
Stress-Testing ML Pipelines with Adversarial Data Corruption

Jiongli Zhu
University of

California, San Diego
USA

jiz143@ucsd.edu

Geyang Xu
University of

California, San Diego
USA

gexu@ucsd.edu

Felipe Lorenzi
University of

California, San Diego
USA

!orenzi@ucsd.edu

Boris Glavic
University of Illinois

Chicago
USA

bglavic@uic.edu

Babak Salimi
University of

California, San Diego
USA

bsalimi@ucsd.edu

ABSTRACT

Structured data-quality issues—such as missing values correlated

with demographics, culturally biased labels, or systemic selection bi-

ases—routinely degrade the reliability ofmachine-learning pipelines.

Regulators now increasingly demand evidence that high-stakes

systems can withstand these realistic, interdependent errors, yet

current robustness evaluations typically use random or overly sim-

plistic corruptions, leaving worst-case scenarios unexplored.

We introduce S!"!#$, a causally inspired framework that (i)

formally models realistic data-quality issues through dependency

graphs and !exible corruption templates, and (ii) systematically

discovers corruption patterns that maximally degrade a target per-

formance metric. S!"!#$ employs a bi-level optimization approach

to e"ciently identify vulnerable data subpopulations and #ne-tune

corruption severity, treating the full ML pipeline, including pre-

processing and potentially non-di$erentiable models, as a black

box. Extensive experiments across multiple datasets and ML tasks

(data cleaning, fairness-aware learning, uncertainty quanti#cation)

demonstrate that even a small fraction (around 5%) of structured cor-

ruptions identi#ed by S!"!#$ severely impacts model performance,

far exceeding random or manually crafted errors, and invalidating

core assumptions of existing techniques. Thus, S!"!#$ provides

a practical tool for rigorous pipeline stress-testing, a benchmark

for evaluating robustness methods, and actionable guidance for

designing more resilient data work!ows.

PVLDB Reference Format:

Jiongli Zhu, Geyang Xu, Felipe Lorenzi, Boris Glavic, and Babak Salimi.

Stress-Testing ML Pipelines with Adversarial Data Corruption. PVLDB,

18(11): 4668 - 4681, 2025.

doi:10.14778/3749646.3749721

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/lodino/savage.

1 INTRODUCTION

Machine-learning pipelines now approve loans, trigger sepsis alerts,

and guide parole decisions—roles critical enough that policymakers

increasingly demand reliability under "reasonably foreseeable" fail-

ures. For instance, Article 15 of the EU Arti#cial Intelligence Act

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749721

����� �

�

	��

��
��

�$
��

��
��
��

��
�
�

��
��
"�

�
���

�

� !���"!��������������� ��#����������"��

�����$�����������
������!��$�����������
������

Figure 1: We analyzed 398 public census tables (>1,100

columns containing gaps). Treating each column’s missing-

ness as a binary label and predicting it from other attributes,

we found that 91% of columns achieved an F1 score above 0.9

(bars). This indicates that missing values are predominantly

systematic rather than random.
mandates that high-risk AI systems achieve and maintain appropri-

ate accuracy, robustness, and resilience throughout their lifecycle,

while the NIST AI Risk-Management Framework explicitly calls

for managing harmful bias and data-quality faults [1, 36]. Meeting

thesemandates is challenging because real-world tabular data rarely

contain tidy, independent errors. Missing values, label !ips, and

selection biases typically arise through structured, interdependent

processes: a "low-risk" !ag in medical records suppresses lab tests

while correlating with insurance status and demographics [13, 15];

loan datasets omit repayment histories precisely for subpopulations

most likely to default [10, 33, 39]; and crowdsourced labels drift

with cultural nuances, producing systematic misannotations [17].

Figure 1 con#rms how pervasive such structure is—in a large public

census corpus, the missingness of values are highly predictable

from other attributes. These overlapping errors quietly erode ac-

curacy, fairness, and generalizability [16], yet without provenance

metadata, practitioners have no principled way to certify robustness

against such realistic errors.

To rigorously address this critical issue, this paper introduces

S!"!#$ (Sensitivity Analysis Via Automatic Generation of Errors),

a framework that systematically and automatically generates re-

alistic, high-impact, and adversarial data corruption scenarios to

stress-test end-to-end ML pipelines. Unlike existing benchmarks

and adversarial attacks, S!"!#$ identi#es corruption patterns that

mirror plausible real-world conditions, for instance, revealing how

non-random missingness, label errors, and selection bias jointly

exacerbate model failure in vulnerable subpopulations. By auto-

matically discovering these complex yet interpretable worst-case

scenarios, S!"!#$ helps practitioners and researchers uncover crit-

ical pipeline vulnerabilities and develop demonstrably more robust,

fair, and trustworthy ML systems.

Existing robustness benchmarks, including REIN [3], JENGA [46],

CleanML [28], and Shades-of-Null [23], typically inject simplistic

faults such as uniformly missing values, random label !ips, or nar-

row demographic #lters [16, 19]. As summarized in Table 1, these

approaches do not systematically explore realistic, structured, and

4668

https://doi.org/10.14778/3749646.3749721
https://github.com/lodino/savage
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749721
https://www.acm.org/publications/policies/artifact-review-and-badging-current

��������� �	����
�������������
������� ���������������������

��
�7 = Z §, �� f � f ��
�, ��/������

������T�� �����, ��

�� = 3�, �� = 5�

« ���0.52

��
	���� ������� ��� �	��	����� �	
������
 � �
��� & ���
�� 	��
�� ���
��� & �
�� ��
& & & &

���5������5��5��5��5��������5
�
����
�
����� ��������5

�
5������K

���5����
 �������

�

����� ���
�������
��� ������5��������K

���5����
5���������5��
�5�
��
5��5
�
��5
�
5���
�����5
����� ���
�������
��� ��5��5��5��������K

d

e

f

D���� ����������

���� ���������

� �������� 	�T� �T

���� �T���TE
�T��� «������������P���E����� �����

��������� ��������� 	�����

�
� ��� 	�T��

d

e f

������
����� ������T��� ��� �

&

�
� ��� �� �
� ��� 	�

&

������T��� ��� �

��������� ���� ������

����������

��������
������ �

��

&

�� �

� ��

�� �

� �� �

�� �

�

�

�� �

�

�� �

� ��

�� �

���

�� �

� ��

��
 �����S�
��
« = 0.55

�� �

� ��

��
 �����S�
��
« = 0.7�

�� �

���

��
 �����S�
��
« = 0.55

�� �

� ��

��
 �����S�
��
« = 0.4

�� �

� ��

��
 �����S�
��
« = 0.7

�� �

���

��
 �����S�
��
« = 0.5

�� �

���

��
 �����S�
��
« = 0.5

�� �

���

��
 �����S�
��
« = 0.45

�� �

���

��
 �����S�
��
« = 0.35

�� �

� ��

��
 �����S�
��
« = 0.4

�� �

� ��

&

Figure 2: Overview of S!"!#$. Di!erent user questions map to varying constraints on the dependency graphs, where 1³ denotes

no constraints, 2³ restricts to missing data, and 3³ speci"es one unique dependency graph for selection bias. The dependency

beam search is conducted to search the dependency graph and its corresponding worst-case concrete corruption (obtained by

TPE) that leads to the lowest model utility measured by É.

Paper
Data

Corruption

Targeted

Errors
Adversarial
Analysis

Budach et al. [34] ' ((

Islam et al. [19] ' ' (

Guha et al. [16] (- -

CleanML [28] ' ((

REIN [3] ' ((

JENGA [46] ' ' (

Shades-of-Null [23] ' ' (

S!"!#$ (ours) ' ' '

Table 1: Comparison of existing works on data corruption,

targeted errors, and adversarial analysis.
interdependent error patterns, thus underestimating the severity of

data-quality issues in high-stakes applications [3, 16, 28]. Indiscrim-

inate data-poisoning attacks also manipulate training data, but they

generally target a speci#c model rather than evaluating entire ML

pipelines. Moreover, most poisoning methods, including subpop-

ulation and clean-label attacks [20, 31, 32, 35], are gradient-based,

which craft subtle, low-level perturbations that require white-box

gradient access, rendering them ine$ective when pipelines include

non-di$erentiable preprocessing or must be treated as black boxes.

By contrast, S!"!#$ produces explicit, interpretable corruption

patterns—such as missingness or label errors tied to speci#c de-

mographic or semantic attributes—that mirror interpretable, real-

world data-quality issues extensively adopted in ML and data-

management studies [20, 30, 40, 43, 45]. By treating the entire ML

pipeline, including cleaning, feature engineering, and model train-

ing, as a black box, S!"!#$ uncovers worst-case yet plausible failure

scenarios that neither existing benchmarks nor model-speci#c poi-

soning attacks can reveal.

At the heart of S!"!#$ is a principled, causally inspired frame-

work for modeling realistic data errors that arise from interdepen-

dent mechanisms (Section 3). These mechanisms are captured in

a directed dependency graph: nodes represent clean attributes and

their corrupted counterparts, while an edge means that the prob-

ability or severity of error in a child node depends on the value of

its parent, e.g., if insurance-status is “self-pay,” the wage #eld is

more likely to be recorded as missing. The graph does not encode

causal relations among clean attributes; it records only the path-

ways by which errors propagate. Dependency graphs can be seeded

from domain knowledge or discovered automatically with a beam

search (Figure 2). Each graph is paired with !exible, pattern-based

corruption templates that specify when and how an attribute is cor-

rupted, such as missingness triggered by demographics or label !ips

tied to textual cues. User-de#ned plausibility constraints (historical

frequency thresholds, regulatory rules, validation checks) prune

unrealistic scenarios. Together, dependency graphs and corruption

templates form an interpretable Data Corruption Process that sys-

tematically captures common data-quality issues, including missing

values, label errors, and selection bias.

Building on this formal foundation, we formulate the discovery of

worst-case corruption scenarios as a bi-level optimization problem

(Section 4). As shown in Figure 2, an upper-level combinatorial

beam search [49] probes the space of all possible error dependencies,

e.g., which attributes in!uence corrupted attributes, that maximally

degrades a target metric such as accuracy or fairness. The lower-

level Bayesian optimization (BO) tunes parameters to maximize

performance degradation for a given dependency graph. Crucially,

this approach treats the entire ML pipeline, including preprocessing

and training steps, as a black-box function, requiring no gradient

information. To further improve scalability, S!"!#$ uses a proxy-

based strategy: it e"ciently identi#es harmful corruption patterns

using a computationally inexpensive proxy pipeline and transfers

these patterns to resource-intensive ML frameworks, achieving

substantial runtime improvements (over 10× speed-up on datasets

of millions of rows).

To assess S!"!#$ in practice, we conduct extensive experiments

across multiple datasets and ML tasks (Section 5), thoroughly evalu-

ating the impact of systematically generated corruptions on (i) data-

cleaning and preparation methods [12, 24, 25, 27, 38, 44], (ii) fair

and robust learning approaches [21, 41, 42, 53], and (iii) uncertainty

quanti#cation techniques [26, 52]. Our results demonstrate that

even small, structured corruptions identi#ed by S!"!#$ can invali-

date key assumptions about missingness or label stability, resulting

in severe performance degradation that substantially exceeds the

impact of random or manually crafted errors. In summary, our con-

tributions include: (1) a uni#ed, mechanism-aware Data Corruption

Process for modeling realistic data-quality errors; (2) a gradient-free,

interpretable bi-level optimization method to systematically iden-

tify adverse data corruptions; and (3) extensive empirical evidence

4669

demonstrating signi!cant, previously unrecognized vulnerabilities

in state-of-the-art ML pipelines.

2 RELATEDWORK

Benchmarks for Data Quality in machine learning (ML). As

shown in Table 1, most prior work introduces synthetic errors

or considers limited corruption scenarios without comprehensive

analysis. Guha et al.[16] evaluate automated data cleaning but as-

sume identical error distributions in both training and test data,

thus failing to capture distribution shifts. JENGA[46] examines test-

time corruptions while keeping training data clean, missing the

impact of biased training data. CleanML[28], REIN[3], and Budach

et al.[34] study data corruption e"ects but do not focus on spe-

ci!c error types or detrimental failure modes. Islam et al.[19] and

Shades-of-Null[23] incorporate targeted corruption mechanisms,

yet none perform systematic adversarial analysis to stress-test ML

pipelines. S!"!#$!lls these gaps by generating structured, realistic

data corruptions that reveal failure modes across data cleaning, fair

learning, and uncertainty quanti!cation (UQ). Unlike previous ef-

forts, S!"!#$ systematically explores error-generation mechanisms

and simulates worst-case corruption scenarios to uncover vulnera-

bilities that remain hidden under standard benchmark conditions.

By integrating adversarial analysis, S!"!#$ enables a more rigorous

evaluation of ML robustness under structured, non-random corrup-

tions, o"ering a more realistic assessment of pipeline reliability.

Data Poisoning. Our work also relates to data poisoning, which

deliberately alters training data to degrade model performance,

misclassify speci!c examples, or implant backdoors [5, 6, 8, 11, 20,

31, 32, 47, 48, 50].Poisoning methods can be targeted, aiming to

mislabel particular test instances [11, 50], or indiscriminate, broadly

reducing overall accuracy [20, 31]. Our work shares a high-level

goal with indiscriminate data poisoning: both aim to identify cor-

ruptions that degrade model performance. However, the motiva-

tions, constraints, and techniques di"er signi!cantly. Poisoning

attacks typically seek to evade detection and therefore impose im-

perceptibility constraints on the perturbations, without requiring

the modi!cations to re#ect realistic data quality issues. In contrast,

our objective is to evaluate the robustness of ML pipelines with real-

istic and often systematic data errors. Unlike poisoning approaches,

S!"!#$ explicitly models structured corruptions such as selection

bias, label errors, and missing values. In addition, our method ac-

commodates both cases where users have limited knowledge of

potential data issues and cases where domain-speci!c error types

are known and can be speci!ed.

Another key distinction is that S!"!#$ operates on full ML

pipelines, including non-di"erentiable components like imputa-

tion or outlier removal. Most poisoning techniques either assume

access to a di"erentiable end-to-end model or ignore preprocessing

altogether. While some recent e"orts [29] incorporate preprocess-

ing (e.g., feature selection), they target narrow scenarios and do

not generalize to broader pipeline components.

3 MODELING DATA CORRUPTION

We now introduce a principled framework for simulating the mech-

anisms by which real-world data collection processes generate

corrupted datasets. Inspired by structural causal modeling [37, 54],

this framework explicitly models how systematic dependencies be-

tween attributes, noise, and selection processes lead to data-quality

issues such as missingness, label errors, and selection bias. For-

mally, let a dataset 𝐷 consist of 𝑁 tuples and have 𝑛 attributes

A = {𝐴1, . . . ,𝐴𝑛}. Given a tuple 𝑡 , we use 𝑡 [𝐴] to denote its value

in attribute 𝐴. For any set of attributes A, we let Dom(A) denote

their joint domain, and x a speci!c assignment in that domain. The

domains of all attributes are assumed to contain the special value

⊥ that is used to mark missing values. The goal of this framework

is to model the generation of a corrupted dataset 𝐷̃ from 𝐷 by

specifying mechanisms that govern how attributes are altered or

omitted through noise-driven, interdependent processes. We use

𝐴𝑖 to denote an attribute in the clean dataset and 𝐴∗
𝑖 to denote the

corresponding corrupted attribute.

A data corruption process (DCP) consists of a dependency graph

that models at the schema level which attributes of the clean dataset

𝐷 and noise variables modelling stoachstic factors determine the

values of the corrupted version 𝐴
∗ of an attribute 𝐴. Speci!cally,

for each tuple 𝑡 in the clean dataset, its corrupted counterpart 𝑡∗

is created by computing the value of each corrupted attribute 𝐴∗

based on its parents in the dependency graph using pattern-based

corruption functions to be introduced in the following. Noise vari-

ables are used to model randomness in the corruption process. For

instance, consider a simple label #ipping example for a binary label

attribute𝑌 where the corrupted label𝑌 ∗ has a certain probability to

being #ipped. That is, the corrupted label is computed solely based

on the original label and the value of a noise variable 𝑁 , resulting

in the dependency structure: 𝑁 → 𝑌
∗ ← 𝑌 . As another example,

consider that for a subpopulation with speci!c demographics (at-

tribute𝐷), the corrupdated (binary) label is always 0, and otherwise

the corrupted label is equal to the original label: 𝐷 → 𝑌
∗ ← 𝑌 .

D$%&9&(&)9 1 (D$*$9+$9,- G.!*/). A dependency graph 𝐺 =

(V, E) is a directed acyclic graph whose vertex setV includes:

• Original attributes, A = {𝐴1, . . . ,𝐴𝑛},

• Corrupted counterparts, A∗
= {𝐴∗

1, . . . ,𝐴
∗
𝑛}, where each 𝐴

∗
𝑖 re-

places 𝐴𝑖 in the corrupted dataset,

• Noise variables, N = {𝑁1, . . . ,𝑁𝑚}

• An optional binary selection indicator, 𝑆 , modeling data exclusion.

Each directed edge (𝑢, 𝑣) ∈ E speci!es that node 𝑢 directly in"uences

node 𝑣 . For a corrupted attribute𝐴∗ ∈ A
∗, its parent set Pa(𝐴∗) ⊆ V

designates all the variables that govern its corrupted value. We require

that (i) each noise variable 𝑁𝑖 is a source in the graph (no incoming

edges) and is only connected through outgoing edges to corrupted

attributes and (ii) 𝑆 and all 𝐴∗
𝑖 are sinks.

Note that the binary variable 𝑆 determineswhether a tuple will be

included in the corrupted dataset or not. This can be used to model

selection bias. For example, consider a medical dataset where pati-

tients with gender attribute𝐺 equal to female have a certain chance

(modelled as a noise variable 𝑁𝑠𝑒𝑙𝑏𝑖𝑎𝑠) to be excluded, because of

a computer error in the gynecological ward. This corresponds to

a graph fragment 𝑁𝑠𝑒𝑙𝑏𝑖𝑎𝑠 → 𝑆 ← 𝐺 . Given a dependency graph

𝐺 , which speci!es the relationships between the original attributes

and how the noise variables and the original attributes a"ect the cor-

rupted attributes, we now formalize how each corrupted attribute

𝐴
∗ ∈ A

∗ is computed. Rather than de!ning a single function, we

4670

introduce the concept of a pattern corruption template, a parametric

family of functions that can model diverse error patterns. Each tem-

plate is associated with a selection pattern, a conjunction of range

conditions over the values of the parents of a corrupted attribute.

For a given tuple and attribute, the value of the attribute will be

corrupted if the pattern evaluates to true for this tuple. The ratio-

nale for using templates with parameters is that our system that

searches for e"ective corruptions can be used to !nd parameter set-

tings for a corruption template that most degrade the performance

of a model.

D!"#$#%#&$ 2 (P9%%!($ C&(()*%#&$ F)$+%#&$ 9$, T!m*.9%!).

For an attribute 𝐴 ∈ A to be corrupted into 𝐴∗, a pattern corruption

function is a pair (𝐹 ,𝜙) where:

𝐹 : Dom
(

Pa(𝐴∗)
)

−→ Dom(𝐴∗),

where Pa(𝐴∗) ⊆ V is the parent set of 𝐴∗ as speci!ed by the depen-

dency graph 𝐺 . Furthermore, 𝜙 is a conjunction of range conditions

on the attributes in Pa(𝐴∗). For a given tuple 𝑡 :

𝜙 (𝑡) =
∧

𝐴∈Pa(𝐴∗)

(

𝑙𝐴 ≤ 𝑡 (𝐴) ≤ 𝑢𝐴
)

,

For a clean tuple 𝑡 , the corruption function (𝐹 ,𝜙) is used to compute

the corrupted value of attribute 𝐴∗ in the corresponding corrupted

tuple 𝑡∗:

𝑡∗ [𝐴∗] =

{

𝐹 (𝑡 [Pa(𝐴∗)]) , if 𝜙 (𝑡)

𝑡 [𝐴] otherwise.

A corruption template F for 𝐴∗ de!nes a parametric family of

corruption functions:

F : Dom(É) −→ {𝐹 ,𝜙},

where É is a set of parameters controlling the behavior of the corrup-

tion process. For all𝐴 ∈ Pa(𝐴∗), the bounds 𝑙𝐴 and𝑢𝐴 are parameters

in É. By specifying settings 𝜃 for É, the template F is instantiated

into a concrete corruption function F (𝜃) = (𝐹 ,𝜙).

Note that the range conditions used in patterns also allow for

equality conditions (𝑙𝐴 = 𝑢𝐴) and one sided comparisons. For con-

venience we will write such conditions as 𝐴 = 𝑐𝐴 and 𝐴 ≤ 𝑐𝐴 .

Note that while corruption functions are deterministic, randomness

in the corruption process is modeled through the noise variables

whose values are sampled from a probability distribution. Contin-

uing with the selection bias example from above, we model the

exclusion of female patients using a pattern 𝜙𝑆 : 𝐺 = 𝑓 𝑒𝑚𝑎𝑙𝑒 and

corruption function 𝐹𝑆 with parameter 𝑝𝑆 which determines the

probability of exclusion:

𝐹𝑆 (𝐺,𝑁𝑠𝑒𝑙𝑏𝑖𝑎𝑠) =

{

0 if 𝑁𝑠𝑒𝑙𝑏𝑖𝑎𝑠 ≤ 𝑝𝑆

1 otherwise

Combining dependency graphs, corruption function templates, and

distributions for noise variables we now formally de!ne data cor-

ruption process templates (DCPTs) and the concrete data corrup-

tion processs (DCPs) that result from applying bindings for the

parameters of the template. With the exception of values for noise

variables, a DCP fully speci!es the transformation of 𝐷 into 𝐷̃ by

systematically altering each original attribute based on its speci!ed

corruption mechanism and !lters tuples based on the value of 𝑆 .

D!"#$#%#&$ 3 (D9%9 C&(()*%#&$ P(&+!ss). A data corruption

process template M = (𝐺, F,É) is a tuple consisting of:

𝑌

𝑌 ∗

𝐷

𝑁𝑌

𝑊
𝐷 : Demographics

𝑊 : Credit, employment, etc

𝑌 : Actual repayment

𝑌 ∗ : Observed repayment

𝑁𝑌 : Noise variable

Figure 3: Dependency graphs for missing labels.

𝐷 𝑋 𝑍

𝑌 ∗ 𝑌 𝑆

𝐷 : Demographics

𝑋 : Socio-cultural traits

𝑍 : Zipcode

𝑆 : Police patrol indicator

𝑌 : Actual crime commitment

𝑌 ∗: Observed crime commitment

Figure 4: Dependency graphs for label errors and selection

bias. For simplicity, we omit the noise variables.

• Dependency graph 𝐺

• Corruption templates F with a compatible template F𝐴∗ for each

corrupted attribute 𝐴∗ ∈ A
∗ and a template F𝑆 for 𝑆 , where com-

patibility requires that F𝐴∗ depends only on Pa(𝐴∗),

• A parameter set É consisting of É𝐴∗ for each template, used to

instantiateF𝐴∗ into a speci!c corruption function 𝐹𝐴∗ . Additionally,

É contains noise variable distributions · = {𝜔1, . . . ,𝜔𝑚}, where

𝜔𝑖 is the probability distribution for 𝑁𝑖 .

Given bindings 𝜃 for the parameters É of a DCPT M, a concrete data

corruption process M = M(𝜃) is derived from M by applying the

bindings to the corruption templates in F and associating 𝑁𝑖 with 𝜔𝑖 .

Given a DCPM, the corrupted dataset 𝐷̃ is generated as follows.

For each tuple, values for each noise variables 𝑁𝑖 are !rst sampled

from its distribution 𝜔𝑖 . The selection function 𝐹𝑆 is then evaluated

using Pa(𝑆) to determine whether the tuple is included in 𝐷̃ . If

the tuple is included, each corrupted attribute 𝐴∗ is computed by

(i) evaluating 𝜙𝐴∗ on 𝑡 and if it evaluates to true, apply 𝐹𝐴∗ using

Pa(𝐴∗) to compute the corrupted value. This is done in topological

order wrt. the dependency graph 𝐺 , ensuring that each attribute

is processed only after its parent attributes have been evaluated.

Note that two applications of the same DCPM may yield di"erent

corrupted datasets due to the randomness injected into the process

by the noise variables. By varying templates, parameters, and noise

distributions, DCPs model a broad range of data-quality issues,

including missingness, label errors, and selection bias, as well as

complex multi-attribute dependencies.

We illustrate the application of our framework by modeling two

key corruption scenarios: missing data and a compound case in-

volving both label errors and selection bias. These examples demon-

strate how corruption processes can be systematically de!ned us-

ing structured dependencies, where missing values arise due to

observed and latent factors, and label errors interact with selection

mechanisms to shape data availability. The same approach extends

naturally to other complex corruption patterns, such as outliers,

duplication e"ects, and interactions between multiple error types.

E09m*.! 1 (M#ss#$1 D9%9 #$ F#9+!). The dependency graph

in Figure 3 models a missing not at random (MNAR) scenario where

4671

missingness in the observed repayment outcome 𝑌 ∗ depends on the

actual repayment status 𝑌 and demographic factors 𝐷 . 𝑌 is corrupted

using the following template with parameters {𝑝𝑌 ,𝑑,𝑦}:

𝐹𝑌 ∗ (𝑌 ,𝐷,𝑁𝑌) =

{

⊥ if 𝑁𝑌 ≤ 𝑝𝑌

𝑌 otherwise
𝜙𝑌 ∗ : 𝐷 = 𝑑 ∧ 𝑌 = 𝑦

where 𝑁𝑌 is a noise variable taking values in [0, 1] with a uniform

distribution. The value of 𝑁𝑌 is compared against the parameter 𝑝𝑌
to determine whether 𝑌 ∗ is missing. For instance, setting 𝑝𝑌 = 0.95,

𝑑 = minority, and𝑦 = reject means repayment information is missing

with 95% probability for minorities with rejected applications and not

missing in any other subpopulation.

E09m*.! 2 (C&m*&)$, E((&(s #$ P(!,#+%#2! P&.#+#$1). Fig-

ure 4 shows a dependency graph for predictive policing, where label

errors and selection bias coexist. The actual crime 𝑌 is in"uenced

by socio-cultural traits 𝑋 and demographics 𝐷 , while the observed

crime 𝑌 ∗ is subject to label errors that depend on 𝐷 and 𝑌 . Selection

bias arises from police patrols 𝑆 , which determine whether data is

collected and are in"uenced by 𝑋 and geographic region 𝑍 . The label

is corrupted using a template with parameters {𝑝𝑌 ,𝑑𝑌 ,𝑦𝑌 }:

𝐹𝑌 ∗ (𝑌 ,𝐷) =

{

1 − 𝑌 if 𝑁𝑌 ≤ 𝑝𝑦

𝑌 otherwise
𝜙𝑌 ∗ : 𝐷 = 𝑑𝑌 ∧ 𝑌 = 𝑦𝑌

where 𝑁𝑌 is uniformly sampled from [0, 1]. The parameters 𝑑𝑌 and

𝑦𝑌 specify the subpopulation and label values a#ected.

Selection bias is modelled as a template with parameters {𝑝𝑆 , 𝑧𝑆 , 𝑥𝑆 }:

𝐹𝑆 (𝑁𝑆) =

{

0 if 𝑁𝑆 ≤ 𝑝𝑆

1 otherwise
𝜙𝑆 : 𝑍 = 𝑧𝑆 ∧ 𝑋 = 𝑥𝑆

where 𝑆 = 0 indicates that data was not collected (police did not

patrol). The parameter 𝑝𝑆 determines the selection probability, while

𝑧𝑆 and 𝑥𝑆 de!ne the region and subpopulation ignored by police.

Extension to Multi-class Setting. Example 2 describes the label

error under a binary class setting. However, S9291! also supports

the multiclass label error, which is achieved by segmenting the

𝑁𝑌 ≤ 𝑝𝑦 part into multiple sub-intervals, each representing one

class to be changed to.

4 ADVERSARIAL DATA CORRUPTION

In this section, we develop algorithms for identifyingworst-case cor-

ruption mechanisms that degrade ML pipeline performance within

realistic constraints. Given a set of candidate DCPTsMfeasible pro-

vided by the user, our objective is to determine the most adversarial

DCP M† that minimizes a performance metric while adhering

to structural and domain constraints. That is, there exists some

DCPT M ∈ Mfeasible and bindings 𝜃 for the parameters of M

such that M†
= M(𝜃). Abusing notation we will sometimes write

M ∈ Mfeasible to denote that there exists M ∈ Mfeasible and 𝜃 for

M such that M(𝜃) = M. As mentioned previously, the user has

full control over the speci!city of the candidate DCPs ranging from

letting our approach select the parameters for a !xed corruption

function template to searching over a wide range of dependency

graphs and candidate corruption templates. We de!ne this as an

optimization problem over the space of DCPs using bi-level opti-

mization to separate template selection from parameter tuning.

Setting. We are given a training dataset 𝐷train = {(𝑥𝑖 ,𝑦𝑖)}
𝑁
𝑖=1,

where 𝑥𝑖 ∈ Dom(X) represents the input features of a tuple, and

𝑦𝑖 ∈ Dom(𝑌) denotes the corresponding label. An ML pipeline A

processes 𝐷train through three stages: preprocessing, model train-

ing, and post-processing. As we utilize blackbox optimization tech-

niques, our solution supports arbitrary pipelines. The pipeline pro-

duces a model ℎ based on 𝐷train, which is evaluated on a separate

test dataset 𝐷test = {(𝑥𝑖 ,𝑦𝑖)}
𝑀
𝑖=1. The performance of the model is

measured using a task-relevant metric Ó(ℎ,𝐷test), such as accuracy,

mean squared error, or fairness measures like demographic parity

or equal opportunity. Without loss of generality we assume that

higher values of Ó indicate better performance. To evaluate the

e"ectiveness of a candidate DCP M in degrading Ó, we have to

rerun A on 𝐷̃ = M(𝐷train) to get model ℎ
𝐷̃
and reevaluate the

metric Ó(ℎ
𝐷̃
,𝐷test).

Adversarial Data Corruption. Given Mfeasible, our objective is

to identify the most adversarial DCP M† that minimizes the per-

formance metric selected by the user. Note that for a DCP M,

M(𝐷train) is not deterministic as we sample values for the noise

variables for each tuple. Thus, we optimize for the DCP with the

lowest expected performance:

M†
= argmin

M∈Mfeasible

E

[

Ó

(

A
(

M(𝐷train)
)

,𝐷test

)

]

. (1)

Remark. The term adversarial in M† does not imply that the

identi!ed corruption DCPs are rare or extreme. Rather, it refers to

a DCPs that maximally degrades model performance while being

within the bounds of what the user considers realistic. That is, based

on the user’s background knowledge about possible types of data

errors in their domain, we determine the worst case impact on the

model performance that can be expected for these types of errors.

The user can provide such background knowledge as input in form

of a dependency graph and, potentially also corruption function

templates. However, our approach does not require these inputs

to be provided, but can also search for dependency graphs and

select templates autonomously. By using interpretable patterns, the

user can easily judge whether a DCP is realistic and if necessary

rerun the system excluding patterns they deem to be unrealistic. In

contrast to the simple error injection techniques used in past work

that evaluates the impact of data quality issues on ML tasks, our

approach can ensure the user that their pipeline is robust against

realistic worst-case errors.

4.1 Bi-level Optimization Formulation

Exploring all candidate DCPs – selecting a dependency graph and

corruption template, and bindings for their parameters – is infea-

sible. To manage this complexity, we assume a prede!ned error

type (missing values (MVs), label errors, or selection bias) and re-

strict the search to DCPTs for this error type that corrupt a single

target attribute: 𝐴∗ for MVs, 𝑌 ∗ for label errors, or 𝑆 for selection

bias. Note that the error type determines the corruption function

template except for the pattern. Furthermore, we assume that each

corrupted attribute 𝐴∗
𝑖 is associated with a single noise variable 𝑁𝑖 .

As discussed in Section 3, a DCPT de!nes a structured corruption

4672

mechanism where attributes in the pattern 𝜙 (used to select the

corrupted subpopulation) and used as parameters to the corruption

function template correspond to the parents of the target attribute

in the dependency graph𝐺 , which we assume WLOG includes only

these dependencies. Thus, for a given error type, determining F

except for the pattern, we have to choose the subset of original

attributes to be used in the pattern. Despite these restrictions, the

number of candidate DCPTs remains exponential in the number

of attributes as any subset of attributes can be used as the parents

of a corrupted attribute, and for each DCPT there may be a large

number of possible parameter settings. To address this, we adopt a

bi-level optimization framework, where the upper level selects the

optimal DCPT, and the lower level tunes parameters, such as the

fraction of the selected subpopulation to corrupt.

Structural Components and Corruption Mechanisms. For a

dataset 𝐷 and target attribute 𝐴∗, let M = F[𝐷,𝐴∗] × 𝚯[F] ×

Dom(·) is the space of all corruption mechanisms using DCPs for

the input dataset 𝐷 that above the restrictions mentioned above

and their possible parameter settings which include the parameters

controlling distributions for all noise variables.

Constraints. Additionally, we allow the speci!cation of further

constraints on the candidate spaceM. Typical constraints include

capping the expected fraction of corrupted tuples via E[
∑𝑁
𝑖=1 1

{

𝑡𝑖 É

𝑡∗𝑖

}

≤ 𝑘], enforcing valid domain relationships, and bounding

corruption parameters to plausible intervals. We use Mfeasible ⊆ M

to denote the resulting pruned search space.

Bi-level Objective. The optimization objective from Equation (1)

can be rewritten into bi-level optimization problem:

min
F∈F[𝐷,𝐴∗]

{

min
É∈𝚯[F]

Ó
(

A(M(𝐷train)),𝐷test
)

}

s.t. M ∈ Mfeasible .

At the upper level, the pattern 𝜙 of the DCPT is selected (if the

error type and, thus, corruption template is !xed). The lower level,

determines settings 𝜃 for the parameters ÉF (e.g., probabilities

or thresholds) and noise distributions · for a given corruption

template F to minimize the performance metric Ó. Note that we

have dropped the expectation in the bi-level formulation. This is a

heuristic choice motivated by the fact that BO we use for the lower

level has been successfully applied in domains where the objective

for a solution may be uncertain. This bi-level formulation balances

expressive corruption scenarios with computational feasibility.

4.2 Solving the Bi-level Optimization Problem

The bi-level optimization process alternates between the upper

level, which selects a pattern and the lower level, which tunes

parameters for the selected DCPT to maximize the degradation of

model performance. By iteratively alternating between these two

levels, we e$ciently navigate the search space while adhering to

the constraints de!ning Mfeasible.

Overall Algorithm. Algorithm 1 provides a high-level overview

of the alternating approach. The upper level explores pattern candi-

dates using beam search [49], while the lower level applies Bayesian

optimization (BO) to re!ne parameters for each candidate.

4.2.1 Beam Search for Structural Exploration. To address the ex-

ponential size of the search space for DCPTs, we employ beam

Algorithm 1: Alternating Bi-level Optimization

Input: Training dataset 𝐷train, test dataset 𝐷test, ML pipeline A,

feasible parameter space 𝚯[F], feasible set Mfeasible, beam

width 𝐵, number of BO iterations 𝜏 , max beam depth 𝑑max.

1 B = ∅, F𝑐𝑎𝑛𝑑 ← ,!%!(m#$!S!!,s(𝐷train) /* Init beam */

2 for 𝑑 = 1 to 𝑑max do

3 B𝑜𝑙𝑑 ← B

4 foreach F ∈ F𝑐𝑎𝑛𝑑 do

5 M ← BO(F) /* Algorithm 2 optimizes parameters */

6 Ó ← Ó(A(M(𝐷train)),𝐷test)

7 B ← B ∪ { (F,M,Ó) }

8 B ← %&*34(B,𝐵)

9 if ¬ #m*(&2!s(B𝑜𝑙𝑑 , B) then

10 5(!94 /* Terminate if no improvement */

11 F𝑐𝑎𝑛𝑑 ← !0*9$,(B) /* Expand patterns */

12 return argmin(F,M,Ó)∈B Ó /* Return optimal M from B */

search [49], a heuristic search algorithm that balances exploration

and exploitation by retaining and expanding only the most promis-

ing candidates at each iteration. We maintain two data structures:

(i) a set of candidate corruption function templates F𝑐𝑎𝑛𝑑 that will

be evaluated in the current iteration and a beam B that contains

triples (F ,M,Ó) where F is one of the templates we evaluated in

the current or previous iterations,M is the best DCP we have found

in the lower level optimization by tuning parameters of F and Ó is

the performance of the model trained on M(𝐷train). We initialize

F𝑐𝑎𝑛𝑑 with the set of all single attribute patterns (recall that the

corruption function 𝐹F is determined by the error type and we only

optimize over the pattern 𝜙F of F). Thus, in our case the beam

search is over which attributes to use in the patterns (Recall that

here we assume that each corrupted attribute 𝐴∗
𝑖 is associated with

an independent noise variable 𝑁𝑖). At each iteration 𝑑 , beam search

maintains a beam B of size 𝐵. Each candidate F ∈ F𝑐𝑎𝑛𝑑 is evalu-

ated by invoking the lower-level optimization (Section 4.2.2), which

tunes parameters including selecting noise distributions É ∈ 𝚯[F]

to maximize the degradation of the performance metric Ó. Once

all DCPTs in the current candidate set F𝑐𝑎𝑛𝑑 have been evaluated

and added to the beam, we only retain the top-𝐵 performers. The

beam’s templates after pruning are then expanded by extending

the patterns of each current DCPTs in all possible ways with a

new attribute. These are the candidate templates for the next itera-

tion. As an example, consider the following search. Starting with

{Work}, the beam may generate candidates {Work, Age}, {Work,

Gender}, and {Work, Race}, each evaluated based on their impact

on the performance metric. Beam search terminates when either no

further degradation in Ó is observed (an iteration did not improve

the best solution found so far) or a maximum beam depth 𝑑max has

been reached. By prioritizing the most promising candidates at each

step, beam search provides a computationally e$cient approach to

identifying high-impact structural corruption mechanisms.

4.2.2 Bayesian Optimization for Parameter Tuning. For a !xed DCP

F , optimizing parameters 𝜃 ∈ 𝚯[F] is typically a non-convex op-

timization problem. Furthermore, it requires evaluating the perfor-

mance of a parameter setting by running the black-box ML pipeline.

Bayesian optimization (BO) [51] is well-suited for this setting, as

4673

it balances exploration and exploitation to e$ciently locate high-

impact parameter con!gurations and can be applied in scenarios

when the quality of a solution is uncertain to some degree.

We employ the Tree-Structured Parzen Estimator (TPE) [4], a BO

algorithm that models the parameter space using density estimators.

During initialization, TPE randomly samples a few sets of parame-

ters and estimates their corresponding performance metric Ó. At

each iteration, TPE separates the set of parameters based on their Ó

values, and !ts a probability density function (PDF) for promising pa-

rameters that result in low Ó, denoted as 𝑔(𝜃), and poor parameters

with high Ó, denoted as 𝑙 (𝜃). Then for the next set of parameters to

evaluate, TPE chooses the one that maximizes the likelihood ratio:

𝜃𝑡 = argmax𝜃 ∈P(F)
𝑔 (𝜃)
𝑙 (𝜃)

= argmax𝜃 ∈𝚯[F]
Pr(𝜃 |Ó≤Ó∗)
Pr(𝜃 |Ó>Ó∗)

, whereÓ∗

is a quantile threshold of past performance. Algorithm 2 shows the

full procedure.

Algorithm 2: TPE-based Parameter Tuning for Adversarial

Mechanisms
Input: Training data 𝐷train, test data 𝐷test, pipeline A, DCPT F,

feasible parameter space 𝚯[F] and Dom(·) , feasible set

Mfeasible, # iterations 𝜏 .

1 Initialize TPE densities 𝑔, 𝑙 for parameter space 𝚯[F])

2 for 𝑡 = 1 to 𝜏 do

3 𝜃𝑡 ← argmax𝜃
𝑔 (𝜃)
𝑙 (𝜃)

/* Sample next parameters */

4 M = F(𝜃𝑡) /* Apply parameters */

5 Project M to Mfeasible

6 Ó𝑡 = Ó(A(M(𝐷train)),𝐷test) /* Evaluate parameters */

7 Update TPE densities 𝑔, 𝑙 based on Ó𝑡

8 return argmin𝑡 Ó𝑡

4.2.3 Implementation and E!iciency Enhancements. Although the

bi-level approach !nds adversarial corruption mechanisms e"ec-

tively, we integrate the following strategies to further enhance

e$ciency and scalability:

Heuristics. During beam search, we impose domain-informed

heuristics to avoid unproductive expansions. For instance, pattern-

based templates must always include the target attribute(s) (e.g.,

in Missing-Not-At-Random settings) and the label attribute, which

causes a compound of covariate shift and concept drift.We also limit

the number of attributes used in patterns to prevent overly sparse

subpopulations and enforce feasibility rules that re#ect domain

constraints (e.g., compatible attribute interactions). By restricting

the structural search in this manner, we prune large portions of the

search space while preserving high-impact corruption mechanisms.

Knowledge Reuse andWarm-Starting. To reduce computational

overhead, we reuse structural and parametric insights gleaned from

simpler pipelines or smaller data samples. This reuse, or “warm-

starting”, leverages the observation that many core properties of

adversarial corruption mechanisms remain applicable across di"er-

ent dataset scales and pipelines. For instance, dependency graphs

and corruption templates identi!ed with a lightweight model can

serve as valuable initial structural candidates when transitioning

to a more computationally intensive pipeline. Likewise, parameter

distributions (e.g., from TPE density estimators) learned on smaller

Dataset # rows # cols Label Task

Adult 45K 3 Income>$50K Classi!cation

Employee 4.7K 9 Resignation Classi!cation

Credit Card 30K 8 Default Classi!cation

India Diabetes 905 17 Type 2 Diabetes Classi!cation

SQF 48K 14 Frisk Classi!cation

HMDA 3.2M 8 Loan Approval Classi!cation

Diabetes 442 10 Severity Regression

Table 2: Datasets and ML tasks.

Algorithm Targeted Error Types

Imputers [38] missing values

BoostClean [24] missing values , selection bias, label errors

Di"prep [27] missing values, outliers

H2O [7] missing values

AutoSklearn [12] missing values, selection bias

Table 3: Data cleaning algorithms.

data can provide an e"ective initialization for BO on larger data,

thereby expediting convergence.

5 EXPERIMENTS

In the experiments, we answer the following research questions:

Q1: How do data errors a"ect the accuracy and fairness of mod-

els trained on cleaned datasets prepared with state-of-the-art data

cleaning algorithms? Furthermore, are methods sensitive to partic-

ular data corruption processes and types of errors (Section 5.2)? Q2:

Can robust learning algorithms produce robust models over dirty

data and which characteristics of the data corruption process a"ect

their success? Do the guarantees of uncertainty quanti!cation (UQ)

methods still hold when the data is subject to systematic errors

(Section 5.3)? Q3: How robust are models when data corruption is

adversarial and systematic compared to non-adversarial settings as

used in prior experimental studies on the impact of data quality and

cleaning on model robustness [23] (Section 5.4)? Q4:What is the

e"ectiveness and performance of S9291! and its components? And

how e"ective is S9291! compared to state-of-the-art data poison-

ing techniques? (Section 5.5). All our experiments are performed

on a machine with an AMD Opteron(tm) 4238 processor, 16 cores,

and 125G RAM. Experiments are repeated 5 times with di"erent

random seeds, and we report the mean (error bars denote standard

deviation).

5.1 Setup

Datasets and Data Errors. As shown in Table 2, we conduct ex-

periments primarily on six representative ML tasks: classi!cation

(Adult, Employee, Credit Card, India Diabetes, and SQF datasets)

used for the evaluation of data cleaning (data cleaning) and robust

learning algorithms, and one regression dataset (Diabetes) used for

evaluating UQmethods. We use the India Diabetes dataset for a case

study on error patterns as it has been analyzed in related work [23].

Although S9291! supports corruption with a wide range of errors,

in the paper, we focus on three common data errors: MVs, selec-

tion bias (and sampling error), and label errors. Unless explicitly

mentioned, the target column for injecting MVs is automatically

selected during beam search and we attack only the training data.

4674

Algorithm Objective Targeted Error Types

Reweighing [22] Debiasing !

LFR [53] Debiasing !

Fair Sampler [41] Debiasing label errors

Fair Shift [42] Debiasing correlation shift

Split CP [26] UQ !

Split-MDA CP [52] UQ missing values

Table 4: Debiasing and UQ algorithms.

Algorithms and Models. Table 3 lists the data cleaning solutions

used in our experiments. For each approach, we specify which

types of errors are targeted by the method. To cover a wide range

of methods, we included automated systems like BoostClean [24],

H2O [25], Di"prep [27] , and AutoSklearn [12]. We also use popular

implementations of standard imputation techniques, including im-

puting with the mean and median value of a feature, and advanced

methods such as KNN imputation and iterative imputation [38].

We also evaluate the robustness of techniques that aim to reduce

biases of models or quantify the uncertainty in model predictions.

To evaluate how well debiasing and uncertainty quanti!cation

(UQ) algorithms handle data errors, we contrast approaches that

were explicitly designed to handle data errors with those that do

not. We evaluate the techniques listed in Table 4. The purpose of

debiasing techniques is to reduce biases in predictions made by a

model. Speci!cally, for the debiasing tasks, we test two widely used

preprocessing methods: Reweighing [22] and LFR [53], as well as

Fair Sampler [41], which addresses noisy labels, and Fair Shift [42],

which handles correlation shifts where the correlation between the

label and sensitive attribute changes. For UQ, we use two conformal

prediction (CP) techniques: Split CP [26] and CP-MDA-Nested [52].

For regression, CP takes as input a signi!cance level 𝛼 in [0, 1] and

returns, for each data point, a prediction interval such that, with

1 − 𝛼 probability, the data point’s true label is within the interval.

We evaluate how these cleaning, debiasing, and UQ algorithms

are impacted by systematic data corruption process (DCP) by train-

ing ML models on data prepared using these methods. We consider

the following types of models: logistic regression, decision trees,

random forest, and neural network, which is a feed-forward neural

network with 1 hidden layer containing 10 neurons. The parameters

of models are speci!ed in the code repository [2].

As discussed in section 2, S9291! and indiscriminate data poison-

ing both attack a model’s performance by corrupting the training

data. Even though the motivations (and requirements) of these

two lines of work are di"erent, to evaluate the raw e"ectiveness

in degrading model performance, we compare S9291! against the

state-of-the-art Gradient Cancelling [32] (G(9,C9$+!.) and Back

Gradient [35] (B9+4G(9,) poisoning attacks.

Metrics. We measure the amount of errors in a dataset as the per-

centage %E of the rows that are a"ected by at least one errors. For

instance, for missing values, 50% would indicate that 50% of the

rows contain one or more missing values. To measure model per-

formance, we use area under the curve (AUC) and F1 score (F1)

for classi!cation tasks and mean-squared error (MSE) for regres-

sion tasks. We also measure the bias of a model using standard

fairness metrics: statistical parity di"erence (SPD) [9] and equality

of opportunity (EO) [18]. For UQ tasks, we calculate coverage rate.

Dependency Graph Transfer. To deal with the high runtime

for automated data-cleaning frameworks such as AutoSklearn and

BoostClean, we warm start the search for BoostClean, AutoSklearn,

Di"prep, and H2O by transferring the worst-case dependency from

the iterative-imputer and then !netune the corruption parameters

using TPE.

5.2 Sensitivity of Data Cleaning Methods

We use S9291! to inject errors into datasets to attack automated

data cleaning techniques (Section 5.2.1), robust fairness algorithms

(Section 5.3), and UQ (Section 5.3.2). We vary error percentage (%E)

and measure model accuracy and fairness.

5.2.1 Data Cleaning Techniques. The results for data cleaning tech-

niques are shown in Figures 5 to 7, where the red dotted line repre-

sents the maximum AUC achieved across all the methods when no

errors are present in the data. We use this as a baseline as some of

the techniques apply transformations that are bene!cial even if no

data errors are present.

Varying Data Quality Issues. We !rst focus on logistic regression,

varying the type of data quality issues injected by S9291! using the

Adult, Credit Card, SQF datasets. For MVs (Figure 5), fewer than

10% missing values in a single column can reduce AUC by over

0.05 for most methods, with the exception of Di"prep on Credit

Card. At 30%, the reduction exceeds 0.15 in most cases, except

for Di"prep and KNN-imputer on Credit Card, and all methods

on SQF, which contains fewer predictive features. Learning-based

methods like KNN-imputer and Di"prep are generally more robust

than simpler techniques such as mean-imputer. Compared to MVs,

selection bias and label errors are more detrimental under the same

budget. For this experiment, we exclude imputation methods. On

Employee, a 25% corruption budget reduces all methods below 0.45

AUC, comparable to the impact of 50%MVs. Similarly, on Adult, 15%

corruption leads to AUC below 0.6. These errors are more harmful

as they induce greater shifts in Pr(Label | Covariate), disrupting

feature-label dependencies more severely.

Key Takeaway: Data-cleaning techniques are sensitive to

small amounts of systematic data corruption. Adaptive tech-

niques like Di"prep are more e"ective, but also less stable.

Varying DownstreamModels. Next, we vary what type of model

that is trained using the Adult and Employee datasets (Figure 7). In

general, decision trees and neural network exhibit greater variance

in performance. For example, on Adult with 30% corruption, the

AUC range spans 0.2 for decision trees and 0.3 for neural network,

compared to only 0.1 for random forest. This indicates greater sensi-

tivity and potential over!tting in decision trees and neural network.

By contrast, random forest demonstrates higher robustness, likely

due to its ensemble structure, with consistently higher AUC across

corruption levels—particularly on Employee.

Key Takeaway: Decision trees and neural network are more

susceptible to data corruption than random forest.

4675

	�� ���
��
(a)

��
�
����
����
��
�
����
����
����
����

�)11)-(��#2#���%3+2�

	�� ���
��
(b)

����

��
�

����

����

����
�)11)-(��#2#���,/+.5&&�

	�� ���
��
(c)

���

����
���

��
�
��

����
���

����
���

�)11)-(��#2#���0&%)2��#0%�

	�� ���
��
(d)

��
�

��

����

���

����

���

�)11)-(��#2#�� ���

�&0$&-2#(&�.'��)11)-(�"#+3&1

�!
�

�&#- �&%)#- �2&0#2)4& ��� �
� �)''�0&/ �..12�+&#- �32. *+�-

Figure 5: AUC of logistic regression when corrupting Adult (a), Employee (b), Credit Card (c) and SQF (d) datasets with MVs.

� 	
�

�
(a)

����

����

��
�

����

����

����

����
��"��)!%$��!�(����*")�

� 	
�

�
(b)

����
���

��
�
��

����
���

����
���

����

��"��)!%$��!�(���#&"%+���

� 	
�

�
(c)

��
�

����

����

����

����
����"��''%'(����*")�

� 	
�

�
(d)

����
���

��
�
��

����
���

����
���

����

����"��''%'(���#&"%+���

��'��$)� ��%���''%'(

��
�

Figure 6: AUC of logistic regression, corrupting Adult (a, c) and Employee (b, d) with selection bias (left) and label errors (right).

5.3 Debiasing and Uncertainty Quanti!cation

We analyze the robustness of fair ML and UQ under systematic

label errors and selection bias.

5.3.1 Debiasing. We evaluate debiasing methods on the Adult

dataset using logistic regression. Speci!cally, we test Fair Sam-

pler [41], which addresses label errors, and Fair Shift [42], designed

for correlation shifts. To simulate their application scenarios, we

use S9291! to (1) generate systematic label #ips for evaluating Fair

Sampler and (2) introduce selection bias for assessing Fair Shift.

For comparison, we also include Reweighing and LFR, which are

not designed for systematic corruption. We use a 10% corruption

budget using F1 and unfairness measured by EO.We also report per-

formance of a baseline logistic regression trained on the corrupted

data (denoted Orig.). Without corruption, all methods achieve F1 ≥

0.471, with regular logistic regression reaching 0.555.

Table 5 shows the results under label errors. Training directly on

corrupted data yields a low F1 of 0.32. All methods perform poorly

under label errors, with F1 scores below 0.21. Reweighing fails to

mitigate bias while LFR produces a poor classi!er (F1 = 0.01).

Results for selection bias are shown in Table 6. Similar to label

errors, selection bias degrades both fairness and accuracy, though

the severity of the impact varies. Fair Shift shows the best balance

between accuracy and fairness, achieving F1 = 0.35 and EO = 0.13.

Reweighing increases bias (EO = 0.36) at marginally better accuracy

(F1 = 0.33). LFR again fails to produce a usable model (F1 = 0.01).

Metrics Orig. Reweighing LFR FairSampler [41]

F1 0.32 ± 0 0.21 ± 0 0.01 ± 0.02 0.2 ± 0.01

EO 0.22 ± 0 0.49 ± 0.01 0.01 ± 0.01 0.06 ± 0

Table 5: Robustness of debiasing methods under label errors

targeting fairness measured by EO (budget: 10%).

Metrics Orig. Reweighing LFR FairShift [42]

F1 0.38 ± 0 0.33 ± 0 0.01 ± 0.02 0.35 ± 0

EO 0.22 ± 0 0.36 ± 0.01 0.01 ± 0.01 0.13 ± 0.02

Table 6: Robustness of debiasing methods under selection

bias targeting fairness measured by EO (budget: 10%).

Key Takeaway: While debiasing methods like Fair Sampler

and Fair Shift can reduce unfairness under systematic corrup-

tions, they often fail to preserve classi!cation performance.

5.3.2 Uncertainty "antification. We also analyze the robustness

of conformal prediction (CP) when the training data contains MVs.

In CP the user provides a target coverage 1−𝛼 and the CP approach

computes a prediction interval for a test data point such that the

ground-truth label is guaranteed to be within the interval with

probability at least 1 − 𝛼 . We use the Diabetes dataset and employ

S9291! using a budget of 30% to generate MVs that break the

coverage guarantee of CP. We benchmark Split CP, the standard

split conformal prediction, and CP-MDA-Nested [52], an extension

designed for robustness to MVs. Tables 7 and 8 show the results for

di"erent target coverages 1 − 𝛼 . Both methods achieve the target

coverage when no data errors are present. However, with less than

4676

(a)

����
����
��
�
����
����
����
����

�'%*2*/.�!1''���&4,3�

(b)

��
�

����

����

����

����
�'%*2*/.�!1''���-0,/7''�

(c)
����

����

��
�

����

����

����

����
�$.&/-��/1'23���&4,3�

(d)
��
�

����

����

����

����

�$.&/-��/1'23���-0,/7''�

	�� ���
��
(e)

��
�
����
����
��
�
����
����
����
����

�'41$,��'36/1+���&4,3�

	�� ���
��
(f)

����

��
�

����

����

����

����
�'41$,��'36/1+���-0,/7''�

�'1%'.3$)'�/(��*22*.)�#$,4'2

�"
�

�'$.
�
�

�'&*$.
�//23�,'$.

�3'1$3*5'
�43/ +,'$1.

���

Figure 7: AUC of decision trees (!rst row), random forest

(second row), and neural network (third row) when injecting

MVs into the Adult (left) and Employee (right).

Algorithm Coverage (%) Missing Rate (%)

Split CP (clean) 96.2 ± 1.1 0

CP-MDA-Nested (clean) 95 ± 2.3 0

Split CP (corrupted) 91.7 ± 2.1 22.7 ± 6.1

CP-MDA-Nested (corrupted) 89 ± 2.2 19.6 ± 7.9

Table 7: Actual coverage of Split CP and CP-MDA-Nested

with missing values in the training data (𝛼 = 0.05).

Algorithm Coverage (%) Missing Rate (%)

Split CP (clean) 80 ± 5.2 0

CP-MDA-Nested (clean) 81.6 ± 4.8 0

Split CP (corrupted) 70.8 ± 4.4 23.7 ± 6.4

CP-MDA-Nested (corrupted) 73.5 ± 4.2 20.3 ± 7.3

Table 8: Actual coverage of Split CP and CP-MDA-Nested

with missing values in the training data (𝛼 = 0.2).

30% MVs in a single column, the average coverage of both methods

dropped by more than 4.5% when the target coverage was 0.95

(𝛼 = 0.05), and by over 8% for a target coverage of 0.8 (𝛼 = 0.2).

Even though CP-MDA-Nested is designed to handle MVs, it fails

to achieve the desired coverage when systematic data errors are

introduced using S9291!. This is primarily due to its reliance on

the assumptions that the missingness mechanism is conditionally

independent of the label variable which is often violated in real-

world scenarios and by the MVs injected by S9291! [14].

Key Takeaway: Even CP approaches designed to be robust

against MVs fail to maintain the coverage guarantee when

MVs are systematic.

5.4 Reevaluating Robustness Claims

Existing benchmarks have investigated the impact of systematic er-

rors using manually speci!ed patterns [23, 46]. To evaluate whether

S9291! can identify vulnerabilities of ML pipelines overlooked in

prior work, we use a setting from shades-of-null [23] as an exam-

ple, comparing their manually speci!ed error patterns from [23]

against patterns generated by S9291!. We use the India Diabetes

dataset, set the error budget to 10%, and use F1 as the target. Note

that shades-of-null assumes that both training and testing datasets

contain MVss. We conduct a search for adversarial patterns where

training data errors are MNAR, while test data errors are missing

completely at random (MCAR), which is closest to our previous

setting of assuming no errors in the test data. The pattern used by

S9291! to identify the subpopulation to inject MVs into is:

Num_Pregnancies ≤ 2 ∧ Family_Diabetes = No ∧ Type_II_Diabetes = yes

Injecting MVs according to this pattern results in a 0.81 F1. The

F1 on the clean dataset is 0.95. However, with the same setting, the

pattern tested in shades-of-null reports an F1 of 0.88. This gap is

larger when testing with higher error budgets. For instance, with

an error budget of 30%, the pattern discovered by S9291! leads to

an F1 of 0.36, while shades-of-null reported an F1 of 0.87 under

this setting. The key di"erence between the patterns presented in

shades-of-null and the one generated by S9291! is that S9291!

also explores patterns that use the label (Type_II_Diabetes, in this

example). Although highly adverse, this is a realistic setting that

needs to be tested. shades-of-null uses manually created error pat-

terns taking into account signals such as feature correlations and

importance. Although these patterns encompass ML practitioners’

insights, they do not fully re#ect hard real-world cases, e.g., cases

where the missingness of values depends on the label.

Key Takeaway: Prior work is overly optimistic, overlooking

realistic, but highly adverse, corruption types.

5.5 E"ciency and E#ectiveness of S!"!#$

We evaluate the e"ectiveness of S9291! through ablation studies

(Section 5.5.1) and comparison with state-of-the-art data poisoning

techniques (Section 5.5.2). We also conduct a scalability analysis

and discuss the solution quality on large-scale data(Section 5.5.3).

5.5.1 Ablation Studies. We evaluate S9291!’s components, includ-

ing beam search for DCPTs and the TPE-based optimization for

parameters. We also include the ablation study for the heuristics

for !ltering dependencies in the extended version [55].

Beam Search. We compare beam search against a baseline that

randomly samples and evaluates 100 dependency graphs, selecting

the one that causes the greatest reduction in AUC. Both use TPE

4677

Method Mean Imputer Median Imputer Iterative Imputer KNN Imputer H2O Di"prep BoostClean AutoSklearn

Random Search 0.8 ± 0 0.79 ± 0 0.8 ± 0 0.8 ± 0 0.61 ± 0.15 0.73 ± 0.11 0.81 ± 0.02 0.75 ± 0.16

Beam Search 0.39 ± 0.14 0.36 ± 0 0.53 ± 0 0.67 ± 0 0.32 ± 0 0.37 ± 0.02 0.46 ± 0 0.4 ± 0.16

Table 9: AUC of logistic regression trained on worst-case data corruptions generated by random search and beam search.

AUC drop [0, 0.08) [0.08, 0.16) [0.16, 0.24) ≥ 0.24 Total

Cnt. (no rules) 4885 514 204 16 5619

Cnt. (rules) 1250 375 128 16 1769

Percentage 0.26 0.73 0.63 1 0.31

Table 10: Heuristic pruning of ine#ective patterns.

0.00 0.05
AUC Drop (TPE)

0.00

0.05

AU
C

Dr
op

(R
an

do
m

)

(a) Logistic Regression

0.25 0.50
AUC Drop (TPE)

0.25

0.50

AU
C

Dr
op

(R
an

do
m

)

(b) Decision Tree

0.25 0.50
AUC Drop (TPE)

0.25

0.50

AU
C

Dr
op

(R
an

do
m

)

(c) Random Forest

0.0 0.5
AUC Drop (TPE)

0.0

0.5

AU
C

Dr
op

(R
an

do
m

)

(d) Neural Network

Figure 8: Decrease in AUC of models trained with corrupted

data, where corruption parameters are optimized by TPE

(x-axis) and random search (y-axis). Each point represents a

random dependency graph.

for the corruption parameter search. This experiment is conducted

on the Adult dataset using logistic regression as the downstream

model, with 50% budget. The results shown in Table 9 demonstrate

that S9291! consistently identi!es error patterns that result in

signi!cantly lower AUC compared to random search. In most cases,

the margin of di"erence is above 0.25 in AUC. The huge gap arises

because random sampling operates within a vast search space.

TPE. We demonstrate the e"ectiveness of the TPE component,

which is responsible for !nding adversarial corruption parame-

ters given a dependency graph, by comparing it with the random

corruption parameter search. To do this, we randomly sample 20

dependency graphs and conduct the parameter search for each. Fig-

ure 8 presents the AUC drop of the models trained on the corrupted

data discovered by TPE and random search, where each point repre-

sents a sampled dependency graph. S9291! consistently identi!es

corruption parameters that lead to higher AUC drop, compared

with random search, especially for the most harmful cases that

S9291! targets during beam search.

5.5.2 Comparison with Data Poisoning. In the following, we com-

pare S9291! with state-of-the-art data poisoning methods, as well

as a random baseline (R9$,), which conducts random corruption

within the budget 100 times and returns the worst case.

Indiscriminate Attack. Since the baselines G(9,C9$+!. and

B9+4G(9, rely on editing features of data, for a fair comparison,

we stick to the missing data setting, without introducing selec-

tion bias or label errors, which are more detrimental. We leverage

% corruption 10 30 50

R9$, 0.85 ± 0 0.85 ± 0 0.85 ± 0

BackGrad 0.83 ± 0 0.67 ± 0 0.46 ± 0.06

GradCancel 0.79 ± 0.04 0.7 ± 0.02 0.45 ± 0

S9291! 0.58 ± 0 0.46 ± 0 0.42 ± 0.02

% corruption 10 30 50

R9$, 0.86 ± 0 0.86 ± 0 0.86 ± 0

B9+4G(9, 0.84 ± 0.01 0.78 ± 0.01 0.64 ± 0.02

G(9,C9$+!. 0.84 ± 0.01 0.81 ± 0.01 0.8 ± 0.01

S9291! 0.7 ± 0.04 0.34 ± 0.12 0.34 ± 0.12

Table 11: E#ect on AUC when applying S!"!#$ and indis-

criminate data poisoning on logistic regression (top) and

neural network (bottom).

20000 40000
Samples

500

1000

Ru
nt

im
e

(s
)

(a) Dependency Search

20000 40000
Samples

20

40

Ru
nt

im
e

(s
)

(b) Finetuning

Figure 9: Runtime of S!"!#$ with varying dataset sizes.

BoostClean for addressing missing data. Table 11 presents the com-

parison between S9291!, B9+4G(9,, G(9,C9$+!., and R9$, on

the Adult data, where S9291! consistently discovers more e"ective

corruption than R9$,, B9+4G(9, and G(9,C9$+!.. This is pri-

marily because existing poisoning attacks are typically designed for

unstructured data without demographic attributes. As a result, they

often overlook structured patterns and rely on random sampling to

select points for modi!cation. In contrast, S9291! explicitly models

systematic, non-random errors and captures their impact, particu-

larly when corruption targets speci!c subpopulations. In addition,

the ine"ectiveness of R9$, indicates the di$culty of stochastically

discovering adverse cases with completely random corruption.

Moreover, poisoning attacks are generally less e"ective on neural

network than on simpler, convex models like logistic regression,

failing to re#ect the greater sensitivity of neural network to biases

and data quality issues. In contrast, the structured corruptions

uncovered by S9291! better expose this vulnerability.

Key Takeaway: State-of-the-art data poisoningmethods often

overlook the impact of systematic subpopulation errors, thus

showing worse e"ectiveness than S9291!.

5.5.3 Scalability Analysis. We analyze the runtime breakdown of

S9291!, and discuss the e$ciency and e"ectiveness of S9291!

when handling large-scale data with the sampling technique.

Runtime Breakdown. In Table 12, we show a breakdown for S923

91!’s runtime evaluated on a 30K sample of the HMDA dataset

with logistic regression. The runtime is broken down into two

stages, where for automated cleaning techniques, including H2O,

4678

Stage Mean Median Iterative KNN H2O Di#prep BoostClean AutoSklearn

Dependency Search 375.4 ± 2.5 370.2 ± 7.7 611.1 ± 19.6 651.1 ± 6.4 611.1 ± 19.6 611.1 ± 19.6 611.1 ± 19.6 611.1 ± 19.6

Finetuning 26.1 ± 0.9 25.8 ± 1 30.1 ± 3 34.8 ± 0.3 12.6 ± 0.4 851.6 ± 1 153.7 ± 2.5 363.4 ± 17

Table 12: Breakdown of S!"!#$’s runtime on a 30K sample of HMDA (seconds).

Di"prep, BoostClean, and AutoSklearn, the dependency search in-

volves searching a dependency graph for a proxy method instead of

directly running Algorithm 1. The rationale for this approach is that

dependency graphs typically translate well between similar clean-

ing techniques, and this allows us to signi!cantly reduce the search

cost by replacing an expensive cleaning technique with a cheaper

proxy during search. The !netuning stage involves tuning the cor-

ruption parameters using Algorithm 2, which is generally faster

than the dependency graph search. However, as demonstrated in

the comparison with shades-of-null, selecting the right dependency

graph is critical for generating adversarial errors.

Overall, the runtime of S9291! is within 20 minutes, even for

expensive frameworks such as Di"prep. This bene!ts from the

utilization of proxy models during dependency search. Without

this optimization, the search time for Di"prep increases to over 3

hours. We validated the e"ectiveness of the proxy models by testing

dependency search on BoostClean and H2O. Speci!cally, perform-

ing dependency search directly on these frameworks yielded AUC

values that di"ered by less than 0.01 from those obtained using

patterns transferred from iterative-imputer. Another important

hyperparameter, error budget, is essential for the data corruption

process, but does not a"ect S9291!’s runtime much, as running the

pipeline dominates the runtime of S9291!. As a result, S9291!’s

scalability wrt. increased dataset size primarily depends on the

scalability of the evaluated pipeline. For instance, most methods,

such as the iterative-imputer, have linear time complexity in terms

of dataset size, leading to a linear growth of S9291!’s runtime. For

instance, Figure 9 shows the runtime for logistic regression and

iterative-imputer, and demonstrates S9291!’s linear complexity.

Other than these factors, the runtime of S9291! grows linearly

with the beam size and number of BO iterations, as the number of

framework evaluations is linear in the number of iterations.

Key Takeaway: The runtime of the evaluated frameworks

dominates the runtime of S9291!. By utilizing cheaper proxy

models for dependency search, S9291! achieves an e"ective

and e$cient search for adverse corruption mechanisms for

time-consuming frameworks.

Handling Large Datasets. For large-scale datasets, the runtime

of S9291! is typically dominated by the cost of running the ML

pipeline itself. According to Figure 9, running S9291! on the full

HMDA data is expected to take 17.8 hours. To mitigate this, we

perform the dependency search phase on a small sample of the

data (1%). We then evaluate whether the DCP discovered on the

sample is also e"ective on the full dataset. To this end, we collect

all DCPs found during the search phase of iterative-imputer on the

sampled HMDA and evaluate the e"ectiveness of them on the full

dataset. As shown in Figure 10, the model’s performance on the 1%

sample closely matches that on the full dataset across all models.

This indicates that the corruption patterns identi!ed on the sample

are also harmful at scale. The end-to-end runtime of S9291! on the

0.45 0.55
Sample Data AUC

0.45

0.55

Fu
ll

Da
ta

 A
UC

(a) Logistic Regression

0.5 0.6
Sample Data AUC

0.5

0.6

Fu
ll

Da
ta

 A
UC

(b) Decision Tree

0.5 0.6
Sample Data AUC

0.5

0.6

Fu
ll

Da
ta

 A
UC

(c) Random Forest

0.5 0.6
Sample Data AUC

0.5

0.6

Fu
ll

Da
ta

 A
UC

(d) Neural Network

Figure 10: AUC of models trained with di#erent data corrup-

tion mechanisms on sample (x-axis) and full data (y-axis).

sampled data is under 20 minutes, yet it discovers error patterns

that cause over 0.15 AUC drop on the full dataset.

Key Takeaway: With sampling, S9291! e$ciently and e"ec-

tively identi!es adverse data corruptions for the large-scale

HMDA data that has over 3.2 million tuples.

5.6 Summary

Our evaluation shows that all studied data cleaning, debiasing, and

UQ techniques are highly sensitive to systematic errors, with even

small corruptions severely degrading model performance. Certify-

ing robustness requires a system like S9291! to generate adversarial

errors, as demonstrated by replicating related work. Moreover, debi-

asing and UQ methods often rely on assumptions that break under

systematic corruption, leading to violated guarantees, even for tech-

niques explicitly designed to handle data errors, such as CP-MDA-

Nested and Fair Sampler. S9291! achieves superior e"ectiveness

and interpretability compared to state-of-the-art indiscriminate

data poisoning techniques.

6 CONCLUSIONS

Data quality issues such as missing values and selection bias sig-

ni!cantly impact ML pipelines, yet existing evaluation methods

often rely on random or manually designed corruptions that fail to

capture real-world systematic errors. This work introduces a formal

framework for modeling the data corruption process and S9291!, a

system that automatically generates adversarial corruption mecha-

nisms through bi-level optimization. S9291! systematically identi-

!es worst-case corruptions that degrade model performance while

adhering to realistic constraints, providing a principled approach

for evaluating the robustness of data cleaning, fairness-aware learn-

ing, and uncertainty quanti!cation techniques. Our experiments

reveal vulnerabilities in existing ML pipelines, demonstrating that

current robustness measures are often insu$cient against struc-

tured corruption.

4679

REFERENCES
[1] 2024. Regulation (EU) 2024/1689 of the European Parliament and of the Council

on Arti!cial Intelligence. https://arti!cialintelligenceact.eu/article/15/. Article
15: Accuracy, Robustness and Cyber-security.

[2] 2025. Codebase for SAVAGE. https://github.com/lodino/savage
[3] Mohamed Abdelaal, Christian Hammacher, and Harald Schoening. 2023. Rein: A

comprehensive benchmark framework for data cleaning methods in ml pipelines.
arXiv preprint arXiv:2302.04702 (2023).

[4] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms
for hyper-parameter optimization. Advances in neural information processing
systems 24 (2011).

[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389 (2012).

[6] Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon,
Werner Zellinger, Bernhard A Moser, Alina Oprea, Battista Biggio, Marcello
Pelillo, and Fabio Roli. 2023. Wild patterns reloaded: A survey of machine
learning security against training data poisoning. Comput. Surveys 55, 13s (2023),
1–39.

[7] Darren Cook. 2016. Practical machine learning with H2O: powerful, scalable
techniques for deep learning and AI. O’Reilly Media, Inc.

[8] Jimmy Z Di, Jack Douglas, Jayadev Acharya, Gautam Kamath, and Ayush Sekhari.
2022. Hidden poison: Machine unlearning enables camou#aged poisoning attacks.
In NeurIPS ML Safety Workshop.

[9] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S.
Zemel. 2012. Fairness through awareness. In ITCS. ACM, 214–226.

[10] Adrien Ehrhardt, Christophe Biernacki, Vincent Vandewalle, Philippe Heinrich,
and Sébastien Beben. 2021. Reject inference methods in credit scoring. Journal
of Applied Statistics 48, 13-15 (2021), 2734–2754.

[11] Chen Xinyun et al. 2017. Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv preprint arXiv:1712.05526 (2017).

[12] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and
Frank Hutter. 2022. Auto-sklearn 2.0: Hands-free automl via meta-learning. The
Journal of Machine Learning Research 23, 1 (2022), 11936–11996.

[13] Milena A Gianfrancesco, Suzanne Tamang, Jinoos Yazdany, and Gabriela Schma-
juk. 2018. Potential biases in machine learning algorithms using electronic health
record data. JAMA internal medicine 178, 11 (2018), 1544–1547.

[14] John Graham. 2012. Missing data: Analysis and design. New York, NY: Springer.
https://doi.org/10.1007/978-1-4614-4018-5

[15] Gareth J Gri$th, Tim T Morris, Matthew J Tudball, Annie Herbert, Giulia Man-
cano, Lindsey Pike, Gemma C Sharp, Jonathan Sterne, Tom M Palmer, George
Davey Smith, et al. 2020. Collider bias undermines our understanding of COVID-
19 disease risk and severity. Nature communications 11, 1 (2020), 1–12.

[16] Shubha Guha, Falaah Arif Khan, Julia Stoyanovich, and Sebastian Schelter. 2022.
Automated Data Cleaning Can Hurt Fairness in Machine Learning-based Deci-
sion Making. ICDE (2022).

[17] Luke Haliburton, Sinksar Ghebremedhin, Robin Welsch, Albrecht Schmidt, and
Sven Mayer. 2023. Investigating Labeler Bias in Face Annotation for Machine
Learning. arXiv preprint arXiv:2301.09902 (2023).

[18] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of Opportunity in
Supervised Learning. In NIPS. 3315–3323.

[19] Maliha Tash!a Islam, Anna Fariha, Alexandra Meliou, and Babak Salimi. 2022.
Through the data management lens: Experimental analysis and evaluation of fair
classi!cation. In Proceedings of the 2022 International Conference on Management
of Data. 232–246.

[20] Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina Oprea. 2021.
Subpopulation data poisoning attacks. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 3104–3122.

[21] Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for
classi!cation without discrimination. Knowledge and information systems 33, 1
(2012), 1–33.

[22] Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for
classi!cation without discrimination. Knowledge and Information Systems 33, 1
(2012), 1–33.

[23] Falaah Arif Khan, Denys Herasymuk, Nazar Protsiv, and Julia Stoyanovich.
2024. Still More Shades of Null: A Benchmark for Responsible Missing Value
Imputation. arXiv preprint arXiv:2409.07510 (2024).

[24] Sanjay Krishnan, Michael J Franklin, Ken Goldberg, and Eugene Wu. 2017. Boost-
clean: Automated error detection and repair for machine learning. arXiv preprint
arXiv:1711.01299 (2017).

[25] Erin LeDell and Sebastien Poirier. 2020. H2o automl: Scalable automatic machine
learning. In Proceedings of the AutoML Workshop at ICML, Vol. 2020. ICML San
Diego, CA, USA.

[26] Jing Lei, MaxG’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and LarryWasserman.
2018. Distribution-free predictive inference for regression. J. Amer. Statist. Assoc.
113, 523 (2018), 1094–1111.

[27] Peng Li, Zhiyi Chen, Xu Chu, and Kexin Rong. 2023. Di"Prep: Di"erentiable
Data Preprocessing Pipeline Search for Learning over Tabular Data. Proceedings

of the ACM on Management of Data 1, 2 (2023), 1–26.
[28] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021. Cleanml:

A study for evaluating the impact of data cleaning on ml classi!cation tasks. In
2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 13–24.

[29] Heng Liu and Gregory Ditzler. 2021. Data poisoning against information-
theoretic feature selection. Information Sciences 573 (2021), 396–411.

[30] Brandon Lockhart, Jinglin Peng, Weiyuan Wu, Jiannan Wang, and Eugene Wu.
2021. Explaining inference queries with bayesian optimization. arXiv preprint
arXiv:2102.05308 (2021).

[31] Yiwei Lu, Gautam Kamath, and Yaoliang Yu. 2022. Indiscriminate data poisoning
attacks on neural networks. arXiv preprint arXiv:2204.09092 (2022).

[32] Yiwei Lu, Gautam Kamath, and Yaoliang Yu. 2023. Exploring the limits of model-
targeted indiscriminate data poisoning attacks. In International Conference on
Machine Learning. PMLR, 22856–22879.

[33] Qingwei Luo, Sam Egger, Xue Qin Yu, David P Smith, and Dianne L O’Connell.
2017. Validity of using multiple imputation for" unknown" stage at diagnosis in
population-based cancer registry data. PLoS One 12, 6 (2017), e0180033.

[34] Sedir Mohammed, Lukas Budach, Moritz Feuerpfeil, Nina Ihde, Andrea
Nathansen, Nele Sina Noack, Hendrik Patzla", Felix Naumann, and Hazar Har-
mouch. 2025. The E"ects of Data Quality on Machine Learning Performance
on Tabular Data. Inf. Syst. 132 (2025), 102549. https://doi.org/10.1016/J.IS.2025.
102549

[35] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th
ACM workshop on arti!cial intelligence and security. 27–38.

[36] National Institute of Standards and Technology. 2024. Arti!cial Intelligence Risk
Management Framework (1.0) – Generative AI Pro!le. Technical Report NIST AI
600-1. U.S. Dept. of Commerce. https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-
1.pdf

[37] Judea Pearl. 2009. Causality. Cambridge university press.
[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[39] Jennifer K Plichta, Christel N Rushing, Holly C Lewis, Marguerite M Rooney,
Dan G Blazer, Samantha M Thomas, E Shelley Hwang, and Rachel A Greenup.
2023. Implications of missing data on reported breast cancer mortality. Breast
Cancer Research and Treatment 197, 1 (2023), 177–187.

[40] Romila Pradhan, Jiongli Zhu, Boris Glavic, and Babak Salimi. 2022. Interpretable
data-based explanations for fairness debugging. In Proceedings of the 2022 inter-
national conference on management of data. 247–261.

[41] Yuji Roh, Kangwook Lee, Steven Whang, and Changho Suh. 2021. Sample
selection for fair and robust training. Advances in Neural Information Processing
Systems 34 (2021), 815–827.

[42] Yuji Roh, Kangwook Lee, Steven Euijong Whang, and Changho Suh. 2023. Im-
proving fair training under correlation shifts. In International Conference on
Machine Learning. PMLR, 29179–29209.

[43] Sudeepa Roy and Dan Suciu. 2014. A formal approach to !nding explanations for
database queries. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. 1579–1590.

[44] Donald B Rubin. 1978. Multiple imputations in sample surveys-a phenomeno-
logical Bayesian approach to nonresponse. In Proceedings of the survey research
methods section of the American Statistical Association, Vol. 1. American Statistical
Association Alexandria, VA, USA, 20–34.

[45] Svetlana Sagadeeva and Matthias Boehm. 2021. Sliceline: Fast, linear-algebra-
based slice !nding formlmodel debugging. In Proceedings of the 2021 international
conference on management of data. 2290–2299.

[46] Sebastian Schelter, Tammo Rukat, and Felix Biessmann. 2021. JENGA-A Frame-
work to Study the Impact of Data Errors on the Predictions of Machine Learning
Models.. In EDBT. 529–534.

[47] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom
Goldstein. 2021. Just how toxic is data poisoning? a uni!ed benchmark for
backdoor and data poisoning attacks. In International Conference on Machine
Learning. PMLR, 9389–9398.

[48] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison frogs! targeted clean-label
poisoning attacks on neural networks. Advances in neural information processing
systems 31 (2018).

[49] Volker Steinbiss, Bach-Hiep Tran, and Hermann Ney. 1994. Improvements in
beam search.. In ICSLP, Vol. 94. 2143–2146.

[50] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. 2018. Clean-label
backdoor attacks. (2018).

[51] Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. 2023. Recent
advances in Bayesian optimization. Comput. Surveys 55, 13s (2023), 1–36.

[52] Margaux Za"ran, Aymeric Dieuleveut, Julie Josse, and Yaniv Romano. 2023.
Conformal predictionwithmissing values. In International Conference onMachine
Learning. PMLR, 40578–40604.

4680

https://artificialintelligenceact.eu/article/15/
https://github.com/lodino/savage
https://doi.org/10.1007/978-1-4614-4018-5
https://doi.org/10.1016/J.IS.2025.102549
https://doi.org/10.1016/J.IS.2025.102549
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf

[53] Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork.
2013. Learning Fair Representations. In ICML (3) (JMLRWorkshop and Conference
Proceedings), Vol. 28. JMLR.org, 325–333.

[54] Jiongli Zhu and Babak Salimi. 2024. Overcoming Data Biases: Towards Enhanced
Accuracy and Reliability in Machine Learning. IEEE Data Eng. Bull. 47, 1 (2024),

18–35.
[55] Jiongli Zhu, Geyang Xu, Felipe Lorenzi, Boris Glavic, and Babak Salimi. 2025.

Stress-Testing ML Pipelines with Adersarial Data Corruption (extended version).
Technical Report. https://github.com/lodino/savage/blob/main/techreport/
techreport.pdf

4681

https://github.com/lodino/savage/blob/main/techreport/techreport.pdf
https://github.com/lodino/savage/blob/main/techreport/techreport.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Modeling Data Corruption
	4 Adversarial Data Corruption
	4.1 Bi-level Optimization Formulation
	4.2 Solving the Bi-level Optimization Problem

	5 Experiments
	5.1 Setup
	5.2 Sensitivity of Data Cleaning Methods
	5.3 Debiasing and Uncertainty Quantification
	5.4 Reevaluating Robustness Claims
	5.5 Efficiency and Effectiveness of Savage
	5.6 Summary

	6 Conclusions
	References

