
Efficiently Joining Large Relations on Multi-GPU Systems
Tobias Maltenberger

tobias.maltenberger@student.hpi.de
Hasso Plattner Institute
Potsdam, Germany

Ilin Tolovski
ilin.tolovski@hpi.de

Hasso Plattner Institute
Potsdam, Germany

Tilmann Rabl
tilmann.rabl@hpi.de

Hasso Plattner Institute
Potsdam, Germany

ABSTRACT
Growing data volumes present a mounting challenge to relational
joins. GPUs have gained widespread adoption as database accelera-
tors for operators such as joins due to their high instruction through-
put and memory bandwidth. Most published GPU-accelerated joins
are single-GPU algorithms that do not leverage modern multi-GPU
platforms effectively. The few proposed multi-GPU algorithms ei-
ther fail to exploit the high-speed P2P interconnects between the
GPUs or to handle large out-of-core data natively. In this paper, we
present a heterogeneous multi-GPU sort-merge join that overcomes
both limitations. It is composed of a merge- or radix partitioning-
based P2P-enabled multi-GPU sort phase, a parallel CPU-based
multiway merge phase, and a hybrid join phase that combines a
CPU merge path partition with a binary search-based multi-GPU
join strategy. We evaluate our novel multi-GPU join on two plat-
forms with fast NVLink- and NVSwitch-based P2P interconnects.
We show that our join outperforms state-of-the-art CPU and GPU
baselines regardless of the workload. It outperforms parallel CPU
sort-merge and radix-hash joins by up to 15.2× and 5.5×, respec-
tively. Compared to non-P2P-enabled multi-GPU joins, it achieves
speedups of 8.7× (sort-merge) and 2.5× (hybrid-radix). We measure
that our join’s hybrid join phase with overlapped copy and compute
operations contributes as little as 22% to its end-to-end runtime. If
the input relations are pre-sorted, it is up to 14.4× faster than the
hybrid-radix join. Our join scales well with the number of GPUs and
benefits from data skew with as much as 12% shorter join durations.

PVLDB Reference Format:
Tobias Maltenberger, Ilin Tolovski, and Tilmann Rabl. Efficiently Joining
Large Relations on Multi-GPU Systems. PVLDB, 18(11): 4653-4667, 2025.
doi:10.14778/3749646.3749720
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hpides/multi-gpu-sort-merge-join.

1 INTRODUCTION
The join is one of the fundamental operators of any relational data-
base system. Unprecedented amounts of data make it increasingly
challenging to process relational joins efficiently [36]. Therefore,
researchers and engineers continuously adapt join algorithms to
harness the latest advances in hardware technology [9, 14, 15, 40,
57]. Modern multi-core architectures led to sophisticated work-
load partitioning strategies, cache optimization techniques, and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749720

Balkesen SMJ (CPU)
Balkesen RHJ (CPU)

Rui SMJ (2/4 GPUs)
Rui HRJ (4/8 GPUs)

HMG SMJ (2/8 GPUs)

10 ∗ |R| = |S| = 3B
01
23
45
67

Jo
in

du
ra

tio
n

[s
] 5.8

2.5

1.0

(a) IBM AC922

10 ∗ |R| = |S| = 32B
010
2030
4050
60

Jo
in

du
ra

tio
n

[s
]

44.0

29.7
37.7

13.2
5.4

(b) NVIDIA DGX H100

Figure 1: Join baseline comparison with 8-byte tuples

single instruction, multiple data (SIMD) operations for relational
joins [10, 11, 16, 59, 68, 91]. Similarly, the rise of many-core graph-
ics processing units (GPUs) inspired numerous GPU-accelerated
joins [35, 48, 87, 97, 105]. Due to the high instruction throughput
and memory bandwidth of GPUs [78, 85], these algorithms often
outperform parallel CPU joins by an order of magnitude [97, 105].
Most of the published GPU-accelerated joins are single-GPU ap-
proaches that leave the performance gain of joining across multiple
GPUs connected via high-speed peer-to-peer (P2P) interconnects
entirely untapped. Moreover, they assume that the input relations
and all intermediate join tuples fit completely into GPU memory.
Although the on-chip GPU memory has increased over the past
few years up to 256 GB [5], it still sets an upper limit on the size of
the input relations that a single-GPU join can process.

Only a fewmulti-GPU approaches have been proposed. Paul et al.
describe a partitioned multi-GPU hash join featuring a multi-hop
routing strategy for efficient P2P data transfers between asymmetri-
cally connected GPUs [88]. Their join exploits the P2P interconnects
between the GPUs but lacks support for large out-of-core data. It
assumes that the input relations and the intermediate join state fit
entirely into GPU memory. Moreover, the growing availability of
symmetric switch-based P2P interconnects (e.g., NVSwitch) negates
the utility of its multi-hop routing strategy [74]. Rui et al. present
two multi-GPU join algorithms that can handle large out-of-core
data natively: a sort-merge join and a hybrid-radix join [96]. The
sort-merge join operates in two phases. First, it sorts chunks of the
input relations that fit into GPU memory on the GPUs, partitions
the sorted chunks through a parallel merge path partitioning in
main memory, and merges the partitions concurrently across the
GPUs. Second, it partitions the sorted input relations again and
joins the partitions on the GPUs. The hybrid-radix join partitions
the input relations into disjoint buckets through radix partitioning
and joins the buckets on the GPUs. Although both out-of-core joins
break the upper limit on the size of the input relations, neither har-
nesses the high-bandwidth P2P interconnects between the GPUs,
which facilitate reducing the data transfers over the typically slower

4653

https://doi.org/10.14778/3749646.3749720
https://github.com/hpides/multi-gpu-sort-merge-join
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749720
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CPU-GPU interconnects [60, 61, 67]. Hence, the imperative arises to
develop a novel multi-GPU join algorithm that fully utilizes modern
multi-GPU systems with high-speed interconnects.

In this paper, we propose a heterogeneous multi-GPU sort-merge
join that supports large out-of-core data and utilizes the high-speed
P2P interconnects of modern multi-GPU platforms. It comprises a
merge- or radix partitioning-based multi-GPU sort phase, a parallel
CPU merge phase, and a hybrid join phase that employs a CPU-
assisted merge path partition strategy and executes a binary search-
based𝑚:𝑛 merge-join kernel across multiple GPUs. Our implemen-
tation features various data transfer optimizations and utilizes state-
of-the-art CPU and on-GPU sort, merge, and partition primitives
determined through micro-benchmarks. We evaluate the perfor-
mance of our multi-GPU sort-merge join on high-performance
computing (HPC) systems with fast NVLink 2.0, NVLink 4.0, and
NVSwitch interconnects such as the IBM AC922 and NVIDIA DGX
H100 [49, 81]. We compare its runtime for two workloads against
that of state-of-the-art CPU and GPU baselines: the multi-threaded
CPU sort-merge and radix-hash joins by Balkesen et al. and Rui
et al.’s non-P2P-enabled multi-GPU sort-merge and hybrid-radix
joins [9, 96]. We study the impact of our sort-merge join’s three al-
gorithm phases on its execution time and analyze its scalability for
increasing numbers of GPUs and robustness against different selec-
tivity and data skew factors. Lastly, we validate our join’s real-world
applicability using two join-intensive TPC-H queries [110].

We show that our novel heterogeneous multi-GPU sort-merge
join (HMG SMJ) consistently outperforms the CPU and GPU base-
lines. On the IBM AC922, it is up to 5.9× and 2.5× faster than the
sort-merge join and hybrid-radix join by Rui et al. (see Figure 1a).
On the NVIDIA DGX H100, it achieves up to 8.7× (sort-merge) and
2.5× (hybrid-radix) shorter join durations than the multi-GPU base-
lines (see Figure 1b). Compared to Balkesen et al.’s CPU sort-merge
and radix-hash join, it yields speedups of 15.2× and 5.5×, respec-
tively. We measure that our join’s sort phase contributes as much
as 78% to its execution time. We observe that the radix partitioning-
based sort strategy is between 12% and 20% more efficient than
the merge-based strategy. Once either of the two input relations
exceeds the combined GPU memory capacity, we notice a perfor-
mance cliff as the parallel CPU merge phase saturates the main
memory bandwidth. Our join’s performance exceeds that of the
fastest CPU and GPU baseline by up to 2.7× and 1.2×, respectively,
even with a merge phase. We find that the join phase has as little
as 22% impact on our join’s runtime. If both of the input relations
are pre-sorted, it reaches speedups of 14.4× (IBM AC922) and 13.7×
(NVIDIA DGX H100) over the hybrid-radix join. We demonstrate
that our join scales well with the number of GPUs based on the in-
terconnect topology. Unlike the CPU and GPU baselines, it benefits
from data skew with 12% shorter join durations.

With this paper, we make the following contributions:
(1) We propose a novel multi-GPU sort-merge join that exploits

the fast P2P interconnects of modern multi-GPU platforms
and can handle large out-of-core data natively.

(2) We conduct in-depth experiments for two workloads to
study our sort-merge join’s efficiency in joining large input
relations on multi-GPU systems.

(3) We publish our high-performance join implementation that
utilizes state-of-the-art CPU and on-GPU primitives.

2 BACKGROUND
In this section, we outline the hardware characteristics of modern
GPU architectures and GPU interconnects.

2.1 GPU Architectures
GPUs offer massively parallel compute capabilities. Unlike CPUs
that are designed to execute a few tens of threads as fast as possible
and hide memory access latency through data caches and control
flows, GPUs are optimized to run thousands of threads in parallel
with lower single-thread performance but considerably higher in-
struction throughput than CPUs [84]. By way of illustration, the
two top-of-the-line GPUs, NVIDIA V100 (Volta) and NVIDIA H100
(Hopper), achieve 32/64-bit floating-point throughput rates of up
to 15.7/7.8 TFLOPS and 66.9/33.5 TFLOPS, respectively [73, 82].
GPUs are built around a scalable array of streaming multiproces-
sors (SMs). The NVIDIA V100 and NVIDIA H100 comprise 80/132
SMs, each containing 64/128 INT32 and FP32 as well as 32/64 INT64
and FP64 cores [73, 82]. SMs employ the single instruction, multiple
threads (SIMT) architecture. Instructions are pipelined to leverage
instruction-level parallelism (ILP) within a single thread and thread-
level parallelism (TLP) through simultaneous multithreading. SMs
execute threads in groups of 32 parallel threads called warps [62].

In addition to a many-core compute architecture, GPUs feature
a high-bandwidth memory hierarchy with off-chip and on-chip
memory [84]. Off-chip memory consists mainly of global memory
(HBM). In the case of the NVIDIA V100 and NVIDIA H100, the
bandwidth of global memory is 900 GB/s and 3352 GB/s, respec-
tively [73, 82]. Usually, the capacity of global memory is orders
of magnitude smaller than that of main memory (e.g., 32 GB for
the NVIDIA V100 and 80 GB for the NVIDIA H100) [76, 85]. Since
global memory is only accessible via aligned 32-, 64-, or 128-byte
memory transactions, warps coalesce adjacent memory accesses
from parallel threads into as few transactions as possible to improve
transfer efficiency [44]. The L2 cache hides the global memory la-
tency by caching loads and stores to it. On the NVIDIA V100, its
capacity is 6 MB, while on the NVIDIA H100, it is 50 MB [73, 82].
On-chip memory per SM includes low-latency shared memory as
well as the L1 cache and the register file. Typically, shared memory
serves as user-managed scratchpad memory, while the L1 cache
transparently hides the global memory access latency of all parallel
threads executed by the SM [45]. On the NVIDIA V100 and NVIDIA
H100, shared memory and the L1 cache are physically combined on
each SM with a capacity of 128 KB and 256 KB, respectively [6, 21].
The register file size per SM is 256 KB on both GPUs.

2.2 GPU Interconnects
GPUs are attached to the main memory controller via CPU-GPU in-
terconnects. Modern high-performance computing (HPC) systems
have multiple GPUs connected through peer-to-peer (P2P) intercon-
nects. The interconnect topology greatly affects the performance
of GPU-accelerated applications [60, 61, 89].

Traditionally, PCIe has been the standard CPU-GPU and P2P
interconnect. It is a serial communication bus usually composed
of 16 bi-directional lanes per link [69]. PCIe 5.0 lanes offer a peak
data transfer rate of 4 GB/s. One PCIe 5.0 link thus reaches a uni-
directional bandwidth of 64 GB/s. If multiple GPUs are connected

4654

to the same PCIe link via a switch, the bandwidth is shared between
the GPUs [69]. In recent years, hardware vendors have introduced
high-bandwidth interconnects to enable faster CPU-GPU and P2P
communication. NVLink is a bi-directional point-to-point inter-
connect by NVIDIA [22, 72]. NVLink 2.0 and NVLink 4.0 achieve
a data transfer rate of 25 GB/s per link in each direction [73, 82].
NVLink 2.0-enabled GPUs (e.g., NVIDIA V100) support up to six
links. Consequently, the uni-directional bandwidth of P2P data
transfers between two NVIDIA V100 GPUs is 150 GB/s. NVLink 4.0-
powered GPUs (e.g., NVIDIA H100) feature eighteen links and offer
P2P data transfers at a rate of up to 450 GB/s between twoGPUs. The
IBM AC922 harnesses NVLink 2.0 for both its CPU-GPU and P2P in-
terconnects [49]. NVSwitch is an NVLink-based switch for all-to-all
P2P communication between up to 16 GPUs [74]. NVLink 2.0- and
NVLink 4.0-powered NVSwitch enables bandwidths of 150 GB/s
and 450 GB/s between two GPUs [54]. The NVIDIA DGX H100 uses
NVLink 4.0-based NVSwitch for its P2P interconnects [81].

Most multi-GPU platforms are dual-socket non-uniformmemory
access (NUMA) systems with an equal number of GPUs connected
to each socket. On such systems, data transfers between the local
NUMA node and the GPUs of the remote NUMA node involve
traversing the CPU-CPU interconnect [66]. In a process called stag-
ing, data is moved from local to remote main memory via the CPU-
CPU interconnect and, subsequently, from remote main memory to
GPU memory via the CPU-GPU interconnect [55]. Copying data be-
tween GPUs without P2P interconnects attached to different NUMA
nodes entails staging as well. Commercially available CPU-CPU
interconnect technologies include IBM X-Bus, AMD Infinity Fabric,
and Ultra Path Interconnect (UPI) by Intel [3, 7, 19, 52].

In times when PCIe was state-of-the-art, researchers suggested
that GPU-accelerated database operations cannot efficiently scale to
large out-of-core data due to the data transfer bottleneck caused by
low-bandwidth, high-latency CPU-GPU interconnects [25, 31, 103,
117]. Since fast interconnects such as NVLink and NVSwitch have
emerged, GPU-based joins that outperform their CPU baselines for
large input relations have been proposed [64, 65]. Considering the
interconnect topology in the design of GPU-accelerated database
operations is crucial, though, especially on systems with heteroge-
neous CPU-CPU, CPU-GPU, and P2P interconnects. On such sys-
tems, using the compute power of both multi-core CPUs and many-
core GPUs can mitigate the data transfer bottleneck [28, 32, 90, 105].

3 ALGORITHM
In this section, we present a heterogeneous multi-GPU sort-merge
join for large out-of-core data exceeding the combined GPU mem-
ory capacity. Our algorithm consists of a multi-GPU-accelerated
merge- or radix partitioning-based sort phase (see Section 3.1), a
parallel CPU-based multiway merge phase (see Section 3.2), and a
hybrid join phase that combines a CPU merge path partition with a
multi-GPU-accelerated join strategy (see Section 3.3).

3.1 Sort Phase
The multi-GPU-accelerated sort phase sorts the tuples (i.e., key-
value pairs) of the two input relations 𝑅 and 𝑆 by key in chunksets
comprising equal-sized chunks across the 𝑔 GPUs. It supports two
sort strategies: merge-based (for arbitrarily typed tuples) and radix

GPU 0 GPU 1

1 Keys Values Keys Values ––𝐵𝑝

2 Keys Values Keys Values ––𝐵𝑠

Figure 2: P2P data transfers between 𝒈 = 2 GPUs

partitioning-based (for numerically typed tuples). Although both
approaches utilize the high-speed P2P interconnects of modern
multi-GPU platforms for inter-GPU data exchanges, they differ in
how tuples are exchanged between the GPUs. While the merge-
based approach repeatedly shuffles blocks of tuples between pair-
wise subsets of all GPUs, the radix partitioning-based approach
swaps all tuples simultaneously among all 𝑔 GPUs. Common to
the two multi-GPU sort strategies is the mechanism to partition 𝑅

and 𝑆 into 𝑘𝑅 and 𝑘𝑆 chunksets, respectively, consisting of 𝑔 equal-
sized chunks that fit into the global GPU memory of any of the 𝑔
GPUs. Moreover, both approaches share the logic to interleave data
transfers to and from the GPUs with in-core compute operations
utilizing two buffers for the keys and values of 𝑅 and 𝑆 .

3.1.1 Multi-GPU Merge Sort. The merge-based multi-GPU sort
approach extends the algorithm by Tanasic et al. with support for
key-value pairs and large out-of-core data [108]. Once the chunks
constituting a chunkset have been copied to the 𝑔 GPUs, they are
sorted locally by key on each GPU through a state-of-the-art single-
GPU sort primitive. Then, they are merged globally by key across
all 𝑔 GPUs in a sequence of pivot selections, block exchanges, and
comparison-based single-GPU merge primitive executions. Finally,
the chunks are copied back into main memory.

On-GPU Chunk Sorting. A high-performance, low-overhead
single-GPU sort primitive is required for efficiently sorting the
chunks’ tuples locally by key. Most on-GPU sort algorithms are
parallel adaptations of either merge sort with a time complexity of
𝑂 (𝑛 ∗ log(𝑛)) or radix sort with a time complexity of 𝑂 (𝑛), where
𝑛 denotes the number of tuples to sort [71, 100, 107]. Over the past
decade, radix sort has established itself as the fastest algorithm,
as its traditionally high demand for memory bandwidth has been
reduced by algorithmic improvements and mitigated by the ever-
increasing GPU memory bandwidth [1, 70, 73, 75, 101, 107].

We evaluate two on-GPU sort primitives for two billion 64-bit
tuples with 32-bit keys and 32-bit values: a load-balanced merge
sort from the accelerated CUDA C++ primitives library mgpu and a
least-significant bit (LSB) radix sort from the parallel CUDA C++
algorithms library thrust [77, 83]. Our micro-benchmark shows
that thrust::sort_by_key outperforms mgpu::mergesort by up
to 4.1× on the IBM AC922 and 4.5× on the NVIDIA DGX H100.
We, therefore, utilize it as the single-GPU sort primitive in our
multi-GPU merge sort implementation. The space complexity of
the out-of-place LSB radix sort from the thrust library is𝑂 (𝑛) as it
needs a secondary buffer for the key-value pairs and comes with an
overhead of up to 128 MB. Since GPU memory allocations are very
expensive [84], we pass our allocator operating on pre-allocated
global memory to the on-GPU sort primitive.

4655

GPU 0 GPU 1 GPU 2 GPU 3

1
𝐶0 𝐶1 𝐶2 𝐶3

2

2 7 9 11 12 13 15 16 1 3 4 5 6 8 10 14

2 7 6 8 1 3 4 5 12 13 15 16 9 11 10 14

2 6 7 8 1 3 4 5 12 13 15 16 9 10 11 14

3
𝐶0 𝐶1 𝐶2 𝐶3

Figure 3: Block shuffling for 𝒈 = 4 GPUs

Multi-GPU P2P Block Shuffling. Bringing the locally sorted
chunks into globally ascending order by key across 𝑔 = 2 GPUs re-
quires amerge stage consisting of a pivot selection, a block exchange,
and an on-GPU merge step. In the pivot selection, we calculate a
key-based pivot position 𝑝 in the chunk𝐶1 and its mirrored position
𝑝′ in the chunk 𝐶0, where 𝑝′ = |𝐶0 | − 𝑝 , so that the first 𝑝′ keys
in 𝐶0 and the first 𝑝 keys in 𝐶1 are less than or equal to the last
𝑝 keys in 𝐶0 and the last 𝑝′ keys in 𝐶1. Our implementation uses
an adapted binary search kernel that operates on the keys of two
sorted chunks via 𝑂 (log(𝑛)) remote P2P memory reads, where 𝑛
signifies the chunk size. It chooses the leftmost pivot position 𝑝 and
its rightmost counterpart 𝑝′ to minimize the number of key-value
pairs that must be exchanged via the P2P interconnects.

After determining the optimal pivot positions, we swap the first
𝑝 key-value pairs in 𝐶1 with the last 𝑝 key-value pairs in 𝐶0. Since
we exchange blocks of consecutive keys and values, their by-key
order is preserved. Our implementation uses bi-directional P2P
data transfers to swap the equal-sized key and value blocks of
𝐶0 and 𝐶1 between the two GPUs. It copies the blocks from the
primary buffers (𝐵𝑝) to the secondary buffers (𝐵𝑠) to avoid blocking
stream synchronization, as portrayed in Figure 2. Copying the
misplaced key and value blocks of 𝐶0 and 𝐶1 between the two
GPUs occurs asynchronously on the default streams. Moving the
remaining key and value blocks into their secondary buffer on each
GPU occurs concurrently on other streams. Once all operations
have been completed, 𝐶0 and 𝐶1 contain two sorted key and value
blocks that are merged in the on-GPU merge step.

Merging the sorted chunks across 𝑔 ≥ 4 GPUs with 𝑔 = 2ℎ and
ℎ > 1 requires multiple merge stages (see Figure 3). We follow a
recursive divide-and-conquer approach for merging 𝑐 chunks by
bringing the left and right halves of the chunks into ascending order
before and after each recursion tree level. If 𝑐 = 2, we merge each
of the 𝑔/2 chunk pairs at the recursion tree’s leaf level across two
GPUs (e.g., 𝐶0 with 𝐶1 and 𝐶2 with 𝐶3 in stage 1 and stage 3).
If 𝑐 > 2, we merge each of the 𝑔/𝑐 chunk groups via a pivot selec-
tion and block exchange between multiple GPUs, followed by an
on-GPU merge step (e.g., 𝐶0 + 𝐶1 with 𝐶2 + 𝐶3 in stage 2). Our
implementation merges the 𝑔/𝑐 chunk groups in each merge stage
simultaneously, coordinated by parallel CPU threads.

GPU 0 GPU 1 GPU 2 GPU 3

1
0,0 1,0 0,1 3,1 0,2 3,2 0,3 2,3 ––𝐵𝑎,𝑖

0 0 0 0 1 2 3 3 ––𝐷(𝐵𝑎)

2
0:0,0 0:1,0 1,0 0:0,1 0:1,1 3,1 0:1,2 0:3,2 3,2 0:0,3 0:2,3 2,3 ––𝐵𝑎,𝑖

0:0 0:0 0:0 0:1 0:1 0:1 0:2 0:3 1 2 3 3 ––𝐷(𝐵𝑎)

Figure 4: Chunk partitioning for 𝒈 = 4 GPUs

On-GPU Chunk Merging. A fast on-GPU merge primitive
is needed to efficiently merge two correlated and by-key sorted
key-value pair blocks constituting a chunk. The two single-GPU
merge primitives mgpu::merge and thrust::merge_by_key are
based upon GPU merge path — a tile partitioning strategy with a
time complexity of 𝑂 (𝑛/𝑝 + log(𝑛)), where 𝑛 and 𝑝 are the total
number of tuples to merge and processors, respectively [30, 77, 83].

We evaluate the performance of the two single-GPU merge prim-
itives for two billion 64-bit tuples with 32-bit keys and 32-bit values.
Our micro-benchmark shows that thrust::merge_by_key is up to
1.1× faster than mgpu::merge on the IBM AC922. On the NVIDIA
DGX H100, it outperforms its counterpart from the mgpu library
by 1.6×. We use thrust::merge_by_key as the on-GPU merge
primitive in our multi-GPU merge sort implementation. Since the
algorithm from the thrust library operates on auxiliary key and
value buffers and has a memory overhead of up to 64 MB, we pass
it our allocator managing pre-allocated global memory.

3.1.2 Multi-GPU Radix Sort. The radix partitioning-based multi-
GPU sort approach augments the sort algorithm by Ilic et al. with
support for key-value pairs and data exceeding the combined GPU
memory capacity [50]. After the chunks have been transferred to
the𝑔 GPUs, they are locally partitioned by key into buckets through
most significant bit (MSB) radix partitioning passes. The buckets
are then redistributed among the GPUs in a single all-to-all P2P
bucket exchange so that the keys of GPU 𝐺𝑖 are less than or equal
to the keys of GPU 𝐺 𝑗 with 𝑗 > 𝑖 . Finally, the buckets are sorted
locally and copied back into main memory.

On-GPU Chunk Partitioning. Once each chunk resides in
global memory, each GPU 𝐺𝑖 partitions its chunk into buckets, en-
suring that the keys of bucket 𝐵𝑎,𝑖 precede those of bucket 𝐵𝑏,𝑖
with 𝑏 > 𝑎. First, we compute a device-local histogram with 2𝑚
buckets over the keys’𝑚 most significant bits. Instead of reading
the keys and atomically incrementing the 2𝑚 zero-initialized buck-
ets with𝑚 = 8 in global memory, our implementation divides the
keys across all thread blocks, computes block-local histograms in
considerably faster shared memory, and aggregates the block-local
histograms with warp-aligned pre-aggregations into the device-
local histogram. Second, we calculate the prefix sum of the device-
local histogram to determine the write offsets for the 2𝑚 buckets.
Our implementation utilizes cub::DeviceScan::ExclusiveScan
to calculate the histogram’s prefix sum. The single-pass on-GPU
prefix scan primitive employs a decoupled look-back strategy to
dissociate the latency of local prefix computation from global prefix
propagation and is part of the high-performance CUDA C++ library
for cooperative warp-, block-, and device-wide primitives called

4656

GPU 0 GPU 1 GPU 2 GPU 3

0:0,0 0:1,0 1,0 0:0,1 0:1,1 3,1 0:1,2 0:3,2 3,2 0:0,3 0:2,3 2,3 ––𝐵𝑎,𝑖

0:0,0 0:0,1 0:0,3 0:1,0 0:1,1 0:1,2 0:2,3 0:3,2 1,0 2,3 3,1 3,2 ––𝐵𝑎,𝑖

Figure 5: Bucket swapping for 𝒈 = 4 GPUs

cub [70, 79]. Finally, we scatter the keys and the corresponding
values into the buckets based on the prefix sum. To avoid blocking
synchronization, our implementation scatters the key-value pairs
into the secondary buffers. To avoid random writes to global mem-
ory, it pre-scatters the keys and values within each thread block
into the block-local buckets in fast shared memory and copies the
block-local key-value buckets sequentially back to global memory.

After each of the 𝑔 GPUs has partitioned its chunk locally, it
sends its device-local histogram to all other GPUs via the P2P in-
terconnects. We compute the logical bucket distribution 𝐷 to deter-
mine whether each device-local bucket fits into the memory of its
designated GPU. Multiple device-local buckets 𝐵𝑎,0, 𝐵𝑎,1, ..., 𝐵𝑎,𝑔−1
belonging to the same global bucket 𝐵𝑎 form a spanning bucket if
their keys and values do not fit into the global GPUmemory of their
assigned GPU. We refine spanning buckets through repeated MSB
radix partitioning passes on the next𝑚 most significant bits until
no spanning buckets are left. To avoid treating slightly overflow-
ing buckets as spanning buckets and, thus, minimize the number
of MSB radix partitioning passes, we define a padding threshold
𝜖 = 0.5% relative to the chunk size, allowing some GPUs to host
slightly more key-value pairs than others.

Figure 4 illustrates the on-GPU chunk partitioning strategy for
tuples with 32-bit keys and 32-bit values on 𝑔 = 4 GPUs. It depicts
only the keys and the global buckets 𝐵0, 𝐵1, ..., 𝐵3 for simplicity. In
pass 1 , each GPU partitions its chunk locally based on the keys’
𝑚 = 8 most significant bits [32..24) and exchanges its histogram
with all other GPUs. The device-local buckets 𝐵0,0, 𝐵0,1, ..., 𝐵0,3 form
a spanning bucket and require additional MSB radix partitioning
passes. In pass 2 , each GPU partitions its device-local bucket
belonging to the global bucket 𝐵0 on the next𝑚 = 8 bits [24..16)
into smaller buckets (e.g., 𝐵0:0,0 and 𝐵0:1,0 on GPU 𝐺0). The device-
local histogram exchange among all GPUs reveals that the spanning
bucket 𝐵0,0, 𝐵0,1, ..., 𝐵0,3 has been eliminated. Since the partitioning
strategy yields only nearly perfect load balancing via the 𝜖 padding
threshold, the global bucket 𝐵0:2 is not a spanning bucket.

Multi-GPUP2P Bucket Swapping. Based on the logical bucket
distribution, the GPUs swap misplaced key-value buckets with
each other in an all-to-all P2P bucket exchange (see Figure 5). Our
implementation uses the secondary key and value buffers for the
P2P bucket swapping to avoid blocking stream synchronization. If
a device-local bucket’s source and destination GPUs differ, it issues
two asynchronous copy operations (one for the keys and one for
the values) over the P2P interconnects on the default stream. If a
device-local bucket already resides on the target GPU, it copies the
keys and values on another stream. The CUDA runtime coalesces
the asynchronous memory copy operations for the keys and values
of adjacent buckets into one memory transaction.

CPU GPU 0 GPU 1

1 𝐶0 𝐶1 … 𝐶2∗ 𝑘− 1 𝐶0 𝐶1 ––𝐵𝑝/𝑠

2 𝐶0 𝐶1 … 𝐶2∗ 𝑘− 1 Sort 𝐶0 Sort 𝐶1 ––𝐵𝑝/𝑠

3 𝐶0 𝐶1 … 𝐶2∗ 𝑘− 1 𝐶0 𝐶2 𝐶1 𝐶3 ––𝐵𝑝/𝑠

4 𝐶0 𝐶1 … 𝐶2∗ 𝑘− 1 Sort 𝐶2 Sort 𝐶3 ––𝐵𝑝/𝑠

Figure 6: Sort pipeline for large out-of-core data

On-GPU Chunk Sorting. Once the 𝑔 GPUs contain only buck-
ets of distinct key ranges with respect to the (𝑝𝐵𝑎

+ 1) ∗𝑚 most
significant bits, where 𝑝𝐵𝑎

is the number of MSB radix partitioning
passes of the global bucket 𝐵𝑎 , each GPU sorts the buckets of its
chunk locally by key and transfers them back into main memory.
Our implementation utilizes the single-GPU LSB radix sort prim-
itive cub::DeviceRadixSort::SortPairs to sort the key-value
pairs in each bucket based on the keys’ unsorted𝑤 − (𝑝𝐵𝑎

+ 1) ∗𝑚
least significant bits, where𝑤 is the width of the key type [1, 79]. To
reduce the number of buckets to sort and, by extension, minimize
the kernel launch overhead of the on-GPU sort primitive, our imple-
mentation fuses neighboring buckets with the same number of MSB
radix partitioning passes whose combined size is less than the fus-
ing threshold 𝛾 = 1.0% relative to the chunk size. Sorting the fused
buckets occurs on the default stream. Transferring the sorted buck-
ets back into main memory takes place concurrently on another
stream to facilitate overlapped copy and compute operations [42].

3.1.3 Out-Of-Core Data Handling. Since the input relations 𝑅 and
𝑆 might exceed the combined global GPU memory capacity of all
𝑔 GPUs, they are sorted in chunksets. First, we split 𝑅 and 𝑆 into
𝑘𝑅 and 𝑘𝑆 chunksets, each composed of 𝑔 equal-sized chunks that
fit into the 𝑔 GPUs’ global memory. Our implementation queries
the CUDA device properties and dimensions the chunksets under a
memory utilization limit of 80% to leave space for auxiliary data
structures [43]. Second, we sort the 𝑘𝑅 and 𝑘𝑆 chunksets sequen-
tially across all 𝑔 GPUs through the merge- or radix partitioning-
based multi-GPU sort strategy. Our implementation allocates two
chunk-sized key and value buffers in device memory. It transfers
the chunks of a chunkset into the primary buffers (𝐵𝑝), sorts their
tuples by key across all 𝑔 GPUs utilizing the secondary buffers
(𝐵𝑠), and transfers them back into main memory while copying the
chunks of the next chunkset into the flipped primary buffers, as
illustrated in Figure 6. It harnesses two non-blocking streams to
overlap the data transfers to and from the GPUs and saturate the
bi-directional CPU-GPU interconnect bandwidth [47].

Due to the high latency of CUDA memory allocations (e.g., up to
276 ms and 28 ms for 16 GB on the IBM AC922 and NVIDIA DGX
H100, respectively) [27, 113, 114], the multi-GPU sort implementa-
tions operate exclusively on pre-allocated host and device memory.
Our C++ stack allocator template with self-defragmentation ca-
pabilities makes one physical allocation and, subsequently, issues
byte-aligned virtual allocations. It tracks its allocations (i.e., begin

4657

a 𝑆 1 2 3 5 9 9 10 13 b 𝑆 1 2 3 5 9 9 10 13

𝑅 𝑅 𝑆0 𝑆1 𝑆2 𝑆3

2 1 0 0 0 0 0 0 0 2 𝑅0 0 0

7 1 1 1 1 0 0 0 0 7
𝑅1

1 0

9 1 1 1 1 0 0 0 0 9 1 0

11 1 1 1 1 1 1 1 0 11
𝑅2

1 1

12 1 1 1 1 1 1 1 0 12 1 0

13 1 1 1 1 1 1 1 0 13

𝑅3

1 1

15 1 1 1 1 1 1 1 1 15 1 1

16 1 1 1 1 1 1 1 1 16 1 1

Figure 7: Merge path for the keys in 𝑹 and 𝑺

pointer and byte-aligned size pairs) with a doubly linked list. Upon
memory allocations, it calculates the begin pointer of the virtual
allocation based on the zero-initialized relative offset to the physical
allocation, increases the relative offset by the byte-aligned size, and
inserts the allocation as the last node into the linked list. During
deallocations, it searches for the allocation in reverse, removes it
from the doubly linked list, and lowers the relative offset to the
accumulated allocation sizes if it was the last node. Our C++ allo-
cator template has two specializations: the host allocator allocates
16-byte-aligned pinned (i.e., page-locked) main memory to facilitate
high-bandwidth data transfers and the device allocator allocates
128-byte-aligned global GPU memory [41]. We utilize a single host
allocator and 𝑔 device allocators for all memory allocations, includ-
ing those via on-GPU sort, merge, and scan primitives.

3.2 Merge Phase
The CPU-assisted merge phase merges the tuples of the sorted 𝑘𝑅
and 𝑘𝑆 chunksets by key through a parallel CPU multiway merge
algorithm to bring the two input relations 𝑅 and 𝑆 into fully sorted
order in main memory. If either of the input relations comprises
only one chunkset (i.e., 𝑘𝑅 = 1 or 𝑘𝑆 = 1), it is already fully sorted
by key and requires no merge phase. The CPU multiway merge
primitive operates on zero-copy zip iterators to merge the keys
and values of the 𝑘𝑅 and 𝑘𝑆 chunksets in lockstep. Thus, it avoids
copying the keys and values of 𝑅 and 𝑆 into temporary key-value
pairs during the merge phase. Since the merge primitive is an out-
of-place algorithm, it uses a pre-allocated key-value buffer of size
max(|𝑅 |, |𝑆 |) for merging the chunksets of 𝑅 and 𝑆 .

3.2.1 CPU Multiway Merge. Merging the 𝑘𝑅 and 𝑘𝑆 chunksets
requires a multiway merge primitive. The best conceivable time
complexity of a comparison-based multiway merge algorithm is
𝑂 (𝑛 ∗ log(𝑘)), where 𝑛 is the number of tuples and 𝑘 is the num-
ber of sorted sublists. Both in-place and out-of-place algorithms
with a space complexity of 𝑂 (𝑛) have been published [18, 51, 98].
__gnu_parallel::multiway_merge from the libstdc++ parallel
mode is a runtime-optimal multi-threaded CPU primitive [23, 24]. It
uses a register-optimizedmerge strategy with unrolled loops for𝑘 ∈
{2, 3, 4} and a generic loser tree-based strategy for 𝑘 ≥ 5 [99]. CPU
multiway merge algorithms are memory bandwidth-bound [18, 51].
Maltenberger et al. show that __gnu_parallel::multiway_merge
saturates themainmemory bandwidth of modernHPC systems [67].
Since GPU multiway merge algorithms thus yield no performance
gain, we use the primitive in our multi-GPU join implementation.

Partition 0 Partition 1 Partition 2

𝑅0 𝑅1 𝑅2

a
2 7 9 9 9 9 9 9 9 9 9 11 ––𝑅

1 9 9 9 10 14 ––𝑆

𝑆0 𝑆1 𝑆2

𝑅0 𝑅1 𝑅2

b
2 7 9 9 9 11 13 13 13 13 13 15 ––𝑅

1 5 9 13 13 14 ––𝑆

𝑆0 𝑆1 𝑆2

Figure 8: Skewed partition pairs for 𝒑 = 3 partitions

3.2.2 Zero-Copy Zip Iterator Handling. The multi-threaded CPU
primitive __gnu_parallel::multiway_merge lacks support for
tuples. Instead of copying the separately stored keys and values
of 𝑅 and 𝑆 into and out of temporary key-value pairs with an
overloaded key-based < operator to employ the primitive as is,
albeit with time and space overheads of𝑂 (𝑛), we adapt it to operate
on pointer-based zip iterators for the keys and values of the 𝑘𝑅 and
𝑘𝑆 chunksets. By internally storing tuples of sequence pointers, as
well as dereferencing and applying permutations to them, the zero-
copy zip iterators allow for merging chunksets of 𝑅 and 𝑆 by key
without any space overhead. We evaluate the performance of our
zip iterator optimization for __gnu_parallel::multiway_merge
with eight billion 8-byte tuples (i.e., 32-bit keys and 32-bit values)
split into three sublists. On the IBM AC922, the speedup over the
workaround using key-value pairs is 5.6× (of which 64% is due to
eliminating memory allocations). On the NVIDIA DGX H100, using
zero-copy zip iterators is 33.3× faster than relying on key-value
pairs, where 92% is due to avoiding memory allocations.

3.3 Join Phase
Themulti-GPU-accelerated join phase splits the by-key sorted input
relations 𝑅 and 𝑆 into 𝑔 partitions composed of smaller subparti-
tions via a CPU-assisted merge path partition strategy and joins the
disjoint subpartition pairs by key across the 𝑔 GPUs. Its pipelined
execution model allows for running three operations simultane-
ously on each GPU: (1) copying the keys of a disjoint subpartition
pair to global memory, (2) executing the binary search-based𝑚:𝑛
merge-join kernel on the keys of a subpartition pair to produce a
set of matching key ranges, and (3) copying a set of matching key
ranges back into main memory for parallel CPU materialization.

3.3.1 CPU Merge Path Partition. Once the tuples of 𝑅 and 𝑆 reside
by-key sorted in main memory, they are divided into 𝑔 equal-sized
partitions, each containing at least three subpartitions whose keys
fit into the 𝑔 GPUs’ global memory. We determine the partition and
subpartition boundaries through a key-based two-step merge path
partitioning [86]. First, we split 𝑅 and 𝑆 into 𝑔 equal-sized disjoint
partition pairs (𝑅0, 𝑆0), ..., (𝑅𝑔−1, 𝑆𝑔−1) that can be merged indepen-
dently across 𝑔 GPUs. Second, we split each disjoint partition pair
(e.g., (𝑅0, 𝑆0)) into a minimum of three disjoint subpartition pairs
(e.g., (𝑅0,0, 𝑆0,0), ..., (𝑅0,3, 𝑆0,3)) that can be merged independently
across 𝑠 = 3 streams on a single GPU. Our implementation utilizes
mgpu::merge_path from the CUDA C++ primitives library mgpu
in parallel CPU threads to find the merge path [77].

4658

Stream 0–––
Subpartition 0 Subpartition 3 Subpartition 6

HtoD Join DtoH HtoD Join DtoH HtoD Join DtoH

Stream 1–––
Subpartition 1 Subpartition 4

HtoD Join DtoH HtoD Join DtoH

Stream 2–––
Subpartition 2 Subpartition 5

HtoD Join DtoH HtoD Join DtoH

Figure 9: Join pipeline with 𝒔 = 3 streams

Figure 7 illustrates the merge path within a merge matrix for the
keys in 𝑅 and 𝑆 . It is the traversal path from the upper-left to the
lower-right corner while moving rightward if the key in 𝑆 is smaller
than that in 𝑅 (i.e., the cell value is 1) or downward if the key in 𝑆 is
greater than or equal to that in 𝑅 (i.e., the cell value is 0). The cells
in the merge matrix have a value of 1 to the left bottom and 0 to the
right top of the merge path (see Figure 7a). The 𝑖-th point on the
merge path lies on the 𝑖-th cross diagonal in the merge matrix (see
Figure 7b). Conceptually, partitioning a merge path into 𝑝 equal-
sized segments, by finding its intersections with the 𝑝−1 equidistant
cross diagonals in the merge matrix, distributes the workload for
merging 𝑅 and 𝑆 equally among 𝑝 processors. In the example of
Figure 7b, the merge path partitioning of the keys in 𝑅 and 𝑆 yields
𝑝 = 4 equal-sized partition pairs (e.g., 𝑅0 = (2) with 𝑆0 = (1, 2, 3)).
However, since equal keys in 𝑅 and 𝑆 might end up in different
partition pairs, partitioning a merge path without validating the
boundaries yields no valid distribution of the workload for joining
𝑅 and 𝑆 across 𝑝 processors. In the example of Figure 7b, the key 9
occurs in one partition of 𝑅 (i.e., 𝑅1 = (7, 9)) but in two partitions
of 𝑆 (i.e., 𝑆1 = (5, 9) and 𝑆2 = (9, 10)). We, thus, conduct a boundary
validation after each merge path partitioning step. If the last key
in partition 𝑅𝑖 (or 𝑆𝑖) is equal to the first key in partition 𝑆𝑖+1 (or
𝑅𝑖+1), we compute the key ranges in both partitions via adapted
binary searches, exclude the key from both partitions, and store
the matching key ranges prematurely.

Figure 8 exemplifies the merge path partitioning of the keys in
𝑅 and 𝑆 for 𝑝 = 3 with skewed partition pairs. In both examples,
partition 𝑅1 contains keys that start in the previous (𝑅0) or end
in the next (𝑅2) partition, while its counterpart 𝑆1 is empty. We
eliminate skewed partition pairs in the boundary validation after
each merge path partitioning step. If 𝑅𝑖 (or 𝑆𝑖) contains keys but 𝑆𝑖
(or 𝑅𝑖) is empty, we check if the first key equals the last key in 𝑅𝑖
(or 𝑆𝑖). If yes (see Figure 8a), we compute the key’s entire range in 𝑅
and 𝑆 , exclude it from both input relations, and save the matching
key ranges. If no (see Figure 8b), we apply the same logic with the
ranges of the first and last key, respectively.

3.3.2 Multi-GPU Merge Join. After the two input relations 𝑅 and
𝑆 have been split into 𝑔 equal-sized partitions comprising at least
three subpartitions, each of the𝑔GPUs joins its disjoint subpartition
pairs entirely independently by key in a three-stream join pipeline.
First, we distribute the keys of the three or more subpartition pairs
evenly among 𝑠 = 3 non-blocking streams in a round-robin fash-
ion for each of the 𝑔 GPUs. On the host (in main memory), we
allocate 𝑔 resizable buffers for the GPUs’ matching key ranges.
On the device (in global memory), we allocate 𝑠 subpartition-sized

2 7 7 7 9 11 12 12 12 13 15 16 ––𝑅

2 2 5 7 7 10 12 13 13 14 14 16 ––𝑆

Figure 10: Range search for the keys in 𝑹 and 𝑺

key buffers on each GPU. Our implementation utilizes our stack
allocators operating on pre-allocatedmemorywhile enforcing a self-
defragmentation strategy during the entire multi-GPU merge join
execution to avoid dynamic memory allocations (see Section 3.1.3).
Second, we schedule 𝑔 join pipelines with 𝑠 concurrent streams.
Each stream transfers the keys of a subpartition pair into its key
buffer in global memory, executes the merge-join kernel on the keys
to produce a set of matching key ranges, and transfers the set back
into its key-range buffer in main memory for parallel CPU material-
ization. Each pipeline performs all three operations simultaneously,
as depicted in Figure 9. For our sort strategies, overlapping the
host-to-device and device-to-host data transfers with the compute
operations yields no performance gain as the 𝑔 GPUs sort cooper-
atively with explicit synchronization points (e.g., block shuffling
and bucket swapping). For our merge join, however, it enhances
performance as the 𝑔 GPUs join independently [13, 56, 106, 112].
Finally, we materialize the join tuples of 𝑅 and 𝑆 on the CPU based
on the matching key ranges ([𝑖𝑅, 𝑗𝑅], [𝑖𝑆 , 𝑗𝑆]) with 𝑗𝑅 ≥ 𝑖𝑅 and
𝑗𝑆 ≥ 𝑖𝑆 . Our implementation allocates contiguous main memory
for the

∑(𝑗𝑅 −𝑖𝑅 +1) ∗ (𝑗𝑆 −𝑖𝑆 +1) join tuples of the output relation
and materializes the tuples comprising the matched key and the
corresponding values of 𝑅 and 𝑆 , respectively, in CPU threads. If
the tuples comprise variable-length values (e.g., strings), it operates
on pointers for joining and materializing intermediate join tuples.

3.3.3 In-Core Join Processing. Once the keys of two subpartitions
of 𝑅 and 𝑆 have been copied into a stream’s key buffer in global
memory, they are joined via a binary search-based𝑚:𝑛 merge-join
kernel. Suppose |𝑅 | ≤ |𝑆 |, for each unique key at index 𝑖𝑅 in the
subpartition of 𝑅, we conduct three binary searches to find the key’s
ranges in the subpartitions of 𝑅 and 𝑆 . In 𝑗𝑅 , we store the last index
in the subpartition of 𝑅 whose key is equal to that at index 𝑖𝑅 . In
𝑖𝑆 and 𝑗𝑆 , we store the first and last index in the subpartition of 𝑆 ,
respectively, whose key is equal to that at index 𝑖𝑅 . The matching
key range is denoted by ([𝑖𝑅, 𝑗𝑅], [𝑖𝑆 , 𝑗𝑆]). Figure 10 shows the
range search for the keys of two subpartitions of 𝑅 and 𝑆 . The
key 2 at index 𝑖𝑅 = 0 occurs once in the subpartition of 𝑅 (i.e.,
𝑗𝑅 = 0) and twice in the subpartition of 𝑆 at index 𝑖𝑆 = 0 and
index 𝑗𝑆 = 1, resulting in the key range ([0, 0], [0, 1]). The key 7
at index 𝑖𝑅 = 1 occurs three times in the subpartition of 𝑅 (i.e.,
𝑗𝑅 = 3) and two times in the subpartition of 𝑆 ranging from the
first index 𝑖𝑆 = 3 to the last index 𝑗𝑆 = 4, resulting in the key range
([1, 3], [3, 4]). The key 9 at index 𝑖𝑅 = 4 produces no matching
key range. After finding the key’s ranges in the subpartitions of 𝑅
and 𝑆 , we atomically add (𝑗𝑅 − 𝑖𝑅 + 1) ∗ (𝑗𝑆 − 𝑖𝑆 + 1) to the zero-
initialized join counter shared among all 𝑠 = 3 streams in the same
join pipeline and asynchronously transfer the matching key range
([𝑖𝑅, 𝑗𝑅], [𝑖𝑆 , 𝑗𝑆]) into the buffer in main memory.

4659

Table 1: Multi-GPU systems

(a) IBM AC922 (b) NVIDIA DGX H100

75 GB/s 75 GB/s

75 GB/s
75 GB/s 75 GB/s

75 GB/s

GPU 1GPU 0 GPU 3GPU 2

Memory Memory

CPU 0 CPU 1
64 GB/s

170 GB/s 170 GB/s

––– NVLink 2.0 ––– X-Bus

450 GB/s

64 GB/s

64 GB/s 64 GB/s

64 GB/s

NVSwitch

Memory

CPU 0

Memory

CPU 1

GPU 3

GPU 1
GPU 0 GPU 4

GPU 7

GPU 5

GPU 2 GPU 6

114 GB/s

307 GB/s 307 GB/s

––– NVLink 4.0 ––– PCIe 5.0 ––– UPI

2x IBM POWER9 (16x 2.7 GHz) 2x Intel Xeon 8480CL (56x 2.0 GHz)

4x NVIDIA V100 SXM2 32 GB 8x NVIDIA H100 SXM5 80 GB

2x 256 GB DDR4 2x 1024 GB DDR5

Our implementation launches the merge-join kernel with up
to 128 blocks per grid and 256 threads per block. It specifies the
optimal number of resident blocks per streaming multiprocessor
in the kernel’s launch bounds through recursive C++ templates
to maximize the occupancy (i.e., ratio of active warps to possible
active warps) of each streaming multiprocessor [20, 46]. It registers
a 32-byte L2 cache fetch granularity for the kernel to read eight
32-bit or four 64-bit keys at once from global memory during the
binary search-based range searches and, thus, hide the L2 cache
latency [80]. Since the number of matching key ranges for two
subpartitions of𝑅 and 𝑆 is unknown in advance, our implementation
maps the key range buffer residing in pinned main memory into
the device address space and transfers each matching key range
back concurrently to avoid allocating a fixed-size key range buffer
in device memory that remains entirely unused [84].

4 EVALUATION
In this section, we evaluate the performance of our heterogeneous
multi-GPU sort-merge join implementation. In Section 4.1, we elab-
orate on our experimental setup. In Section 4.2, we compare the
runtime of our join with that of state-of-the-art CPU-based and
GPU-accelerated join algorithms. After that, we analyze our join’s
execution breakdown (see Section 4.3) and study its scalability for
increasing numbers of GPUs (see Section 4.4) and robustness against
selectivity and data skew (see Section 4.5). Finally, in Section 4.6, we
evaluate its real-world applicability with two TPC-H queries [110].

4.1 Experimental Setup
In this subsection, we provide details of the multi-GPU systems and
the methodology used in our performance benchmarks. Besides
that, we describe our workloads and baselines.

4.1.1 Hardware Platforms. We evaluate our novel multi-GPU sort-
merge join on two dual-socket multi-GPU systems with state-of-
the-art interconnects: IBM AC922 and NVIDIA DGX H100 (see

Table 1). The IBM AC922 features four NVIDIA V100 GPUs (with
32 GB of global high-bandwidth memory) equally distributed across
both NUMA nodes [49]. Its CPU-GPU and P2P interconnects are
based on three high-speed NVLink 2.0 links with a uni-directional
bandwidth of 75 GB/s. Its X-Bus-powered CPU-CPU interconnect
has a theoretical bandwidth of 64 GB/s per direction. The NVIDIA
DGX H100 has eight NVIDIA H100 GPUs (with 80 GB of GPU
memory) and all-to-all NVLink 4.0-based NVSwitch P2P intercon-
nects offering uni-directional inter-GPU data transfer rates up to
450 GB/s [81]. The platform harnesses PCIe 5.0 for the CPU-GPU
interconnects and Ultra Path Interconnect (UPI) with a bandwidth
of 114 GB/s per direction between the NUMA nodes.

4.1.2 Benchmark Methodology. We measure the end-to-end dura-
tion of joining the input relations 𝑅 and 𝑆 without materializing
the tuples in all benchmarks to facilitate comparability with related
work [2, 8, 14, 59, 96, 97, 105]. We repeat every benchmark three
times and report the arithmetic mean of the measured durations
across all repetitions, resulting in a standard error of less than 3%.
The input relations 𝑅 and 𝑆 reside in main memory attached to
the first socket to minimize variability in memory access latency
due to NUMA effects. The GPU-accelerated join baselines and our
heterogeneous multi-GPU sort-merge join operate on pre-allocated
pinned host memory and global device memory. On each multi-
GPU platform, we assume that the GPUs are used exclusively as
database accelerators and choose the optimal (i.e., fastest) GPU
set G𝑔 for benchmarks involving 𝑔 GPUs based on the platform’s
interconnect topology (e.g., G2 = {0, 1} on the IBM AC922 and
G2 = {0, 1} as well as G4 = {0, 1, 2, 3} on the NVIDIA DGX H100).

4.1.3 Join Workloads. We generate synthetic input relations 𝑅 and
𝑆 with narrow tuples (i.e., key-value pairs) in a column-oriented
fashion in linewith recent relatedwork [2, 9, 88, 96, 102, 116]. Unless
specified otherwise, the keys in 𝑅 and 𝑆 are uniformly distributed
integers over the entire 32- or 64-bit range that follow a foreign key
relationship (i.e., every key in 𝑆 has exactly one matching key in 𝑅).

4660

Table 2: Workloads for the scale factor 𝒇

A B

#key/#value 4/4 bytes 8/8 bytes

|𝑅 | 𝑓 ∗ 1/10 ∗ 109 tuples 𝑓 ∗ 109 tuples
|𝑆 | 𝑓 ∗ 109 tuples 𝑓 ∗ 109 tuples

We study two workloads at different scale factors 𝑓 (see Table 2).
In workload A, 𝑅 and 𝑆 contain 8-byte tuples with 32-bit keys and
values, where 10 ∗ |𝑅 | = |𝑆 |. In workload B, 𝑅 and 𝑆 with |𝑅 | = |𝑆 |
comprise 16-byte tuples with 64-bit keys and values.

4.1.4 Join Baselines. We compare the performance of our novel
multi-GPU join against that of state-of-the-art CPU and GPU joins.
Our CPU baselines are the highly parallel NUMA-aware multiway
sort-merge join and radix-hash join by Balkesen et al. [9]. Both
algorithms utilize 256-bit SIMD instructions while employing multi-
threaded and cache-conscious workload partitioning and process-
ing strategies. Since the two joins rely upon the Advanced Vector
Extensions (AVX) to the x86 instruction set architecture [4, 53],
we evaluate their performance solely on the x86-64-based NVIDIA
DGXH100. Both algorithms have been used extensively as baselines
for hardware-accelerated joins [17, 39, 58, 65, 96, 97, 109, 111]. Our
GPU baselines are the multi-GPU-accelerated sort-merge join and
hybrid-radix join by Rui et al. [96]. Both algorithms support large
out-of-core data but leave the high-bandwidth P2P interconnects of
modern multi-GPU systems unused. Remedying that shortcoming
is infeasible, as the two joins assume a shared-nothing architecture.

4.2 Baseline Comparison
In this subsection, we compare the runtime of our join with that of
the CPU and GPU baselines for workloads A and B.

On the IBM AC922, the optimal GPU set for our multi-GPU join
with the radix partitioning-based sort strategy is G2 = {0, 1} (see
Section 4.3 and Section 4.4). The multi-GPU-accelerated sort-merge
and hybrid-radix join by Rui et al. achieve the shortest join dura-
tions with𝑔 = 2 and𝑔 = 4GPUs, respectively [96]. Figure 11a shows
the baseline comparison for workload A with 𝑓 ∈ [0, 10]. Our het-
erogeneous multi-GPU sort-merge join (HMG SMJ) scales linearly
with |𝑆 | up to 3B tuples, outperforming the GPU baselines by 5.9×
(sort-merge) and 2.5× (hybrid-radix). In that cardinality range, our
heterogeneous multi-GPU join requires no CPU-based merge phase
as 𝑆 fits into the combined GPUmemory of𝑔 = 2GPUswith a chunk
size of 1.5B tuples. In the following cardinality range, 𝑆 exceeds the
GPU memory capacity of 𝑔 = 2 GPUs and requires a CPU-based
merge phase involving 𝑘𝑆 = 2 (3B to 6B), 𝑘𝑆 = 3 (6B to 9B), and
𝑘𝑆 = 4 (9B to 10B) chunksets. On the IBM AC922, the performance
of the CPU merge primitive __gnu_parallel::multiway_merge
may deteriorate for increasing numbers of sublists (i.e., chunksets)
𝑘 ∈ [2, 5], depending on the total number of tuples. Once 𝑆 contains
more than 9B tuples, the worst-case speedups over the baselines
are 2.8× (sort-merge) and 1.1× (hybrid-radix). Figure 11b depicts
the join comparison for workload B with 𝑓 ∈ [0, 5]. Our join ex-
hibits a similar performance pattern when 𝑅 and 𝑆 comprise 16-
byte tuples. It outperforms the join baselines by 4.2× (sort-merge)

Rui SMJ (2 GPUs) Rui HRJ (4 GPUs) HMG SMJ (2 GPUs)

0 1 2 3 4 5 6 7 8 9 1010 ∗ |R| = |S| [1e9]

05
1015
20

Jo
in

du
ra

tio
n

[s
]

(a) Workload A

0 1 2 3 4 5|R| = |S| [1e9]

010
2030
40

Jo
in

du
ra

tio
n

[s
]

(b) Workload B

Figure 11: Baseline comparison on the IBM AC922

Balkesen SMJ (CPU)
Balkesen RHJ (CPU)

Rui SMJ (4 GPUs)
Rui HRJ (8 GPUs)

HMG SMJ (8 GPUs)

0 4 8 12 16 20 24 28 32 36 4010 ∗ |R| = |S| [1e9]

010
2030
4050
60

Jo
in

du
ra

tio
n

[s
]

(a) Workload A

0 2 4 6 8 10 12 14 16 18 20|R| = |S| [1e9]

040
80120
160200

Jo
in

du
ra

tio
n

[s
]

(b) Workload B

Figure 12: Baseline comparison on the NVIDIA DGX H100

and 2.5× (hybrid-radix) for up to 1.5B tuples in 𝑆 . Once |𝑆 | exceeds
1.5B 16-byte tuples (i.e., in the out-of-core range until it reaches the
main memory capacity), the speedups over the multi-GPU-based
sort-merge and hybrid-radix join diminish to 2.4× and 1.1× to 1.2×.
Unlike workload A, for which only 𝑆 requires a merge phase, both
𝑅 and 𝑆 require a merge phase for workload B.

On the NVIDIA DGX H100, our join achieves the fastest run-
time with the radix partitioning-based sort strategy and all 𝑔 = 8
GPUs (see Section 4.3 and Section 4.4). The multi-threaded CPU
joins by Balkesen et al. efficiently utilize the platform’s 112 cores dis-
tributed between two NUMA nodes [9]. The fastest GPU sets for the
sort-merge and hybrid-radix join by Rui et al. are G4 = {0, 1, 2, 3}
andG8 with all 𝑔 = 8 GPUs [96]. For workloadAwith 8-byte tuples
and 10 ∗ |𝑅 | = |𝑆 |, our heterogeneous multi-GPU sort-merge join
(HMG SMJ) scales linearly with |𝑆 | up to 32B tuples, as illustrated
in Figure 12a. It is 8.2× faster than the CPU sort-merge join and
5.5× faster than the CPU radix-hash join. It outperforms the GPU
baselines by 7.0× (sort-merge) and 2.4× (hybrid-radix) when the
input relation 𝑆 fits into the GPU memory of all 𝑔 = 8 GPUs. When
|𝑆 | is in the out-of-core range (from 32B tuples), the worst-case
speedups over the fastest CPU and GPU joins are 2.7× and 1.2×, as
a CPU merge phase with 𝑘𝑆 = 2 chunksets is required. For work-
load B with 16-byte tuples and |𝑅 | = |𝑆 |, our join outperforms the
CPU sort-merge join by 15.2× and radix-hash join by 4.9× for up to
16B tuples in 𝑆 , as illustrated in Figure 12b. It is 8.7× (sort-merge)
and 2.2× (hybrid-radix) faster than the GPU joins. Since the sort-
merge join by Balkesen et al. uses AVX instructions only for 8-byte
tuples [9], it performs disproportionately worse for 16-byte tuples.

4661

HtoD / Join / DtoH
Merge

DtoH
DtoH / HtoD

Sort / DtoH
P2P

Sort
HtoD

1 2 4
GPU count

012
345
67

Jo
in

du
ra

tio
n

[s
] 5.89

2.89
3.46

(a) Merge sort phase

1 2 4
GPU count

012
345
67

Jo
in

du
ra

tio
n

[s
] 5.92

2.31
2.88

(b) Radix sort phase

Figure 13: Execution breakdown on the IBM AC922

4.3 Execution Breakdown
In this subsection, we analyze the impact of our join’s three phases
(i.e., sort, merge, and join) on its end-to-end runtime for the merge-
and radix partitioning-based sort strategies.

On the IBM AC922, we study the execution of our sort-merge
join for workload B with 𝑓 = 1.5 on 𝑔 ∈ {1, 2, 4} GPUs with G1 =
{0} and G2 = {0, 1}. We conduct our analysis for workload B with
|𝑅 | = |𝑆 | equal to 1.5B tuples to fill the combined GPU memory of
the system’s overall best GPU set G2 (see Section 4.4).

Figure 13a illustrates the critical-path duration breakdown with
the merge-based multi-GPU sort strategy. Relative to the total ex-
ecution time of 5.89 s for 𝑔 = 1 GPU, the sort, merge, and join
operations amount to 34%, 24%, and 21%, respectively. Since our
heterogeneous sort-merge join operates on a chunk size of 750M tu-
ples for 16-byte key-value pairs, 𝑅 and 𝑆 exceed the global GPU
memory capacity (32 GB) and require a CPU merge phase involving
𝑘𝑅 = 𝑘𝑆 = 2 chunksets, each composed of a single chunk. Our
join interleaves the host-to-device (HtoD) transfer for the second
chunkset of 𝑅 and 𝑆 with the device-to-host (DtoH) transfer for
the first chunkset. It executes the HtoD copy operation for the first
chunkset (7%) and the DtoH copy operation for the second chunkset
(6%) sequentially. On 𝑔 = 2 GPUs, our multi-GPU join achieves
a runtime of 2.89 s, outperforming the single-GPU setup by 2.0×.
Since 𝑅 and 𝑆 each fit fully into the combined global GPU memory
of 𝑔 = 2 GPUs (64 GB), no parallel CPU-based merge phase is re-
quired. The sort (0.99 s) and join (0.63 s) times halve in absolute
numbers for 𝑔 = 1 → 2 GPUs. The P2P block shuffling makes up
for only 9% of the total execution time due to the fast NVLink 2.0
P2P interconnects with a uni-directional bandwidth of 75 GB/s.
Since the NVLink 2.0-based CPU-GPU interconnects are not shared
between the GPUs, our multi-GPU join copies the chunkset of 𝑅
and 𝑆 into global memory (HtoD) and main memory (DtoH) in half
the time for 𝑔 = 1 → 2 GPUs. On 𝑔 = 4 GPUs, our join performs
20% worse than on 𝑔 = 2 GPUs (3.46 s vs. 2.89 s). Although the sort
(0.40 s) and join (0.44 s) durations roughly halve for 𝑔 = 2 → 4
GPUs, the P2P block shuffling between 𝑔 = 4 GPUs is 3.5× slower
than between 𝑔 = 2 GPUs due to the limited and rarely attainable
X-Bus CPU-CPU interconnect bandwidth of 64 GB/s per direction
(see Table 1) [67]. The X-Bus also slows down the concurrent HtoD
(24%) and DtoH (26%) data transfers on 𝑔 = 4 GPUs.

Figure 13b shows the critical-path duration breakdown with the
radix partitioning-based sort strategy. On 𝑔 = 1 GPU, the perfor-
mance of our sort-merge join is independent of the sort strategy

HtoD / Join / DtoH
Merge

DtoH
DtoH / HtoD

Sort / DtoH
P2P

Sort
HtoD

1 2 4 8
GPU count

010
2030
4050

Jo
in

du
ra

tio
n

[s
] 40.01

27.66
22.22

11.55

(a) Merge sort phase

1 2 4 8
GPU count

010
2030
4050

Jo
in

du
ra

tio
n

[s
] 40.01

27.16
21.29

10.16

(b) Radix sort phase

Figure 14: Execution breakdown on the NVIDIA DGX H100

as neither P2P block shuffling (merge) nor P2P bucket swapping
(radix) occurs. However, employing the multi-GPU radix sort for
𝑔 > 1 yields 20% (𝑔 = 2) and 17% (𝑔 = 4) faster join durations com-
pared to using the multi-GPU merge sort. When 𝑔 = 2 GPUs are
utilized, our join spends 15% of its runtime on P2P bucket swapping
and 36% on interleaved sorting and copying buckets back into main
memory (DtoH). Since GPUs attached to different NUMA nodes
lack P2P interconnects (see Table 1), the P2P bucket swapping is
2.1× slower on four GPUs compared to two GPUs. Simultaneously
sorting and copying buckets back into main memory (DtoH) takes
the same time for 𝑔 = 2 → 4 GPUs because the compute operations
are twice as fast, but the copy operations are twice as slow with
𝑔 = 4 GPUs. Our join’s runtime with radix sort is always less than
or equal to that with merge sort on the IBM AC922.

On the NVIDIA DGX H100, we dissect our join’s execution for
workload B with 𝑓 = 16 on 𝑔 ∈ {1, 2, 4, 8} GPUs. The fastest GPU
sets for 𝑔 < 8 are G1 = {0}, G2 = {0, 1}, and G4 = {0, 1, 2, 3}. By
choosing |𝑅 | = |𝑆 | equal to 16B tuples, we maximize GPU utilization
for the system’s overall best GPU set G8 (see Section 4.4).

With the merge-based multi-GPU sort strategy (see Figure 14a),
the performance of our join improves for increasing numbers of
GPUs 𝑔 ∈ {1, 2, 4, 8} from 40.01 s (𝑔 = 1) to 11.55 s (𝑔 = 8) up to 3.5×.
Up to four GPUs, 𝑅 and 𝑆 exceed the GPU memory capacity of 𝑔 = 1
(80 GB), 𝑔 = 2 (160 GB), and 𝑔 = 4 (320 GB) GPUs and require a CPU
merge phase. Since our multi-GPU join works with a chunk size of
2B tuples for 16-byte key-value pairs, the CPU-based merge phase
for each input relation comprises eight (𝑔 = 1), four (𝑔 = 2), and two
(𝑔 = 4) chunksets. On the NVIDIA DGX H100, the CPU primitive
__gnu_parallel::multiway_merge runs equally fast for different
numbers of sublists (i.e., chunksets) 𝑘 ∈ [2, 5]. Up to four GPUs, the
execution times of the sort, join, and overlapped HtoD and DtoH
copy operations halve for 𝑔 → 2∗𝑔 as the bandwidth of the PCIe 5.0
CPU-GPU interconnects is not shared between any GPUs in the
optimal GPU sets G1, G2, and G4 (see Table 1). On 𝑔 = 8 GPUs, the
runtime of the HtoD and DtoH copy operations is 1.3× higher than
on 𝑔 = 4 GPUs due to the shared UPI-based CPU-CPU interconnect
bandwidth of 114 GB/s (see Table 1). It amounts to 63% of the total
join duration. The impact of the join operation on the critical-path
execution time is 20%, while the remaining 18% are split between
on-GPU chunk sorting and P2P block shuffling.

With the radix partitioning-based sort strategy (see Figure 14b),
utilizing𝑔 = 8GPUs (10.16 s) yields 3.9× shorter join durations than
using 𝑔 = 1 GPU (40.01 s). Our join’s performance for 𝑔 ∈ {2, 4, 8}
GPUs is always better with multi-GPU radix sort than merge sort

4662

1 2 4 8

0 1 2 3 4 5|R| = |S| [1e9]

05
1015
2025

Jo
in

du
ra

tio
n

[s
]

(a) IBM AC922

0 2 4 6 8 10 12 14 16 18 20|R| = |S| [1e9]

010
2030
4050

Jo
in

du
ra

tio
n

[s
]

(b) NVIDIA DGX H100

Figure 15: Scalability for increasing numbers of GPUs

(2% to 12%) due to the efficient all-to-all P2P bucket swapping in-
stead of the multi-stage P2P block shuffling and overlapped sorting
and copying buckets back into main memory (DtoH). On 𝑔 = 8
GPUs, the impact of the sort, join, and P2P data transfer operations
on the critical-path execution time is 5%, 22%, and 6%, respectively.

4.4 Scalability Analysis
In this subsection, we evaluate our multi-GPU join for increasing
numbers of GPUs with workload B, where |𝑅 | = |𝑆 |.

On the IBM AC922 with 𝑓 ∈ [0, 5] (see Figure 15a), our join
scales linearly to 3B tuples in 𝑆 for 𝑔 = 1 GPU (𝐺0) despite employ-
ing CPU-based merge phases for 𝑅 and 𝑆 with 𝑘𝑅 = 𝑘𝑆 ∈ {2, 3, 4}
chunksets across the cardinality range. Once |𝑆 | exceeds 3B 16-
byte tuples, its relative performance deteriorates slightly when
__gnu_parallel::multiway_merge employs its loser tree-based
strategy for merging 𝑘𝑅 = 𝑘𝑆 ≥ 5 chunksets, each comprising
a single chunk with 750M tuples. Our join’s runtime reduces for
𝑔 = 1 → 2 GPUs (𝐺0 and 𝐺1) by 2.6× if 𝑅 and 𝑆 fit into the GPU
memory of 𝑔 = 2 GPUs (up to 1.5B tuples) and roughly 1.4× oth-
erwise. Utilizing 𝑔 = 4 instead of 𝑔 = 2 GPUs yields shorter join
durations (30%) only in the range of 𝑆 from 1.5B to 3B tuples, where
a CPUmerge phase with𝑘𝑅 = 𝑘𝑆 = 2 chunksets is necessary for two
GPUs. The overall best GPU set on the IBM AC922 is G2 = {0, 1}.

On the NVIDIA DGX H100 with 𝑓 ∈ [0, 20] (see Figure 15b),
our join exhibits linear scaling behavior over the entire cardinality
range of 𝑆 for 𝑔 = 1 GPU (𝐺0). With 𝑔 = 2 GPUs (𝐺0 and 𝐺1), its
performance enhances by 2.4× up to 4B tuples in 𝑆 and 1.5× in
the out-of-core range. With 𝑔 = 4 GPUs (𝐺0, 𝐺1, 𝐺2, and 𝐺3), its
runtime reduces by 3.9× until |𝑆 | equals 8B tuples and 1.9× beyond.
Our join is fastest on 𝑔 = 8 GPUs with speedups of up to 3.9×
(𝑔 = 1), 2.6× (𝑔 = 2), and 2.1× (𝑔 = 4).G8 is the overall best GPU set.

4.5 Robustness Analysis
In this subsection, we study the impact of selectivity and data skew
on our multi-GPU sort-merge join using workload B with |𝑅 | = |𝑆 |
equal to 1.5B tuples on the IBM AC922 (G2) in Figure 16a and 16B
on the NVIDIA DGX H100 (G8) in Figure 16b.

Selectivity Analysis.We relax the foreign key constraint be-
tween 𝑅 and 𝑆 when decreasing the selectivity factor 𝜎 ∈ [0, 1] so
that every key in 𝑆 has at most one instead of exactly one matching
key in 𝑅 as per Haas et al. [37, 38]. For 𝜎 = 0 → 1, the sort phase re-
mains stable, while the join phase slows down by 3.4× (IBM AC922)
and 1.5× (NVIDIA DGX H100) as more and more keys in 𝑅 entail
running three instead of two binary searches (to find their last index

Join Sort Join Sort

0 100
Selectivity [%] :

0.0

0.5

1.0

1.5

2.0

12.5

Jo
in

du
ra

tio
n

[s
]

0 100
Skew [%]

0.0

0.5

1.0

1.5

2.0

12.5

Jo
in

du
ra

tio
n

[s
]

(a) IBM AC922

0 100
Selectivity [%] :

0.0

2.5

5.0

7.5

10.0

12.5

Jo
in

du
ra

tio
n

[s
]

0 100
Skew [%]

0.0

2.5

5.0

7.5

10.0

12.5

Jo
in

du
ra

tio
n

[s
]

(b) NVIDIA DGX H100

Figure 16: Robustness against varying selectivity and skew

in 𝑅, first index in 𝑆 , and last index in 𝑆), incrementing the shared
join counter, and copying a matching key range into main memory
(see Section 3.3.3). Our join’s runtime increases by 28% and 9% on
the IBM AC922 and NVIDIA DGX H100, respectively.

Skew Analysis. We sample the non-unique keys of 𝑆 from 𝑅

according to a Zipf distribution when increasing the skew factor
𝜃 ∈ [0, 1) as per Gray et al. [29]. For 𝜃 = 0 → 1, our join’s execution
time, unlike that of our CPU and GPU baselines [9, 96], decreases
by 12% (IBM AC922) and 5% (NVIDIA DGX H100). Its sort phase
becomes up to 9% and 2% slower as the number of MSB radix
partitioning passes increases [50]. Its join phase, however, becomes
up to 2.5× and 1.4× faster as increasingly larger key ranges in 𝑆

are eliminated for some of the unique keys in 𝑅 (see Section 3.3.3).

4.6 TPC-H Analysis
In this subsection, we validate our join’s real-world applicability by
means of the join-intensive TPC-H queries Q3 (see Figure 17a) and
Q5 (see Figure 17b). We pre-filter the input relations at different
scale factors 𝑠 ∈ {100, 200, 400} and materialize the resulting join
tuples without applying the group-by and order-by clauses during
query execution on the NVIDIA DGX H100 with 𝑔 = 8 GPUs [110].

Our heterogeneous multi-GPU sort-merge join scales linearly
with 𝑠 for bothQ3 (involving two join operators) andQ5 (involving
five join operators). Relative to the total execution time, the sort,
join, and materialize phases for Q3 amount to 56%, 28%, and 16%,
respectively. Since the intermediate join state for Q5 is very large,
our join spends 46% of its end-to-end runtime materializing tuples
in parallel on the CPU during its execution. The remainder of
the query execution is split between the multi-GPU-accelerated
sort (32%) and join (22%) phases. Under the assumption that tuple
materialization is a shared cost for all in-memory join algorithms,
our join outperforms the fastest CPU and GPU baselines by 3.2×
and 2.0× for Q3 and 1.8× and 1.5× for Q5, respectively.

5 DISCUSSION
Our heterogeneous multi-GPU sort-merge join outperforms state-
of-the-art CPU and GPU joins on modern multi-GPU platforms
with high-speed interconnects for large input relations. On the
IBM AC922, it achieves speedups of 5.9× and 2.5× over Rui et al.’s
multi-GPU sort-merge join and hybrid-radix join, respectively [96].
On the NVIDIA DGX H100, it is up to 8.7× (sort-merge) and 2.5×
(hybrid-radix) faster than the GPU baselines and yields 15.2× and
5.5× shorter end-to-end runtimes than the parallel CPU sort-merge
and radix-hash joins by Balkesen et al. [9].

4663

Materialize Join Sort

100 200 400
Scale factor

050
100150
200250
300

Jo
in

du
ra

tio
n

[m
s]

84

140

230

(a) Query Q3

100 200 400
Scale factor

0200
400600
800

Jo
in

du
ra

tio
n

[m
s]

188

331

606

(b) Query Q5

Figure 17: TPC-H execution on the NVIDIA DGX H100

Out of its three algorithm phases (i.e., sort, merge, and join), the
multi-GPU sort phase impacts our join’s total execution time by far
the most, with as much as 72% on the IBM AC922 and 78% on the
NVIDIA DGX H100. The radix partitioning-based sort strategy is
12% to 20% faster than the merge-based strategy with the optimal
GPU sets, primarily due to all-to-all P2P bucket swapping instead
of multi-stage P2P block shuffling. Thus, the findings by Ilic et al.
hold for sorting tuples [50]. The merge phase, which is required
if an input relation exceeds the combined GPU memory capacity,
causes a performance cliff as the CPU merge primitive saturates
the main memory bandwidth of 170 GB/s on the IBM AC922 and
307 GB/s on the NVIDIA DGXH100 (see Table 1). Lutz et al. propose
a GPU-partitioned join strategy that eliminates the performance
cliff stemming from large out-of-core data [65]. However, the au-
thors’ strategy is only applicable to a single modern HPC system
— the IBM AC922 with NVLink 2.0-based CPU-GPU interconnects
featuring cache-coherent access to main memory [49]. The hybrid
join phase with overlapped copy and compute operations impacts
our join’s runtime the least, with as little as 28% on the IBM AC922
and 22% on the NVIDIA DGX H100. If both input relations are
pre-sorted (e.g., due to prior group-by, order-by, or index scan oper-
ators), our sort-merge join has to execute only the join phase, while
radix-based joins fail to exploit the interesting (tuple) orders [104].
In that case, our join is 14.4× (IBM AC922) and 13.7× (NVIDIA DGX
H100) faster than the hybrid-radix join.

Scaling the number of GPUs yields consistently faster join phases
but occasionally slower sort phases due to the interconnect topology.
On the IBM AC922, the optimal GPU set is G2 although the system
has four GPUs. It outperforms the single-GPU setup by 2.6×. On
the NVIDIA DGX H100, the best GPU set G8 is 3.9× faster than the
single-GPU setup. Contrary to the CPU and GPU baselines, which
exhibit stable performance irrespective of data skew [9, 96], our join
yields 12% shorter join durations. It outperforms the hybrid-radix
join by 2.0× and the radix-hash join by 3.2× for real-world queries.

6 RELATED WORK
Over the past decades, researchers have thoroughly studied joins.

CPU Joins. Kim et al. and Polychroniou et al. propose SIMD-
optimized sort-merge and hash joins to exploit the data-level paral-
lelism capabilities of modern CPUs [59, 91]. Blanas et al. find that
hardware-oblivious hash joins with a shared and non-partitioned
hash table outperform hardware-conscious hash joins [14]. Balke-
sen et al. draw the opposite conclusion after evaluating their parallel
radix-hash join with bucket chaining [9]. Balkesen et al. further

claim that for most workloads, hash joins are faster than sort-merge
joins, although the relative performance gap narrows considerably
for large input relations [8]. In contrast to these research efforts on
parallel CPU-based joins, we focus on multi-GPU-accelerated joins.

Single-GPU Joins. Rui and Tu propose two GPU-accelerated
joins: a radix-partitioned GPU hash join utilizing shared histograms
and a merge path-partitioned GPU sort-merge join [97]. Sioulas
et al. and Wu et al. describe GPU hash joins with bucket chaining
and radix partitioning, respectively [105, 115]. Several experimental
studies show that GPU-based joins outperform CPU-based joins [57,
95]. Prior publications rarely address the case when the size of
the input relations exceeds the GPU memory capacity. Only Guo
and Chen and Lutz et al. describe mechanisms for joining large
input relations [33, 65]. Guo and Chen utilize a CPU-assisted radix
partitioning strategy and an in-core GPU sort-merge join. Lutz et al.
rely on fast interconnects that provide GPUs with cache-coherent
access to main memory. Unlike these single-GPU algorithms, our
join utilizes all GPUs of modern multi-GPU platforms.

Multi-GPU Joins. Paul et al. propose a radix-partitioned multi-
GPU hash join with a multi-hop routing strategy to minimize P2P
data transfer congestion [88]. In contrast to our multi-GPU join,
their join cannot handle large out-of-core data natively. It assumes
that the input relations and the intermediate join state fit entirely
into GPU memory. Besides, the growing availability of symmetric
switch-based P2P interconnects (e.g., NVSwitch) over the past few
years has rendered their multi-hop routing strategy obsolete [74].
Rui et al. design two out-of-core multi-GPU joins: a sort-merge
join and a hybrid-radix join [96]. Unlike our P2P-enabled multi-
GPU sort-merge join, both algorithms assume a shared-nothing
architecture and cannot harness the P2P interconnects between the
GPUs for efficient inter-GPU communication.

Distributed Joins. Distributed joins operate on multiple nodes
across high-speed networks that often feature remote direct mem-
ory access (RDMA) [92–94]. Barthels et al. propose a distributed
CPU radix-hash and sort-merge join utilizing one-sided RDMA [12].
Guo et al. study distributed joins in multi-node multi-GPU clusters
based on GPUDirect RDMA [34]. Thostrup et al. propose a pipelined
multi-GPU hash join that overlaps its data shuffling with its build
and probe phases over GPUDirect RDMA-capable networks [109].
Gao and Sakharnykh present a hash join for multi-GPU clusters
featuring a GPU-friendly data compression scheme [26]. Liu et al.
describe two distributed CPU-GPU joins with hardware-conscious
job scheduling [63]. While these joins are designed for multi-node
clusters, our multi-GPU join targets single-node systems.

7 CONCLUSION
In this paper, we present a novel multi-GPU sort-merge join using
high-bandwidth P2P interconnects for efficiently joining large input
relations and show that it outperforms state-of-the-art CPU and
GPU baselines. Beyond this paper, future work should extend our
join with a NUMA-aware workload distribution strategy to mitigate
the effects of low-bandwidth CPU-CPU interconnects.

ACKNOWLEDGMENTS
This workwas partially funded by the German Research Foundation
(ref. 414984028 and ref. 556566056) and SAP.

4664

REFERENCES
[1] A. Adinets and D. Merrill. 2022. Onesweep: A Faster Least Significant Digit Radix

Sort for GPUs. NVIDIA. Retrieved June 28, 2025 from https://arxiv.org/pdf/
2206.01784.pdf

[2] M.-C. Albutiu, A. Kemper, and T. Neumann. 2012. Massively Parallel Sort-Merge
Joins in Main Memory Multi-Core Database Systems. Proceedings of the VLDB
Endowment 5, 10 (2012), 1064–1075. https://doi.org/10.14778/2336664.2336678

[3] AMD. 2023. 4th Gen AMD EPYC Processor Architecture. AMD. Retrieved June
28, 2025 from https://www.amd.com/system/files/documents/4th-gen-epyc-
processor-architecture-white-paper.pdf

[4] AMD. 2023. AMD64Architecture Programmer’sManual. AMD. Retrieved June 28,
2025 from https://www.amd.com/content/dam/amd/en/documents/processor-
tech-docs/programmer-references/40332.pdf

[5] AMD. 2024. AMD Instinct MI325X Accelerator. AMD. Retrieved June 28, 2025
from https://www.amd.com/content/dam/amd/en/documents/instinct-tech-
docs/product-briefs/instinct-mi325x-datasheet.pdf

[6] M. Andersch, G. Palmer, R. Krashinsky, N. Stam, V. Mehta, G. Brito, and S. Ra-
maswamy. 2022. NVIDIA Hopper Architecture In-Depth. NVIDIA. Retrieved June
28, 2025 from https://developer.nvidia.com/blog/nvidia-hopper-architecture-
in-depth/

[7] L. B. Arimilli, B. Blaner, B. C. Drerup, C. F. Marino, D. E. Williams, E. N. Lais,
F. A. Campisano, G. L. Guthrie, M. S. Floyd, R. B. Leavens, S. M. Willenborg,
R. Kalla, and B. Abali. 2018. IBM POWER9: Processor and System Features for
Computing in the Cognitive Era. IBM Journal of Research and Development 62,
4/5 (2018), 1–11. https://doi.org/10.1147/JRD.2018.2859564

[8] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. 2013. Multi-Core, Main-
Memory Joins: Sort vs. Hash Revisited. Proceedings of the VLDB Endowment 7,
1 (2013), 85–96. https://doi.org/10.14778/2732219.2732227

[9] C. Balkesen, J. Teubner, G. Alonso, and M. T Özsu. 2013. Main-Memory Hash
Joins on Multi-Core CPUs: Tuning to the Underlying Hardware. In 29th Inter-
national Conference on Data Engineering (ICDE ’13). IEEE, New York, NY, USA,
362–373. https://doi.org/10.1109/ICDE.2013.6544839

[10] M. Bandle, J. Giceva, and T. Neumann. 2021. To Partition, or Not to Partition,
That Is the Join Question in a Real System. In Proceedings of the 2021 International
Conference on Management of Data (SIGMOD ’21). ACM, New York, NY, USA,
168–180. https://doi.org/10.1145/3448016.3452831

[11] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri, N. Chainani, S.
Lightstone, and D. Sharpe. 2014. Memory-Efficient Hash Joins. Proceedings of
the VLDB Endowment 8, 4 (2014), 353–364. https://doi.org/10.14778/2735496.
2735499

[12] C. Barthels, I. Müller, T. Schneider, G. Alonso, and T. Hoefler. 2017. Distributed
Join Algorithms on Thousands of Cores. Proceedings of the VLDB Endowment
10, 5 (2017), 517–528. https://doi.org/10.14778/3055540.3055545

[13] B. Bastem, D. Unat, W. Zhang, A. Almgren, and J. Shalf. 2017. Overlapping
Data Transfers with Computation on GPU with Tiles. In 46th International
Conference on Parallel Processing (ICPP ’17). IEEE, New York, NY, USA, 171–180.
https://doi.org/10.1109/ICPP.2017.26

[14] S. Blanas, Y. Li, and J. M. Patel. 2011. Design and Evaluation of Main Memory
Hash Join Algorithms for Multi-Core CPUs. In Proceedings of the 2011 Interna-
tional Conference on Management of Data (SIGMOD ’11). ACM, New York, NY,
USA, 37–48. https://doi.org/10.1145/1989323.1989328

[15] R. Chen and V. K. Prasanna. 2016. Accelerating Equi-Join on a CPU-FPGA
Heterogeneous Platform. In 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM ’16). IEEE, New York, NY,
USA, 212–219. https://doi.org/10.1109/FCCM.2016.62

[16] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. 2007. Improving Hash
Join Performance through Prefetching. Transactions on Database Systems 32, 3
(2007), 1–36. https://doi.org/10.1145/1272743.1272747

[17] X. Chen, Y. Chen, R. Bajaj, J. He, B. He, W.-F. Wong, and D. Chen. 2020. Is FPGA
Useful for Hash Joins?. In 10th Conference on Innovative Data Systems Research
(CIDR ’20). CIDR, Chaminade, CA, USA, 1–9. https://www.cidrdb.org/cidr2020/
papers/p27-chen-cidr20.pdf

[18] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A.
Baransi, S. Kumar, and P. Dubey. 2008. Efficient Implementation of Sorting on
Multi-Core SIMD CPU Architecture. Proceedings of the VLDB Endowment 1, 2
(2008), 1313–1324. https://doi.org/10.14778/1454159.1454171

[19] S. Chun, W. D. Becker, J. Casey, S. Ostrander, D. Dreps, J. A. Hejase, R. M.
Nett, B. Beaman, and J. R. Eagle. 2018. IBM POWER9: Package Technology
and Design. IBM Journal of Research and Development 62, 4/5 (2018), 1–10.
https://doi.org/10.1147/JRD.2018.2847178

[20] J. Demouth. 2014. CUDA Pro Tip: Minimize the Tail Effect. NVIDIA. Retrieved
June 28, 2025 from https://developer.nvidia.com/blog/cuda-pro-tip-minimize-
the-tail-effect/

[21] L. Durant, O. Giroux, M. Harris, and N. Stam. 2017. Inside Volta: The World’s
Most Advanced Data Center GPU. NVIDIA. Retrieved June 28, 2025 from
https://developer.nvidia.com/blog/inside-volta/

[22] D. Foley and J. Danskin. 2017. Ultra-Performance Pascal GPU and NVLink
Interconnect. IEEE Micro 37, 2 (2017), 7–17. https://doi.org/10.1109/MM.2017.37

[23] FSF. 2023. The GNU C++ Library Manual: Parallel Mode. FSF. Retrieved June 28,
2025 from https://gcc.gnu.org/onlinedocs/gcc-13.2.0/libstdc++-manual.pdf.gz

[24] FSF. 2023. The GNU C++ Library Reference Manual. FSF. Retrieved June 28,
2025 from https://gcc.gnu.org/onlinedocs/gcc-13.2.0/libstdc++-api.pdf.gz

[25] H. Funke, S. Breß, S. Noll, V. Markl, and J. Teubner. 2018. Pipelined Query
Processing in Coprocessor Environments. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). ACM, New York, NY, USA,
1603–1618. https://doi.org/10.1145/3183713.3183734

[26] H. Gao and N. Sakharnykh. 2021. Scaling Joins to a Thousand GPUs. NVIDIA.
Retrieved June 28, 2025 from https://adms-conf.org/2021-camera-ready/gao_
adms21.pdf

[27] I. Gelado and M. Garland. 2019. Throughput-Oriented GPU Memory Al-
location. In Proceedings of the 24th Symposium on Principles and Practice of
Parallel Programming (PPoPP ’19). ACM, New York, NY, USA, 27–37. https:
//doi.org/10.1145/3293883.3295727

[28] M. Gowanlock, B. Karsin, Z. Fink, and J. Wright. 2019. Accelerating the
Unacceleratable: Hybrid CPU/GPU Algorithms for Memory-Bound Database
Primitives. In Proceedings of the 15th International Workshop on Data Man-
agement on New Hardware (DaMoN ’19). ACM, New York, NY, USA, 1–11.
https://doi.org/10.1145/3329785.3329926

[29] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. 1994.
Quickly Generating Billion-Record Synthetic Databases. In Proceedings of the
1994 International Conference on Management of Data (SIGMOD ’94). ACM, New
York, NY, USA, 243–252. https://doi.org/10.1145/191839.191886

[30] O. Green, R. McColl, and D. A. Bader. 2012. GPU Merge Path: A GPU Merging
Algorithm. In Proceedings of the 26th International Conference on Supercomputing
(ICS ’12). ACM, New York, NY, USA, 331–340. https://doi.org/10.1145/2304576.
2304621

[31] C. Gregg and K. Hazelwood. 2011. Where is the Data? Why You Cannot Debate
CPU vs. GPU Performance without the Answer. In 2011 International Symposium
on Performance Analysis of Systems and Software (ISPASS ’11). IEEE, New York,
NY, USA, 134–144. https://doi.org/10.1109/ISPASS.2011.5762730

[32] T. Gubner, D. Tomé, H. Lang, and P. Boncz. 2019. Fluid Co-Processing: GPU
Bloom-Filters for CPU Joins. In Proceedings of the 15th International Workshop
on Data Management on New Hardware (DaMoN ’19). ACM, New York, NY, USA,
1–10. https://doi.org/10.1145/3329785.3329934

[33] C. Guo and H. Chen. 2019. In-Memory Join Algorithms on GPUs for Large-
Data. In 21st International Conference on High Performance Computing and
Communications (HPCC ’19). IEEE, New York, NY, USA, 1060–1067. https:
//doi.org/10.1109/HPCC/SmartCity/DSS.2019.00151

[34] C. Guo, H. Chen, F. Zhang, and C. Li. 2019. Distributed Join Algorithms onMulti-
CPU Clusters with GPUDirect RDMA. In Proceedings of the 48th International
Conference on Parallel Processing (ICPP ’19). ACM, New York, NY, USA, 1–10.
https://doi.org/10.1145/3337821.3337862

[35] C. Guo, H. Chen, F. Zhang, and C. Li. 2019. Parallel Hybrid Join Algorithm
on GPU. In 21st International Conference on High Performance Computing and
Communications (HPCC ’19). IEEE, New York, NY, USA, 1572–1579. https:
//doi.org/10.1109/HPCC/SmartCity/DSS.2019.00216

[36] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani, and V. Srinivasan.
2015. Amazon Redshift and the Case for Simpler Data Warehouses. In Proceed-
ings of the 2015 International Conference on Management of Data (SIGMOD ’15).
ACM, New York, NY, USA, 1917–1923. https://doi.org/10.1145/2723372.2742795

[37] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami. 1993. Fixed-Precision
Estimation of Join Selectivity. In Proceedings of the 12th Symposium on Principles
of Database Systems (PODS ’93). ACM, New York, NY, USA, 190–201. https:
//doi.org/10.1145/153850.153875

[38] P. J. Haas, J. F. Naughton, and A. N. Swami. 1994. On the Relative Cost of
Sampling for Join Selectivity Estimation. In Proceedings of the 13th Symposium
on Principles of Database Systems (PODS ’94). ACM, New York, NY, USA, 14–24.
https://doi.org/10.1145/182591.182594

[39] R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J. Tsotras. 2015. FPGA-Based
Multithreading for In-Memory Hash Joins. In 7th Conference on Innovative
Data Systems Research (CIDR ’15). CIDR, Chaminade, CA, USA, 1–9. https:
//www.cidrdb.org/cidr2015/Papers/CIDR15_Paper12.pdf

[40] R. J. Halstead, B. Sukhwani, H. Min, M. Thoennes, P. Dube, S. Asaad, and B.
Iyer. 2013. Accelerating Join Operation for Relational Databases with FPGAs. In
21st Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM ’13). IEEE, New York, NY, USA, 17–20. https://doi.org/10.
1109/FCCM.2013.17

[41] M. Harris. 2012. How to Optimize Data Transfers in CUDA C/C++. NVIDIA.
Retrieved June 28, 2025 from https://developer.nvidia.com/blog/how-optimize-
data-transfers-cuda-cc/

[42] M. Harris. 2012. How to Overlap Data Transfers in CUDA C/C++. NVIDIA.
Retrieved June 28, 2025 from https://developer.nvidia.com/blog/how-overlap-
data-transfers-cuda-cc/

[43] M. Harris. 2012. How to Query Device Properties and Handle Errors in CUDA
C/C++. NVIDIA. Retrieved June 28, 2025 from https://developer.nvidia.com/
blog/how-query-device-properties-and-handle-errors-cuda-cc/

4665

https://arxiv.org/pdf/2206.01784.pdf
https://arxiv.org/pdf/2206.01784.pdf
https://doi.org/10.14778/2336664.2336678
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/product-briefs/instinct-mi325x-datasheet.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/product-briefs/instinct-mi325x-datasheet.pdf
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://doi.org/10.1147/JRD.2018.2859564
https://doi.org/10.14778/2732219.2732227
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.14778/2735496.2735499
https://doi.org/10.14778/2735496.2735499
https://doi.org/10.14778/3055540.3055545
https://doi.org/10.1109/ICPP.2017.26
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1109/FCCM.2016.62
https://doi.org/10.1145/1272743.1272747
https://www.cidrdb.org/cidr2020/papers/p27-chen-cidr20.pdf
https://www.cidrdb.org/cidr2020/papers/p27-chen-cidr20.pdf
https://doi.org/10.14778/1454159.1454171
https://doi.org/10.1147/JRD.2018.2847178
https://developer.nvidia.com/blog/cuda-pro-tip-minimize-the-tail-effect/
https://developer.nvidia.com/blog/cuda-pro-tip-minimize-the-tail-effect/
https://developer.nvidia.com/blog/inside-volta/
https://doi.org/10.1109/MM.2017.37
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/libstdc++-manual.pdf.gz
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/libstdc++-api.pdf.gz
https://doi.org/10.1145/3183713.3183734
https://adms-conf.org/2021-camera-ready/gao_adms21.pdf
https://adms-conf.org/2021-camera-ready/gao_adms21.pdf
https://doi.org/10.1145/3293883.3295727
https://doi.org/10.1145/3293883.3295727
https://doi.org/10.1145/3329785.3329926
https://doi.org/10.1145/191839.191886
https://doi.org/10.1145/2304576.2304621
https://doi.org/10.1145/2304576.2304621
https://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.1145/3329785.3329934
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00151
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00151
https://doi.org/10.1145/3337821.3337862
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00216
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00216
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/153850.153875
https://doi.org/10.1145/153850.153875
https://doi.org/10.1145/182591.182594
https://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper12.pdf
https://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper12.pdf
https://doi.org/10.1109/FCCM.2013.17
https://doi.org/10.1109/FCCM.2013.17
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-query-device-properties-and-handle-errors-cuda-cc/
https://developer.nvidia.com/blog/how-query-device-properties-and-handle-errors-cuda-cc/

[44] M. Harris. 2013. How to Access Global Memory Efficiently in CUDA C/C++ Kernels.
NVIDIA. Retrieved June 28, 2025 from https://developer.nvidia.com/blog/how-
access-global-memory-efficiently-cuda-c-kernels/

[45] M. Harris. 2013. Using Shared Memory in CUDA C/C++. NVIDIA. Retrieved
June 28, 2025 from https://developer.nvidia.com/blog/using-shared-memory-
cuda-cc/

[46] M. Harris. 2014. CUDA Pro Tip: Occupancy API Simplifies Launch Configuration.
NVIDIA. Retrieved June 28, 2025 from https://developer.nvidia.com/blog/cuda-
pro-tip-occupancy-api-simplifies-launch-configuration/

[47] M. Harris. 2015. GPU Pro Tip: CUDA 7 Streams Simplify Concurrency. NVIDIA.
Retrieved June 28, 2025 from https://developer.nvidia.com/blog/gpu-pro-tip-
cuda-7-streams-simplify-concurrency/

[48] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander. 2008.
Relational Joins on Graphics Processors. In Proceedings of the 2008 International
Conference on Management of Data (SIGMOD ’08). ACM, New York, NY, USA,
511–524. https://doi.org/10.1145/1376616.1376670

[49] IBM. 2018. IBMAC922: Technical Overview and Introduction. IBM. Retrieved June
28, 2025 from https://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf

[50] I. Ilic, I. Tolovski, and T. Rabl. 2023. RMG Sort: Radix-Partitioning-Based Multi-
GPU Sorting. HPI. https://hpi.de/fileadmin/user_upload/fachgebiete/rabl/
publications/2023/rmg-sort-ilic.pdf

[51] H. Inoue and K. Taura. 2015. SIMD- and Cache-Friendly Algorithm for Sorting
an Array of Structures. Proceedings of the VLDB Endowment 8, 11 (2015), 1274–
1285. https://doi.org/10.14778/2809974.2809988

[52] Intel. 2019. 2nd Gen Intel Xeon Scalable Processors. Intel. Retrieved June 28,
2025 from https://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf

[53] Intel. 2023. Intel IA-64 and IA-32 Architectures Software Developer’s Manual.
Intel. Retrieved June 28, 2025 from https://cdrdv2.intel.com/v1/dl/getContent/
789583?fileName=325462-sdm-vol-1-2abcd-3abcd-4.pdf

[54] A. Ishii and R. Wells. 2022. The NVLink-Network Switch: NVIDIA’s Switch Chip
for High Communication-Bandwidth Superpods. In 34th Hot Chips Symposium
(HCS ’22). IEEE, New York, NY, USA, 1–23. https://doi.org/10.1109/HCS55958.
2022.9895480

[55] F. Ji, A. M. Aji, J. Dinan, D. Buntinas, P. Balaji, R. Thakur, W.-C. Feng, and
X. Ma. 2012. DMA-Assisted, Intranode Communication in GPU Accelerated
Systems. In 14th International Conference on High Performance Computing and
Communication (HPCC ’12). IEEE, New York, NY, USA, 461–468. https://doi.
org/10.1109/HPCC.2012.69

[56] J. Jung, D. Park, Y. Do, J. Park, and J. Lee. 2020. Overlapping Host-to-Device
Copy and Computation Using Hidden Unified Memory. In Proceedings of the
25th Symposium on Principles and Practice of Parallel Programming (PPoPP ’20).
ACM, New York, NY, USA, 321–335. https://doi.org/10.1145/3332466.3374531

[57] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. 2012. GPU Join Processing
Revisited. In Proceedings of the 8th International Workshop on Data Management
on New Hardware (DaMoN ’12). ACM, New York, NY, USA, 55–62. https:
//doi.org/10.1145/2236584.2236592

[58] K. Kara, J. Giceva, and G. Alonso. 2017. FPGA-Based Data Partitioning. In Pro-
ceedings of the 2017 International Conference on Management of Data (SIGMOD
’17). ACM, New York, NY, USA, 433–445. https://doi.org/10.1145/3035918.
3035946

[59] C. Kim, T. Kaldewey, V. W. Lee, R. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani,
A. Di Blas, and P. Dubey. 2009. Sort vs. Hash Revisited: Fast Join Implementation
on Modern Multi-Core CPUs. Proceedings of the VLDB Endowment 2, 2 (2009),
1378–1389. https://doi.org/10.14778/1687553.1687564

[60] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker. 2020.
Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and
GPUDirect. IEEE Transactions on Parallel and Distributed Systems 31, 1 (2020),
94–110. https://doi.org/10.1109/TPDS.2019.2928289

[61] A. Li, S. L. Song, J. Chen, X. Liu, N. Tallent, and K. Barker. 2018. Tartan:
Evaluating Modern GPU Interconnect Via a Multi-GPU Benchmark Suite. In
2018 International Symposium on Workload Characterization (IISWC ’18). IEEE,
New York, NY, USA, 191–202. https://doi.org/10.1109/IISWC.2018.8573483

[62] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. 2008. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro 28, 2 (2008), 39–55.
https://doi.org/10.1109/MM.2008.31

[63] H. Liu, B. Tang, J. Zhang, Y. Deng, X. Yan, X. Zheng, Q. Shen, D. Zeng, Z.
Mao, C. Zhang, Z. You, Z. Wang, R. Jiang, F. Wang, M.-L. Yiu, H. Li, M. Han,
Q. Li, and Z. Luo. 2022. GHive: Accelerating Analytical Query Processing in
Apache Hive via CPU-GPU Heterogeneous Computing. In Proceedings of the
13th Symposium on Cloud Computing (SoCC ’22). ACM, New York, NY, USA,
158–172. https://doi.org/10.1145/3542929.3563503

[64] C. Lutz, S. Breß, S. Zeuch, T. Rabl, and V. Markl. 2020. Pump up the Volume:
Processing Large Data on GPUs with Fast Interconnects. In Proceedings of the
2020 International Conference on Management of Data (SIGMOD ’20). ACM, New
York, NY, USA, 1633–1649. https://doi.org/10.1145/3318464.3389705

[65] C. Lutz, S. Breß, S. Zeuch, T. Rabl, and V. Markl. 2022. Triton Join: Efficiently
Scaling to a Large Join State on GPUs with Fast Interconnects. In Proceedings of
the 2022 International Conference on Management of Data (SIGMOD ’22). ACM,
New York, NY, USA, 1017–1032. https://doi.org/10.1145/3514221.3517911

[66] Z. Majo and T. R. Gross. 2011. Memory System Performance in a NUMA
Multicore Multiprocessor. In Proceedings of the 4th Annual International Con-
ference on Systems and Storage (SYSTOR ’11). ACM, New York, NY, USA, 1–10.
https://doi.org/10.1145/1987816.1987832

[67] T. Maltenberger, I. Ilic, I. Tolovski, and T. Rabl. 2022. Evaluating Multi-GPU
Sorting with Modern Interconnects. In Proceedings of the 2022 International
Conference on Management of Data (SIGMOD ’22). ACM, New York, NY, USA,
1795–1809. https://doi.org/10.1145/3514221.3517842

[68] S. Manegold, P. Boncz, and M. Kersten. 2002. Optimizing Main-Memory Join
on Modern Hardware. IEEE Transactions on Knowledge and Data Engineering
14, 4 (2002), 709–730. https://doi.org/10.1109/TKDE.2002.1019210

[69] D. Mayhew and V. Krishnan. 2003. PCI Express and Advanced Switching:
Evolutionary Path to Building Next Generation Interconnects. In Proceedings of
the 11th Symposium on High Performance Interconnects (HOTI ’03). IEEE, New
York, NY, USA, 21–29. https://doi.org/10.1109/CONECT.2003.1231473

[70] D. Merrill and M. Garland. 2016. Single-Pass Parallel Prefix Scan with Decoupled
Look-Back. NVIDIA. Retrieved June 28, 2025 from https://research.nvidia.
com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-
002.pdf

[71] D. Merrill and A. Grimshaw. 2011. High Performance and Scalable Radix
Sorting: A Case Study of Implementing Dynamic Parallelism for GPU Comput-
ing. Parallel Processing Letters 21, 2 (2011), 245–272. https://doi.org/10.1142/
S0129626411000187

[72] NVIDIA. 2014. NVIDIA NVLink: High-Speed Interconnect Application Perfor-
mance. NVIDIA. Retrieved June 28, 2025 from https://info.nvidianews.
com/rs/nvidia/images/NVIDIA%20NVLink%20High-Speed%20Interconnect%
20Application%20Performance%20Brief.pdf

[73] NVIDIA. 2017. NVIDIA V100 Tensor Core GPU Architecture. NVIDIA. Retrieved
June 28, 2025 from https://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf

[74] NVIDIA. 2018. NVIDIA NVSwitch: The World’s Highest-Bandwidth On-Node
Switch. NVIDIA. Retrieved June 28, 2025 from https://images.nvidia.com/
content/pdf/nvswitch-technical-overview.pdf

[75] NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architecture. NVIDIA. Retrieved
June 28, 2025 from https://images.nvidia.com/aem-dam/en-zz/Solutions/data-
center/nvidia-ampere-architecture-whitepaper.pdf

[76] NVIDIA. 2020. NVIDIA V100 Tensor Core GPU. NVIDIA. Retrieved June 28,
2025 from https://images.nvidia.com/content/technologies/volta/pdf/volta-
v100-datasheet-update-us-1165301-r5.pdf

[77] NVIDIA. 2021. mgpu: Patterns and Behaviors for GPU Computing. NVIDIA.
Retrieved June 28, 2025 from https://github.com/moderngpu/moderngpu

[78] NVIDIA. 2021. NVIDIA A100 Tensor Core GPU. NVIDIA. Retrieved June
28, 2025 from https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

[79] NVIDIA. 2023. cub: Cooperative Primitives for CUDA C++. NVIDIA. Retrieved
June 28, 2025 from https://github.com/NVIDIA/cub

[80] NVIDIA. 2023. CUDAC++ Best Practices Guide. NVIDIA. Retrieved June 28, 2025
from https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

[81] NVIDIA. 2023. NVIDIA DGX H100 System. NVIDIA. Retrieved June 28, 2025
from https://docs.nvidia.com/dgx/dgxh100-user-guide/dgxh100-user-guide.pdf

[82] NVIDIA. 2023. NVIDIA H100 Tensor Core GPU Architecture. NVIDIA. Retrieved
June 28, 2025 from https://nvdam.widen.net/content/hj0uek1pxq/original/
nvidia-h100-tensor-core-hopper-whitepaper.pdf

[83] NVIDIA. 2023. thrust: C++ Parallel Algorithms Library. NVIDIA. Retrieved
June 28, 2025 from https://github.com/NVIDIA/thrust

[84] NVIDIA. 2024. CUDAC++ ProgrammingGuide. NVIDIA. Retrieved June 28, 2025
from https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[85] NVIDIA. 2024. NVIDIA H100 Tensor Core GPU. NVIDIA. Retrieved June 28,
2025 from https://nvdam.widen.net/content/vuzumiozpb/original/nvidia-h100-
datasheet-2430615.pdf

[86] S. Odeh, O. Green, Z. Mwassi, O. Shmueli, and Y. Birk. 2012. Merge Path: Parallel
Merging Made Simple. In 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW ’12). IEEE, New York, NY, USA,
1611–1618. https://doi.org/10.1109/IPDPSW.2012.202

[87] J. Paul, B. He, S. Lu, and C. T. Lau. 2019. Revisiting Hash Join on Graphics
Processors: A Decade Later. In 35th International Conference on Data Engineering
Workshops (ICDEW ’19). IEEE, New York, NY, USA, 294–299. https://doi.org/10.
1109/ICDEW.2019.00008

[88] J. Paul, S. Lu, B. He, and C. T. Lau. 2021. MG-Join: A Scalable Join for Mas-
sively Parallel Multi-GPU Architectures. In Proceedings of the 2021 International
Conference on Management of Data (SIGMOD ’21). ACM, New York, NY, USA,
1413–1425. https://doi.org/10.1145/3448016.3457254

4666

https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/cuda-pro-tip-occupancy-api-simplifies-launch-configuration/
https://developer.nvidia.com/blog/cuda-pro-tip-occupancy-api-simplifies-launch-configuration/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://doi.org/10.1145/1376616.1376670
https://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/rabl/publications/2023/rmg-sort-ilic.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/rabl/publications/2023/rmg-sort-ilic.pdf
https://doi.org/10.14778/2809974.2809988
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://cdrdv2.intel.com/v1/dl/getContent/789583?fileName=325462-sdm-vol-1-2abcd-3abcd-4.pdf
https://cdrdv2.intel.com/v1/dl/getContent/789583?fileName=325462-sdm-vol-1-2abcd-3abcd-4.pdf
https://doi.org/10.1109/HCS55958.2022.9895480
https://doi.org/10.1109/HCS55958.2022.9895480
https://doi.org/10.1109/HPCC.2012.69
https://doi.org/10.1109/HPCC.2012.69
https://doi.org/10.1145/3332466.3374531
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.1145/3035918.3035946
https://doi.org/10.1145/3035918.3035946
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1109/IISWC.2018.8573483
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1145/3542929.3563503
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3514221.3517911
https://doi.org/10.1145/1987816.1987832
https://doi.org/10.1145/3514221.3517842
https://doi.org/10.1109/TKDE.2002.1019210
https://doi.org/10.1109/CONECT.2003.1231473
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://doi.org/10.1142/S0129626411000187
https://doi.org/10.1142/S0129626411000187
https://info.nvidianews.com/rs/nvidia/images/NVIDIA%20NVLink%20High-Speed%20Interconnect%20Application%20Performance%20Brief.pdf
https://info.nvidianews.com/rs/nvidia/images/NVIDIA%20NVLink%20High-Speed%20Interconnect%20Application%20Performance%20Brief.pdf
https://info.nvidianews.com/rs/nvidia/images/NVIDIA%20NVLink%20High-Speed%20Interconnect%20Application%20Performance%20Brief.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://github.com/moderngpu/moderngpu
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://github.com/NVIDIA/cub
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/dgx/dgxh100-user-guide/dgxh100-user-guide.pdf
https://nvdam.widen.net/content/hj0uek1pxq/original/nvidia-h100-tensor-core-hopper-whitepaper.pdf
https://nvdam.widen.net/content/hj0uek1pxq/original/nvidia-h100-tensor-core-hopper-whitepaper.pdf
https://github.com/NVIDIA/thrust
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://nvdam.widen.net/content/vuzumiozpb/original/nvidia-h100-datasheet-2430615.pdf
https://nvdam.widen.net/content/vuzumiozpb/original/nvidia-h100-datasheet-2430615.pdf
https://doi.org/10.1109/IPDPSW.2012.202
https://doi.org/10.1109/ICDEW.2019.00008
https://doi.org/10.1109/ICDEW.2019.00008
https://doi.org/10.1145/3448016.3457254

[89] C. Pearson, A. Dakkak, S. Hashash, C. Li, I.-H. Chung, J. Xiong, and W.-M. Hwu.
2019. Evaluating Characteristics of CUDA Communication Primitives on High-
Bandwidth Interconnects. In Proceedings of the 2019 International Conference
on Performance Engineering (ICPE ’19). ACM, New York, NY, USA, 209–218.
https://doi.org/10.1145/3297663.3310299

[90] H. Pirk, S. Manegold, andM. Kersten. 2014. Waste Not. . . Efficient Co-Processing
of Relational Data. In 30th International Conference on Data Engineering (ICDE
’14). IEEE, New York, NY, USA, 508–519. https://doi.org/10.1109/ICDE.2014.
6816677

[91] O. Polychroniou, A. Raghavan, and K. A. Ross. 2015. Rethinking SIMD Vec-
torization for In-Memory Databases. In Proceedings of the 2015 International
Conference on Management of Data (SIGMOD ’15). ACM, New York, NY, USA,
1493–1508. https://doi.org/10.1145/2723372.2747645

[92] O. Polychroniou, R. Sen, and K. A. Ross. 2014. Track Join: Distributed Joins with
Minimal Network Traffic. In Proceedings of the 2014 International Conference
on Management of Data (SIGMOD ’14). ACM, New York, NY, USA, 1483–1494.
https://doi.org/10.1145/2588555.2610521

[93] W. Rödiger, S. Idicula, A. Kemper, and T. Neumann. 2016. Flow-Join: Adaptive
Skew Handling for Distributed Joins over High-Speed Networks. In 32nd Inter-
national Conference on Data Engineering (ICDE ’16). IEEE, New York, NY, USA,
1194–1205. https://doi.org/10.1109/ICDE.2016.7498324

[94] W. Rödiger, T. Mühlbauer, P. Unterbrunner, A. Reiser, A. Kemper, and T. Neu-
mann. 2014. Locality-Sensitive Operators for Parallel Main-Memory Database
Clusters. In 30th International Conference on Data Engineering (ICDE ’14). IEEE,
New York, NY, USA, 592–603. https://doi.org/10.1109/ICDE.2014.6816684

[95] R. Rui, H. Li, and Y.-C. Tu. 2015. Join Algorithms on GPUs: A Revisit After
Seven Years. In 2015 International Conference on Big Data (BD ’15). IEEE, New
York, NY, USA, 2541–2550. https://doi.org/10.1109/BigData.2015.7364051

[96] R. Rui, H. Li, and Y.-C. Tu. 2021. Efficient Join Algorithms for Large Database
Tables in a Multi-GPU Environment. Proceedings of the VLDB Endowment 14, 4
(2021), 708–720. https://doi.org/10.14778/3436905.3436927

[97] R. Rui and Y.-C. Tu. 2017. Fast Equi-Join Algorithms on GPUs: Design and
Implementation. In Proceedings of the 29th International Conference on Scientific
and Statistical Database Management (SSDBM ’17). ACM, New York, NY, USA,
1–12. https://doi.org/10.1145/3085504.3085521

[98] A. Salah, K. Li, Q. Liao, M. Hashem, Z. Li, A. T. Chronopoulos, and A. Y. Zomaya.
2020. A Time-Space Efficient Algorithm for Parallel K-Way In-Place Merging
Based on Sequence Partitioning and Perfect Shuffle. ACM Transactions on
Parallel Computing 7, 2 (2020), 1–23. https://doi.org/10.1145/3391443

[99] P. Sanders. 2001. Fast Priority Queues for Cached Memory. ACM Journal of
Experimental Algorithmics 5, 1 (2001), 1–25. https://doi.org/10.1145/351827.
384249

[100] N. Satish, M. Harris, and M. Garland. 2009. Designing Efficient Sorting Al-
gorithms for Manycore GPUs. In 2009 International Symposium on Paral-
lel and Distributed Processing (IPDPS ’09). IEEE, New York, NY, USA, 1–10.
https://doi.org/10.1109/IPDPS.2009.5161005

[101] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey.
2010. Fast Sort on CPUs and GPUs: A Case for Bandwidth Oblivious SIMD
Sort. In Proceedings of the 2010 International Conference on Management of Data
(SIGMOD ’10). ACM, New York, NY, USA, 351–362. https://doi.org/10.1145/
1807167.1807207

[102] S. Schuh, X. Chen, and J. Dittrich. 2016. An Experimental Comparison of
Thirteen Relational Equi-Joins in Main Memory. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD ’16). ACM, New
York, NY, USA, 1961–1976. https://doi.org/10.1145/2882903.2882917

[103] A. Shanbhag, S. Madden, and X. Yu. 2020. A Study of the Fundamental Perfor-
mance Characteristics of GPUs and CPUs for Database Analytics. In Proceedings
of the 2020 International Conference on Management of Data (SIGMOD ’20). ACM,
New York, NY, USA, 1617–1632. https://doi.org/10.1145/3318464.3380595

[104] D. Simmen, E. Shekita, and T. Malkemus. 1996. Fundamental Techniques for
Order Optimization. In Proceedings of the 1996 International Conference on
Management of Data (SIGMOD ’96). ACM, New York, NY, USA, 57–67. https:
//doi.org/10.1145/233269.233320

[105] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ailamaki.
2019. Hardware-ConsciousHash-Joins onGPUs. In 35th International Conference
on Data Engineering (ICDE ’19). IEEE, New York, NY, USA, 698–709. https:
//doi.org/10.1109/ICDE.2019.00068

[106] M. Sourouri, T. Gillberg, S. B. Baden, and X. Cai. 2014. Effective Multi-GPU
Communication Using Multiple CUDA Streams and Threads. In 20th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS ’14). IEEE, New
York, NY, USA, 981–986. https://doi.org/10.1109/PADSW.2014.7097919

[107] E. Stehle and H.-A. Jacobsen. 2017. A Memory Bandwidth-Efficient Hybrid
Radix Sort on GPUs. In Proceedings of the 2017 International Conference on
Management of Data (SIGMOD ’17). ACM, New York, NY, USA, 417–432. https:
//doi.org/10.1145/3035918.3064043

[108] I. Tanasic, L. Vilanova, M. Jordà, J. Cabezas, I. Gelado, N. Navarro, and W.-M.
Hwu. 2013. Comparison Based Sorting for Systems with Multiple GPUs. In
Proceedings of the 6th Workshop on General Purpose Processor Using Graphics
Processing Units (GPGPU ’13). ACM, New York, NY, USA, 1–11. https://doi.org/
10.1145/2458523.2458524

[109] L. Thostrup, G. Doci, N. Boeschen, M. Luthra, and C. Binnig. 2023. Distributed
GPU Joins on Fast RDMA-Capable Networks. Proceedings of the ACM on Man-
agement of Data 1, 1 (2023), 1–26. https://doi.org/10.1145/3588709

[110] TPC. 2014. TPC Benchmark H (Decision Support). TPC. Retrieved June 28,
2025 from https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-
h_v2.17.1.pdf

[111] Z. Wang, J. Paul, B. He, and W. Zhang. 2017. Multikernel Data Partitioning
with Channel on OpenCL-Based FPGAs. IEEE Transactions on Very Large Scale
Integration Systems 25, 6 (2017), 1906–1918. https://doi.org/10.1109/TVLSI.2017.
2653818

[112] B. van Werkhoven, J. Maassen, F. J. Seinstra, and H. E. Bal. 2014. Performance
Models for CPU-GPUData Transfers. In 14th International Symposium on Cluster,
Cloud and Grid Computing (CCGRID ’14). IEEE, New York, NY, USA, 11–20.
https://doi.org/10.1109/CCGrid.2014.16

[113] S. Widmer, D. Wodniok, N. Weber, and M. Goesele. 2013. Fast Dynamic Memory
Allocator forMassively Parallel Architectures. In Proceedings of the 6thWorkshop
on General Purpose Processor Using Graphics Processing Units (GPGPU ’13). ACM,
New York, NY, USA, 120–126. https://doi.org/10.1145/2458523.2458535

[114] M.Winter, M. Parger, D.Mlakar, andM. Steinberger. 2021. Are DynamicMemory
Managers on GPUs Slow? A Survey and Benchmarks. In Proceedings of the 26th
Symposium on Principles and Practice of Parallel Programming (PPoPP ’21). ACM,
New York, NY, USA, 219–233. https://doi.org/10.1145/3437801.3441612

[115] B. Wu, D. Koutsoukos, and G. Alonso. 2025. Efficiently Processing Joins and
Grouped Aggregations on GPUs. Proceedings of the ACM on Management of
Data 3, 1 (2025), 1–27. https://doi.org/10.1145/3709689

[116] M. Yabuta, A. Nguyen, S. Kato, M. Edahiro, and H. Kawashima. 2017. Relational
Joins on GPUs: A Closer Look. IEEE Transactions on Parallel and Distributed
Systems 28, 9 (2017), 2663–2673. https://doi.org/10.1109/TPDS.2017.2677451

[117] Y. Yuan, R. Lee, and X. Zhang. 2013. The Yin and Yang of Processing Data
Warehousing Queries on GPU Devices. Proceedings of the VLDB Endowment 6,
10 (2013), 817–828. https://doi.org/10.14778/2536206.2536210

4667

https://doi.org/10.1145/3297663.3310299
https://doi.org/10.1109/ICDE.2014.6816677
https://doi.org/10.1109/ICDE.2014.6816677
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/2588555.2610521
https://doi.org/10.1109/ICDE.2016.7498324
https://doi.org/10.1109/ICDE.2014.6816684
https://doi.org/10.1109/BigData.2015.7364051
https://doi.org/10.14778/3436905.3436927
https://doi.org/10.1145/3085504.3085521
https://doi.org/10.1145/3391443
https://doi.org/10.1145/351827.384249
https://doi.org/10.1145/351827.384249
https://doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.1145/1807167.1807207
https://doi.org/10.1145/1807167.1807207
https://doi.org/10.1145/2882903.2882917
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/233269.233320
https://doi.org/10.1145/233269.233320
https://doi.org/10.1109/ICDE.2019.00068
https://doi.org/10.1109/ICDE.2019.00068
https://doi.org/10.1109/PADSW.2014.7097919
https://doi.org/10.1145/3035918.3064043
https://doi.org/10.1145/3035918.3064043
https://doi.org/10.1145/2458523.2458524
https://doi.org/10.1145/2458523.2458524
https://doi.org/10.1145/3588709
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://doi.org/10.1109/TVLSI.2017.2653818
https://doi.org/10.1109/TVLSI.2017.2653818
https://doi.org/10.1109/CCGrid.2014.16
https://doi.org/10.1145/2458523.2458535
https://doi.org/10.1145/3437801.3441612
https://doi.org/10.1145/3709689
https://doi.org/10.1109/TPDS.2017.2677451
https://doi.org/10.14778/2536206.2536210

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Architectures
	2.2 GPU Interconnects

	3 Algorithm
	3.1 Sort Phase
	3.2 Merge Phase
	3.3 Join Phase

	4 Evaluation
	4.1 Experimental Setup
	4.2 Baseline Comparison
	4.3 Execution Breakdown
	4.4 Scalability Analysis
	4.5 Robustness Analysis
	4.6 TPC-H Analysis

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

