
The FastLanes File Format

Azim Afroozeh
Centrum Wiskunde & Informatica

The Netherlands

azim@cwi.nl

Peter Boncz
Centrum Wiskunde & Informatica

The Netherlands

boncz@cwi.nl

ABSTRACT

This paper introduces a new open-source big data �le format, called

FastLanes. It is designed for modern data-parallel execution (SIMD

or GPU), and evolves the features of previous data formats such

as Parquet, which are the foundation of data lakes, and which in-

creasingly are used in AI pipelines. It does so by avoiding generic

compression methods (e.g. Snappy) in favor of lightweight encod-

ings, that are fully data-parallel. To enhance compression ratio, it

cascades encodings using a �exible expression encoding mechanism.

This mechanism also enables multi-column compression (MCC), en-

hancing compression by exploiting correlations between columns,

a long-time weakness of columnar storage. We contribute a 2-phase

algorithm to �nd encodings expressions during compression.

FastLanes also innovates in its API, providing �exible support

for partial decompression, facilitating engines to execute queries

on compressed data. FastLanes is designed for �ne-grained access,

at the level of small batches rather than rowgroups; in order to limit

the decompression memory footprint to �t CPU and GPU caches.

We contribute an open-source implementation of FastLanes in

portable (auto-vectorizing) C++. Our evaluation on a corpus of

real-world data shows that FastLanes improves compression ratio

over Parquet, while strongly accelerating decompression, making

it a win-win over the state-of-the-art.

PVLDB Reference Format:

Azim Afroozeh and Peter Boncz. . PVLDB, 18(11): 4629 - 4643, 2025.

doi:10.14778/3749646.3749718

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/cwida/fastlanes-vldb2025.

1 INTRODUCTION

The data formats Apache Parquet and ORC were designed in 2013,

and quite similar designs are used in modern analytical systems that

have an own storage format, such as DuckDB and Snow�ake [26,

83]. Parquet is now the de-facto standard format for data lakes and

"lake houses" [13]. However, we argue that changes in hardware

and workloads during the past decade call for a re-design.

In the next decade, workloads of analytical data systems and

data lakes will increasingly include AI pipelines that perform train-

ing or inference [66]. In terms of hardware that runs these work-

loads, CPUs have become quite diverse (not only x86, but also

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749718

Parquet BtrBlocks FastLanes

Heavy-Weight Compression methods yes no no
data-parallel: SIMD/GPU-friendly no no yes

cascading Light-Weight Compression no yes yes
Multi-Column Compression methods no no yes

compression methods

access granularity 1MB chunk 64K rowgroup 1K vector
can return compressed vectors no no yes

read access API

Figure 1: Feature comparison of big data �le formats. Btr-

Blocks introduced cascading Light-Weight Compression to

avoid the Heavy-Weight Compression (e.g. Zstd) used in e.g.

Parquet, but its encodings are not data-parallel (SIMD/GPU-

friendly). FastLanes is fully data-parallel, can do vector-at-

a-time decompression (small footprint), introduces Multi-

Column Compression & allows access to compressed vectors.

ARM and RISC-V) and are evolving mostly in novel instructions

(SIMD), while AI pipelines increase the importance of GPU- or even

TPU-based data processing. In order to e�ciently process data on

such hardware, algorithms need to harbor data parallelism, and

speci�cally need to consist of massive regular computation pat-

terns with absence of data- and control-dependencies. This imposes

constraints on what algorithms a data format should employ, e.g.

Snappy is the antithesis of a data-parallel algorithm. Current data

formats [67, 102] were not designed with this in mind, and struggle

to e�ectively use SIMD and GPUs for decompressing data.

Further, for e�cient query processing after decompression, data

needs to stay in SIMD-friendly representations during execution.

Modern query engines such as DuckDB, Velox and Procella there-

fore added compressed execution capabilities, augmenting vector-

ized query execution with new compressed vector classes, such as

constant-vectors, dictionary-vectors and FSST-vectors [19, 78, 83].

This trend calls for innovation in data format APIs, to directly de-

liver compressed vectors from a table scan on request of an engine

that can handle this, by only partially decompressing data.

This paper describes the FastLanes data format, marking its v0.1

release in open source. It is designed to e�ciently support modern

analytics+AI workloads. Its main contribution is a novel Expression

Encoding mechanism, supported by an intricate segmented block

layout, enabling �exible cascaded encodings and multi-column

compression. This allows it to achieve excellent compression ratios

while using only simple and ultra-fast data-parallel encodings.

Outline. In Section 1.1, we describe our core ideas and in Sec-

tion 1.2 outline the FastLanes design. Section 2 explains Expression

Encoding. Our novel segmented layout is detailed in Section 3. We

evaluate vs. Parquet, BtrBlocks and DuckDB in Section 4, show-

ing that FastLanes achieves state-of-the-art compression ratios at

higher decompression speed. Additional design decisions and re-

lated work are covered in resp. Section 6 and Section 5. We conclude

in Section 7 and outline future work in Section 8.

4629

https://doi.org/10.14778/3749646.3749718
https://github.com/cwida/fastlanes-vldb2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749718
https://www.acm.org/publications/policies/artifact-review-and-badging-current

1.1 Design Ideas

A columnar layout typically reduces data entropy over row stor-

age, as it concentrates data belonging to the same distribution,

making it more compressible. Heavy-Weight Compression (HWC)

schemes, also referred to as {general-purpose, block-based, type-

agnostic} compression schemes, such as Snappy [40] and Zstd [22],

are used by default in Parquet to compress column chunks. While

such compression libraries provide good compression ratios, they

are typically CPU-intensive, making decompression considerably

slower than accessing uncompressed data [2, 107]. In contrast, Light-

Weight Compression (LWC) schemes such as FFOR [6], Delta

[6], DICT [6], ALP [8], FastLanes-RLE [6], and FSST [16]

are speci�cally designed for certain data types and encode data

by capturing simple compression patterns. Unlike HWC schemes,

it is possible to fully data-parallelize LWC decompression, which

makes LWC pro�t from wide SIMD CPU capabilities, accelerating

them up to 64x, which can make accessing compressed data even

faster than uncompressed data [6]. Data-parallelism also helps GPU

decoding performance, as it provides independent work and inter-

leaved memory access for all threads in a GPU warp [7]. However,

when considering compression ratio, rather than speed, a micro-

benchmark on the Public BI dataset shows that adding HWC

schemes in ORC, on top of LWCs, improves the compression ra-

tio 3x [4] (ORC vs. ORC+Snappy). This means that using HWCs is

necessary in current big data formats.

Cascading LWC schemes. To achieve the same compression ratio

as HWCswhile maintaining the speed of LWCs, Cascaded Compres-

sion, also known as {recursive, composable} compression [3, 5, 33],

has been implemented in BtrBlocks [53]. It combinesmultiple LWCs

to capture a wider range of data patterns. To illustrate how this

approach can improve the compression ratio, consider the array:

{’Cascading’,’Cascading’,’Cascading’,’Cascading’,’Cascading’,

’Cascading’,’Compression’,’Compression’}. This array exhibits two

patterns: repeated values and low entropy, which are well-suited

for {RLE, DICT} encodings. However, applying only DICT or RLE

captures just one of these patterns. By �rst applying DICT, the ar-

ray is transformed into codes {0,0,0,0,0,0,1,1} and dictionary

{’Cascading’, ’Compression’}. Then, applying RLE turns the codes

into {{0,6},{1,2}}, achieving better compression.

Multi-Column Compression (MCC) is a new category of com-

pression schemes that takes multiple columns into account, with the

key idea that correlation between two columns can be used to infer

one column from another, thereby achieving a higher compression

ratio [38, 68, 70, 91]. Note that compressed columnar formats store

columns independently of each other, missing out on this opportu-

nity – leading to the phenomenon that some tables with strongly

correlated columns can be more compact in the row-oriented RC

format than in Parquet. A simple example is when two columns are

completely identical. Our MCC also includes schemes that split one

column into multiple sub-columns, which can be encoded individu-

ally. For example, string values composed of names and numbers

like ”Compression101” could be separated into two columns: one

for strings and one for integers. This enables further compression

e.g., by applying integer-based speci�c encoding (such as DELTA or

FOR) on the su�x [37, 50].

Vectorized decoding carries over the e�cient properties of vec-

torized execution [17] when applied to decoding compressed data.

When a vectorized table scan decompresses a vector, the (compact)

compressed data in RAM is decompressed into an uncompressed

vector, which is a small array of e.g., 1024 values that �ts into the

CPU’s L1 cache and is immediately processed by the query pipeline,

typically without spilling to RAM. As such, decompression occurs

only when the data arrives in the CPU for query processing, keep-

ing it small while in transport, reducing memory, network, and

disk bandwidth consumption [107]. Reading while decompressing

FastLanes data was found faster than reading uncompressed data

(memcpy) [3], because of the reduced bandwidth needs plus ultra-

fast auto-vectorized decoding kernels (e.g., decoding 60 values in 1

CPU cycle). The BtrBlocks format not only relies on older encodings

that are not data-parallel, but also performs decompression on the

full rowgroup level, imposing a large memory footprint. However,

allowing �ne-grained read access is to avoid overwhelming L1 CPU

caches, and even more pressingly, GPU cache and register space [7].

Compressed Execution LWCs (encodings) are more than just a

technique to compress data; they capture patterns that can also be

used later to optimize query execution on this data. The simplest

example is constant encoding, which can tell the query engine that

all operations on this column could to be done once instead of on

all the values in the column. Modern systems like Procella [20],

Velox [78], and DuckDB [83] support compressed vectors, where

data is both randomly accessible yet still might be encoded in e.g.,

DICT, FOR or FSST. For example, the l_tax column in the TPC-

H benchmark is a decimal(18,2), which many systems would

implement as a int64 because it can represent numbers of up to

18 digits, where internally the decimals are multiplied by 100 (due

to decimal scale 2). Now suppose, the actual data just contains

values between 0.01 and 0.08 (i.e., integers 1-8). Applying LWC,

would typically compress such a column using FOR and bit-packing

(BP) in 3 bits per value (FOR base 1; and di�erences 0-7). Whereas

legacy systems would decompress this column in their scan into its

SQL type decimal(18,2) (i.e., int64), a system like DuckDB can

decompress it into a int8 (byte). This allows to use 8x thinner SIMD

lanes for decompression, accelerating decoding 8x; and also creates

better chances for exploiting SIMD in the query e.g. for comparisons

or subsequent arithmetic operations, and further, reduces memory

pressure e.g. when the column is materialized in a join hash table.

1.2 Designing The FastLanes File Format

FastLanes is a project initiated at CWI, designed as a foundation for

next-generation big data formats. In the �rst paper on FastLanes [6],

we focused on signi�cantly improving data decoding performance

over the state-of-the-art by introducing a 1024-bit interleaved and

Uni�ed Transposed Layout, enabling data-parallel decoding even

with scalar code. In the second paper, we demonstrated that data-

parallelized layouts are essential to fully exploit GPU parallelism [7].

Additionally, we designed and implemented ALP [8], a new vector-

ized and data-parallel encoding for �oating-point data.

In this paper, we introduce Expression Encoding and design, im-

plement and evaluate the FastLanes �le format, while addressing

the following research questions:

(1) how can Expression Encoding be supported in a �le format?

4630

(2) what is a good pool of encodings to use in expressions?

(3) what encoding algorithm can �nd good expressions quickly?

(4) what forms of Multi-Column Compression can be inte-

grated in Expression Encoding, and what does this add?

(5) how e�ective is FastLanes compared to the state of the art

in terms of compression ratio and en/decoding speed?

For the FastLanes �le format we designed and implemented a

novel Segmented Page Layout, that allows to store data encoded

with any arbitrary nested encoding expressions, while providing

an e�cient vectorized API to decode the data. This API allows for

the fetching and decoding of arbitrary vectors in case of random

access or sequences of vectors in cases of full vectorized scans. The

segmented layout stores similar parts of encoded data, encoded by

an expression, in a single location, along with additional metadata

for the encoded data; essentially pointers to this encoded data at the

granularity of a vector. Having all encoded data of the same type

in one place makes it ideal for recursive compression due to shared

types and data semantics. This also enables �ne-grained access

to the encoded data, at the vector granularity. As a consequence,

decoders can perform advanced predicate pushdown, e.g., the base

of FOR encoding, representing minimum values, can be evaluated

�rst to skip individual vectors in range queries. When reading, data

in the expression chain is decoded-bottom-up, but not necessarily

fully until the end of the chain. This allows modern query engines

to choose to partially decode data, yielding compressed vectors that

query engines can exploit for compressed execution.

Our main contributions are:

• An open-source, high-quality implementation of FastLanes

(v0.1) in C++ with absolutely zero code dependencies.

• The design of Expression Encoding, a novel compression

model providing a uni�ed approach to cascaded encoding,

MCC, compressed execution and vectorized decoding.

• A novel segmented layout to store any arbitrary expression-

encoded data, enabling the query engine to interpret un-

derlying encoded data and apply further optimizations.

• The design of a Two-phase Expression Detection algorithm

that identi�es the optimal expression among a wide pool

of possible encoding expressions.

• An evaluation against other �le formats on the Public BI

dataset, demonstrating that FastLanes achieves faster de-

compression and better compression ratios.

2 EXPRESSION ENCODING

In this section we touch on the �rst four research questions, which

all revolve around the design of our Expression Encoding frame-

work. We �rst explain the pool of operators that serve as the build-

ing blocks of Expression Encoding, including operators that perform

Multi-Column Compression. We then describe how to serialize an

expression and its operators within a �le format and how to in-

terpret a serialized expression during decoding at execution time.

Finally, we outline the process for identifying a good encoding

expression from a potentially in�nite domain space, as operators

can be combined in any order.

Table 1: FastLanes operators, and the encoded data held by

each. An operator is a vector of 1024 values in an executable

encoded layout. Encoding operators can be exploited for com-

pressed execution. Take FFOR as an example, which keeps the

base separated from the bit-packed data. In the case of simple

query predicates such as addition, decoding can be delayed,

and the value can be added only to the base. Multiple of these

operators can be combined in a chain, forming Encoding

Expressions. For instance, FFOR can be combined with DICT

to build dictionary encoding with bit-packed codes.

ID Operator Encoded Layout

0 FFOR Bitpacked-data, Base, Bit-width

1 PATCH Data, Exceptions, Exception Positions

2 DELTA Deltas, Bases

3 ALP Data

4 ALP_RD Left side data, Right side data

6 DICT Dictionary, Codes

7 Transpose Transposed Data

8 Cast Data

9 FRLE RLE-values, Length

10 CROSS RLE RLE-values, Indexes

11 FSST Symbol Table, Compressed Strings

12 FSST12 Symbol Table, Compressed Strings

13 CONSTANT Single Value

14 EQUALITY Data or Pointer to data

15 EXTERNAL DICT Dictionary, Pointer to another column

2.1 Expression Operators

Expression Encoding is similar to white-box compression mod-

els [37] or cascaded encodings [53] in that it combines di�erent

primitives to achieve better compression. However, operators in

FastLanes Expression Encoding are neither simple functions with

single tasks, as in white-box compression models, nor entire LWCs,

as in cascaded encoding. An operator in FastLanes is a data struc-

ture that stores data in a compressed format and transforms it to

the next format during decoding. These transformations come from

breaking down LWCs into parts that are both reusable and e�cient.

For example, the DICT operator in FastLanes maintains a pointer

to a dictionary and a vector of associated codes, replacing the codes

with actual values only if needed. Furthermore, to support vector-

ized execution and leverage data-parallel layouts, such as a Uni�ed

Transposed Layout or 1024-interleaved layout, each operator holds

only 1024 values at a time (a vector). All operations on data are

performed in a tight loop over these 1024 values, with consistent

work patterns that enable compilers to auto-vectorize [6].

The operators used in FastLanes are summarized in Table 1 and are

explained as follows:

FFOR. The FFOR operator stores data in a FOR vector, consisting of

a base and a vector of bit-packed data – it is Fused with bit-packing.

This fusion eliminates a SIMD store and load instruction between

the addition resp. subtraction and bit-[unp]packing loop, improving

performance. Unlike BtrBlocks and DuckDB, we use only FFOR and

avoid a separate bit-packing operator, since the performance of

FFOR decoding is almost identical to bit-unpacking.

PATCH. The PATCH operator, inspired by Patched Encoding [107],

addresses the vulnerability of encodings such as FFOR and ALP to

4631

outliers, by keeping outliers separate from the main vector and rein-

tegrating them during full decompression. We do not fuse patching

with encoding operators like FFOR, as having a separate PATCH

operator allows us to apply the patching mechanism to enhance

any other LWC or operator. For example, if a vector is 95 per-

cent constant, we can still use constant encoding while storing

exceptions separately. In FastLanes, we implement only one vari-

ation of the possible options for patching, namely {LinkedList

(LL_PATCH) [107], SelectionVector (SL_PATCH) [3],Bitmap

(BM_PATCH) [3]}: SelectionVector patching, as SelectionVector is

the only patching technique capable of being data-parallelized on a

GPU [46]. SelectionVector patching uses a separate array to store

the positions of exceptions.

DELTA. The DELTA operator works only on integers and stores delta

values in the Uni�ed Transposed Layout [6], which breaks data

dependencies among values, accelerating the decoding of delta en-

coding using scalar code that auto-vectorizes. The implementation

comes from our previous work on data-parallelized encoding [6].

Unlike BtrBlocks, which completely avoids delta encoding, we ar-

gue that delta encoding is crucial for future �le formats, particularly

for encoding (mostly) sorted data and, more importantly, for en-

coding o�set arrays that are always sorted and are necessary to

represent any variable-size data (strings).

ALP. The ALP operator, used speci�cally for the DOUBLE and FLOAT

data type, keeps data in an ALP-encoded format and utilizes our

own ALP [8], which signi�cantly improves previous DOUBLE schemes

in both speed and compression ratio. ALP is designed for vectorized

execution and uses an enhanced version of PseudoDecimals [53]

to encode doubles as integers if they originated as decimals. Its

high speed is due to our implementation in scalar code that auto-

vectorizes, using building blocks provided by our FastLanes li-

brary [6], and an e�cient two-stage compression algorithm that

�rst samples rowgroups and then vectors.

ALP_RD. is used to compress high precision values, by separating

the front bits of a �oat/double from the rest. These front bits are

then compressed using primitives designed for the INTEGER data

type and, during decoding, are reassembled with the rest of the

double using the Glue operator. The di�erence from the original

ALP paper is that we split ALP in its two schemes in FastLanes. Since

both schemes map �oating-point values to integers, this allows to

cascade compression of these integers with Expression Encoding.

Glue. The Glue operator combines two sources of bit-packed data,

used to merge the front bits and tail bits in ALP_RD encoding or in

one-to-many mappings from MCC schemes.

DICT. The DICT operator stores data in a dictionary-encoded for-

mat, consisting of a reference to a dictionary and a vector of codes.

We support compressed dictionaries, using either Cast and FSST; be-

cause dictionaries must allow random-access (note that e.g., ALP and

FFOR store data bit-packed, which does not allow random-access).

We chose this approach because otherwise dictionary decoding

would become rather block-based: access to dictionary-encoded

data would then require to fully decode the dictionary �rst.

We also support a special Shu�le Dictionary, used only for

�xed-size data types. It contains the eight most repeated values and

uses the SIMD shu�e instruction for decoding, as the dictionary

can be loaded into a single register. This dictionary is now only

used to encode front bits in ALP_RD.

EXTERNAL-DICT. This operator enables us to use "external codes",

i.e. the codes from a di�erent column, with a di�erent dictionary.

This is useful to support column correlations with a one-to-one

mapping, where the codes of the two columns are the same, but

their dictionaries are di�erent.1

Transpose. The Transpose operator is applied only during encod-

ing, so the decoded data remains in the Uni�ed Transposed Layout

(UTL) after decoding. FastLanes provides a shareable selection vec-

tor: an array of 1024 integers containing the permutation of the

UTL, which vectorized query engines can put in front of vectors

decoded by FastLanes to recover the original ingested tuple order.

The FastLanes decoder can also be requested to restore this order,

performing a gather operation on this selection vector.

Cast. The Cast operator keeps values of a column in a di�erent

type fromwhat is speci�ed in the schema, to a type which simpli�es

encoding and query execution. We employ Cast in three scenarios:

STRING to INTEGER, allowing query engines to bene�t from the

SIMD-friendly, �xed-size properties of integers; DOUBLE to INTEGER,

enabling the use of the richer INTEGER encoding pool and allowing

query engines to operate on integers instead of �oating-point data

types; and INTEGER to a narrower INTEGER type (e.g., 64-bit to 8-bit).

The Cast is a useful end-point for compressed execution. RLE. The

RLE operator stores data in the FastLanes-RLE [6] compressed

format, which consists of two vectors: one for repeated values

and another for indexes pointing to these repeated values. For full

decoding, the RLE values are placed in their correct positions using

the indexes. Note that FastLanes-RLE maps RLE to dictionary

encoding and applies delta encoding to the indexes. This enables

the use of a Uni�ed Transposed Layout to break data dependencies

among values, accelerating the decoding of RLE encoding with

scalar code that auto-vectorizes.

FSST. The FSST operator compresses a vector of STRING data using

FSST [16], a lightweight compression scheme with decompression

and compression speeds comparable to, or better than, the best

speed-optimized compression methods, such as LZ4. FSST uses a

static symbol table (stored in the rowgroup header) that enables

random access to individual compressed strings, allowing for query

processing directly on compressed data.

FSST12 is an alternative version of FSST<200c> that uses 12-bit

instead of 8-bit codes [25], allowing it to encode up to 4,096 symbols

(each up to 8 bytes long). The larger dictionary allows FSST12 to

obtain better compression ratios than FSST on distributions with

more entropy; but comes at the cost of a large CPU cache footprint.

For instance, JSON and XML bene�t more from FSST12.

Cross RLE. The motivation behind this operator is that our data-

parallel RLE is very fast but introduces a 128-byte overhead per

vector. For a rowgroup of size 64 × 1024 with very few RLE values,

this overhead becomes signi�cant (8KB). To address this issue, we

1We also tried the opposite idea: sharing a dictionary between columns with di�erent
codes – however in our tests this did not improve compression ratio signi�cantly.

4632

introduce the Cross RLE operator, which applies classical run-length

encoding across an entire rowgroup. The main challenge for Cross

RLE is e�ciently supporting vectorized decoding on the Uni�ed

Transposed Layout. To overcome this, we implement the decoding

in two steps: �rst, we traverse the RLE lengths to identify the initial

value belonging to the vector currently being decoded, and then

we proceed with standard RLE decoding. An additional mapping is

performed to correctly decompress into uni�ed transposed layout,

but this step is only needed at the boundaries of RLE stretches,

adding low overhead.

2.2 FastLanes Expression Notation

To store and represent expressionswe use amodi�ed form of Reverse

Polish Notation (RPN), that separates operators and operands into

two distinct RPN-style (post�x order) sub-expressions:

(1) Operators: Stored as integers, with each operator assigned

a unique ID.

(2) Operands: Stored as integers representing either a column

or a segment within a data page in FastLanes (Segments are

discussed in greater detail in Section 3).

Whereas standard RPN requires (string) parsing to tokenize op-

erators and operands, our approach directly stores operators and

operands as integers. This design aims to minimize the overhead

of interpretation at runtime, while also using little space for ex-

pressions. Each operator is uniquely identi�ed based on its type.

For example, the FFOR operator has distinct IDs for each data type

it supports, further reducing the need to interpret the operator’s

data type. Thus, FFOR_UINT8 is the version of FFOR that operates

on 8-bit data, di�erent from FFOR_UINT16, for 16-bit data.

Decoding interpretation consists of initializing a chain of physi-

cal expressions, by reading the operator and operand arrays from a

column descriptor inside the rowgroup �le-footer. These physical

expressions are initialized by (i) looking up function pointers from

operand IDs, and (ii) binding parameters by looking up values and

o�sets in the column descriptor, which contains encoding parame-

ters such as e.g. the bit-width for bit[un]packing in FFOR, as well as

segment descriptions that point to raw bytes in the rowgroup. Exe-

cution of [en/de]coding then calls these functions in the physical

expressions one after the other.

2.3 Expression Detection

Expression Encoding enables a �le format to encode data using any

combination of operators. This �exibility introduces a challenge in

identifying suitable expressions that achieve both fast decompres-

sion and high compression ratios for a given table, as the search

space is in�nite. We address this challenge with a two-phase ap-

proach for expression selection: a rule-based phase for detecting

relationships between columns and determining the appropriate

type for each column, followed by a sample-based encoding phase

that selects an expression from a predetermined pool of expressions.

Rule-Based Operator Selector. The process of operator selection

or expression creation begins by applying rules in the order they

are de�ned. The FastLanes v0.1 rule set consists of the following:

1. Constant: We �rst identify constant columns where all val-

ues are identical. These columns are represented by an expression

Expression (where - ∈ {08, 16, 32}) Count Popularity (%)

string columns

CROSS_RLE_STR 210 9.17%

FSST_DICT_STR_FFOR_SLPATCH_UX 191 8.34%

FSST_DICT_STR_FFOR_UX 166 7.25%

CONSTANT_STR 81 3.54%

EXTERNAL_FSST_DICT_STR_UX 41 1.79%

FSST_DELTA_SLPATCH 33 1.44%

FSST_DELTA 21 0.92%

FSST12_DICT_STR_FFOR_SLPATCH_UX 8 0.35%

FSST12_DELTA_SLPATCH 7 0.31%

RLE_STR_SLPATCH_UX 2 0.09%

FSST12_DELTA 2 0.09%

RLE_STR_UX 1 0.04%

numeric columns

CONSTANT_INTEGER 334 14.59%

FFOR_SLPATCH_INTEGER 227 9.92%

DICT_INTEGER_FFOR_SLPATCH_UX 210 9.17%

DICT_INTEGER_FFOR_UX 190 8.30%

CROSS_RLE_INTEGER 121 5.29%

FFOR_INTEGER 47 2.05%

EXTERNAL_DICT_INTEGER_UX 24 1.05%

RLE_INTEGER_UX 15 0.66%

RLE_INTEGER_SLPATCH_UX 3 0.13%

�oating-point columns

ALP_DBL 87 3.80%

DICT_DBL_FFOR_SLPATCH_UX 38 1.66%

RLE_DBL_UX 30 1.31%

DICT_DBL_FFOR_UX 28 1.22%

CONSTANT_DBL 18 0.79%

ALP_RD_DBL 17 0.74%

EXTERNAL_DICT_DBL_UX 12 0.52%

CROSS_RLE_DBL 2 0.09%

RLE_DBL_SLPATCH_UX 1 0.04%

correlated columns

EQUALITY 56 2.45%

Table 2: The FastLanes v0.1 Expression Pool: Sorted by Cat-

egory & Popularity in being chosen in encoding the Pub-

lic BI benchmark. For string columns, run-length encoding

with long stretches dominates (CROSS_RLE_STR), and second

most e�ective are FSST-compressed dictionary encodingwith

exceptions (FSST_DICT_STR_FFOR_SLPATCH_UX). This pool was

chosen by exhaustive testing of a wide spectrum of expres-

sions encodings on Public BI, and retaining the winners.

with only one operator, CONSTANT. The constant value is not stored

directly; instead, the Min-Max information in the rowgroup footer

is used to retain this value. This decision allows the reader to use

this column in a query without fetching any data.

2. Equality: We check for equality columns where the values in

two columns are (almost) completely identical row-by-row. In this

case, the second column is encoded with an expression consisting

of only one operator, EQUAL, and as operand a {column-id}.

3. String as Numerical: It is not uncommon for database users

to select a string type as a fallback data type for a column that

contains mostly numerical data [36]. Converting these strings to

numerical types, such as integers or doubles, improves compression

e�ciency, as numerical data compresses better than strings (as

shown in Section 4), and simpli�es processing since numerical data

is �xed-size, making it suited for SIMD instructions. This rule �rst

detects such columns and then selects the appropriate numerical

type. A CAST operator is added to the expression to retrieve the

original type if necessary. We currently only apply this rule when

all values in a rowgroup are numerical, though in the future we

4633

could also use the exception operator to also leverage this encoding

when only the majority of string values are numerical.

4. Double as Integer: Similar to ”String as Numerical,” this rule

aims to select a more e�cient data type when possible, particularly

for double columns that consistently have a zero after the decimal

point. A CAST operator is added to the expression to retrieve the

original type if necessary.

5. Narrower Types for Integer: Similar to ”String as Numerical”

and ”Double as Integer,” this rule aims to select a more e�cient

data type when possible, particularly a narrower integer data type.

The narrowest integer type is determined based on the number of

bits required to represent the maximum value. A CAST operator is

added to the expression to retrieve the original type if necessary.

6. One-to-One Map: In a one-to-one correlation, a speci�c

value ”X” in one column is always associated with a single spe-

ci�c value ”Y” in another column. In this case, the �rst column

proceeds to the second phase to determine the best expression,

with the caveat that only expressions with a dictionary as the root

are considered. For the other column, we store only a reference to

the dictionary column, and the expression selection stops here by

choosing EXTERNAL_DICTIONARY.

Sampling-Based Encoding. After the Rule-Based Operator Selec-

tor, three categories of columns – constant, equal, and one-to-one

map – are removed from the pipeline for choosing the optimal

expression. For the remaining columns, we use a sampling-and-try

approach to select the best encoding expression from a limited pre-

de�ned expression pool, shown in Table 2. This pool consists of

expressions we derived from trying a large set of combinations of

encodings on the Public BI datasets; where we kept those encoding

expressions that ended up being the best for some column.

We call our sampling method three-way: FastLanes simply takes

the �rst, last and middle vector (each of 1024 values) in the row-

group and tries compressing this limited data with all encoding

expressions in our pool for that datatype. The key intuition behind

this sampling strategy is that many tables exhibit locality, while

gradually changing the data distribution throughout the rowgroup.

Figure 2 shows a benchmark of compression ratio achieved on the

Public BI dataset using two sampling strategies and various sample

sizes; where 100% compression ratio was achieved by choosing

the best encoding expression when using all all vectors of the row-

group (i.e., no sampling). The sequential strategy uses a front-biased

strategy, whereas three-way applies a breadth-�rst binary-search

exploration: after sampling the �rst and last vector, it incrementally

probes the middle of the largest unexplored space. The sequential

strategy uses vectors with indices 0, 1, 2, 3, 4, ..., 63 to construct

samples of ever larger sizes, whereas three-way uses the order {0,

63, 32, 16, 48, ..., 1, 62}. We see that this strategy, after just three

vectors (hence: three-way), achieves more than 99% accuracy in

terms of compression ratio, which is why we settled for this.

3 FASTLANES FILE FORMAT

The FastLanes �le format is a novel columnar format designed to

store expression-encoded data, enabling query execution engines

to e�ciently access individual vector data e�ciently. In this section,

we come back at the �rst research question, completing our de-

scription of the FastLanes �le layout; by outlining the design of its

meta-data, that allows to read encoding expressions from the footer

and �nd for an individual column and vector the input data for

these expressions, which get stored in multiple adjacent segments.

We �rst explain the �le format from a high-level perspective, be-

ginning with the rowgroup, then moving to the column chunk, and

�nally delving down to the segment, the fundamental building block

of the FastLanes �le format. We also demonstrate how segments

are used to store the encoded data of an expression. Additionally,

we provide a detailed example of how a table is stored.

File Format Overview. The FastLanes �le format consists of two

main components: the footer and the data. The footer, stored in

FlatBu�ers [41], contains all the necessary information to access,

decode, and decrypt the data, along with statistics such as Min-

Max values. The data itself is stored in binary format after being

expression-encoded. We propose storing the footer metadata sepa-

rately from the data —for example, in di�erent �les or objects in

cloud storage —so that query engines can process metadata �rst,

possibly from a cache or catalog that consolidates metadata for

many rowgroups, enabling optimizations like projection pushdown

and zone map �ltering that avoid accessing data �les unnecessarily.

Rowgroup. FastLanes �rst divides a table horizontally into smaller

mini-tables called rowgroups. Each rowgroup stores records using

the PAX layout [9], which keeps the attribute values of each record

together in the same �le, while the attributes themselves are stored

in a DSM (columnar) layout [24, 108]. All decisions in FastLanes,

such as expression detection, are made on a per-rowgroup basis,

allowing for more �ne-grained tuning and adaptability to data,

rather than applying a single expression to an entire column. Ad-

ditionally, we store statistics for each rowgroup, such as Min and

Max values, enabling the ability to skip entire rowgroups for range

queries. The size of a rowgroup in FastLanes is a �xed number

of records, similar to ORC, and is always a multiple of 1024. This

design ensures compatibility with data-parallel encodings [6], as

these encodings require 1024-value batches to fully leverage SIMD

registers or all threads within a GPU warp [7]. In contrast, Par-

quet uses �xed physical sizes for rowgroups, resulting in a variable

number of records.

RowgroupDescriptor. Each rowgroup in the FastLanes �le format

is associated with a descriptor in the footer. This descriptor includes

the size of the rowgroup (in terms of the number of vectors), along

with the size and o�set specifying where the rowgroup starts in the

binary data and the number of subsequent bytes it occupies. The

descriptor enables the query engine to fetch only the relevant bytes

Figure 2: Compression ratio accuracies of Sequential and

Three-Way sampling methods. Three-way sampling, vectors

at positions 0, 32, and 64 achieve more than 99% accuracy.

4634

{ "Rowgroup size in terms of number of vectors": 2,

"Rowgroup binary size": 26,

"Rowgroup offset within binary file": 0,

"Rowgroup ID": "0",

"Column Descriptors": ["Explained below"] }

Figure 3: Row-group Descriptor in JSON format for the �rst

row-group in Table 7, stored separately from the row-group

binary data. This row-group contains two vectors and is lo-

cated at an o�set of 0 bytes in the binary FastLanes �le format,

with a size of 26 bytes. To retrieve this row-group, 26 bytes

starting from o�set 0 need to be loaded.

{ "type": "STRING",

"Column offset": 0,

"Column binary size": 23,

"Expression": "DICT_FFOR_UINT8"],

"Column Index": 0,

"Segments Descriptors": ["Explained below"], }

Figure 4: Column Descriptor for the �rst column in Ta-

ble 7, stored within the row-group descriptor depicted

above. The Expression for decoding and encoding code

("DICT_FFOR_UINT8") gets mapped to an array of operators

and an array of operands, a form a Reverse Polish Notation.

{ "Entrypoint offset": 16,

"Entrypoint binary size": 2,

"Data offset": 18,

"Data binary size": 2 }

Figure 5: Segment Descriptor for the segment that stores

bases for FFOR. The entry point array is of size 2, as each

entry point is a 8-bit unsigned integer. There are two entry

points needed, since the row-group size is 2 vectors. The size

of the data is 2 bytes: 1 byte for each 8-bits base (1 byte).

101100of f set t o vec 1of f set t o vec 0

vec 0 vec 1

Figure 6: Example segment storing the bases of the FFOR ex-

pression of the ID column with a row-group size of 2 vectors.

The segment holds bases for 2 vectors {100, 101}, with an

entry point array at the start that points to the base of each

vector to enable vectorized decoding. Storing bases in one

location allows further compression of these bases, e.g., with

FFOR. Bases can also be exploited in queries (e.g., ID>101) to

skip vectors to provide per-vector min-max stats.

from the binary �le, skipping unnecessary rowgroups through

zonemap �ltering. Additionally, it contains an array of column

descriptors, which are explained later. An example of a rowgroup

descriptor is shown in Figure 3.

Column Chunk. Within each rowgroup, there is exactly one col-

umn chunk per column, storing the data of that column in a colum-

nar format after being expression-encoded. By keeping all data of a

column in a contiguous location, this setup enables query engines

to perform projection pushdown, allowing them to load only the

columns relevant to the query instead of loading all columns.

Column Chunk Descriptor. For every ColumnChunk in a Fast-

Lanes rowgroup, there is a corresponding descriptor in the footer.

This descriptor includes the type de�ned by the schema, segment

descriptors (explained later), the size and o�set indicating where

the column starts in the binary data, and the number of subsequent

bytes belonging to the column. These details enable the query en-

gine to access relevant columns while skipping unnecessary ones,

an optimization known as projection pushdown. The descriptor

also includes the column index and statistics, such as the maximum

value. An example of a column descriptor is shown in Figure 4.

Segment. A segment stores encoded data of the same nature—data

that has the same role in encoding and shares the same type—

resulting from encoding a column chunk (multiple vectors) through

the expression encoder. It enables �ne-grained access to this en-

coded data (at the granularity of a vector at a time, 1024 values) to

support vectorized decoding. Each segment achieves this by storing

an additional entry points array alongside the data itself, which

keeps track of the o�set to the start of the data for each vector. Note

that the segment stores data from the assigned source consecutively

after this entry points array.

Segment Descriptor. For each segment in the �le format, there

will be a descriptor in the �le footer containing two key pieces

of information: the entry point o�set and size, and the data o�set

and size. These �elds determine the exact location and extent of

each segment within the binary data �le. An example of segment

descriptor is shown in the middle of Figure 5

4 EVALUATION

Hardware. We conducted all experiments on an EC2 instance

i4i_4xlarge, with Intel Xeon (Ice Lake) CPU, 16 vCPUs and 128

GiB RAM. FastLanes is portable accross multiple operating systems

and compilers, and we have previously evaluated its encodings also

on Apple and Graviton ARM hardware [6]; however, BtrBlocks

depends on x86 intrinsics, which is why we chose this platform.

Data Formats. FastLanes v0.1 is released under an MIT license in

our GitHub repository2. All experiments are released separately in

a dedicated repository3. For Parquet, there are several open-source

implementations; we use the implementation in DuckDB v1.2 [31],

as it employs the latest Parquet encodings [32] and is widely used

for writing Parquet �les. We compare two variants of Parquet:

Parquet+Snappy, widely used in practice, and Parquet+Zstd,

which o�ers the best compression ratio. For BtrBlocks, we use the

original implementation provided by the authors of BtrBlocks [52],

run with its default settings at cascading level 2.

We also evaluate DuckDB’s native format. Note that DuckDB

does not provide any API to directly determine the storage size

occupied by a table, making it challenging to accurately measure

DuckDB’s compression performance. We replicate each sample

dataset until the number of samples reaches at least 10 and is a

multiple of 1024 × 120, as DuckDB begins compressing data only

when a rowgroup size reaches 1024×120. This setup ensures that the

resulting �les are su�ciently large, minimizing inaccuracies caused

2https://github.com/cwida/FastLanes
3https://github.com/cwida/fastlanes-vldb2025

4635

https://github.com/cwida/FastLanes
https://github.com/cwida/fastlanes-vldb2025

Rowgr oup
N.

Vect or
N.

RowI D
N.

Name I nst i t ut e I D Al i as

0 0 0 Al i ce CWI 100 Al i ce

0 0 1 Al i ce CWI 100 Al i ce

0 0 2 Al i ce CWI 100 Al i ce

0 0 3 Al i ce CWI 100 Al i ce

0 0 4 Bob CWI 101 Bob

0 0 5 Bob CWI 101 Bob

0 0 6 Bob CWI 101 Bob

0 0 7 Bob CWI 101 Bob

0 1 8 Bob CWI 101 Bob

0 1 9 Bob CWI 101 Bob

0 1 10 Bob CWI 101 Bob

0 1 11 Bob CWI 101 Bob

0 1 12 Al i ce CWI 100 Al i ce

0 1 13 Al i ce CWI 100 Al i ce

0 1 14 Al i ce CWI 100 Al i ce

0 1 15 Al i ce CWI 100 Al i ce

A table with columns Name, Institute, and ID, and gray in-

existent columns including rowgroup, vector, and rowId,

indicating which row belongs to which rowgroup and

vector. We assign a color to each column, which is also

applied to the raw bytes in the FastLanes binary data, de-

picted at the bottom.

Name

St r i ng

0

23

DI CTI ONARY_FFOR_UI NT8

- - -

5

I nst i t ut e

St r i ng

23

0

CONSTANT

CWI

0

I D

I nt eger

23

2

EXTERNAL DI CT

- - -

0

Al i as

St r i ng

25

0

EQUALI TY

- - -

1

[0, 1] [1, 8]

[12, 2] [14, 2]

[16, 2] [18, 2]

[20, 2] [22, 2]

[9, 1] [10, 2]

[24, 1] [25, 2]

Col Name

Type

Of f set

Si ze

Expr essi on

Met adat a

Segment s

The FastLanes �le format footer with required �elds: Col Name, Type, O�set (repre-

senting the binary o�set of this column in the row group), Size (allowing computation

of the end of the column chunk), Expression (specifying the encoding expression of

this column), Metadata, and Segments—an array of two byte ranges [o�set, size]. The

�rst range speci�es where the segment ’entry point’ array (with one entry point per

vector) starts within this column chunk and its size, while the second range speci�es

where the segment data starts and its size.

' A' ' l ' ' i ' ' c ' ' e' ' B' ' o' ' b' 0 5 11110000 00001111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 1 100 101 Next Row gr oup byt es

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ent r y Poi nt

Di ct i onar y(Name)

Bi t packed Ar r ay

Base

Bi t Wi dt h

Of f set

Di ct i onar y(I D)

Next Rowgr oup

Figure 7: FastLanes �le layout for the table in the top left. We reduced the row group size to 2 vectors of size 8 (v0.1 defaults

are 64×1024). The FastLanes �le footer is shown in the top right, and �nally, the actual bytes of the FastLanes �le format are

shown at the bottom and a color legend bottom-left. Each box represents one byte, tagged below with a color that matches the

legend, and a byte position in gray. FastLanes used Dictionary_FFOR_UINT8 encoding for the Name column, as the values

come from a small domain. Constant encoding is used for the Institute column, as all values are equal. One-to-One Mapping is

selected for the ID column, since it completely correlated with the Name column. Finally, the Alias column is compressed

using Equality, as it is a copy of Name. For the �rst column in the binary format, there are a total of �ve segments: (1) one for

bytes of dictionary values ("Alice" and "Bob"), (2) one for o�sets of strings stored in the �rst segment ("0,5"), (3) one for the

bit-packed array, which in this case requires two bytes as each of the 16 values can be represented in 1 bit, (4) one for the base

values (0 and 0), and (5) one for bit widths (1 and 1). For Institute there is no segment, as the constant ("CWI") is stored in the

metadata. For ID, we store only the dictionary with one segment consisting of values [100, 101].

by DuckDB’s storage being allocated in �xed increments of 256 KB,

thus allowing a fair evaluation of its compression performance.

Data. We chose data from the PUBLIC_BI [36, 96] benchmark as a

basis to design and compare FastLanes against other �le formats,

and also used it to identify the expressions encodings (see Sec-

tion 2.3). The PUBLIC_BI dataset is particularly relevant because

it captures a wide variety of data distributions, is derived from

real-world datasets, and has previously been used in the analysis,

design, and evaluation of other encoding schemes such as ALP,

FSST, White-Box Compression, C3, Chimp, Chimp128.

We used 36 datasets from PUBLIC_BI, summarized in Table 3,

consisting of 2,289 columns. For consistency, we only considered

the �rst table from each dataset to ensure equal-sized samples, as

datasets vary in the number of tables. An exception was made for

datasets with very few records, such as TrainsUK1, where we used

Table 2 instead of Table 1.

Additionally, for datasets with similar schemas, such as Redfin1,

Redfin2, Redfin3, and Redfin4, only the �rst dataset was included

to avoid the e�ect of redundant tables on the results. For all ex-

periments in this section, we selected 65,536 records (64 vectors)

from each table to ensure fair benchmarking, as BtrBlocks also uses

this number as the rowgroup size. Exceptions were made for the

datasets CommonGovernment, Generico, and USCensus, where only

32,768 rows were used, as including 65,536 rows would result in

�le sizes exceeding 100MB.

Compression ratio. Table 3 summarizes the compression ratios

for all evaluated �le formats. All ratios are reported relative to

FastLanes, where positive values indicate the percentage by which

FastLanes compresses data more e�ectively. As shown, FastLanes

clearly outperforms BtrBlocks as well as the commonly used Par-

quet default Snappy. Remarkably, using LWCs only, FastLanes still

edges out Parquet+Zstd by 2% on PUBLIC_BI.

4636

Table 3: Compression ratios of �le formats relative to Fast-

Lanes on two datasets. FastLanes provides very good com-

pression despite it using only Light-Weight Compression

schemes; only Parquet with the slow and coarse-grained Zstd

can equal it in compression ratio.

Dataset CSV FastLanes Parquet BtrBlocks DuckDB
Snappy Zstd [52] v1.2

Public_BI 980.03MB 172.05MB +41.0% +2.0% +18.0% +66.0%

TPC-H 43.6MB 11.8MB +20.8% –15.3% +17.5% +14.0%

We tuned our expression pool and designed our rules while work-

ing on the PUBLIC_BI corpus. To verify that our design generalizes,

we also included an experiment in which we compressed the �rst

64 × 1024 rows of each TPC-H table larger than that (i.e., excluding

region and nation). The TPC-H results for FastLanes are also very

good, but here Parquet+Zstd compressed 15.3% better. We identify

two reasons for this: the TPC-H data (i) is normalized and does not

o�er MCC opportunities unlike PUBLIC_BI, and (ii) contains some

synthetic data patterns (e.g. string columns shaped "String#Integer")

that our encoding rules currently do not catch. A future version of

the FastLanes encoder could detect this pattern and emit an encod-

ing expression using the GLUE and CAST operators – splitting such

columns in DICT- and FOR-compressible parts, respectively. The

fact that FastLanes rowgroup metadata contains these expressions

means that a FastLanes reader is forward-compatible with writers

that emit new such expressions.

Table 4: Decoding/encoding throughput of �le formats, based

on the number of rowgroups decoded/encoded per second.

File Format Total Decoding Decoding Total Encoding Encoding
Time (ms) (rowgroup/s) Time (ms) (rowgroup/s)

FastLanes 16.32 61.27 81341.63 0.012
Parquet+Snappy 712.55 1.40 5867.07 0.17
Parquet+Zstd 731.45 1.37 6927.52 0.14
BtrBlocks 115.43 8.66 111091.39 0.009
DuckDB 483.45 2.07 20347.82 0.05

Decoding and Encoding Speed. Next, we evaluate the decoding

and encoding speed of all �le formats. The results are shown in

Table 4. FastLanes is faster on all datasets and, on average, is 43 times

faster than Parquet+Snappy, 44 times faster than Parquet+ZSTD, 7

times faster than BtrBlocks, and 29 times faster than DuckDB.

Regarding encoding speed, we note that the FastLanes v0.1 code

path is extremely basic and no e�ort whatsoever has been made to

make it fast. With all optimization still on the table, we note it is

already faster than BtrBlocks.

Random access. Next, we evaluate the random access time of all

�le formats. To do so, we execute the following query: "SELECT

* FROM read_parquet() LIMIT 1 OFFSET 0" in DuckDB to

retrieve only the �rst row from a Parquet �le. For BtrBlocks, we fully

Table 5: Random access time comparison across di�erent �le

formats. The result is presented in terms of the millisecond

taken by FastLanes and how many times FastLanes is faster

than others. FastLanes achieves the fastest access time.

Table FastLanes Parquet BtrBlocks DuckDB

Name V0.1 Snappy Zstd [52] v1.2

Total 0.14053 315.62x 413.66x 813.57x 5.96x

Table 6: Total decoding time of FastLanes, Parquet, and Btr-

Blocks on Intel Ice Lake using di�erent SIMD compilation

�ags. AVX512 improves decoding time by nearly 40% on Fast-

Lanes, demonstrating the e�ciency of data-parallelized en-

codings. In contrast, the performance gains for Parquet+Zstd,

Parquet+Snappy, and BtrBlocks are negligible. BtrBlocks

only works onmachines with AVX2/AVX512 instruction sets.

ISA FastLanes Parquet+Snappy Parquet+Zstd BtrBlocks
Time(ms) Speedup Time(ms) Speedup Time(ms) Speedup Time(ms) Speedup

SSE 23.16 - 2110.27 - 2152.29 - ✖ ✖

AVX2 18.96 22.10% 2057.16 2.58% 2167.52 -0.70% 113.09 -
AVX512 16.32 41.87% 2070.90 1.90% 2197.58 -2.06% 115.43 -2.07%

decompress the entire block. Note that neither system o�ers true

random access by row position, and we simulate a random-access

workload using the given query in DuckDB. Regarding BtrBlocks,

this could in principle be simulated by decoding only the �rst

element of the last recursion. However, this was not possible, as

it would require a complete reimplementation of BtrBlocks with a

new API that supports this.

The results are shown in Table 5. FastLanes takes 0.14 millisec-

onds to retrieve the �rst value from all datasets, making it 315 times

faster than Parquet+Snappy, 416 times faster than Parquet+ZSTD,

800 times faster than BtrBlocks, and 5 times faster than DuckDB.

DuckDB is the closest to FastLanes in performance. This benchmark

demonstrates that block-based compression methods are extremely

ine�cient for random access, as they require decompressing the

entire block to access a single value. In contrast, the vectorized

decoding model used in both FastLanes and DuckDB provides a

good balance between compression ratio and small enough block

sizes to enable e�cient tuple retrieval. Overall, the results highlight

the ine�ciency of block-based compression for random access and

the advantage of vectorized decoding in balancing compression

e�ectiveness and retrieval speed.

SIMD. To evaluate in howfar fully data-parallelized encodings

improve with SIMD, we benchmark the total decoding time of

FastLanes on Intel Ice Lake using three di�erent compilation �ags:

-O3, -O3 -mavx2, and -O3 -mavx512dq.

The results are shown in Table 6. As observed, AVX512 improves

decoding time by nearly 40%. To further emphasize the necessity

of next-generation �le formats for data-parallel encodings, we re-

peat the same benchmark for Parquet+Zstd, Parquet+Snappy, and

BtrBlocks. The observed performance gain is negligible. While

BtrBlocks uses explicit SIMD instructions, it employs non-fully

data-parallel layouts, which limit its ability to bene�t from AVX512,

as clearly shown in Table 6. This benchmark clearly demonstrates

the importance of fully data-parallel encodings.

Expression Pool. To measure the e�ect of each expression in

our pool, we conducted an experiment where we measured the

impact of each expression encoding included, compared to when

it was removed from the pool. The results indicate how much an

expression practically improves the compression ratio performance

and decompression time of FastLanes4

The results are shown in Table 7. Dictionary encoding has the

most signi�cant impact on the compression ratio, improving it by

40%, followed by DELTA decoding, which improves it by 6%. Based

4This micro-benchmark was conducted on an Apple MacBook Pro M4.

4637

Table 7: Improvement brought by adding each scheme to the

pool compared to having it removed. Usefulness is a mix of

impact on compression ratio, decompression speed (and code

complexity - but this is harder to quantify).

Expression Compression Decompression

Ratio Speed

Dictionary +42.36% +44.19%

DELTA +5.92% -1.91%

Equality +4.70% +2.66%

ALP +4.36% -7.28%

FSST +3.86% +3.84%

Patch +2.51% -7.11%

FFOR +1.30% +4.48%

One-to-One Map +1.17% +9.47%

FSST12 +0.84% +2.62%

Cast +0.78% +10.16%

RLE +0.69% +6.65%

CROSS RLE +0.65% +16.27%

ALP RD +0.57% -2.30%

Frequency +0.09% +2.06%

Constant +0.00% +2.92%

on these results, we address the following questions, which could

serve as guidelines for future �le formats, including FastLanes.

Exception Handling. Despite its proven bene�ts [59, 107], almost

all new �le formats, such as BtrBlocks, DuckDB’s native �le format,

and Nimble from Meta, avoid supporting any exception handling

mechanism. The PATCH operator, which handles exceptions, im-

proves the compression ratio by 2.5% in the presence of all schemes,

demonstrating its signi�cance. We consider patching a �rst-class

citizen in FastLanes, though we notice that it has considerably

slowed down decompression.

FSST. FSST12 and FSST work similarly, with the key di�erence that

FSST12 uses 12-bit symbols, allowing it to capture 16 times more

symbols at the cost of 4-bit longer codes. This raises the question:

do future �le formats need FSST, FSST12, or both?

By looking at the table, FSST improves the compression ratio

by almost 4%, which is signi�cant, while FSST12 contributes only

1%, which is still meaningful. Despite not having as much impact

as FSST, a detailed analysis shows that FSST12 performs very well

on long string columns, making our �le format more future-proof

for handling long strings. Therefore, we support both FSST12 and

FSST in FastLanes.

Frequency. BtrBlocks argues for using frequency encoding, which

considers the most commonly used value as a default and stores

only values that do not match the most frequent one. In a sense, it

is similar to constant encoding with exceptions.

Our analysis, summarized in Table 7, shows that this scheme

brings only a 0.05% improvement, which is very insigni�cant com-

pared to the complexity it adds to the �le format. Therefore, in

FastLanes, we do not support the Frequency encoding.

MCC. MCC schemes, including Equality with (4.7%, 2.6%), One-

to-One Mapping with (1.2%, 9.47%), and Cast with (0.78%, 10.16%),

bring an overall improvement of approximately (8%, 20%) to the

compression ratio and decoding speed of FastLanes, which is very

signi�cant. Therefore, we support MCC schemes as a �rst-class

citizen of FastLanes and continue to explore further improvements

to our MCC schemes.

5 RELATED WORK

Today, there are multiple open columnar [1] �le formats, including

Parquet [12], RCFile [44], ORC [11], BtrBlocks [53], DuckDB [82,

83], Albis [93], Carbon [10], DataBlocks [55], Artus [20], Capaci-

tor [77], LanceDB [30], Bullion [66], and Nimble [66]. These formats

have been analyzed and surveyed in [3, 49, 67, 102], and their in-

tegration into real systems has also been studied in [86]. In this

section, we �rst review the work already done in the FastLanes

project. Then, we review BtrBlocks as the current state-of-the-art

�le format, the �rst (and only) to implement cascaded encoding.

We also examine studies in the database context, focusing specif-

ically on Cascaded Encoding and Multi-Column Compression

(MCC), and conclude by comparing the FastLanes �le format to both

BtrBlocks and Parquet.

5.1 FastLanes

In the initial work on FastLanes, we introduced and implemented

fully data-parallel encodings with zero explicit SIMD instructions,

including bit-packing, dictionary encoding, FastLanes-RLE, delta

encoding, and FastLanes-FOR, which auto-vectorize to match the

performance of explicit SIMD implementations [6]. These schemes

are the fastest LWCs available now. Further, we developed and

implemented ALP [8], another auto-vectorizing encoding for �oat

and double. ALP o�ers not only very fast decoding but also leading

ratios for lossless �oating-point compression. In this paper, we use

these encodings, as well as FSST – and for the �rst time FSST12 and

MCC – to create the FastLanes �le format, that can go head-to-head

with Parquet. Its novelties lie in an e�ective operator pool for cas-

cading compression, expression-encoded metadata, and segmented

data layout to match it.

5.2 BtrBlocks

BtrBlocks implements cascaded compression through recursion,

where an entire column chunk is compressed recursively using mul-

tiple lightweight compression schemes (LWCs). Here we highlight

some key reasons FastLanes provides advantages over BtrBlocks.

Block-Based Compression: Despite using LWCs that could po-

tentially support vectorized decoding, BtrBlocks’ cascading com-

pression reverts to a coarse-grained approach. This is due to the

recursive nature of the implementation, which requires an entire

rowgroup (64*1024 values) to be fully [de]compressed multiple

times for each LWC used in a combination. One could argue that

the size 64*1024 could be reduced to one vector of 1024, and that

repeating the process of recursive decompression for each vector

could support vectorized decoding. However, this approach is not

feasible because, for example, the crucial dictionary encoding code-

path would then get executed separately for each vector, resulting

in a separate dictionary being stored for each vector. This could

4638

lead to dictionaries with potentially repeated values across vectors

and signi�cantly worse compression ratios.

No Compressed Execution Support: BtrBlocks always com-

pletely decompresses values. While one could extend its cascaded

decoding to support compressed execution, this would only provide

a limited form by skipping decoding of the �nal recursion level.

This limitation arises from the recursive nature of its implementa-

tion, where lower levels of encoding remain opaque and can only

be accessed after full decoding.

Not Fully Data-Parallelized: BtrBlocks relies on 128-bit inter-

leaved bit-packing provided by the FastPFOR library. At best, a

128-bit interleaved layout can only use a SIMD register of width

128 bits or only 4 threads of a 32-threaded warp – and there is no

BtrBlock GPU decoder yet.

Missing Schemes: The BtrBlocks scheme pool lacks three critical

schemes: ALP, Patching, and Delta encoding. ALP is a state-of-the-

art encoding for �oating-point data and an essential LWC scheme

to achieve better compression ratios than Zstd. Delta encoding

is crucial in niche domains (e.g., timeseries data) but is also a useful

component for encoding o�sets needed for string storage.

Hardcoded: Btrblocks implements cascaded compression with

hardcoded con�gurations. For example, in all cascades involving

dictionary encoding, uint32 is always used for codes. In contrast,

the FastLanes implementation of cascaded encoding allows an ex-

pression of any combination of operators; and even though we limit

the space of possibilities with an expression pool, it o�ers multiple

variants for dictionary codes. In FastLanes, dictionary codes are

typically further compressed with FFOR. Note that in the FFOR of

FastLanes, the bit-width is a parameter that gets stored in a column

segment, and hence it can vary from vector to vector.

Dependencies: the BtrBlocks implementation relies on several

external dependencies, which complicates its use in practical sys-

tems. We argue that a �le format should be implemented with zero

external dependencies, following the DuckDB and SQLite imple-

mentation model, making it usable as an embeddable library for

any query execution engine.

5.3 Encoding/Compression.

Encoding/compression is frequently studied in database systems,

with a focus on improving decoding speed [6, 43, 57–61, 80, 88,

90, 94, 95, 97, 99, 106, 107], optimizing encoding/compression se-

lection [15, 51], enhancing compression ratios [50, 69, 73, 84, 87,

101, 105], integrating compression with query execution [2, 14, 29,

45, 47, 50, 98, 100, 103], evaluating predicates on encoded data [34,

63, 64, 81], and GPU encoding/compression [33]. HWC schemes,

such as Zstd [22], Snappy [40], and LZ4 [21], are the default in

most open �le formats. Several LWC schemes have also been de-

veloped to encode speci�c data types, such as DOUBLE [8, 18, 35,

53, 54, 62, 65, 79, 85], INTEGER [3, 6, 39, 59, 60], and STRING [16,

74, 104]. Grammar-based compression schemes like Sequitur [75],

Re-Pair [56], and GLZA [23] have been proposed to compress data

by building a context-free grammar for it. However, these grammar-

based schemes are generally unsuitable for �le formats due to their

slower decompression speeds [16].

Cascaded Encoding. Fang et al. [33] propose cascaded encod-

ing, which combines LWC schemes to improve compression ra-

tios. Damme et al. classify LWC schemes into logical and physi-

cal compression categories and study how well they can be com-

bined [27, 28]. However, their work is limited to integer columns

and combinations of at most two LWC schemes. Afroozeh et al. [3, 5]

propose a Composable Compression Model that decomposes LWC

schemes into several e�cient functions that can later be used to

construct more complex encodings, though this work focuses on de-

coding speed rather than compression ratios. BtrBlocks [53] imple-

ments cascaded encoding recursively, while Nvidia’s nvCOMP [76]

applies cascaded encoding recursively for GPUs, though it is limited

to a single variation of [DICT, RLE, BITPACK].

Multi-ColumnCompression. White-box Compression [37] pro-

poses a conceptual model that represents logical columns in tabular

data as an openly de�ned function over some physically stored

columns, allowing the query optimizer to enable optimizations

such as improved �lter predicate pushdown during query execu-

tion. PIDS [50] identi�es common patterns in string attributes using

an unsupervised approach and uses the discovered patterns to split

each attribute into sub-attributes. These sub-attributes can then be

encoded individually, which enables future engines to push down

many query operators to sub-attributes, thereby minimizing I/O

and potentially costly comparisons, resulting in faster execution of

query operators. C3 [38] proposes six MCC schemes—Equality,

1To1Dict, 1toNDict, Numerical, DFOR, SharedDic – to ad-

dress a key limitation of column stores relative to row stores, namely

that they compress attributes of each record in isolation. Corra [68],

similar to C3, looks for column correlation for compression and

proposes the same compression schemes under di�erent names

with the same compression ratio.Virtual [91] implements Corra

in Python on top of Parquet. Expression encoding extends and

integrates the concepts of White-box Compression, PIDS, and C3

by proposing a uni�ed framework that allows future �le formats to

fully leverage MCC schemes.

FastLanes vs BtrBlocks vs Parquet: Regarding compression ratio

FastLanes typically compresses better, thanks to its support for cas-

cading encodings and MCC. Only the less-often used combination

of Parquet+ZSTD is on par with it. Regarding decompression speed,

FastLanes is at least an order of magnitude faster, and it can also

very quickly provide �ne-grained access. Both BtrBlocks and Par-

quet must decode large blocks of data and hence are coarse-grained.

Parquet relies on HWCs and is therefore much slower. BtrBlocks

is not fully data-parallel; and this property makes FastLanes also

GPU-friendly [7, 46] and in our eyes, more future-proof.

6 DISCUSSION

In this section, we discuss two layout strategies – Uni�ed Trans-

posed Layout within a vector and Segmented Page Layout within a

page – as these are fundamental decisions for future �le formats.

Uni�ed Transposed Layout.We use the Uni�ed Transposed Lay-

out (UTL) [6] as an option rather than as the default. Although this

layout enables complete data-parallelism for FastLanes-RLE and

4639

Delta schemes, its e�ect to permute the order of the tuples in a vec-

tor may sometimes not be desirable – though the original order can

always be restored, this comes at an overhead. However, we argue

that the substantial compression ratios achieved by FastLanes-RLE

and DELTA make these schemes essential, making the UTL a valu-

able option for e�cient data-parallelized decoding [6] in contexts

where high compression ratios are a priority.

We address a common point of confusion regarding the appli-

cability of the Uni�ed Transposed Layout to variable-sized data,

such as String or List. We �nd it can be used without problem,

as variable-sized data are always accompanied by an o�set array –

a �xed-size vector of 1024 values to which we apply the UTL.

Vectorized Page Layout.An alternative to the segmented page lay-

out for storing the result of an expression in a �le is the vectorized

page layout, where all encoded data of an expression for a vector

are stored sequentially in one place. We have chosen the segmented

page layout over the vectorized page layout for three main reasons:

Supporting structs in a vectorized page layout can lead to �lling the

cache with unnecessary data during reading, particularly when only

sub�elds of a struct are required. The segmented page layout allows

for additional query optimizations by enabling query engines to

access relevant data in a single location, such as the bases in FFOR,

which e�ectively serve as vector-based zone maps [71], speci�cally

the minimums of each vector. Collecting data with similar proper-

ties in one segment allows for further compression in a single pass.

Although we currently avoid compressing these segments, having

this option remains bene�cial for compression-sensitive workloads

where achieving a high compression ratio is a priority.

7 CONCLUSION

Popular big data �le formats only partially bene�t from the full com-

pression potential of Light-Weight Compression (LWC) schemes [3,

53], missing opportunities for compressed execution, cascaded com-

pression andmulti-column compression. The latter two issues a�ect

compression ratio and make the use of Heavy-Weight Compres-

sion (HWC) methods necessary, even though these are SIMD and

GPU unfriendly. This is why FastLanes introduces Expression

Encoding, paired with a intricate segmented page design, that en-

ables �ne-grained and e�cient decoding of cascading LWC schemes.

With this paper, we release a high-quality open-source C++ im-

plementation of FastLanes v0.1. Designing a data format requires a

lot of e�ort and getting many details right. We think this release is

a major contribution.

Our evaluation of FastLanes versus Parquet, BtrBlocks and the

DuckDB format shows that HWCs can now be avoided without

sacri�cing any compression ratio, and very signi�cantly improving

decoding speed; while o�ering e�cient �ne-grained data access as

well as novel opportunities for compressed execution.

8 FUTUREWORK

Schema Evolution. Future �le formats should support schema

evolution. Parquet currently o�ers a limited form of schema evo-

lution for changing types within a column [48], allowing only the

promotion of a few speci�c types, rather than broader support for

other data types. We believe that Expression Encoding enables

�le formats to support this feature seamlessly, thanks to the type

information included in each expression.

Storing the footer in a separate place allows to include new types

and new columns by modifying, resp. generating new expressions

in the footer, without having to rewrite existing rowgroup data.

End-to-End Benchmark. The focus of this paper is on bench-

marking compression ratios rather than evaluating the extent to

which the FastLanes �le format accelerates query execution engines.

Operators such as [Cast, Constant] proposed in this paper are

intended to help query engines execute queries more e�ciently.

Therefore, we left a full evaluation of FastLanes integrated in a

query engine for the future. Our next development step will be a

DuckDB reader/writer for Fastlanes.

Encryption.Our proposed expression encoding is perfectmatch

to support encryption in a vectorized manner, contrary to Encryp-

tion in Parquet which is block-based. In our vision, encrypting

merely is one more operator at the end of an expression, which

[en/de]crypts the compressed vector of an expression.

Cascaded Encoding onGPU. The state-of-the-art encodingmodel

on GPU, Tile-based decoding [89], proposes decoding data in small

batches, called tiles, within a GPU’s shared memory to avoid trans-

ferring data back to global memory—a primary bottleneck in GPU

performance. Additionally, it supports cascaded encoding limited

to FOR, DELTA, and RLE, with both the value and length arrays fur-

ther bit-packed. Expression Encoding aligns with the concept of

decoding a batch of data that �ts in shared memory, while o�ering

more cascaded combinations capable of achieving a better compres-

sion ratio than Zstd and supporting compressed tiles similar to

compressed vectors in DuckDB [83] and Velox [78]. We speculate

that a CUDA implementation of FastLanes could bring signi�cantly

higher decoding speeds and improved compression ratios to the

GPU processing ecosystem. Inital results look promising [7].

Nested data types Nested data types, such as structs, lists, and

maps, are widely used and natively supported by open big data �le

formats like Apache Parquet. Recent work at CWI on real-world

JSON datasets [42] suggests that applying LWC schemes to �atten

nested data types, which resemble columns, is less e�ective for

compression than using HWC schemes. However, new nesting-

speci�c encodings [72] could signi�cantly reduce this gap.

Machine Learning Data. Several �le formats have emerged to

address the needs of machine learning data workloads, including

Bullion [66], which tackles the complexities of data compliance,

optimizes the encoding of long-sequence sparse features, and e�-

ciently manages wide-table projections. Nimble [92], a columnar

�le format from Meta, is designed for very wide tables commonly

found in machine learning training datasets. LanceDB [30], another

columnar data format, is optimized for machine learning workloads,

o�ering high-performance random access and e�cient handling of

complex data types, including images and videos.

Adding support for nested data types and wide and sparse data,

that is characteristic of machine learning data workloads, has been

part of the FastLanes design process, and implementation e�orts

are underway.

4640

REFERENCES
[1] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel

Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Vol. 3. Now Publishers Inc., Cambridge, MA, USA. 197–280
pages. https://doi.org/10.1561/1900000014

[2] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating Compres-
sion and Execution in Column-Oriented Database Systems. In Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data (Chicago,
IL, USA) (SIGMOD ’06). Association for Computing Machinery, New York, NY,
USA, 671–682. https://doi.org/10.1145/1142473.1142548

[3] A Afroozeh. 2020. Towards a New File Format for Big Data: SIMD-Friendly
Composable Compression. Master’s thesis. centrum wiskunde & informatica.
https://homepages.cwi.nl/~boncz/msc/2020-AzimAfroozeh.pdf

[4] Azim Afroozeh. 2024. FastLanes End-to-End Script. https://gist.github.com/
azimafroozeh/b5d0dbea44ee7cd6dc39b0c4b0f7ef38 Accessed: 2024-11-29.

[5] Azim Afroozeh and Peter Boncz. 2021. FastLanes: A SIMD-friendly Composable
Compression Library. In -. DBDBD, -, –. https://www.wis.ewi.tudelft.nl/assets/
DBDBD2021_submissions/DBDBD2021_paper_10.pdf

[6] Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression Layout:
Decoding > 100 Billion Integers per Second with Scalar Code. Proc. VLDB
Endow. 16, 9 (jul 2023), 2132–2144. https://doi.org/10.14778/3598581.3598587

[7] Azim Afroozeh and Peter Boncz. 2023. FastLanes on GPU: Analysing Data-
Parallelized Compression Schemes. DaMoN workshop.

[8] Azim Afroozeh, Leonardo X. Ku�o, and Peter Boncz. 2023. ALP: Adaptive
Lossless Floating-Point Compression. Proc. ACM Manag. Data 1, 4, Article 230
(dec 2023), 26 pages. https://doi.org/10.1145/3626717

[9] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis.
2001. Weaving Relations for Cache Performance. In Proceedings of the 27th
International Conference on Very Large Data Bases (VLDB ’01). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 169–180.

[10] Apache. 2023. Apache CarbonData. Apache. https://carbondata.apache.org/.
[11] Apache. 2023. Apache Orc. Apache. https://orc.apache.org/.
[12] Apache. 2023. Apache Parquet. Apache. http://parquet.apache.org/.
[13] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lake-

house: A New Generation of Open Platforms that Unify Data Warehousing
and Advanced Analytics. In CIDR. https://www.cidrdb.org/cidr2021/papers/
cidr2021_paper17.pdf

[14] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. 2009. Dictionary-Based
Order-Preserving String Compression for Main Memory Column Stores. In
Proceedings of the 2009 ACM SIGMOD International Conference onManagement of
Data (Providence, Rhode Island, USA) (SIGMOD ’09). Association for Computing
Machinery, New York, NY, USA, 283–296. https://doi.org/10.1145/1559845.
1559877

[15] Martin Boissier and Max Jendruk. 2019. Workload-Driven and Robust Selection
of Compression Schemes for Column Stores. In Proceedings of the 22nd Inter-
national Conference on Extending Database Technology (EDBT). OpenProceed-
ings.org, Lisbon, Portugal, 674–677. https://doi.org/10.5441/002/edbt.2019.84

[16] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: Fast Random
Access String Compression. Proc. VLDB Endow. 13, 12 (jul 2020), 2649–2661.
https://doi.org/10.14778/3407790.3407851

[17] Peter Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In Proceedings of the 2005 Conference on Innovative
Data Systems Research (CIDR). Very Large Data Base Endowment, Asilomar,
CA, USA, 225–237. https://www.cidrdb.org/cidr2005/papers/P19.pdf

[18] Andrea Bruno, Franco Maria Nardini, Giulio Ermanno Pibiri, Roberto Trani,
and Rossano Venturini. 2021. TSXor: A Simple Time Series Compression
Algorithm. In String Processing and Information Retrieval: 28th International
Symposium, SPIRE 2021, Lille, France, October 4–6, 2021, Proceedings (Lec-
ture Notes in Computer Science), Vol. 12944. Springer, Lille, France, 217–223.
https://doi.org/10.1007/978-3-030-86692-1_18

[19] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mc-
cormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar
Mittal, Roee Ebenstein, Nikita Mikhaylin, Hung-ching Lee, Xiaoyan Zhao, Tony
Xu, Luis Perez, Farhad Shahmohammadi, Tran Bui, Neil McKay, Selcuk Aya,
Vera Lychagina, and Brett Elliott. 2019. Procella: Unifying Serving and An-
alytical Data at YouTube. Proc. VLDB Endow. 12, 12 (aug 2019), 2022–2034.
https://doi.org/10.14778/3352063.3352121

[20] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mc-
cormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar
Mittal, Roee Ebenstein, Nikita Mikhaylin, Hung-ching Lee, Xiaoyan Zhao, Tony
Xu, Luis Perez, Farhad Shahmohammadi, Tran Bui, Neil McKay, Selcuk Aya,
Vera Lychagina, and Brett Elliott. 2019. Procella: Unifying Serving and An-
alytical Data at YouTube. Proc. VLDB Endow. 12, 12 (aug 2019), 2022–2034.
https://doi.org/10.14778/3352063.3352121

[21] Yann Collet. 2014. LZ4 - Extremely fast compression. https://github.com/lz4/lz4
Accesed on: 2023-04-13.

[22] Yann Collet. 2015. Zstandard - Fast real-time compression algorithm. https:
//github.com/facebook/zstd Accesed on: 2023-04-13.

[23] Kennon J. Conrad and Paul R. Wilson. 2016. Grammatical Ziv-Lempel Com-
pression: Achieving PPM-Class Text Compression Ratios with LZ-Class Decom-
pression Speed. In Proceedings of the 2016 Data Compression Conference (DCC).
IEEE Computer Society, Snowbird, UT, USA, 586. https://doi.org/10.1109/DCC.
2016.119

[24] George P. Copeland and Setrag N. Khosha�an. 1985. A Decomposition Stor-
age Model. In Proceedings of the 1985 ACM SIGMOD International Conference
on Management of Data (Austin, Texas, USA) (SIGMOD ’85). Association for
Computing Machinery, New York, NY, USA, 268–279. https://doi.org/10.1145/
318898.318923

[25] cwida. 2023. Fast Static Symbol Table (FSST). https://github.com/cwida/fsst.
Accessed: 2025-02-25.

[26] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven
Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unter-
brunner. 2016. The Snow�ake Elastic Data Warehouse. In Proceedings of the
2016 International Conference on Management of Data (San Francisco, California,
USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY,
USA, 215–226. https://doi.org/10.1145/2882903.2903741

[27] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner. 2017.
Lightweight Data Compression Algorithms: An Experimental Survey (Exper-
iments and Analyses). In Proceedings of the 20th International Conference on
Extending Database Technology (EDBT). OpenProceedings.org, Venice, Italy,
72–83. https://openproceedings.org/2017/conf/edbt/paper-146.pdf

[28] Patrick Damme, Annett Ungethüm, Juliana Hildebrandt, Dirk Habich, and
Wolfgang Lehner. 2019. From a Comprehensive Experimental Survey to a Cost-
Based Selection Strategy for Lightweight Integer Compression Algorithms.
ACM Trans. Database Syst. 44, 3, Article 9 (jun 2019), 46 pages. https://doi.org/
10.1145/3323991

[29] Patrick Damme, Annett Ungethüm, Johannes Pietrzyk, Alexander Krause, Dirk
Habich, and Wolfgang Lehner. 2020. MorphStore: Analytical Query Engine
with a Holistic Compression-Enabled Processing Model. Proc. VLDB Endow. 13,
12 (jul 2020), 2396–2410. https://doi.org/10.14778/3407790.3407833

[30] LanceDB Developers. 2024. LanceDB: A Modern Vector Database. https://
github.com/lancedb/lancedb. Accessed: 2024-11-29.

[31] DuckDB. 2025. Announcing DuckDB 1.20. https://duckdb.org/2025/02/05/
announcing-duckdb-120.html Accessed: 2025-02-25.

[32] DuckDB. 2025. Parquet Encodings. https://duckdb.org/2025/01/22/parquet-
encodings.html Accessed: 2025-02-25.

[33] Wenbin Fang, Bingsheng He, and Qiong Luo. 2010. Database Compression on
Graphics Processors. Proc. VLDB Endow. 3, 1–2 (sep 2010), 670–680. https:
//doi.org/10.14778/1920841.1920927

[34] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. 2015. ByteSlice: Pushing the
Envelope of Main Memory Data Processing with a New Storage Layout. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis,
Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, Melbourne, Victoria,
Australia, 31–46.

[35] Nathaniel Fout and Kwan-Liu Ma. 2012. An adaptive prediction-based approach
to lossless compression of �oating-point volume data. IEEE Transactions on
Visualization and Computer Graphics 18, 12 (2012), 2295–2304.

[36] Bogdan Ghita. 2019. Public BI Benchmark. https://github.com/cwida/public_
bi_benchmark. Accessed on: 2023-04-13.

[37] Bogdan Ghita, Diego G. Tomé, and Peter A. Boncz. 2020. White-box Compres-
sion: Learning and Exploiting Compact Table Representations. In Proceedings of
the 2020 Conference on Innovative Data Systems Research (CIDR). Very Large Data
Base Endowment, Amsterdam, The Netherlands, 23. https://ir.cwi.nl/pub/29515

[38] T Glass. 2023. C3: Compressing Correlated Columns. Master’s thesis. cen-
trum wiskunde & informatica. https://homepages.cwi.nl/~boncz/msc/2023-
ThomasGlas.pdf

[39] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1998. Compressing
Relations and Indexes. In Proceedings of the 14th International Conference on
Data Engineering (ICDE). IEEE Computer Society, Orlando, FL, USA, 370–379.
https://doi.org/10.1109/ICDE.1998.655800

[40] Google. 2014. Snappy - A fast compressor/decompressor. https://github.com/
google/snappy Accesed on: 2023-12-04.

[41] Google LLC. 2014. FlatBu�ers: E�cient Cross-Platform Serialization Library.
Google LLC. https://google.github.io/�atbu�ers/ Accessed: 2025-06-01.

[42] CWI Database Architectures Group. 2024. RealNest - A Collection of Nested
Data from Real-World Datasets. https://github.com/cwida/RealNest

[43] Dirk Habich, Patrick Damme, Annett Ungethüm, and Wolfgang Lehner. 2018.
Make Larger Vector Register Sizes New Challenges? Lessons Learned from
the Area of Vectorized Lightweight Compression Algorithms. In Proceedings
of the Workshop on Testing Database Systems (Houston, TX, USA) (DBTest’18).
Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages.

4641

https://doi.org/10.1561/1900000014
https://doi.org/10.1145/1142473.1142548
https://homepages.cwi.nl/~boncz/msc/2020-AzimAfroozeh.pdf
https://gist.github.com/azimafroozeh/b5d0dbea44ee7cd6dc39b0c4b0f7ef38
https://gist.github.com/azimafroozeh/b5d0dbea44ee7cd6dc39b0c4b0f7ef38
https://www.wis.ewi.tudelft.nl/assets/DBDBD2021_submissions/DBDBD2021_paper_10.pdf
https://www.wis.ewi.tudelft.nl/assets/DBDBD2021_submissions/DBDBD2021_paper_10.pdf
https://doi.org/10.14778/3598581.3598587
https://doi.org/10.1145/3626717
https://carbondata.apache.org/
https://orc.apache.org/
http://parquet.apache.org/
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://doi.org/10.1145/1559845.1559877
https://doi.org/10.1145/1559845.1559877
https://doi.org/10.5441/002/edbt.2019.84
https://doi.org/10.14778/3407790.3407851
https://www.cidrdb.org/cidr2005/papers/P19.pdf
https://doi.org/10.1007/978-3-030-86692-1_18
https://doi.org/10.14778/3352063.3352121
https://doi.org/10.14778/3352063.3352121
https://github.com/lz4/lz4
https://github.com/facebook/zstd
https://github.com/facebook/zstd
https://doi.org/10.1109/DCC.2016.119
https://doi.org/10.1109/DCC.2016.119
https://doi.org/10.1145/318898.318923
https://doi.org/10.1145/318898.318923
https://github.com/cwida/fsst
https://doi.org/10.1145/2882903.2903741
https://openproceedings.org/2017/conf/edbt/paper-146.pdf
https://doi.org/10.1145/3323991
https://doi.org/10.1145/3323991
https://doi.org/10.14778/3407790.3407833
https://github.com/lancedb/lancedb
https://github.com/lancedb/lancedb
https://duckdb.org/2025/02/05/announcing-duckdb-120.html
https://duckdb.org/2025/02/05/announcing-duckdb-120.html
https://duckdb.org/2025/01/22/parquet-encodings.html
https://duckdb.org/2025/01/22/parquet-encodings.html
https://doi.org/10.14778/1920841.1920927
https://doi.org/10.14778/1920841.1920927
https://github.com/cwida/public_bi_benchmark
https://github.com/cwida/public_bi_benchmark
https://ir.cwi.nl/pub/29515
https://homepages.cwi.nl/~boncz/msc/2023-ThomasGlas.pdf
https://homepages.cwi.nl/~boncz/msc/2023-ThomasGlas.pdf
https://doi.org/10.1109/ICDE.1998.655800
https://github.com/google/snappy
https://github.com/google/snappy
https://google.github.io/flatbuffers/
https://github.com/cwida/RealNest

https://doi.org/10.1145/3209950.3209957
[44] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang,

and Zhiwei Xu. 2011. RCFile: A Fast and Space-e�cient Data Placement Struc-
ture in MapReduce-based Warehouse Systems. In Proceedings of the 27th In-
ternational Conference on Data Engineering (ICDE). IEEE Computer Society,
Hannover, Germany, 1199–1208. https://doi.org/10.1109/ICDE.2011.5767933

[45] Linus Heinzl, Ben Hurdelhey, Martin Boissier, Michael Perscheid, and Hasso
Plattner. 2021. Evaluating Lightweight Integer Compression Algorithms in
Column-Oriented In-Memory DBMS. In Proceedings of the 11th International
Workshop on Accelerating Analytics and DataManagement Systems UsingModern
Processor and Storage Architectures (ADMS 2021). ADMS Workshop Organizers,
Copenhagen, Denmark, 26–36. https://adms-conf.org/2021-camera-ready/
heinzl_adms21.pdf

[46] S Hepkema. 2025. FastLanes on GPU. Master’s thesis. centrum wiskunde &
informatica. https://azimafroozeh.org/assets/master_thesis/sven_thesis.pdf

[47] Juliana Hildebrandt, Dirk Habich, Patrick Damme, and Wolfgang Lehner. 2017.
Compression-Aware In-Memory Query Processing: Vision, System Design
and Beyond. In Proceedings of the International Workshop on In-Memory Data
Management and Analytics (IMDM). Springer, Venice, Italy, 40–56. https://doi.
org/10.1007/978-3-319-56111-0_3

[48] Apache Iceberg. 2023. Apache Iceberg Speci�cation - Writer Requirements.
https://iceberg.apache.org/spec/#writer-requirements Accessed: 2023-11-01.

[49] Todor Ivanov andMatteo Pergolesi. 2019. The impact of columnar �le formats on
SQL-on-hadoop engine performance: A study on ORC and Parquet. Concurrency
and Computation: Practice and Experience 32 (09 2019). https://doi.org/10.1002/
cpe.5523

[50] Hao Jiang, Chunwei Liu, Qi Jin, John Paparrizos, andAaron J. Elmore. 2020. PIDS:
Attribute Decomposition for Improved Compression and Query Performance
in Columnar Storage. Proc. VLDB Endow. 13, 6 (feb 2020), 925–938. https:
//doi.org/10.14778/3380750.3380761

[51] Hao Jiang, Chunwei Liu, John Paparrizos, Andrew A. Chien, Jihong Ma, and
Aaron J. Elmore. 2021. Good to the Last Bit: Data-Driven Encoding with
CodecDB. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD ’21). Association for Computing Machin-
ery, New York, NY, USA, 843–856. https://doi.org/10.1145/3448016.3457283

[52] Maximilian Kuschewski and contributors. 2023. BtrBlocks: E�cient Columnar
Compression for Data Lakes. https://github.com/maxi-k/btrblocks GitHub
repository, accessed on February 18, 2025.

[53] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: E�cient Columnar Compression for Data Lakes. Proc. ACM
Manag. Data 1, 2, Article 118 (jun 2023), 26 pages. https://doi.org/10.1145/
3589263

[54] DuckDB Labs. 2022. Patas Compression: Variation on Chimp. Accessed on:
2023-04-13.

[55] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neu-
mann, and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage Using Both Vectorization and Compilation. In Proceedings
of the 2016 International Conference on Management of Data (San Francisco,
California, USA) (SIGMOD ’16). Association for Computing Machinery, New
York, NY, USA, 311–326. https://doi.org/10.1145/2882903.2882925

[56] N.J. Larsson and A. Mo�at. 2000. O�-line dictionary-based compression. Proc.
IEEE 88, 11 (2000), 1722–1732. https://doi.org/10.1109/5.892708

[57] Robert Lasch, Ismail Oukid, Roman Dementiev, Norman May, Suleyman S.
Demirsoy, and Kai-Uwe Sattler. 2019. Fast & Strong: The Case of Compressed
String Dictionaries on Modern CPUs. In Proceedings of the 15th International
Workshop on Data Management on New Hardware (Amsterdam, Netherlands)
(DaMoN’19). Association for Computing Machinery, New York, NY, USA, Article
4, 10 pages. https://doi.org/10.1145/3329785.3329924

[58] Florian Lemaitre, ArthurHennequin, and Lionel Lacassagne. 2020. How to Speed
Connected Component Labeling up with SIMD RLE Algorithms. In Proceedings
of the 2020 Sixth Workshop on Programming Models for SIMD/Vector Processing
(San Diego, CA, USA) (WPMVP’20). Association for Computing Machinery, New
York, NY, USA, Article 2, 8 pages. https://doi.org/10.1145/3380479.3380481

[59] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per
second through vectorization. Software: Practice and Experience 45, 1 (2015),
1–29.

[60] Daniel Lemire, Leonid Boytsov, and Nathan Kurz. 2016. SIMD Compression
and the Intersection of Sorted Integers. Softw. Pract. Exper. 46, 6 (jun 2016),
723–749.

[61] Daniel Lemire and Christoph Rupp. 2017. Upscaledb: E�cient integer-key
compression in a key-value store using SIMD instructions. Information Systems
66 (2017), 13–23. https://doi.org/10.1016/j.is.2017.01.002

[62] Ruiyuan Li, Zheng Li, YiWu, Chao Chen, and Yu Zheng. 2023. Elf: Erasing-based
Lossless Floating-Point Compression. Proceedings of the VLDB Endowment 16,
7 (2023), 1763–1774.

[63] Yinan Li, Jianan Lu, and Badrish Chandramouli. 2023. Selection Pushdown in
Column Stores Using Bit Manipulation Instructions. Proc. ACM Manag. Data 1,
2, Article 178 (jun 2023), 26 pages. https://doi.org/10.1145/3589323

[64] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: Fast Scans for Main Mem-
ory Data Processing. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (New York, New York, USA) (SIGMOD
’13). Association for Computing Machinery, New York, NY, USA, 289–300.
https://doi.org/10.1145/2463676.2465322

[65] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: e�cient lossless �oating point compression for time series databases.
Proceedings of the VLDB Endowment 15, 11 (2022), 3058–3070.

[66] Gang Liao, Ye Liu, Jianjun Chen, and Daniel J. Abadi. 2024. Bullion: A Column
Store for Machine Learning. arXiv preprint arXiv:2404.08901.

[67] Chunwei Liu, Anna Pavlenko, Matteo Interlandi, and Brandon Haynes. 2023.
A Deep Dive into Common Open Formats for Analytical DBMSs. Proc. VLDB
Endow. 16, 11 (aug 2023), 3044–3056. https://doi.org/10.14778/3611479.3611507

[68] Hanwen Liu, Mihail Stoian, Alexander van Renen, and Andreas Kipf. 2024.
Corra: Correlation-Aware Column Compression. arXiv:2403.17229 [cs.DB]
https://arxiv.org/abs/2403.17229

[69] Yihao Liu, Xinyu Zeng, and Huanchen Zhang. 2023. LeCo: Lightweight Com-
pression via Learning Serial Correlations. arXiv:2306.15374 [cs.DB]

[70] Xi Lyu, Andreas Kipf, Pascal Pfeil, Dominik Horn, Jana Giceva, and Tim Kraska.
2023. CorBit: Leveraging Correlations for Compressing Bitmap Indexes. In
Proceedings of the Fifth International Workshop on Applied AI for Database Sys-
tems and Applications (AIDB 2023) (CEUR Workshop Proceedings), Vol. 3462.
CEUR-WS.org, Vancouver, Canada, 1–10.

[71] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In Proceedings of the 24th International Confer-
ence on Very Large Data Bases (VLDB). Morgan Kaufmann, New York, NY, USA,
476–487. http://www.vldb.org/conf/1998/p476.pdf

[72] Ziya Mukhtarov. 2024. Nested Data-Type Encodings in FastLanes. Master’s thesis.
Technical University of Munich. https://homepages.cwi.nl/~boncz/msc/2024-
ZiyaMukhtarov.pdf

[73] Ingo Müller, Cornelius Ratsch, and Franz Färber. 2014. Adaptive String Dictio-
nary Compression in In-Memory Column-Store Database Systems. In Pro-
ceedings of the 17th International Conference on Extending Database Tech-
nology (EDBT). OpenProceedings.org, Athens, Greece, 283–294. https://
openproceedings.org/EDBT/2014/paper_25.pdf

[74] Bhavik Nagda. 2021. CHu�: Conditional Hu�man String Compression. Ph.D.
Dissertation. Massachusetts Institute of Technology.

[75] C.G. Nevill-Manning and I.H. Witten. 1997. Linear-Time, Incremental Hierarchy
Inference for Compression. In Proceedings of the Data Compression Conference
(DCC). IEEE Computer Society, Snowbird, UT, USA, 3–11. https://doi.org/10.
1109/DCC.1997.581951

[76] NVIDIA. 2023. nvCOMP. https://github.com/NVIDIA/nvcomp. Accessed on:
2023-4-12.

[77] Mosha Pasumansky. 2023. Inside Capacitor, BigQuery’s Next-Generation
Columnar Storage Format. https://cloud.google.com/blog/products/bigquery/
inside-capacitor-bigquerys-next-generation-columnar-storage-format. Ac-
cessed: 2023-10-10.

[78] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: meta’s uni�ed
execution engine. Proceedings of the VLDB Endowment 15, 12 (2022), 3372–3384.

[79] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816–
1827.

[80] Orestis Polychroniou and Kenneth A. Ross. 2015. E�cient Lightweight Com-
pression Alongside Fast Scans. In Proceedings of the 11th International Workshop
on Data Management on New Hardware (Melbourne, VIC, Australia) (DaMoN’15).
Association for Computing Machinery, New York, NY, USA, Article 9, 6 pages.
https://doi.org/10.1145/2771937.2771943

[81] Martin Prammer and JigneshM. Patel. 2023. Rethinking the Encoding of Integers
for Scans on Skewed Data. Proc. ACM Manag. Data 1, 4, Article 257 (dec 2023),
27 pages. https://doi.org/10.1145/3626751

[82] Mark Raasveldt. 2022. Lightweight Compression in DuckDB. https://duckdb.
org/2022/10/28/lightweight-compression.html. Accesed on: 2023-04-13.

[83] Mark Raasveldt and HannesMühleisen. 2019. Duckdb: an embeddable analytical
database. In Proceedings of the 2019 International Conference on Management of
Data. ACM, Amsterdam, Netherlands, 1981–1984.

[84] Vijayshankar Raman and Garret Swart. 2006. How to Wring a Table Dry:
Entropy Compression of Relations and Querying of Compressed Relations.
In Proceedings of the 32nd International Conference on Very Large Data Bases.
Citeseer, VLDB Endowment, Seoul, Korea, 858–869.

[85] Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. 2006. Fast Lossless
Compression of Scienti�c Floating-Point Data. In Data Compression Conference
(DCC’06). IEEE, IEEE, Snowbird, Utah, USA, 133–142.

[86] Alice Rey. 2024. Seamless Integration of Parquet Files into Data Processing. In
Proceedings of the Workshops of the EDBT/ICDT 2024 Joint Conference, Vol. 3651.
CEUR-WS.org. https://ceur-ws.org/Vol-3651/PhDW-3.pdf

4642

https://doi.org/10.1145/3209950.3209957
https://doi.org/10.1109/ICDE.2011.5767933
https://adms-conf.org/2021-camera-ready/heinzl_adms21.pdf
https://adms-conf.org/2021-camera-ready/heinzl_adms21.pdf
https://azimafroozeh.org/assets/master_thesis/sven_thesis.pdf
https://doi.org/10.1007/978-3-319-56111-0_3
https://doi.org/10.1007/978-3-319-56111-0_3
https://iceberg.apache.org/spec/#writer-requirements
https://doi.org/10.1002/cpe.5523
https://doi.org/10.1002/cpe.5523
https://doi.org/10.14778/3380750.3380761
https://doi.org/10.14778/3380750.3380761
https://doi.org/10.1145/3448016.3457283
https://github.com/maxi-k/btrblocks
https://doi.org/10.1145/3589263
https://doi.org/10.1145/3589263
https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1109/5.892708
https://doi.org/10.1145/3329785.3329924
https://doi.org/10.1145/3380479.3380481
https://doi.org/10.1016/j.is.2017.01.002
https://doi.org/10.1145/3589323
https://doi.org/10.1145/2463676.2465322
https://doi.org/10.14778/3611479.3611507
https://arxiv.org/abs/2403.17229
https://arxiv.org/abs/2403.17229
https://arxiv.org/abs/2306.15374
http://www.vldb.org/conf/1998/p476.pdf
https://homepages.cwi.nl/~boncz/msc/2024-ZiyaMukhtarov.pdf
https://homepages.cwi.nl/~boncz/msc/2024-ZiyaMukhtarov.pdf
https://openproceedings.org/EDBT/2014/paper_25.pdf
https://openproceedings.org/EDBT/2014/paper_25.pdf
https://doi.org/10.1109/DCC.1997.581951
https://doi.org/10.1109/DCC.1997.581951
https://github.com/NVIDIA/nvcomp
https://cloud.google.com/blog/products/bigquery/inside-capacitor-bigquerys-next-generation-columnar-storage-format
https://cloud.google.com/blog/products/bigquery/inside-capacitor-bigquerys-next-generation-columnar-storage-format
https://doi.org/10.1145/2771937.2771943
https://doi.org/10.1145/3626751
https://duckdb.org/2022/10/28/lightweight-compression.html
https://duckdb.org/2022/10/28/lightweight-compression.html
https://ceur-ws.org/Vol-3651/PhDW-3.pdf

[87] Mark A. Roth and Scott J. Van Horn. 1993. Database Compression. SIGMOD
Rec. 22, 3 (sep 1993), 31–39. https://doi.org/10.1145/163090.163096

[88] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. 2010. Fast Integer
Compression Using SIMD Instructions. In Proceedings of the Sixth International
Workshop on Data Management on New Hardware (Indianapolis, Indiana) (Da-
MoN ’10). Association for Computing Machinery, New York, NY, USA, 34–40.
https://doi.org/10.1145/1869389.1869394

[89] Anil Shanbhag, Bobbi W. Yogatama, Xiangyao Yu, and Samuel Madden. 2022.
Tile-Based Lightweight Integer Compression in GPU. In Proceedings of the
2022 International Conference on Management of Data (Philadelphia, PA, USA)
(SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
1390–1403. https://doi.org/10.1145/3514221.3526132

[90] Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose, Ryan J. Ernst, and
Paramjit S. Oberoi. 2011. SIMD-Based Decoding of Posting Lists. In Proceedings
of the 20th ACM International Conference on Information and Knowledge Man-
agement (Glasgow, Scotland, UK) (CIKM ’11). Association for Computing Ma-
chinery, New York, NY, USA, 317–326. https://doi.org/10.1145/2063576.2063627

[91] Mihail Stoian, Alexander van Renen, Jan Kobiolka, Ping-Lin Kuo, Josif Grabocka,
and Andreas Kipf. 2024. Lightweight Correlation-Aware Table Compression. In
NeurIPS 2024 Third Table Representation Learning Workshop. https://openreview.
net/forum?id=z7eIn3aShi

[92] Facebook Incubator Team. 2024. Nimble: A Columnar File Format for Feature
Engineering. https://github.com/facebookincubator/nimble. GitHub Reposi-
tory.

[93] Animesh Kr Trivedi, Patrick Stuedi, Jonas Pfe�erle, Adrian Schüpbach, and
Bernard Metzler. 2018. Albis: High-Performance File Format for Big Data Sys-
tems. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC).
USENIX Association, Boston, MA, USA, 561–574. https://api.semanticscholar.
org/CorpusID:51876043

[94] Andrew Trotman and Jimmy Lin. 2016. In Vacuo and In Situ Evaluation of SIMD
Codecs. In Proceedings of the 21st Australasian Document Computing Symposium
(Caul�eld, VIC, Australia) (ADCS ’16). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/3015022.3015023

[95] Annett Ungethüm, Johannes Pietrzyk, Patrick Damme, Dirk Habich, and Wolf-
gang Lehner. 2018. Con�ict Detection-Based Run-Length Encoding—AVX-512
CD Instruction Set in Action. In Proceedings of the 34th IEEE International Con-
ference on Data Engineering Workshops (ICDEW). IEEE Computer Society, Paris,
France, 96–101. https://doi.org/10.1109/ICDEW.2018.00023

[96] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In Proceedings of the 2018
Workshop on Testing Database Systems (DBTest 2018). Association for Computing
Machinery, Houston, TX, USA, 1–6. https://doi.org/10.1145/3209950.3209952

[97] Jianguo Wang, Chunbin Lin, Ruining He, Moojin Chae, Yannis Papakonstanti-
nou, and Steven Swanson. 2017. MILC: Inverted List Compression in Memory.
Proc. VLDB Endow. 10, 8 (apr 2017), 853–864. https://doi.org/10.14778/3090163.
3090164

[98] Richard Michael Grantham Wesley and Pawel Terlecki. 2014. Leveraging Com-
pression in the Tableau Data Engine. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (Snowbird, Utah, USA) (SIG-
MOD ’14). Association for Computing Machinery, New York, NY, USA, 563–573.

https://doi.org/10.1145/2588555.2595639
[99] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander

Zeier, and Jan Scha�ner. 2009. SIMD-Scan: Ultra Fast in-Memory Table Scan
Using on-Chip Vector Processing Units. Proc. VLDB Endow. 2, 1 (aug 2009),
385–394. https://doi.org/10.14778/1687627.1687671

[100] Leon Windheuser, Christoph Anneser, Huanchen Zhang, Thomas Neumann,
and Alfons Kemper. 2024. Adaptive Compression for Databases. In Proceedings
of the 27th International Conference on Extending Database Technology (EDBT).
OpenProceedings.org, Paestum, Italy, 143–149. https://doi.org/10.5441/002/
edbt.2019.84

[101] Hao Yan, Shuai Ding, and Torsten Suel. 2009. Inverted Index Compression
and Query Processing with Optimized Document Ordering. In Proceedings of
the 18th International World Wide Web Conference (WWW 2009). Association
for Computing Machinery, Madrid, Spain, 401–410. https://doi.org/10.1145/
1526709.1526764

[102] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and
Huanchen Zhang. 2023. An Empirical Evaluation of Columnar Storage Formats.
Proc. VLDB Endow. 17, 2 (2023), 148–161. https://doi.org/10.14778/3626292.
3626298

[103] Feng Zhang, Weitao Wan, Chenyang Zhang, Jidong Zhai, Yunpeng Chai, Haixi-
ang Li, and Xiaoyong Du. 2022. CompressDB: Enabling E�cient Compressed
Data Direct Processing for Various Databases. In Proceedings of the 2022 Inter-
national Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD
’22). Association for Computing Machinery, New York, NY, USA, 1655–1669.
https://doi.org/10.1145/3514221.3526130

[104] Huanchen Zhang, Xiaoxuan Liu, David G. Andersen, Michael Kaminsky, Kim-
berly Keeton, and Andrew Pavlo. 2020. Order-Preserving Key Compression
for In-Memory Search Trees. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 1601–1615.
https://doi.org/10.1145/3318464.3380583

[105] Jiujing Zhang, Zhitao Shen, Shiyu Yang, Lingkai Meng, Chuan Xiao, Wei Jia, Yue
Li, Qinhui Sun, Wenjie Zhang, and Xuemin Lin. 2023. High-Ratio Compression
for Machine-Generated Data. Proc. ACM Manag. Data 1, 4, Article 245 (dec
2023), 27 pages. https://doi.org/10.1145/3626732

[106] Wayne Xin Zhao, Xudong Zhang, Daniel Lemire, Dongdong Shan, Jian-Yun
Nie, Hongfei Yan, and Ji-Rong Wen. 2015. A General SIMD-Based Approach to
Accelerating Compression Algorithms. ACM Trans. Inf. Syst. 33 (2015), 15:1–
15:28. https://api.semanticscholar.org/CorpusID:12175168

[107] Marcin Zukowski, Sándor Heman, Niels Nes, and Peter Boncz. 2006. Super-
Scalar RAM-CPU Cache Compression. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE). IEEE Computer Society, Atlanta, GA,
USA, 59–59. https://doi.org/10.1109/ICDE.2006.150

[108] Marcin Zukowski, Niels Nes, and Peter Boncz. 2008. DSM vs. NSM: CPU Per-
formance Tradeo�s in Block-Oriented Query Processing. In Proceedings of the
4th International Workshop on Data Management on New Hardware (Vancouver,
Canada) (DaMoN ’08). Association for Computing Machinery, New York, NY,
USA, 47–54. https://doi.org/10.1145/1457150.1457160

4643

https://doi.org/10.1145/163090.163096
https://doi.org/10.1145/1869389.1869394
https://doi.org/10.1145/3514221.3526132
https://doi.org/10.1145/2063576.2063627
https://openreview.net/forum?id=z7eIn3aShi
https://openreview.net/forum?id=z7eIn3aShi
https://github.com/facebookincubator/nimble
https://api.semanticscholar.org/CorpusID:51876043
https://api.semanticscholar.org/CorpusID:51876043
https://doi.org/10.1145/3015022.3015023
https://doi.org/10.1109/ICDEW.2018.00023
https://doi.org/10.1145/3209950.3209952
https://doi.org/10.14778/3090163.3090164
https://doi.org/10.14778/3090163.3090164
https://doi.org/10.1145/2588555.2595639
https://doi.org/10.14778/1687627.1687671
https://doi.org/10.5441/002/edbt.2019.84
https://doi.org/10.5441/002/edbt.2019.84
https://doi.org/10.1145/1526709.1526764
https://doi.org/10.1145/1526709.1526764
https://doi.org/10.14778/3626292.3626298
https://doi.org/10.14778/3626292.3626298
https://doi.org/10.1145/3514221.3526130
https://doi.org/10.1145/3318464.3380583
https://doi.org/10.1145/3626732
https://api.semanticscholar.org/CorpusID:12175168
https://doi.org/10.1109/ICDE.2006.150
https://doi.org/10.1145/1457150.1457160

	Abstract
	1 Introduction
	1.1 Design Ideas
	1.2 Designing The FastLanes File Format

	2 Expression Encoding
	2.1 Expression Operators
	2.2 FastLanes Expression Notation
	2.3 Expression Detection

	3 FastLanes File Format
	4 Evaluation
	5 Related Work
	5.1 FastLanes
	5.2 BtrBlocks
	5.3 Encoding/Compression.

	6 Discussion
	7 conclusion
	8 Future Work
	References

