 𝐸 after rewiring.

incomplete TriA, i.e.,

𝑖 𝑗

𝑘

, the algorithm attempts to replace

the oldest edge in 𝐸 by edge (𝑘, 𝑖) to construct TriA (lines 7-12).

Specifically, if replacing the oldest edge (𝑞, 𝑟 ) in 𝐸 with edge (𝑘, 𝑖)
would increase both the counts of TriA and TriB, edge (𝑞, 𝑟 ) is
replaced by edge (𝑘, 𝑖) and (𝑘, 𝑖) is set as the youngest edge in 𝐸.

Otherwise, edge (𝑞, 𝑟 ) is set as the youngest edge in 𝐸.

Similarly, Algorithm 6 creates a new edge to construct TriB as

follows (lines 14-15). First, a vertex 𝑖 is sampled from [1, 𝑁 ] where
each vertex 𝑖 ∈ [1, 𝑁 ] is chosen with a probability of

𝑑+
𝑖

𝑖∈ [1,𝑁 ] 𝑑
+
𝑖

.

Then, two vertices 𝑗 and 𝑘 are randomly sampled from vertex 𝑖’s

out-neighbors. If ( 𝑗, 𝑘) ∉ 𝐸, indicating that vertices 𝑖 , 𝑗 , and 𝑘

form an incomplete TriB, i.e.,

𝑖 𝑗

𝑘

, the algorithm checks if

replacing the oldest edge (𝑞, 𝑟 ) in 𝐸 with edge ( 𝑗, 𝑘) would increase
both the counts of TriA and TriB. If it does, the algorithm replaces

edge (𝑞, 𝑟 ) with edge ( 𝑗, 𝑘) and makes ( 𝑗, 𝑘) the youngest edge in
𝐸. Otherwise, it makes edge (𝑞, 𝑟 ) the youngest edge in 𝐸.

We present how to integrate the above algorithms in Appendix

B of the full version [45].

7 PRIVACY AND SECURITY ANALYSIS
In Section 7.1, we parametrize the leakage function L. In Section

7.2, we conduct a formal analysis to prove that the output of L is

differentially private. In Section 7.3, we prove that the adversary’s

view can be simulated solely based on the output of L.

7.1 Leakage Function
We define the leakage function as L = (L𝐸 ,LD ,L𝑋 ,L𝐹 ,L△):
• L𝐸 = {[𝐸𝑖 ]}, where [𝐸𝑖 ] = {(𝑖, 𝑗, ⟨𝑏𝑖 𝑗 ⟩)} denotes the local neigh-
bor list held by the adversary for user 𝑖 .

• LD = ( [ ˆT′
D ], HD ), where [ ˆT′

D ] and HD are the table and his-

togram revealed in lines 15 and 20 of Algorithm 3, respectively.
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While the adversary learns additional information during the exe-

cution of other operations in Algorithm 3, since the information is

derived from HD , it is not included in LD .

• L𝑋 = ( [ ˆT′
𝑋 ], H𝑋 ), where [ ˆT′

𝑋 ], H𝑋 are the table and histogram

revealed in lines 12, 17 of Algorithm 4, respectively.

• L𝐹 = ( [ ˆT′
𝐹 ], H𝐹 ), where [ ˆT′

𝐹 ] and H𝐹 are the table and his-

togram revealed in secure attribute distribution extraction.

• L△ = (𝑛𝐴△,𝑛𝐵△): 𝑛𝐴△,𝑛𝐵△ are the counts revealed in line 16, Algo. 5.

7.2 Privacy Analysis
Theorem 1. The neighbor list [𝐸𝑖 ] of user 𝑖 held by the adversary

satisfies pure 𝜀𝐸 -edge LDP with 𝜀𝐸 = max{ln(1/𝑝), ln(3 − 2𝑝)}.

Proof. Note that [𝐸𝑖 ] can be described as an 𝑁 -dimensional

bit vector b = (𝑏1, · · · , 𝑏𝑁 ) for the adversary, where 𝑏 𝑗 = 1 if

(𝑖, 𝑗, ⟨𝑏𝑖 𝑗 ⟩) ∈ [𝐸𝑖 ], and otherwise 𝑏 𝑗 = 0. We use 𝑃𝑟 [A[𝑖, 𝑗] → 𝑏 𝑗 ]
to denote the probability that, given A[𝑖, 𝑗], the adversary observes
𝑏 𝑗 ∈ {0, 1}. 𝑃𝑟 [A[𝑖, 𝑗] → 𝑏 𝑗 ] can be categorized into four cases:

• A[𝑖, 𝑗] = 0 and 𝑏 𝑗 = 0: The zero bit A[𝑖, 𝑗] is not included in 𝐸𝑖
(with probability of 1 − 𝑝), or A[𝑖, 𝑗] is included in 𝐸𝑖 (with prob-

ability of 𝑝), but the adversary is not choosed to receive (𝑖, 𝑗, ⟨0⟩)
(with probability of 1/3), i.e., 𝑃𝑟 [0 → 0] = 1−𝑝 +𝑝 · 1/3 = 1− 2𝑝/3.
• A[𝑖, 𝑗] = 1 and 𝑏 𝑗 = 0: The nonzero bit A[𝑖, 𝑗] is included in 𝐸𝑖
(with probability of 1), but the adversary is not choosed to receive

(𝑖, 𝑗, ⟨1⟩) (with probability of 1/3), i.e., 𝑃𝑟 [1 → 0] = 1 · 1/3 = 1/3.
• A[𝑖, 𝑗] = 1 and 𝑏 𝑗 = 1: The nonzero bit A[𝑖, 𝑗] is included in 𝐸𝑖
(with probability of 1) and the adversary is also choosed to receive

(𝑖, 𝑗, ⟨1⟩) (with probability of 2/3), i.e., 𝑃𝑟 [1 → 1] = 1 · 2/3 = 2/3.
• A[𝑖, 𝑗] = 0 and 𝑏 𝑗 = 1: The zero bit A[𝑖, 𝑗] is included in 𝐸𝑖
(with probability of 𝑝) and the adversary is also choosed to receive

(𝑖, 𝑗, ⟨0⟩) (with probability of 2/3), i.e., 𝑃𝑟 [0 → 1] = 𝑝 · 2/3 = 2𝑝/3.
Given any two local neighbor lists A[𝑖, :] and A′ [𝑖, :] that differ

in one bit, we need to prove that
𝑃𝑟 [M(A[𝑖,:] )=b]
𝑃𝑟 [M(A′ [𝑖,:] )=b] ≤ 𝑒𝜀𝐸 , where

𝜀𝐸 = max{ln(1/𝑝), ln(3 − 2𝑝)}. Without loss of generality, let us

assume that A[𝑖, 1] and A′ [𝑖, 1] are not identical. Then we have:

𝑃𝑟 [M(A[𝑖, :]) = b]
𝑃𝑟 [M(A′ [𝑖, :]) = b] =

𝑃𝑟 [A[𝑖, 1] → 𝑏1] · · · 𝑃𝑟 [A[𝑖, 𝑁 ] → 𝑏𝑁 ]
𝑃𝑟 [A′ [𝑖, 1] → 𝑏1] · · · 𝑃𝑟 [A′ [𝑖, 𝑁 ] → 𝑏𝑁 ]

=
𝑃𝑟 [A[𝑖, 1] → 𝑏1]
𝑃𝑟 [A′ [𝑖, 1] → 𝑏1]

. (3)

We analyze Eq. 3 in four cases:

1)
𝑃𝑟 [0→0]
𝑃𝑟 [1→0] =

1−2𝑝/3
1/3 = 3 − 2𝑝; 2)

𝑃𝑟 [1→0]
𝑃𝑟 [0→0] =

1/3
1−2𝑝/3 = 1

3−2𝑝 ;

3)
𝑃𝑟 [0→1]
𝑃𝑟 [1→1] =

2𝑝/3
2/3 = 𝑝; 4)

𝑃𝑟 [1→1]
𝑃𝑟 [0→1] =

2/3
2𝑝/3 = 1/𝑝 .

We note that the upper bound of the set {3 − 2𝑝, 1

3−2𝑝 , 𝑝, 1/𝑝}.
Since 0 ≤ 𝑝 ≤ 1, we have 1/𝑝 ≥ 𝑝 and 3 − 2𝑝 ≥ 1

3−2𝑝 .

Therefore, {3 − 2𝑝, 1

3−2𝑝 , 𝑝, 1/𝑝} ≤ max{1/𝑝, 3 − 2𝑝} = 𝑒𝜀𝐸 , and

𝜀𝐸 = max{ln(1/𝑝), ln(3 − 2𝑝)}. □

Theorem 2. Given LD , in the view of adversary, [ ˆT′D ] adheres
to (𝜀D , 𝛿D )-edge DP and HD adheres to pure 𝜀D -edge DP.

Proof. Note that only 𝑃1,2 have access to [ ˆT′
D ], and thus we

only analyze the view of the adversary controlling 𝑃1 or 𝑃2. Since

the shares (i.e., the 3nd column of table [ ˆT′
D ]) reveal nothing about

the corresponding values, [ ˆT′
D ] can be described as a histogram

(denoted as HD ) of degree pairs. We then prove that with proba-

bility 1 − 𝛿D , the probability for the adversary viewing the same

HD from two neighboring graphs 𝐺 and 𝐺 ′
is bounded by 𝑒𝜀D . If

all the noise (drawn in line 9 of Algorithm 3) are non-negative, the

probability to output the same noisy histogram HD from 𝐺,𝐺 ′
is

𝑃𝑟 [M(𝐺)=HD ]
𝑃𝑟 [M(𝐺 ′)=HD ] =


𝑑+,𝑑−∈[0,𝑘 ]

𝑃𝑟 [HD [𝑑+, 𝑑−] −H𝐺 [𝑑+, 𝑑−]]
𝑑+,𝑑−∈[0,𝑘 ]

𝑃𝑟 [HD [𝑑+, 𝑑−] −H𝐺 ′ [𝑑+, 𝑑−]] . (4)

𝑃𝑟 [HD [𝑑+, 𝑑−] −H𝐺 [𝑑+, 𝑑−]] is the probability drawing the noise
HD [𝑑+, 𝑑−] −H𝐺 [𝑑+, 𝑑−] from 𝐿𝑎𝑝 (𝜀D , 𝛿D , 4). Let 𝐷Δ be the set

of bins where H𝐺 ≠ H𝐺 . We can rewrite Eq. 4 as:
(𝑑+,𝑑− ) ∈𝐷Δ

𝑒
−𝜀D
4

· |HD [𝑑+,𝑑− ]−H𝐺 [𝑑+,𝑑− ]−𝜇 |


(𝑑+,𝑑− ) ∈𝐷Δ

𝑒
−𝜀D
4

· |HD [𝑑+,𝑑− ]−H𝐺 ′ [𝑑+,𝑑− ]−𝜇 |

=


(𝑑+,𝑑− ) ∈𝐷Δ

𝑒

𝜀D
4
· ( |HD [𝑑+,𝑑− ]−H𝐺 ′ [𝑑+,𝑑− ]−𝜇 |
− |HD [𝑑+,𝑑− ]−H𝐺 [𝑑+,𝑑− ]−𝜇 | )

(5)

=𝑒

𝜀D
4
· 
(𝑑+,𝑑− ) ∈𝐷Δ

|HD [𝑑+,𝑑− ]−H𝐺 ′ [𝑑+,𝑑− ]−𝜇 |
− |HD [𝑑+,𝑑− ]−H𝐺 [𝑑+,𝑑− ]−𝜇 |

≤𝑒
𝜀D
4
· 
(𝑑+,𝑑− ) ∈𝐷Δ

|H𝐺 [𝑑+,𝑑− ]−H𝐺 ′ [𝑑+,𝑑− ] |
≤ 𝑒

𝜀D
4
·4 = 𝑒𝜀D .

The proof is based on: as𝐺,𝐺 ′
differ by the presence/absence of an

edge, the maximum discrepancy in the values of their degree pair

histograms is 4, i.e.,


(𝑑+,𝑑− ) ∈𝐷Δ

|H𝐺 [𝑑+, 𝑑−] −H𝐺 ′ [𝑑+, 𝑑−] | ≤ 4.

The probability to draw a negative noise from 𝐿𝑎𝑝 (𝜀D , 𝛿D , 4)

is [17]: 𝑃𝑟 [𝑛 < 0] =
−∞
𝑥=−1

𝑒
𝜀D
4 −1

𝑒
𝜀D
4 +1

· 𝑒
−𝜀D ·|𝑥−𝜇 |

4 = 𝑒
−𝜇 ·𝜀D

4

𝑒
𝜀D
4 +1

. Given

𝜇 = − 4

𝜀D
· ln((𝑒

𝜀D
4 + 1) · (1− (1−𝛿D )

1

4 )), we have 𝑃𝑟 [𝑛 < 0] = 1−
(1−𝛿D )

1

4 . As there are at most 4 bins inH𝐺 ,H𝐺 ′ that are not equal.

Hence, the overall failing probability is 1 − (1 − 𝑃𝑟 [𝑛 < 0])4 = 𝛿D .

Since the noises added to HD (line 19 of Algorithm 3) are drawn

from 𝐿𝑎𝑝 (𝜀D , 0, 4) (i.e., 𝛿 = 0),M satisfies pure 𝜀D -edge DP. □

We can apply the same method for other leakage.

Theorem 3. Given L△ = (𝑛𝐴△,𝑛𝐵△), in the view of the adversary,
both 𝑛𝐴△ and 𝑛𝐵△ adhere to pure 𝜀△-edge DP.

Proof. First, we establish the 𝜀△-edge DP of 𝑛𝐴△ , and the same

conclusion holds for 𝑛𝐵△ . Given 𝐺,𝐺 ′
, we have |𝑛𝐴△ − 𝑛′𝐴△ | ≤ 𝑘 − 1,

where 𝑛𝐴△, 𝑛
′𝐴
△ represent the count of triangle TriA in 𝐺,𝐺 ′

respec-

tively, after edge clipping with parameter 𝑘 . The probability to

output the same noisy count 𝑛𝐴△ is bounded by

𝑃𝑟 [M(𝐺) = 𝑛𝐴△]
𝑃𝑟 [M(𝐺 ′) = 𝑛𝐴△] =

𝑃𝑟 [𝑛𝐴△ −𝑛𝐴△]
𝑃𝑟 [𝑛′𝐴△ −𝑛𝐴△] =

𝑒
−𝜀△ ·|𝑛𝐴△ −𝑛𝐴△ |

𝑘−1

𝑒
−𝜀△ ·|𝑛′𝐴△ −𝑛𝐴△ |

𝑘−1

= 𝑒
𝜀△
𝑘−1 · ( |𝑛

′𝐴
△ −𝑛𝐴△ |− |𝑛𝐴△−𝑛𝐴△ | ) ≤ 𝑒

𝜀△
𝑘−1 · ( |𝑛

′𝐴
△ −𝑛𝐴△ | ) ≤ 𝑒𝜀△ .

M satisfies 𝜀△-edge DP for 𝑛𝐴△ based on Definition 2. □

7.3 Security Analysis
We use the simulation paradigm [26] to analyze the security.

Definition 4. Let


denote the protocol for securely constructing
dAGM. Let A be an adversary who statically corrupts one of 𝑃{1,2,3}
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Table 1: Overalldiff under different privacy budget allocations

[𝜀D , 𝜀𝑋 , 𝜀𝐹 , 𝜀△ ] MOOC Twitter Gplus

[0.3, 0.1, 0.2, 0.2] 0.191 0.185 0.221

[0.3, 0.3, 0.2, 0.1] 0.171 0.159 0.194

[0.4, 0.1, 0.1, 0.2] 0.163 0.132 0.154

[0.4, 0.3, 0.1, 0.1] 0.159 0.135 0.155

[0.5, 0.2, 0.1, 0.1] 0.126 0.119 0.125

[0.6, 0.1, 0.1, 0.1] 0.108 0.096 0.113

or one of the users, and let View

Real be the view of the corrupted

parties during the protocol run. In the ideal world, a simulator S
generates a simulated view ViewS,L

Ideal given only the leakage L. We
say that


is secure, if there exists a probabilistic polynomial time

simulator S such that ViewS,L
Ideal is indistinguishable from View


Real.

Theorem 4. Based on Definition 4, PrivAGM is secure.

We present the proof in Appendix C of the full version [45].

8 PERFORMANCE EVALUATION
8.1 Setup
We develop a prototype implementation of PrivAGM using a com-

bination of Python and C++. All experiments are conducted on a

workstation equipped with 24 Intel Xeon Gold 6240R CPU cores,

a NVIDIA RTX A6000 GPU, 128 GB of RAM, and 2 TB of external

SSD storage, running Ubuntu 20.04.3 LTS. Following the setup of

prior MPC-based studies [24, 30], each aggregator is executed as an

independent process on the workstation. To emulate the network

environment, we use the Linux tc command to simulate a 1 Gbps

bandwidth with 1 ms latency. In addition, we use a MacBook Air

with 8 GB of RAM to simulate users, secretly share the local views.

All public and private values are encoded in Z
2
32 . In addition, we

set the privacy parameters 𝛿D = 𝛿𝑋 = 𝛿𝐹 = 10
−5
.

Datasets.We use three directed social graph datasets: MOOC (7047

vertices; 411749 edges; 3.7MB) [25], Twitter (81306 vertices; 1768149

edges; 21.1 MB) [28], and Gplus (107614 vertices; 13673453 edges;

156.5 MB) [28]. For each dataset, we treat each vertex as a user.

Therefore, for the three datasets, the average amount of data held

by each user is about 0.54 KB, 0.27 KB, and 1.49 KB, respectively.

Baselines. We use two state-of-the-art methods as baselines for

utility comparison: CAGM, which operates in a centralized setting

with edge DP guarantees [6], and AsgLDP, which operates in a

decentralized setting with edge LDP guarantees [48].

Utilitymetrics.We evaluate the utility using four widely-usedmet-

rics [6, 22, 34, 48]. (1) Degree distribution: We use the Kolmogorov-

Smirnov statistic to evaluate how well a synthetic graph captures

the degree distribution of the original graph (KSdegree). As KSdegree
is less sensitive to differences in the tails of the distributions, we

also report the Hellinger distance (HDdegree) between the degree

distributions of the synthetic and original graphs. (2) Attribute-edge
correlation distribution: We report the mean relative error (MRE)

(MREcorr) and the Hellinger distance HDcorr between the attribute-

edge correlation distribution of the synthetic and original graphs.

(3) Local clustering coefficient: We report the MRE between the aver-

age of the local clustering coefficient of the synthetic and original

graphs (MREcluster). (4) Triangle counts: We report the average MRE

in TriA and TriB (MRETri).
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Figure 4: Overalldiff and cost savings under different 𝑘 and𝑤 .
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Figure 5: Comparison in terms of KSdegree and HDdegree.

Downstream task.We also implement a widely used downstream

task—truss-based community detection—which aims to identify

groups or clusters of vertices in a graph that are more densely

connected to each other than to the rest of the graph [27]. We

use the 𝐹1 score as the metric to evaluate the differences between

the truss communities detected on the synthetic graphs and those

detected on the original graphs. The detailed computation method

of the above metrics is given in Appendix D of the full version [45].

8.2 Effect of Key Parameters
Privacy budget allocation.We first determine the best privacy

budget allocation of PrivAGM by empirically measure the over-

all difference Overalldiff . Overalldiff is calculated as the average of

the above utility metrics, excluding the 𝐹1 score of the truss com-

munity structures. Recall that only four privacy budgets impact

the utility of the synthetic graphs: 𝜀D for the degree sequence,

𝜀𝑋 for the attribute-edge correlation distribution, 𝜀𝐹 for the at-

tribute distribution, and two 𝜀△ for the two types of triangle counts.

Hence, the overall privacy budget accolcation can be represented

as 𝜀 = 𝜀D + 𝜀𝑋 + 𝜀𝐹 + 2 · 𝜀△ . The results are shown in Table

1 (𝜀 = 1). We can observe that a larger 𝜀D corresponds to a

smaller Overalldiff , and the optimal privacy budget allocation is

𝜀D = 0.6, 𝜀𝑋 = 0.1, 𝜀𝐹 = 0.1, 𝜀△ = 0.1. This is due to the degree

sequence is crucial for capturing the input graph’s structure [22].

Effect of clipping parameters.We next evaluate how the clipping

parameter 𝑘 and batch size𝑤 affect Overalldiff and the system cost.

Figure 4 presents the experimental results on the Gplus dataset.

We observe that 𝑘 does not impact the cost, as the edge clipping

is performed in an oblivious manner, incurring a fixed overhead

regardless of the value of 𝑘 . However, a smaller 𝑘 results in lower

utility loss, as it reduces the sensitivity during noise generation for

DP guarantees, thereby decreasing the magnitude of the noise and

better preserving the graph structure. We observe that larger values

of𝑤 yield greater cost savings. However, this comes at the expense
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Figure 6: Comparison in terms of MREcorr and HDcorr.
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Figure 7: Comparison in terms of MREcluster.
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Figure 8: Comparison in terms of 𝐹1 score.

of higher Overalldiff , indicating a trade-off between efficiency and

utility. In the following experiemnts, we set 𝑘 =
3
√
𝑁 and𝑤 =

√
𝑁 .

8.3 Utility Comparison
Degree distribution. Figure 5 presents a comparison between

PrivAGM and the baselines in terms of KSdegree and HDdegree. It is

evident that AsgLDP shows the largest KSdegree andHDdegree since

it is based on LDP, which introduces larger noise than central DP

under the same privacy budget. In contrast, our PrivAGM achieves

the smallest KSdegree and HDdegree.

Attribute-edge correlation distribution. Figure 6 shows a com-

parison between PrivAGM and the baselines in terms ofMREcorr
and HDcorr. PrivAGM consistently achieves the smallestMREcorr
and HDcorr across all privacy budgets and datasets. Moreover, as

𝜀 decreases, the difference in MREcorr,HDcorr between PrivAGM

and the baselines becomes more significant.

Local clustering coefficient. Figure 7 presents a comparison be-

tween PrivAGM and the baselines in terms ofMREcluster. We can

observe thatMREcluster of PrivAGM and CAGM is approximately

similar. In certain cases (e.g., 𝜀 = ln 3 on Gplus), the MREcluster
of CAGM is even lower than that of PrivAGM. This disparity is

because MREcluster fails to capture the difference in edge direction-

ality between the synthetic and the original graphs. Hence, the

advantage of PrivAGM in capturing the directionality of the origi-

nal graphs cannot be fully reflected byMREcluster. We compare the

utility of triangle counting in Appendix E of the full version [45].
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Figure 9: Evaluation of 𝜀𝐸 and the savings on storage.
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Figure 10: Comparison of oblivious edge clipping methods.

Downstream task: truss community detection. Figure 8 com-

pares PrivAGM with the baselines in terms of the 𝐹1 score of the

truss community structures. The results show that PrivAGM consis-

tently achieves the highest 𝐹1 scores across all privacy budgets and

datasets. Moreover, PrivAGM’s 𝐹1 score is comparable to that of

non-private methods [1, 27, 49], highlighting the practical utility of

the synthetic graphs it generates for real-world downstream tasks.

8.4 System Cost Evaluation
Local neighbor list secret sharing. The amount of data each user

sent to each server is approximately 32 ·𝑁 · 3·𝑝
4
. For example, when

𝑝 = 0.1, the amount of data sent to each server is approximately

2.1 KB, 23.8 KB, and 31.5 KB for the MOOC, Twitter, and Gplus

datasets, respectively. The ratio of user-held data to the data trans-

mitted to each server is 0.25, 0.01, and 0.05 for the three datasets,

respectively. Figure 9 presents the lower bound 𝜀𝐸 and the savings

on the resulting size. The results show that PrivAGM achieves a

significant reduction in the resulting ciphertext size compared to

direct secret sharing of the complete local neighbor list (up to 90%

under 𝑝 = 0.1, 𝜀𝐸 ≈ 2.3).

Oblivious edge clipping. Figure 10 compares the basic and effi-

cient oblivious edge clipping protocols. The results for the basic

protocol are estimated from processing 1000 edges, as it is signif-

icantly slow (taking a few days). The comparison shows that the

efficient protocol achieves a substantial speedup compared to the

basic protocol (up to 10000×). Additionally, the efficient protocol

achieves approximately 50% savings in communication cost com-

pared to the basic protocol. For instance, with 𝑝 = 0.1 on the Twitter

dataset, the basic protocol incurs a communication cost of 0.19GB,

requires 7,449,031 rounds of communication, and takes 5.4 hours

for offline preparation. In contrast, the efficient protocol reduces

the communication cost to 0.1GB, requires only 89,032 rounds of

communication, and takes just 0.06 hours for offline preparation.
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Figure 11: Time/communication cost of dAGM construction.
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Figure 12: Time/communication cost on the Weibo dataset.

Differentially private dAGM construction. Figure 11 shows the
time and communication costs, along with their breakdown. We

can observe that the majority of the cost is attributed to the secure

triangle counting. Additionally, the results further demonstrate that

our local neighbor list secret sharing can significantly save the cost.

While the cost of dAGM construction is relatively high, it is a one-off
process. In addition, the system’s cost is sensitive to the selective

probability 𝑝 . For example, with 𝑝 = 0.1 on the Twitter dataset,

PrivAGM requires approximately 1 hour of computation, 801,288

rounds of communication, and 0.7 hours for offline preparation.

Scalability. To evaluate the scalability of PrivAGM, we conduct

experiments on the significantly larger Weibo social graph dataset
∗
.

This dataset contains 1,776,950 vertices and 308,489,739 edges. Fig-

ure 12 presents the results, which demonstrate the good scalability

of PrivAGM. Even on a graph with ∼1.7 million vertices, the run-

ning time increases by only 2.12× to 4.66× and the communication

cost increases by just 1.43× to 2.2×, compared to the case of Gplus

dataset with ∼107k vertices.

8.5 Remark
Based on the results, we observe a clear trade-off among privacy,

utility, and efficiency in PrivAGM. As stronger privacy guarantees

(i.e., smaller 𝜀) are enforced, the utility of the synthetic graphs tends

to diminish. Nonetheless, PrivAGM consistently outperforms base-

lines [6, 48] in utility preservation, demonstrating its robustness

and adaptability. The superior performance of PrivAGM compared

to the centralized method [6] can be attributed to two main factors.

Firstly, while PrivAGM is a decentralized method, the noise is added

to the extracted parameters only after the social graph has been

collected. This means that, similar to the centralized method, the

noise is injected at the same point in the process, i.e., during the

post-collection phase. Secondly, PrivAGM is the first approach that

explicitly considers the inherent directionality of edges in the input

∗
Weibo dataset is available at https://www.aminer.cn/influencelocality.

graph. This allows PrivAGM to preserve the structural characteris-

tics of the graph more effectively than centralized method.

9 RELATEDWORK
Private centralized graph analytics. In the centralized setting,

there is a substantial body of work on private graph analysis. In this

setting, a curator holds the complete graph and publishes some dif-

ferentially private information. Some works publish differentially

private statistics of the original graph, e.g., degree distribution

[35] and subgraph counting [10]. Other works [6, 22, 51] develop

differentially private generative graph models. Chen et al. [6] pro-
pose CAGM, an extension of [22], which additionally captures the

community structure. However, since they are designed for the cen-

tralized setting, they cannot be directly applied to the decentralized

setting. Moreover, they focus solely on undirected graphs.

Private decentralized graph analytics. Another line of work

considers the more challenging decentralized setting. Several

works [19, 20, 41, 50] focus on subgraph counting. Other works

[5, 34, 48, 53] focus on constructing differentially private generative

graph models. However, these methods [5, 34, 53] fail to capture

the attributed information of the graph. AsgLDP [48] is the work

most related to ours. However, since it does not consider the direc-

tionality of the edges in the input graph, it has poor utility when

dealing with directed graphs, as shown in our experiments.

Graphneural network trainingwith privacy awareness. There
exist other works on training differentially private graph neural

networks (GNNs) in the centralized setting [39] or decentralized

setting [38]. However, the work in [39] is designed for the central-

ized setting and is not applicable to our decentralized setting. For

the work in [38], their techniques are specifically developed for

training GNNs with DP guarantees over decentralized social graphs.

Since their approach is centered around adapting the GNN model

parameters based on the loss function, it does not address the gen-

eration of synthetic graphs. As a result, the problems tackled and

the techniques used in these studies are fundamentally different

from those explored in this paper, and their methodologies and

objectives remain distinct.

10 CONCLUSION
This paper presents PrivAGM, the first solution for the secure con-

struction of differentially private dAGM on decentralized social

graphs. By bridging the gap among edge DP, edge LDP, MPC, and

generative graph models, PrivAGM enables aggregators to effec-

tively construct differentially private dAGM on decentralized social

graphs without compromising the individual privacy of the users.

The evaluation results on three real-world graph datasets demon-

strate that PrivAGM outperforms the state-of-the-art baselines.

11 ACKNOWLEDGEMENTS
We thank the shepherd and anonymous reviewers for their insight-

ful feedback. This work was supported in part by the National

Cryptologic Science Fund of China under Grant 2025NCSF02033,

by the National Natural Science Foundation of China under Grant

92270123, by the Research Grants Council of Hong Kong under

Grant R1012-21, and by the Scientific Foundation for Youth Schol-

ars of Shenzhen University under Grant 868-000001033216.

4693

https://www.aminer.cn/influencelocality


PrivAGM: Secure Construction of Differentially Private Directed Attributed Graph Models on Decentralized Social Graphs

REFERENCES
[1] Wei Ai, CanhaoXie, TaoMeng, Jayi Du, and Keqin Li. 2024. AD-truss-equivalence

Based Index for Community Search over Large Directed Graphs. IEEE Transac-
tions on Knowledge and Data Engineering (2024), 5482–5494.

[2] Apple and Google. [n. d.]. Privacy-Preserving Contact Tracing. https://covid19.

apple.com/contacttracing. [Online; Accessed 9-Jul-2025].

[3] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. 2013. Differentially

private data analysis of social networks via restricted sensitivity. In Proc. of ACM
ITCS. 87–96.

[4] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant

Kumar, and Mayank Rathee. 2021. Function Secret Sharing for Mixed-Mode and

Fixed-Point Secure Computation. In Proc. of EUROCRYPT. 871–900.
[5] Felipe T Brito, Victor AE Farias, Cheryl Flynn, Subhabrata Majumdar, Javam C

Machado, and Divesh Srivastava. 2023. Global and Local Differentially Private

Release of Count-Weighted Graphs. Proceedings of the ACM on Management of
Data 1, 2 (2023), 1–25.

[6] Xihui Chen, Sjouke Mauw, and Yunior Ramírez-Cruz. 2020. Publishing

community-preserving attributed social graphs with a differential privacy guar-

antee. Proceedings on Privacy Enhancing Technologies 2020, 4 (2020), 131–152.
[7] Fan Chung and Linyuan Lu. 2002. The average distances in random graphs with

given expected degrees. Proceedings of the National Academy of Sciences 99, 25
(2002), 15879–15882.

[8] Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Grijincu,

Tom Jackson, Sandhya Kunnatur, Søren B. Lassen, Philip Pronin, Sriram Sankar,

Guanghao Shen, Gintaras Woss, Chao Yang, and Ning Zhang. 2013. Unicorn: A

System for Searching the Social Graph. Proceedings of the VLDB Endowment 6,
11 (2013), 1150–1161.

[9] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In Proc. of
NDSS. 1–18.

[10] Xiaofeng Ding, Shujun Sheng, Huajian Zhou, Xiaodong Zhang, Zhifeng Bao, Pan

Zhou, and Hai Jin. 2021. Differentially private triangle counting in large graphs.

IEEE Transactions on Knowledge and Data Engineering 34, 11 (2021), 5278–5292.

[11] Irit Dinur and Kobbi Nissim. 2003. Revealing information while preserving

privacy. In Proc. of ACM PODS. 202–210.
[12] Derek Doran. 2014. Triad-based role discovery for large social systems. In Proc.

of SocInfo. 130–143.
[13] Cynthia Dwork. 2006. Differential Privacy. In Proc. of ICALP. 1–12.
[14] Reo Eriguchi, Atsunori Ichikawa, Noboru Kunihiro, and Koji Nuida. 2021. Ef-

ficient Noise Generation to Achieve Differential Privacy with Applications to

Secure Multiparty Computation. In Proc. of FC. 271–290.
[15] Saba Eskandarian and Dan Boneh. 2022. Clarion: Anonymous communication

from multiparty shuffling protocols. In Proc. of NDSS. 1–18.
[16] Fireblocks. [n. d.]. Remove the complexity of working with digital assets. online

at https://www.fireblocks.com. [Online; Accessed 9-Jul-2025].

[17] Xi He, Ashwin Machanavajjhala, Cheryl J. Flynn, and Divesh Srivastava. 2017.

Composing Differential Privacy and Secure Computation: A Case Study on

Scaling Private Record Linkage. In Proc. of ACM CCS. 1389–1406.
[18] Thomas Humphries, Rasoul Akhavan Mahdavi, Shannon Veitch, and Florian

Kerschbaum. 2022. Selective MPC: Distributed Computation of Differentially

Private Key-Value Statistics. In Proc. of ACM CCS. 1459–1472.
[19] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. 2021. Locally Differen-

tially Private Analysis of Graph Statistics. In Proc. of USENIX Security. 983–1000.
[20] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. 2022. Communication-

efficient triangle counting under local differential privacy. In Proc. of USENIX
Security. 537–554.

[21] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. 2022. Differentially

Private Triangle and 4-Cycle Counting in the Shuffle Model. In Proc. of ACM
CCS. 1505–1519.

[22] Zach Jorgensen, Ting Yu, and Graham Cormode. 2016. Publishing attributed

social graphs with formal privacy guarantees. In Proc. of ACM SIGMOD. 107–122.
[23] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhod-

nikova, and Adam D. Smith. 2011. What Can We Learn Privately? SIAM J.
Comput. 40, 3 (2011), 793–826.

[24] Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal. 2024.

Graphiti: Secure Graph Computation Made More Scalable. In Proc. of ACM CCS.
4017–4031.

[25] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-

bedding trajectory in temporal interaction networks. In Proc. of ACM KDD.
1269–1278.

[26] Yehuda Lindell. 2017. How to Simulate It - A Tutorial on the Simulation Proof

Technique. In Tutorials on the Foundations of Cryptography. 277–346.

[27] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-

based community search over large directed graphs. In Proc. of ACM SIGMOD.
2183—2197.

[28] Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles

in Ego Networks. In Proc. of NeurIPS. 1–9.
[29] Meta. [n. d.]. The value of secure multi-party computation. online at https:

//privacytech.fb.com/multi-party-computation/. [Online; Accessed 9-Jul-2025].

[30] Payman Mohassel and Peter Rindal. 2018. ABY
3
: A Mixed Protocol Framework

for Machine Learning. In Proc. of ACM CCS. 35–52.
[31] MPCVault. [n. d.]. Multisig crypto wallet for business. online at https://mpcvault.

com. [Online; Accessed 9-Jul-2025].

[32] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.0:

Improved Mixed-Protocol Secure Two-Party Computation.. In Proc. of USENIX
Security. 2165–2182.

[33] Joseph J Pfeiffer III, Sebastian Moreno, Timothy La Fond, Jennifer Neville, and

Brian Gallagher. 2014. Attributed graph models: Modeling network structure

with correlated attributes. In Proc. of ACM WWW. 831–842.

[34] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2017.

Generating Synthetic Decentralized Social Graphs with Local Differential Privacy.

In Proc. of ACM CCS. 425–438.
[35] Sofya Raskhodnikova and Adam Smith. 2016. Lipschitz extensions for node-

private graph statistics and the generalized exponential mechanism. In Proc. of
IEEE FOCS. 495–504.

[36] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala,

and Somesh Jha. 2020. Crypt𝜀 : Crypto-assisted differential privacy on untrusted

servers. In Proc. of ACM SIGMOD. 603–619.
[37] Safeheron. [n. d.]. Safeheron MPC Wallet. https://safeheron.com. [Online;

Accessed 9-Jul-2025].

[38] Sina Sajadmanesh and Daniel Gatica-Perez. 2021. Locally private graph neural

networks. In Proc. of ACM CCS. 2130–2145.
[39] Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-

Perez. 2023. GAP: Differentially private graph neural networks with aggregation

perturbation. In Proc. of USENIX Security. 3223–3240.
[40] Scuttlebutt. [n. d.]. P2P social networkg. https://covid19.apple.com/

contacttracing. [Online; Accessed 9-Jul-2025].

[41] Haipei Sun, Xiaokui Xiao, Issa Khalil, Yin Yang, Zhan Qin, Wendy Hui Wang,

and Ting Yu. 2019. Analyzing Subgraph Statistics from Extended Local Views

with Decentralized Differential Privacy. In Proc. of ACM CCS. 703–717.
[42] Sijun Tan, Weikeng Chen, Ryan Deng, and Raluca Ada Popa. 2023. MPCAuth:

Multi-factor Authentication for Distributed-trust Systems. In Proc. of IEEE S&P.
829–847.

[43] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. 2021. CryptGPU: Fast

Privacy-Preserving Machine Learning on the GPU. In Proc. of IEEE S&P. 1021–
1038.

[44] Chenghong Wang, Johes Bater, Kartik Nayak, and Ashwin Machanavajjhala.

2022. IncShrink: architecting efficient outsourced databases using incremental

mpc and differential privacy. In Proc. of ACM SIGMOD. 818–832.
[45] Songlei Wang, Yifeng Zheng, Xiaohua Jia, and Haibo Hu. [n. d.]. The full version

of PrivAGM. https://github.com/songleiW/PrivAGM/blob/main/PrivAGM_full_

version.pdf. [Online; Accessed 9-Jul-2025].

[46] Zuan Wang, Xiaofeng Ding, Hai Jin, and Pan Zhou. 2022. Efficient secure and

verifiable location-based skyline queries over encrypted data. Proceedings of the
VLDB Endowment 15, 9 (2022), 1822–1834.

[47] Stanley L Warner. 1965. Randomized response: A survey technique for eliminat-

ing evasive answer bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–69.
[48] Chengkun Wei, Shouling Ji, Changchang Liu, Wenzhi Chen, and Ting Wang.

2020. AsgLDP: collecting and generating decentralized attributed graphs with

local differential privacy. IEEE Transactions on Information Forensics and Security
15 (2020), 3239–3254.

[49] Jaewon Yang, Julian McAuley, and Jure Leskovec. 2013. Community detection in

networks with node attributes. In Proc. of IEEE ICDM. 1151–1156.

[50] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao. 2022. LF-

GDPR: A framework for estimating graph metrics with local differential privacy.

IEEE Transactions on Knowledge and Data Engineering 34, 10 (2022), 4905–4920.

[51] Quan Yuan, Zhikun Zhang, Linkang Du, Min Chen, Peng Cheng, and Mingyang

Sun. 2023. PrivGraph: Differentially Private GraphData Publication by Exploiting

Community Information. In Proc. of USENIX Security. 3241–3258.
[52] Yanping Zhang, Johes Bater, Kartik Nayak, and Ashwin Machanavajjhala. 2023.

Longshot: Indexing growing databases using MPC and differential privacy. Pro-
ceedings of the VLDB Endowment 16, 8 (2023), 2005–2018.

[53] Yuxuan Zhang, Jianghong Wei, Xiaojian Zhang, Xuexian Hu, and Wenfen Liu.

2018. A two-phase algorithm for generating synthetic graph under local differ-

ential privacy. In Proc. of ACM ICCNS. 84–89.

4694

https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://www.fireblocks.com
https://privacytech.fb.com/multi-party-computation/
https://privacytech.fb.com/multi-party-computation/
https://mpcvault.com
https://mpcvault.com
https://safeheron.com
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://github.com/songleiW/PrivAGM/blob/main/PrivAGM_full_version.pdf
https://github.com/songleiW/PrivAGM/blob/main/PrivAGM_full_version.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Attributed Graphs
	2.2 Attributed Graph Model (AGM)
	2.3 Differential Privacy for Graphs
	2.4 Additive Secret Sharing

	3 Problem Statement
	3.1 System Architecture
	3.2 Threat Model and Security Guarantees

	4 Secure Social Graph Collection
	5 Private dAGM Construction
	5.1 Oblivious Edge Clipping
	5.2 Secure Degree Sequence Extraction
	5.3 Secure Attribute-Edge Correlation Distribution Extraction
	5.4 Secure Triangle Counts Extraction

	6 Attributed Graphs Generation
	6.1 Directed CL Model
	6.2 Refining Graph Structure

	7 Privacy and Security Analysis
	7.1 Leakage Function
	7.2 Privacy Analysis
	7.3 Security Analysis

	8 Performance Evaluation
	8.1 Setup
	8.2 Effect of Key Parameters
	8.3 Utility Comparison
	8.4 System Cost Evaluation
	8.5 Remark

	9 Related Work
	10 Conclusion
	11 acknowledgements
	References

