PorLARrIs: An Interactive and Scalable Data Infrastructure for Polar
Science

Yuchuan Huang, Ana Elena Uribe, Youssef Hussein, Kareem Eldahshoury, Grant Ogren, Mohamed F.
Mokbel
University of Minnesota, USA
{huan1531,uribe055,husse408,eldah001,0gren091, mokbel}@umn.edu

ABSTRACT

Though polar scientists entertain having huge amounts of publicly
available datasets, they face the challenge that working with such
data is a cumbersome process that requires downloading tons of
unnecessary data and writing various scripts on top of it. This hin-
ders their ability to perform any kind of interactive analysis. This
paper presents POLARIS; a novel open-source system infrastructure
for Polar science that is highly Interactive and Scalable. PoLARIS is
designed based on three observations that distinguish the query
workload of polar scientists, namely, all queries are spatio-temporal,
not all data are equal, and the large majority of queries are aggre-
gates. POLARIS is equipped with a hierarchical spatio-temporal index
structure that stores precomputed aggregates for data of interest.
Experimental results with a real PoLARIS prototype and real scien-
tific data show that it achieves highly interactive and scalable data
access, enabling interactive analysis of polar science data.

PVLDB Reference Format:

Yuchuan Huang, Ana Elena Uribe, Youssef Hussein, Kareem Eldahshoury,
Grant Ogren, Mohamed F. Mokbel. PoLaRis: An Interactive and Scalable
Data Infrastructure for Polar Science. PVLDB, 18(11): 4644 - 4652, 2025.
d0i:10.14778/3749646.3749719

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/iharp3/Polaris-VLDB2025/.

1 INTRODUCTION

Polar scientists face the challenge that even though there are huge
amounts of climate and environment datasets archived online (e.g.,
ERAS5 [18], CARRA [7], MERRA2 [31], ICESat-2 [24], CESM [9]),
they are not easy to access and work on. For most of such datasets,
scientists have to wait hours or days to first download the data, then
write their own scripts for their analysis needs. This is definitely far
from being an interactive user experience , which hinders the polar
scientists’ ability to perform their analysis. For example, ERA5 [18]
is one of the most widely used datasets by polar scientists for
simulation, prediction, and modeling [15, 23, 30, 45, 46]. It has 262
climate variables, including temperature, sea level, ice sheet, etc.
Each variable is recorded at 0.25 X 0.25 latitude longitude degree

This work is supported by NSF grants OAC-2118285 and IIS-2203553.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749719

4644

Query ‘ Running time Result size Data download H PoLaARris
Daily 12m46s 34 MB 20.12 GB 1.2s
Monthly 12m55s 1.2 MB 20.12GB 0.3s

Table 1: Query Performance Metrics

spatial resolution for the whole world and for every hour from
1940 to present. So, one variable for the whole world consumes an
annual storage of 17GB, which makes the overall ERA5 dataset size
for 262 variables and 84 years approximately 374TB.

Due to its size, it is hard for polar scientists to host and manage
such data, not to mention have efficient data access and interactive
analysis. Currently, polar scientists employ one of the following
three options to work with ERA5 data: (1) Call public APIs to down-
load the parts of ERA5 data of interest to local storage and run local
scripts. This is pretty inefficient as the downloading itself can take
hours or more depending on the requested data size and network
conditions, and then considerable efforts are needed to write and
execute the analysis scripts. (2) Pre-download and store major parts
of the data on a High Performance Computing (HPC) environment
and run computations on HPC directly. Though this option will be
best in terms of interactive analysis, it is the least used approach, as
HPC environments are not available to the large majority of polar
scientists worldwide. (3) An emerging trend from the geoscience
community [35] is to transform the data into Analysis-Ready Cloud-
Optimized (ARCO) format stored in a cloud storage [1, 43], e.g.,
ARCO-ERAS5 is an ARCO version of ERA5 data hosted on Google
Cloud [8]. Compared with the public APIs, ARCO integrates better
with modern data ecosystems, yet it is still far from being interac-
tive. Table 1 gives performance measures of running two queries
on ARCO-ERAS [8] for daily and monthly temperatures of Alaska
in 2020. Though the result size for the daily query is 34MB and
the monthly query is 1.2MB, both queries end up downloading the
same amount of data of 20GB. The main reason is that ARCO-ERA5
must scan all the raw data before aggregation, making it less inter-
active on aggregate queries that are highly used by polar scientists.
Since it takes close to 13 minutes to execute both queries, this is
not suitable for any interactive analysis.

This paper presents PoLARIS; a novel open-source system infras-
tructure for Polar science that is highly Interactive and Scalable.
PoraRris came out as part of the iHARP project (institute for
HArnessing data and model Revolution in the Polar regions) [25],
which is a large collaboration effort between computer and polar
scientists. POLARIS is tailored to the query workload and access pat-
terns of polar scientists, and hence it provides a highly interactive
and scalable performance for the large majority of the queries it re-
ceives. For example, PoLARIS answers the daily and monthly queries
of the ERA5 data in Table 1 in 1.2 and 0.3 seconds, respectively.

https://doi.org/10.14778/3749646.3749719
https://github.com/iharp3/Polaris-VLDB2025/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749719
https://www.acm.org/publications/policies/artifact-review-and-badging-current

PoLARISs is built with three main concepts in mind: (1) All polar
scientists queries are spatio-temporal. Queries about any of the 262
variables of ERA5 request specific spatial and temporal ranges.
If no ranges are specified, the whole temporal domain (1940 to
present) and the whole world will be considered. (2) Data Inequality.
Not all data are of equal importance. The desired resolution of
a variable depends on the region of the world; snowfall may be
needed in polar areas at an hourly temporal resolution and 0.25
degree spatial resolution for the last 10 years, then at daily and 0.5
degrees resolutions for earlier dates. Non polar areas could be kept
at a much lower 1-degree monthly resolution. (3) Most queries are
aggregates. Queries are mostly asking about an aggregate value of
a specific variable, spatio-temporal range, and spatial and temporal
resolutions, e.g., get the maximum snowfall (aggregate) of the days
(temporal resolution) in the last year (temporal range) in 1-degree
area (spatial resolution) in Alaska (spatial range).

To accommodate the data inequality concept, POLARIS is
equipped with a GUI interface that a polar scientist can easily use to
declare their interest for each variable along with the required spa-
tial and temporal resolutions. PoLARIs is supposed to be deployed
by each research group with their administrators who would de-
cide on their best interests. Once defined, PoLARIS accommodates
the aggregate queries concept by triggering an offline process to
download all the raw data of interest, which is available at the
highest resolution. Then, it precomputes all aggregates per the re-
quested lower resolutions, while throwing away unneeded higher
resolution raw data. To accommodate the spatio-temporal queries
concept, POLARIS is equipped with a multi-layer spatio-temporal
index structure built offline during the aggregation process, and
queried online for interactive query analysis. The main objective of
PoLARIs to answer the large majority of its incoming queries from
its own local storage. When receiving a query that cannot be fully
answered locally, PoLARIs partially answers it from local storage,
then uses its index to decide on the minimum API calls needed to
complete the query answer. Finally, PoLARIs is equipped with a
query monitoring module that tracks incoming queries and whether
they are answered from local storage. If the ratio of queries that
need API calls is increasing, PoLARIS uses its query workload to up-
date its data of interest and trigger the offline process to download
and organize data accordingly.

2 POLARIS QUERY SIGNATURE

This section presents the query signature of all queries received by
Poraris along with its 5 most common query types, which drives
Poraris’ design of index structure and query processing.

2.1 Query Signature

PorARts is designed to support the following query signature, which
represents the family of queries posed by polar scientists to widely
used public repositories like ERA5 [18].
SELECT <Spatial Resolution>, <Temporal Resolution>,
<[<Min/Max/Avg>] variable>,
FROM Data
WHERE <Spatial Predicate> AND <Temporal Predicate>
[GROUP BY <Spatial Resolution (0.25/0.5/1-degree)>,
<Temporal Resolution (Hour/Day/Month/Year)>,
[HAVING <group predicate>]]

4645

Query API Req

Query Interface ':‘ Query Processor '4:
Result Remote Data
4

Query

Querying
User

Query Monitor

Local Storage

User
Interests

]
|
|
i
|
i
i
|

Local Data t
:
|
i
i
|
|
i
|
|
i

10ffline Preparation

Admin User

Y

Data Request
Interface

a & Aggregation v

Raw Data
Data Aggregator @

y
API Requests

API Generator

User
Interests

Figure 1: PoLARIs System Architecture

The signature assumes spatial and temporal predicates in all
queries. Default predicates cover the whole spatial and temporal
range. In ERA5 data, that is data from 1940 to present for the whole
world. The Data in the signature refers to the whole 370TB ERA5
repository [18]. The query result can be grouped and aggregated
by spatial resolution defined in coordinate degrees and/or temporal
resolution defined in time units, and filtered on a group predicate.

2.2 Most Common Query Types

Below are five of the most common basic query types posed to
Poraris. Other queries can be composed from these basic ones.
Get Variable Query. This query requests the aggregate value of a
variable for each spatial area and time (at designated resolutions)
within certain spatial and temporal ranges. For example, in the
query “Get the daily average temperature in 2020 of Alaska at 1-
degree”, the spatial predicate is Alaska, temporal predicate is 2020,
spatial resolution is 1-degree, and temporal resolution is day.
SELECT Day, 1-degree, Avg(temperature)
FROM ERAS
WHERE SpatialRange = Alaska AND TemporalRange
GROUP BY Day, 1-degree
Heatmap/Timeseries Query. These two queries build on the
previous one by aggregating over the temporal or spatial range. A
heatmap query returns a list <area, value> for the average value for
each area. A timeseries query returns a series of values over the
whole area over time. For example: “Get the average temperature of
Alaska for each 1-degree/day during 2021/01/01 to 2023/01/31”
SELECT 1-degree/Day, Avg(temperature)
FROM ERA5
WHERE SpatialRange = Alaska
AND TemporalRange = 2021/01/01~2023/01/31
GROUP BY 1-degree/Day
Find Area/Time Query. These queries find the areas/time periods
where a certain value predicate is satisfied at the given resolutions.
For example, “Find the 0.25-degree areas/days in Antarctica that had
an average temperature greater than 270 Kelvin in 2023”.
SELECT 0.25-degree/Day
FROM ERA5
WHERE SpatialRange = Antarctica AND TemporalRange
GROUP BY @.25-degree/Daily
HAVING Avg(temperature) > 270

2020

2023

3 POLARIS SYSTEM ARCHITECTURE

Figure 1 depicts the system architecture of Poraris, which is com-
prised of three main components, described below:
Offline Data Preparation Layer. This layer stores the most impor-
tant data of ERA5 such that the large majority of queries received by
Poraris are completely supported from local storage, providing an
interactive analysis experience. The input to this layer comes from
an admin user through a GUI data request interface that specifies
the data of interest, which is then downloaded and aggregated to
the requested resolutions. Details are in Section 4.
Local Indexed Storage. The input to the local storage is the ag-
gregated data from the offline data preparation layer. Local storage
is equipped with a hierarchical spatio-temporal index structure
designed specifically to support PoLARIS query signature and work-
load. Local storage is accessed by the online query layer for inter-
active data analysis. Details are in Section 5.
Online Query Layer. This layer gets user queries through a GUI
map interface. It is then responsible for providing efficient query
processing through the indexed local storage. It is also equipped
with a query monitoring module that monitors the query workload
and prompts the offline data preparation layer to dynamically adjust
the local storage per workload changes. Details are in Section 6.
This architecture can be easily deployed to a distributed envi-
ronment using existing techniques. For example, PoLARIS could use
HDFS [22] to stitch the distributed disks for local storage and use
Dask [13] to stitch the distributed memory for query processing.
When storing the local storage index in the unified HDFS file space,
the query process logic can remain unchanged through the array
data abstraction provided by Dask.

4 POLARIS OFFLINE DATA PREPARATION

This layer handles two of the three concepts driving the design of
PoLaRris, data inequality and most queries are aggregates. To realize
data inequality, this layer adds only the most important data to
the local storage. Data importance is either explicitly specified
by an admin user or inferred from the system query workload.
To efficiently support aggregate queries, this layer pre-computes
various aggregates at the requested spatial and temporal resolutions.
As in Figure 1, this layer has the following three components:

User Interest Table. This table has five attributes <variable, spatial
range, spatial resolution, temporal range, temporal resolution>, which
capture the data stored in the local storage. Figure 2a gives an
example of one row of such table, where the user is interested
in the temperature variable for the year 2000 in the rectangular
geographical area bounded by latitudes 60 to 90 and longitudes 0
to -180, at a 0.5 degree spatial and daily temporal resolution. The
table can be filled in two ways: (1) Through a GUI map interface
where admin users specify their areas of interest, temporal range of
interest, variables of interest, and the preferred spatial and temporal
resolutions. If multiple users’ interests overlap in the desired spatio-
temporal ranges/resolutions, POLARIs consolidates the interests
to avoid storage redundancy. In particular, PoLARIs ignores the
coarser resolution since it will be covered by the finer resolution as
a result of the resolution hierarchy (Section 5). For example, if an
additional row is added to Figure 2a with the same spatial range
and resolution for temperature, but a yearly temporal resolution for

4646

Spatial
Range Res.
90,60; -180, 0| 0.5
(a) User Interest

Temporal
Range
2000

Data Variable

Res.

|nt;rface temperature daily

API
Generator

Data
Aggregator

min, max, avg
min, max, avg
min, max, avg
min, max, avg
min, max, avg
min, max, avg

Spatial

Range Res. | Range

90,60; -180, 0| 0.25 | 2000
(b) Downloaded Data

Temporal

Variable

Admin Res.

temperature hourly

Spatial
Range

90,60; -180, 0
90,60; -180, 0
90,60; -180, 0
90,60; -180, 0
90,60;-180,0| 1 2000
90,60;-180,0| 1 2000

(c) Metadata
Figure 2: Offline Data Preparation

2000 to 2010, PorAris will re-write this temporal range to 2001-2010.
The yearly resolution for 2000 is produced when pre-computing
the temporal hierarchy for 2000. (2) Through the query monitoring
module (Section 6.2) that automatically populates this table based
on the observed query workload. In either case, any significant
change in the table triggers the following API generator module.
API Generator. This module is triggered by any significant change
in the user interest table. It digests all the table entries to find
the minimum set of APIs needed to issue to a remote repository
such as ERAS5 cloud services [18] to download the requested data.
Additionally, it adjusts the requested resolutions to those available
for that repository. Figure 2b depicts the API request sent to ERAS5.
The spatial and temporal resolutions are changed from the user
interest table to the closest available resolutions in ERA5.
Data Aggregator. This module takes the raw data downloaded
from the API generator and performs three operations: (1) It aggre-
gates the raw data to the requested resolution and deletes unneeded
raw data. The example in Figure 2 only requests spatial and tem-
poral resolutions of 0.5 and daily, so after aggregation we delete
the raw data. (2) It precomputes the aggregations at the requested
resolutions along with coarser ones. For Figure 2, the data is re-
quested for 0.5 daily resolution, but we also compute and store the
aggregate values (min, avg, max) for all areas of 1-degree spatial res-
olution with monthly and yearly temporal resolutions. (3) It stores a
metadata table for all locally stored aggregated data, which is used
by the index structure and query processor to locate such data. Fig-
ure 2(c) gives the metadata for this particular example, where the six
rows refer to the set of all precomputed daily, monthly, and yearly
aggregates for each of the 0.5 and 1 degrees spatial resolutions.

With these three components, the offline data preparation layer
achieves the following: (1) Significant storage saving. In Figure 2,
the size of the downloaded hourly 0.25 raw data is 1.4GB, while the
size of the aggregated data is only 15MB for each of the first three
rows of Figure 2c and 3.6MB for the last three rows. So, total local
storage is 56MB, which is only 4% of the raw data size of 1.4GB.
This means 96% storage saving by only storing the data needed by
polar scientists in this area. (2) With storage saving, we are able to
store more of the user’s defined or inferred data of interest. This
allows the large majority of queries to be answered completely
from local storage, enabling interactive query responses. (3) As

Temporal
Range
2000
2000
2000
2000

Variable Aggregation

Res.
daily
monthly
yearly
daily
monthly
yearly

Res.
0.5
0.5
0.5

1

temperature
temperature
temperature
temperature
temperature
temperature

most of the received queries are aggregates, the answer is already
pre-computed, which enables an interactive query response.

5 POLARIS INDEX STRUCTURE

Given the data we have from the offline data preparation module,
we can just dump this data into a big data system, e.g., TileDB [37],
Apache Sedona [41], or SpatialHadoop [16], and use that system
for all queries. However, these systems lack the spatio-temporal
index structures that are immensely useful for the spatio-temporal
queries posed by polar scientists. The systems that most closely
support such query workload are Sedona [41] and TileDB [37].
However, Sedona has only spatial index which only indexes the
whole spatial bounding box of the entire array but cannot support
the spatial predicates (i.e., slicing selection) and resolutions inside
the array. Not to mention its lack of temporal index and support
for temporal predicates and resolution. Meanwhile, even though
TileDB [37] efficiently supports queries over three-dimensional
slices, these slices are not spatial- or temporal-aware, so it also does
not natively support aggregation for spatial and/or temporal reso-
lutions. This is why PoLARIs has to design its own index structure
guided by the query signature defined in Section 2.1, which calls
for a native index structure with the following three properties:
(a) spatio-temporal, as both the spatial and temporal predicates are
mandatory in all queries, (b) hierarchical, as queries impose a natu-
ral hierarchy across spatial and temporal resolutions (e.g., 0.25 to 1
degree and hour to year for ERAS5) (c) precomputed aggregates in
index entries, as most queries request aggregate values.

5.1 Basic Spatial Indexing Unit

The basic indexing unit in POLARIS is an incomplete pyramid struc-
ture [3]. It indexes a variable of interest and stores its aggregate
values over the supported spatial resolutions in hierarchical levels:
The lowest pyramid level divides the geographical space of the
whole world into non-overlapping equal-size cells of the highest
resolution. Higher levels store coarser resolutions such that each
cell is an aggregation of four cells of its lower level. Not all lev-
els have the same temporal interval and temporal resolution, and
not all cells are maintained, hence the term incomplete pyramid.
Maintained cells store the minimum, average, and maximum val-
ues of the indexed variable. All ancestor cells of a maintained cell
are maintained with another level of aggregation. Thus, the basic
incomplete pyramid index structure supports various spatial resolu-
tions through its multi-level hierarchy, supports spatial predicates
as it partitions the world into spatial areas, and stores aggregates
over spatial areas in its maintained cells.

5.2 Spatio-temporal Index Structure

Figure 3 depicts the full spatio-temporal index structure of POLARIS
for each indexed variable. It is composed of multiple instances of
the basic incomplete pyramid unit to support temporal aggregation
and resolutions. Yearly, monthly, and daily pyramids are aggregates
over the lower level pyramids. Like the spatial levels of a basic
pyramid unit, not all pyramids are maintained at all temporal levels.
For example, consider the ERA5 data of interest presented in Fig-
ure 2 that requests the temperature variable in a certain spatial and
temporal range at 0.5 and daily resolutions. For this variable, we

4647

Month 1 Month 2
’ Day 1 Day 2 Day 3
r

’ Hour 2 ‘ Hour 3 ‘ Hour 4 : Hour 24

Figure 3: Pyramid Hierarchy

Hour 1

are only interested in maintaining the yearly, monthly, and daily
pyramids, and no hourly pyramids will be maintained anywhere.
Also, each pyramid unit will only have its two top levels storing
0.5 and 1-degree data. Finally, all pyramids will only be maintained
for the year 2000, and for the specified area.

Practically speaking, the table in Figure 2a could have tens or hun-
dreds of areas of interest. All areas of the same variable would share
the same hierarchy of pyramids of Figure 3. As both pyramid and hi-
erarchical structure are incomplete by design, the same variable may
have hourly pyramids for certain areas, and daily/monthly/yearly
for others. For example, if there is another interest for the temper-
ature value over a different area in the world at 0.25 and hourly
resolution for March 2020, we would add this new area at the lowest
pyramid unit level of 0.25, and update the monthly pyramid for
March 2020 to include this area of interest.

It is important to emphasize that this hierarchical index structure
already includes the aggregates needed to answer queries without
the raw data. So, even though it may seem like an overhead to
maintain that many pyramids in the index, it actually saves a huge
amount of storage and provides highly efficient query support. As
mentioned in Section 4, the storage needed to support the data of
interest of Figure 2 is 56MB, which is only 4% of the 1.4GB raw
data. Thus, using only 4% of the raw data storage, and organizing
data within our index structure, we can answer the same queries
we would normally need the raw data for.

5.3 Index Update

As the ERAS dataset is updated on a daily basis, in case the admin
user indicates interest in the most recent data, PoLARr1s downloads
the new data, computes pre-aggregation and updates its hierarchial
index every day. Fortunately, the overhead for updating the pyra-
mid hierarchy index is pretty manageable. On the hourly and daily
level, only 24 hourly pyramids and one daily pyramid are added. No
existing pyramids are changed. For the monthly and yearly level,
only the current month/year pyramid on each level is affected. The
minimum and maximum aggregate values are updated by compar-
ing the new data with the current aggregates. The new average
aggregate is also updated by taking the weighted average of the
current value, whose weight is the number of current days in the
month/year, and the new day average whose weight is 1.

6 POLARIS ONLINE QUERY LAYER

In addition to a map GUI interface, PoLARIS online query layer is
composed of two main modules, a query processor that exploits the
index structure for highly efficient query execution, and a query
monitoring to ensure that incoming queries are supported locally.

6.1 Query Processor

POLARIS query processor aims to exploit its hierarchical index struc-
ture to efficiently answer incoming queries from local storage. For
those queries that cannot be fully locally answered, it aims to par-
tially answer these queries, and call an API to augment the partial
answer. The promise of POLARIs is that a large ratio of incoming
queries, default 95%, will be answered from local storage, mainly
due to the careful design of the data preparation layer and the
query monitoring module. Below, we discuss the query processor
operation for the five query types mentioned in Section 2, when
the query answer is completely in the local storage.

Get Variable Query. Consider the query: “Get the daily average
temperature in 2020 in Alaska at 1-degree”. Without PoLARIS, an-
swering such query would be computationally exhaustive as all the
data for Alaska in 2020 will be downloaded at hourly level with
0.25-degree resolution as this is the only available resolution for
ERAS5 [18]. Then, a scan with aggregation over this data is needed.
With PoLAR1s, we just go right away to the 366 daily level pyramids
of 2020, where we just visit the very top level of each pyramid that
represents the 1-degree resolution and return the areas that are
within Alaska. This shows that PoLARIS precomputations and index
structure significantly help in supporting such queries.

Heatmap Query. Consider the query: “Get a 1-degree heatmap
of average temperature in Alaska during the days from 2021/01/01
to 2023/01/31”. Without PoLARis, producing such heatmap would
need to download 0.82GB of data that correspond to the hourly 0.25
data over Alaska for the requested time range, and then perform
aggregation on top of it. It takes hours to download such data. With
PoLARis, we just need to use three pyramid structures, the two
yearly pyramids of 2021 and 2022, and a monthly pyramid of Janu-
ary 2023. The top level of each pyramid for Alaska area represents
the 1-degree heatmap for Alaska for its corresponding temporal
resolution. Then, the query answer is the weighted average of these
three top level areas. This makes the query response in real time,
showing the impact of Poraris for polar scientist analysis.
Timeseries Query. Consider the query: “Get the daily average
temperature in 2022 in Greenland”. Without PoLARIS, we would need
to download all the hourly 0.25-degree data for Greenland for 2022,
which is ~0.4GB. Then, scan over the downloaded data to aggregate
for the daily resolution and over the whole Greenland area. With
Poraris, we will only access the 365 daily pyramids of 2022. For
each of these pyramids, we may only need to check the top pyramid
level to cover Greenland area with the 1-degree cells. If such cells
cover an area that is significantly more than Greenland, we use
the 0.5 or 0.25-degree cells of lower levels to give a more accurate
average for the whole area. If we use cells from different levels,
we take a weighted average. This shows the impact of PoLARIS
pre-computations and index to provide interactive performance.
Find Area Query. Consider the query: ‘Find the 0.25-degree areas
in Alaska that had an average temperature more than 300 Kelvin in

4648

2023”. Without Poraris, we would need to download all the 0.25-
degree hourly data of 2023 in Alaska, and scan them to find those
areas with temperature over 300. With PoLARis, we take advantage
of the pyramid hierarchy for early filtering. We start with the yearly
pyramid of 2023, and focus on its top level of 1-degree resolution for
the area covering Alaska. If none of these areas have temperature
more than 300, then there is no need to proceed further. Only
for those 1-degree areas that satisfy the predicate, we will check
on their 12 monthly pyramids. Similarly, we will only go for the
daily pyramids if a parent monthly pyramid shows that there is a
temperature more than 300. In the daily pyramid, we start by the
top level, where if any of the Alaska cells does not satisfy the query
predicate, then, it is another early filter, and we do not need to
proceed further for such cells. For those cells that satisfy the query
predicate, we go to the medium level for another early filter, and
then only for the 0.25 cells that have parents satisfy the predicate.
We finally output the result from the lowest pyramid level with
minimal overhead due to the early filtering from PoLARIs index.
Find Time Query. Consider the query: “Find days from 2021/01/01
to 2023/01/31 where the average temperature in Antarctica is greater
than 300 Kelvin”. Without PoLaR1s, we will need to download all the
raw hourly 0.25-degree data for Antarctica for two years and one
month. Then, scan such data to get the answer. With PoLARIs, simi-
lar to Find Area query, we use the spatial and temporal aggregation
for filtering. We start by the yearly pyramid of 2021. If none of the
cells that cover Antarctica in the top level satisfy the query predi-
cate, then we know that no day in this year will satisfy the query.
If any of the cells satisfy the predicate, we visit the 12 monthly
pyramids for 2021 and check for the same cells that correspond to
the satisfying cell in the yearly pyramid. We do similar check and
visit the daily pyramids only for those monthly pyramids satisfying
the predicate. We will also do the same for the yearly pyramid of
2022 and the monthly pyramid of January 2023.

6.2 Query Monitoring

The main promise of POLARISs is that the large majority of queries
will be answered from local storage. This assumes that the offline
data preparation layer has successfully captured the user interests
and has pre-downloaded and pre-aggregated the data needed for
incoming queries. Yet, the system usage and query workloads may
change over time, which would reduce the ratio of queries answered
from local storage. To avoid such performance drop, POLARIS ac-
tively monitors the query workload and updates local storage if
new data of interest is detected. PoLARIS employs a query moni-
toring module that tracks: (1) user-issued queries in terms of their
variable and spatial/temporal range and resolution, kept in a query
table Q that has the same schema of the table in Figure 2a, and
(2) the ratio of queries « that were not completely supported from
local storage. Once a exceeds a user-specified value, default 5%, the
query monitor analyzes table Q and infers the actual user interest.
Since the spatial and temporal query ranges may overlap, POLARIS
determines the ranges that cover most queries and adds those as
user interests. The inferred interests are sent to the Data Prepara-
tion layer of Section 4 to trigger a local storage data update. Since it
is treated as an additional user interest input, the same condensing
logic that avoids storage redundancy applies here.

g 102 g 102 i g 102 g 102 g 102
a i o & [+ = a a Awid iy a
g 1% £ 10t} ’ g of———| g 10 G\'\ £ 10
< -=— Polaris o ¢ \9\—7 < F@\é} < N < Q
.g 109 = Vanilla .g 10°| -=- Ppolaris - .g 100 =~ Polaris .g 10°| -=- Ppolaris .g 10°{ -=- Polaris
3 . TileDB 3 = Vanilla 3 = Vanilla 3 = Vanilla 3 = vanilla
(9] _ (7] _ TileDB Q _ TileDB Q _ TileDB Q _ TileDB
51071 - sedona 107t Sedona 107t e = Sedona | 107 Sedona > o s107t Sedona S ~
0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 hour day month vyear hour day month year
Spatial resolution (degrees) Spatial resolution (degrees) Spatial resolution (degrees) Temporal resolution Temporal resolution
(a) Hour (b) Day (c) Year (d) 0.5 degrees (e) 1.0 degrees
Figure 4: Impact of Spatial and Temporal Resolutions
Resolution Get Variable Heatmap Find Time Metric ‘POLARIS Vanilla TileDB Sedona
3-hour, 0.5x0.625° 3.205 3.232 5.093 Agg. time 3h 51m 0 >20h est. 67h
day, 1x1.25° 0.088 2.140 0.078 Storage 292GB 170GB 648GB est. 348GB
year, 2x2.5° 0.024 0.655 0.030

Table 2: Poraris Execution time (sec) for MERRA-2 data

7 EXPERIMENTAL RESULTS

This section evaluates the performance of PoLaris, based on its
first released version [39]. As mentioned in Section 1, the direct
competitor of POLARIS is what is currently in use by polar scientists,
which is having the data in a cloud storage [1, 43], e.g., ARCO-
ERAS5 [8]. Yet, as reported in Table 1 in Section 1, this solution is
far from being interactive. Hence, it is unreasonable to compare it
against PoLARIs, which provides sub second performance. Instead,
we focus our experiments on the main internal components of
PoLaArtis: its incomplete spatio-temporal pyramid index structure
supported by the aggregation module in the offline layer and the
query processor module in the online layer.

We compare PoLaris with three alternatives: (1) A vanilla ap-
proach of PoLaRis, where we pre-download all data of interest
but do not perform any aggregation or indexing. (2) TileDB [37].
We store and query the downloaded data of interest in TileDB, a
state-of-the-art storage engine for multi-dimensional arrays, us-
ing its up-to-date open-source distribution [44]. (3) Apache Se-
dona [41]. Although Sedona can load array data, it does not sup-
port spatial/temporal predicates and aggregation, which is always
needed by the query signature of Section 2. In essence, it has no abil-
ity to select a subset of an array within a spatio-temporal range, or
to aggregate the array into heatmaps or timeseries. Thus, to include
Sedona in our experiments, we had to first convert downloaded
array data to tabular data. For example, we store temperature data
in table schema (time, latitude, longitude, temperature). Then, we
perform the experiments using the SQL queries that Sedona sup-
ports. All experiments are performed on a Linux server with 20
CPU@2.2GHz, 96GB memory and 800GB SSD.

We benchmark Poraris and competitors on the ERA5
dataset [18] that has 0.25X0.25-degree spatial resolution and 1-hour
temporal resolution. We use ten years of temperature data for the
whole world, and ingest it into each system. An additional dataset,
MERRAZ2 [31], which has coarser resolutions (0.625X0.5-degree and
3-hour) is used to confirm PoLaRIs performance is generalizable to
other climate datasets. Table 2 shows that POLARISs is able to support
such data for three main queries (Get variable, Heatmap, Find time)
and three different resolutions with an interactive response, where
all the queries were for all data over the last five years. Due to space

4649

Table 3: Offline Preparation Time and Storage

limitation, in the rest of this section, we will only focus on ERA5
data, yet the trends in all experiments should be very similar when
applied to MERRA2? data.

Offline Preparation Time. Table 3 compares the offline prepa-
ration time of POLARIS, vanilla, TileDB, and Sedona. Our intention
is to run these experiments for one variable for the whole world
over the last 10 years, however, only PoLaRIs and vanilla were able
to do so. In particular, the vanilla approach does not encounter
any offline preparation time as it just works with raw data as is.
Also, the storage is the minimum, which is the 170GB of raw data.
Meanwhile, PoLARIs completes the data aggregation described in
Section 4 in less than 4 hours, and adds 122GB of metadata, on
top of the raw data. Even though we are reporting total storage
as 292GB, this would be the case only if a user explicitly specifies
their interest in raw data, which is unlikely. For TileDB, the data
overhead for 10 years exceeded our storage limit of 800GB, so, we
had to run it for 7 years only, which took more than 20 hours with
a storage overhead of 648GB. For Sedona, it takes excessive time
to convert the downloaded 170GB raw data into the tabular form,
and we could not do it for the whole world. So, we did it only for
the area of Greenland over the last 10 years, and extrapolated the
result to estimate what it would take for the whole world. While the
storage overhead is reasonable, the preparation time is prohibitive.
Overall, this experiment shows that PoLAR1s has the least overhead
time and storage compared to TileDB and Sedona.

Impact of Spatial and Temporal Resolutions. Figure 4 studies
the impact of varying the spatial and temporal resolutions on the
performance of PorLaRris, TileDB, and Sedona for the Get Variable
Query: “Get the average temperature over Greenland over the last five
years in T temporal resolution and S spatial resolution”. Figures 4(a)-
4(c) fix the temporal resolution T to hour, day, year, while varying
the spatial resolution from 0.25 to 1. Except for the very first point
of 0.25 hourly resolution, PoLARIs consistently performs one to
three orders of magnitude better than vanilla, TileDB, and Sedona.
This is mainly because PoLARIs has less computations to perform on
its aggregate values while other systems must scan and aggregate
the raw data. Sedona also improves with lower resolutions but still
maintains a larger execution time compared to PorLaris. Figures 4(d)-
4(e) fix S to 0.5 and 1-degree, while varying T from hour to year.
It also show a performance gain improvement for POLARIs as the
temporal resolution gets lower.

9 102 g 102 g 102 g 102 g 102
@))) L)
g 10! g 101 | Bl . =— Eao - g 100 - <
= S | = s - s
oS 100/ — . S 10° ——~ Polaris S 100 -~ Polaris S 100 i ——~ Polaris S 1009V ==~ Polaris
=] —7— Vanilla S = " = 4 = e = I S ~ o
3 TileDB 3 -~ 1‘{3"‘[); 3 =~ Vanilla 3 T - 1\{3‘"‘[); 3 -~ ¥a\ng
b} 1 1 ilel @ “1l = o TileDB @ = ilel @ = ilel
&5 10 —e— Sedona &5 10 k . ,A—@— Sedona | &3 1074 = —@- Sedona ’ &3 10 —@— Sedona ot 10 = —@— Sedona
C—6 S) (~ A -\
1 25 50 100 1 25 50 100 1 25 50 100 1 25 50 100 1 25 50 100
Spatial region (% of Greenland) Spatial region (% of Greenland) Spatial region (% of Greenland) Spatial region (% of Greenland) Spatial region (% of Greenland)
a) 0.25 degrees, hourl b) 0.25 degrees, yearl c) 0.5 degrees, monthl d) 1.0 degrees, hourl: e) 1.0 degrees, yearl:
g Yy g yearly g y g y g yearly
Figure 5: Impact of Result Size
2 2 v 5 w0 _ 102 _ 102
<o 10 o 10 v g 2 2
]]) 9 @
2 Qa =i ~ o 101 SE Sz Y| o 10Y4¥ = = Y| @ 104% = = v/
o) ' £ 7 £ £
g 1ot g 0%y = = =
= = G‘e—__e—e é 10° -5~ Polaris é 10° -5~ Polaris é 10° - polaris
= & Polaris = S Polaris 3 =F Vanilla 3 <7~ Vanilla E <7 Vanilla
0 = 0 = _ TileDB _ TileDB _ TileDB
£ 10 = Venila | & 10 — Vanilla 10 o Y F107 & seaom g7 % seaono
§ TileDB § TileDB 205 230 275 310 205 230 275 310 205 230 275 310
— — Filt I Filt I Filt I
IL< 10 1 f/@\(e Sedona \ IL< 10 1 //8\(\ e Sedona | ilter value ilter value ilter value
1 25 5 10 1 25 5 10 (a) Hour (b) Month (c) Year

Time span (years) Time span (years)

(a) 0.25 degrees (b) 1.0 degrees
Figure 6: Heatmap Query Performance

Impact of Result Size. Figure 5 studies the impact of the query
result size on the performance of Poraris, TileDB, and Sedona for
the Get Variable Query: “Get the average temperature over area A in
Greenland over the last five years for spatial and temporal resolutions
S and T", when varying area A from 1% to 100% of the total area of
Greenland. In all aggregation cases, POLARIs achieves one to three
orders of magnitude better performance than vanilla, TileDB and
Sedona. Again, we see the performance of Poraris and Sedona
improve at lower spatial and temporal resolutions. For example, the
performance gap between PoLARIS and alternatives in Figure 5(d) is
about an order of magnitude when S is 1-degree and T is hourly, but
three orders of magnitude in Figure 5(e) when T is yearly. PoLARIS
achieves sub second execution time except when T is hourly and it
must read 8,760 values per year requested (one per hour).
Heatmap Queries. Figure 6 studies the performance POLARIS,
TileDB, and Sedona when plotting a heatmap at various spatial
resolutions over a certain area, while varying the time span. This
is done through the heatmap query: “Build an S-degree heatmap of
average temperature in Greenland during the last T yeas”, where T
varies from 1 to 10 years, while S is 0.25 in Figure 6(a) and 1 in Fig-
ure 6(b). PoLARIS consistently gives up to four orders of magnitude
better than the vanilla approach, three orders of magnitude better
than TileDB and two orders of magnitude better than Sedona. We
were not able to run TileDB for more than 7 years of data, due to
its oversized storage. The main reason behind such performance is
that heatmaps are mainly plotted based on the aggregated values
that are already precomputed in PoLARIs, and hence it can be done
in milliseconds for interactive analysis. The little bump in PoLARIs
performance when plotting the heatmap for 2.5 years is due to
exploiting the monthly pyramids, while in all other cases, we only
need to exploit the yearly pyramids.

Filter Queries. Figure 7 studies the impact of varying the filter
value on the performance of PoLaris, TileDB, and Sedona for the
Find Time query: ‘Find the hours/days/months/years in the last 5
years in Greenland when the average temperature is greater than K
Kelvin”. We vary the value of K from 205 to 310, when the query

4650

Figure 7: Find Time Query Performance

asks about hours, days, and years that has average temperature
above K across Greenland. TileDB, Sedona, and vanilla are not
impacted by the filter value, as they need to scan the hourly raw
data in all cases. PoLARIS performance is more than four orders
of magnitude better than other approaches when returning the
months and years that encounter higher temperature above K. This
is mainly due to the precomputed aggregation. For example, in the
yearly case (Figure 7(c)), PoLaR1s only needs to check five values
that correspond to five years, and will report only that year that has
higher temperature. For querying over the hour (Figure 7(a)), Po-
LARIS would exploit its pyramid structure for early pruning or early
result reporting. To find those hours when temperature is more
than 205, PoLARIs can return all hours of a certain day/month/year
without checking any hour, if the minimum of that day/month/year
is above 205. This is why PoLARIs has two orders of magnitude
better performance in the values of 205 and 310. At the middle tem-
peratures, where there is not much filtering, Sedona outperforms
Poraris by 3 seconds since PoLARIs cannot filter out as many hours
and Sedona has better parallelism in scanning its tabular data.
Impact of Query Monitoring. Figure 8(a) studies the impact of
PoLARIs query monitoring module using a synthetic workload of
10K queries. The x-axis represents the total amount of queries re-
ceived by POLARIS so far, while the y-axis represents the percentage
of queries that required API calls. The workload is designed such
that 85% of the first 5K queries can be completely answered from
local data, then for the next 5K queries the percentage is 65%. So,
the first half of the workload imitates the case where the initial
user interest input mostly captured the requested queries, while
the second half imitates the case where there is an interest shift.
The red dotted line in Figure 8(a) indicates the percentage of API
calls when we disable PoLARIs monitoring and updating strategy.
For the first 5K queries, this percentage converges to around 15%,
then continuously increases once the interest shifts. With PoLari1s
monitoring module that is triggered with 5% threshold, the number
of API-involving queries is suppressed to around 7.5% in the first
half. More importantly, it is constrained at the same level even after
the workload changes. This demonstrates the resilience to dynamic
workloads of the PoLAaRIs monitoring and updating strategy.

= 25{__ .)

S | T Wovontor " oetVelaiy [0 Jret: 073

=20 -~ Getvariable flg g9 Tot: 8.89
% ! Hamo - Vetadat:
< 151 firaeomes (full yre) i Jrot: 0.38 CReadData
=10 ot: 0.72 P2

o i -

> 5 Pty ERIIITITIT T T Hebr7204)

0 2.5K 5K 7.5K 10K
Queries

100
Time (seconds)

0

(a) Simulation on Workload (b) Query Time Breakdown

Figure 8: Workload Simulation and Query Breakdown

Query Time Breakdown. Figure 8(b) shows the query time break-
down for three representative queries, Get Variable, Heatmap, Find
Time. The top two bars in the Figure are for Get Variable query with
daily and hourly temperature for Greenland over five years. Both
take only few milliseconds to check the metadata. Yet, the hourly
query takes more overall time as it needs to access more pyramids
structures, one for each hour. Overall, the experiment shows that
the overhead of metadata access is minimal for this query. The mid-
dle two bars of the Figure are for heatmap queries on Greenland for
five years at 1-degree. Yet, the five years of the top bar are full ones
from 2015/01/01 to 2019/12/31, while the five years of the other bar
are from 2015/03/10 to 2020/03/09. The query time breakdown is
depicted by the time spent in each temporal hierarchy level. The
first query only needs the pyramid index structures at the yearly
level, while the second query needs to access pyramids at yearly,
monthly, and daily levels. The last two bars in the Figure are for
Find Time queries asking about the hours in the last five years with
an average temperature greater than 205 and 240 over Greenland.
The first query only needs the yearly pyramids as it happened that
all the five years have a minimum temperature greater than 205,
hence, there is no need to dig further, and we will just report all
the hours of this year. However, for the second query, the answer
cannot be determined solely by the yearly level, so PoLaris checks
the monthly, daily, and hourly levels, which takes more time.
Partial Query Execution. PoLARIS aims to have 95% of its queries
executed completely from local storage. To justify the need for
this, we run two sets of queries, where the first set is completely
answered from local storage, while the second set needs to issue an
API call as 10% of the requested data is not in the local storage. We
observed a rapid increase in query execution time from sub-second
to over 4000 seconds with only a small API call. Regardless of the
query request size, the ERA5 data repository adds a huge overhead
for API requests. This shows that it is impossible to achieve an
interactive user experience with remote data access, which justifies
our design choices in POLARIs.

Multi-Variables Query. PoLARIS supports multi-variable queries
by issuing multiple queries and combining the result. We test this
by running queries asking for the daily average for one to five
variables for five years on Greenland, which are executed in 0.66,
1.38, 1.95, 2.66, and 3.31 seconds, respectively. As expected, the
response time grows relatively linearly with respect to the number
of variables. Since the overhead for one variable query is ~0.66, the
overhead of combining the results is negligible. This shows that
the design of PoLARIS supports multi-variable queries.

4651

8 RELATED WORK

Array Database systems. Motivated by the fact that massive data
are generated in various scientific domains, e.g., earth, space, and
life sciences, huge efforts were dedicated to manage and analyze
such data [5, 50]. This results in full-fledged systems, including
Rasdaman [4], SciDB [6], TileDB [37], and ChronosDB [49]. TileDB,
as a representative of such efforts, has its own specialized storage
format and can support spatial and temporal predicates. However,
it does not have native support for the resolution-based aggregation
as it deals with the spatial and temporal dimensions as plain discrete
values with no awareness of the space and time context. Meanwhile,
the rise of Apache Hadoop [22] and Spark [42] inspired the efforts
of SpatialHadoop [16], SHAHED [17], Apache Sedona [41, 48], and
GeoTrellis [19] to manage big spatial raster data, though none is
addressing the temporal dimension. Among those, Sedona is most
active, yet it focuses on in-memory computing, which is not suitable
for polar scientists data and query workload.

Spatio-temporal Indexing. While there is already a rich literature
for spatio-temporal index structures [29, 32, 33], none of them can
be directly applied to support polar science data. The main reason
is that most of these index structures are designed for vector-like
moving objects such as trajectories [11, 14, 20, 21, 27, 36, 40] and
multimedia [10, 14, 28]. Although there are some studies on index-
ing raster satellite images [17, 26, 38], the temporal dimension is
studied as an attribute associated with each image, not a dimen-
sion of the raster. So, temporal predicates in polar science queries
cannot be directly supported. Though the ST-Hadoop [2] system
is equipped with spatio-temporal index structures, it is mainly for
offline analysis with no support to interactive data analysis.
Polar and Geoscience community. Polar and geo-scientists have
made their efforts to store and share large raster data. Most of these
efforts, e.g., Pangeo [35], CryoCloud [12] and OpenDataCube [34],
focus on the integration with modern cloud-based infrastructure
and democratizing data access to broader audience. For exam-
ple, Pangeo [35] hosts raster data in an Analysis-Ready Cloud-
Optimized (ARCO) format [1, 43], which can be accessed directly
via open source libraries like Dask [13] and Xarray [47]. However,
this does not provide any kind of interactive data analysis as data
always needs to be transmitted from cloud to some disaggregated
compute resources to run the analysis.

9 CONCLUSION

This paper presented POLARIs; a novel system built to support polar
science data and query workload in an interactive and scalable way.
PoLraris architecture is designed with an offline data preparation
layer to harvest user interests on data, an online query processing
layer to answer the queries efficiently, and a local storage that in-
dexes the data spatio-temporally. POLARISs is equipped with a novel
spatio-temporal index structure, made of a hierarchy of incomplete
pyramids that support efficient data access within a spatio-temporal
range at any spatial and temporal resolution. Experimental results
on real datasets show that PoLARIs achieves interactive response
time and is scalable to support polar science workload. Although
PoLarrs is designed for polar science workloads, it has potential
application in general climate, environment, oceanology, atmo-
sphere science as they share similar spatio-temporal data and query
signature as that of polar scientists.

REFERENCES

(1]

[16]

[17

(18]

[19

[20]

[21

[22]
[23]

[24]

Ryan Abernathey, Tom Augspurger, Anderson Banihirwe, Charles C. Blackmon-
Luca, Timothy J. Crone, Chelle L. Gentemann, Joseph Hamman, Naomi Hender-
son, Chiara Lepore, Theo A. McCaie, Niall H. Robinson, and Richard P. Signell.
2021. Cloud-Native Repositories for Big Scientific Data. Comput. Sci. Eng. 23, 2
(2021), 26-35.

Louai Alarabi and Mohamed F. Mokbel. 2017. A Demonstration of ST-Hadoop:
A MapReduce Framework for Big Spatio-temporal Data. PVLDB 10, 12 (2017),
1961-1964.

Walid G. Aref and Hanan Samet. 1990. Efficient Processing of Window Queries
in The Pyramid Data Structure. In PODS (Nashville, TN, USA).

Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, and Norbert
Widmann. 1998. The Multidimensional Database System RasDaMan. In SIGMOD.
Peter Baumann, Dimitar Misev, Vlad Merticariu, and Bang Pham Huu. 2021.
Array databases: concepts, standards, implementations. 7. Big Data 8, 1 (2021),
28.

Paul G. Brown. 2010. Overview of sciDB: large scale array storage, processing
and analysis. In SIGMOD (Indianapolis, Indiana, USA).

CARRA [n.d.]. Arctic regional reanalysis on single levels from 1991 to present.
https://cds.climate.copernicus.eu/datasets/reanalysis- carra-single-levels.
Robert W. Carver and Alex Merose. [n.d.]. ARCO-ERA5: An Analysis-Ready
Cloud-Optimized Reanalysis Dataset. https://github.com/google-research/arco-
era5.

CESM [n.d.]. NCAR Community Earth System Model. https://www.cesm.ucar.
edu/.

Lisi Chen, Gao Cong, and Xin Cao. 2013. An efficient query indexing mechanism
for filtering geo-textual data. In SIGMOD (New York, NY, USA).

Su Chen, Beng Chin Ooi, Kian-Lee Tan, and Mario A. Nascimento. 2008. ST2B-
tree: a self-tunable spatio-temporal b* -tree index for moving objects. In SIGMOD
(Vancouver, BC, Canada).

CryoCloud [n.d.]. CryoCloud - Accelerating discovery and enhancing collabora-
tion for NASA Cryosphere communities. https://cryointhecloud.com/.

Dask [n.d.]. Dask. https://www.dask.org/.

Harish Doraiswamy, Huy T. Vo, Claudio T. Silva, and Juliana Freire. 2016. A
GPU-based index to support interactive spatio-temporal queries over historical
data. In ICDE (Helsinki, Finland).

Job CM Dullaart, Sanne Muis, Nadia Bloemendaal, and Jeroen CJH Aerts. 2020.
Advancing global storm surge modelling using the new ERA5 climate reanalysis.
Climate Dynamics 54 (2020), 1007-1021.

Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE (Seoul, South Korea).

Ahmed Eldawy, Mohamed F. Mokbel, Saif Al-Harthi, Abdulhadi Alzaidy, Kareem
Tarek, and Sohaib Ghani. 2015. SHAHED: A MapReduce-based system for
querying and visualizing spatio-temporal satellite data. In ICDE (Seoul, South
Korea).

ERA5 [n.d.]. ERA5 hourly data on single levels from 1940 to present. https:
//cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels.

GeoTrellis [n.d.]. GeoTrellis. A geographic data processing engine for high
performance applications. https://geotrellis.io/.

Yang Guo, Zhiqi Wang, Jin Xue, and Zili Shao. 2024. A Spatio-Temporal Series
Data Model with Efficient Indexing and Layout for Cloud-Based Trajectory Data
Management. In ICDE (Utrecht, The Netherlands).

Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras, and Dimitrios Gunop-
ulos. 2006. Indexing spatiotemporal archives. VLDB . 15, 2 (2006), 143-164.
Hadoop [n.d.]. Apache Hadoop. https://hadoop.apache.org/.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, Andras Horanyi,
Joaquin Muiioz-Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand
Schepers, et al. 2020. The ERA5 global reanalysis. Quarterly journal of the royal
meteorological society 146, 730 (2020), 1999-2049.

ICESat-2 [n.d.]. Ice, Cloud, and land Elevation Satellite-2 (ICESat-2).
//icesat-2.gsfc.nasa.gov/.

https:

4652

[25

[26]

[44

[45

[46]

N
=

iharp [n.d.]. iHARP: NSF HDR Institute for Harnessing Data and Model Revolu-
tion in the Polar Regions. https://iharp.umbc.edu/.

Lubos Krcél and Shen-Shyang Ho. 2015. A SciDB-based Framework for Effi-
cient Satellite Data Storage and Query based on Dynamic Atmospheric Event
Trajectory. In SIGSPATIAL (Bellevue, WA, USA).

Ruiyuan Li, Huajun He, Rubin Wang, Yuchuan Huang, Junwen Liu, Sijie Ruan,
Tianfu He, Jie Bao, and Yu Zheng. 2020. JUST: JD Urban Spatio-Temporal Data
Engine. In ICDE (Dallas, TX, USA).

Amr Magdy and Mohamed F. Mokbel. 2017. Demonstration of Kite: A Scalable
System for Microblogs Data Management. In ICDE (San Diego, CA, USA).
Ahmed R. Mahmood, Sri Punni, and Walid G. Aref. 2019. Spatio-temporal access
methods: a survey (2010 - 2017). Geolnformatica 23, 1 (2019), 1-36.

Pedro Mateus, Jodo Cataldo Fernandes, Virgilio B. Mendes, and Giovanni Nico.
2020. An ERA5-Based Hourly Global Pressure and Temperature (HGPT) Model.
Remote. Sens. 12, 7 (2020), 1098.

MERRA-2 [n.d.]. Modern-Era Retrospective analysis for Research and Applica-
tions, Version 2. https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.

Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. 2003. Spatio-
Temporal Access Methods. IEEE Data Engineering Bulletin 26, 2 (2003), 40—49.
Long-Van Nguyen-Dinh, Walid G. Aref, and Mohamed F. Mokbel. 2010. Spatio-
Temporal Access Methods: Part 2 (2003 - 2010). IEEE Data Engineering Bulletin
33, 2 (2010), 46-55.

OpenDataCube [n.d.]. OpenDataCube - Open Source Earth Observation at Scale.
https://www.opendatacube.org/.

Pangeo [n.d.]. Pangeo: A community for open, reproducible, scalable geoscience.
https://www.pangeo.io/.

Dimitris Papadias, Yufei Tao, Panos Kalnis, and Jun Zhang. 2002. Indexing
Spatio-Temporal Data Warehouses. In ICDE (San Jose, CA, USA).

Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy G. Mattson.
2016. The TileDB Array Data Storage Manager. PVLDB 10, 4 (2016), 349-360.
Gary Planthaber, Michael Stonebraker, and James Frew. 2012. EarthDB: scalable
analysis of MODIS data using SciDB. In SIGSPATIAL (Redondo Beach, CA, USA).
POLARIS [n.d.]. POLARIS first System release. https://iharpv.cs.umn.edu/.
Keven Richly, Rainer Schlosser, and Martin Boissier. 2021. Joint Index, Sorting,
and Compression Optimization for Memory-Efficient Spatio-Temporal Data
Management. In ICDE (Chania, Greece).

Sedona [n.d.]. Apache Sedone. https://sedona.apache.org/.

Spark [n.d.]. Apache Spark - Unified Engine for large-scale data analytics.
https://spark.apache.org/.

Charles Stern, Ryan Abernathey, Joseph Hamman, Rachel Wegener, Chiara
Lepore, Sean Harkins, and Alexander Merose. 2022. Pangeo forge: crowdsourcing
analysis-ready, cloud optimized data production. Frontiers in Climate 3 (2022),
782909.

TileDB [n.d.]. TileDB - The Universal Storage Engine. https://docs.tiledb.com/
main.

Claudia Vitolo, Francesca Di Giuseppe, Christopher Barnard, Ruth Coughlan,
Jesus San-Miguel-Ayanz, Giorgio Liberta, and Blazej Krzeminski. 2020. ERA5-
based global meteorological wildfire danger maps. Scientific data 7, 1 (2020),
216.

You-Ren Wang, Dag O Hessen, Bjorn H Samset, and Frode Stordal. 2022. Evaluat-
ing global and regional land warming trends in the past decades with both MODIS
and ERA5-Land land surface temperature data. Remote Sensing of Environment
280 (2022), 113181.

Xarray [n.d.]. Xarray. https://xarray.dev/.

Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2016. A demonstration of GeoSpark:
A cluster computing framework for processing big spatial data. In ICDE (Helsinki,
Finland).

Ramon Antonio Rodriges Zalipynis. 2018. ChronosDB: Distributed, File Based,
Geospatial Array DBMS. PVLDB 11, 10 (2018), 1247-1261.

Ramon Antonio Rodriges Zalipynis. 2021. Array DBMS: Past, Present, and (Near)
Future. PVLDB 14, 12 (2021), 3186-3189.

https://cds.climate.copernicus.eu/datasets/reanalysis-carra-single-levels
https://github.com/google-research/arco-era5
https://github.com/google-research/arco-era5
https://www.cesm.ucar.edu/
https://www.cesm.ucar.edu/
https://cryointhecloud.com/
https://www.dask.org/
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels
https://geotrellis.io/
https://hadoop.apache.org/
https://icesat-2.gsfc.nasa.gov/
https://icesat-2.gsfc.nasa.gov/
https://iharp.umbc.edu/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://www.opendatacube.org/
https://www.pangeo.io/
https://iharpv.cs.umn.edu/
https://sedona.apache.org/
https://spark.apache.org/
https://docs.tiledb.com/main
https://docs.tiledb.com/main
https://xarray.dev/

	Abstract
	1 Introduction
	2 Polaris Query Signature
	2.1 Query Signature
	2.2 Most Common Query Types

	3 Polaris System Architecture
	4 Polaris Offline Data Preparation
	5 Polaris Index Structure
	5.1 Basic Spatial Indexing Unit
	5.2 Spatio-temporal Index Structure
	5.3 Index Update

	6 Polaris Online Query Layer
	6.1 Query Processor
	6.2 Query Monitoring

	7 Experimental Results
	8 Related Work
	9 Conclusion
	References

