
Pistis: A Decentralized Knowledge Graph Platform Enabling
Ownership-Preserving SPARQLQuerying

Enyuan Zhou
PolyU SZRI

21038299r@connect.polyu.hk

Song Guo
HKUST

songguo@cse.ust.hk

Zicong Hong
HKUST

congcong@ust.hk

Christian S. Jensen
Aalborg University

csj@cs.aau.dk

Yang Xiao
Xidian University

yxiao@xidian.edu.cn

Jinwen Liang
HK PolyU

jinwen.liang@polyu.edu.hk

Dalin Zhang
Aalborg University
dalinz@cs.aau.dk

ABSTRACT

Decentralized Knowledge Graph (DKG) platforms allow the sharing
of knowledge with multiple owners. While data owners can share
their data with others by encrypting their data before sharing it,
this naïve approach prevents data encrypted by different owners
from being queried together, as it compromises query verifiability,
an essential DKG platform feature. We propose Pistis, the first
DKG platform capable of preserving ownership while also enabling
verifiable SPARQL queries. Two novel techniques facilitate this:
owner-managed end-to-end encryption and collaborative query veri-

fication. In Pistis, data owners thus encrypt their data individually
and collaborate to construct an authenticated data structure (ADS)
with a global key by means of secret sharing and secure multi-party
computation. Then, by indexing KG data as ciphertext over the
ADS, Pistis offers a cryptographic scheme called VO-SPARQL that
facilitates verifiable queries on encrypted KG data with multiple
owners. Pistis provides succinct proofs for two-stage SPARQL
queries, including subgraph queries based on the ADS and aggre-
gation on encrypted intermediate results based on a key-aggregate
cryptographic primitive. A theoretical analysis and an empirical
study provide detailed insight into the performance of Pistis while
offering provable security.

PVLDB Reference Format:

Enyuan Zhou, Song Guo, Zicong Hong, Christian S. Jensen, Yang Xiao,
Jinwen Liang, and Dalin Zhang. Pistis: A Decentralized Knowledge Graph
Platform Enabling Ownership-Preserving SPARQL Querying. PVLDB,
18(11): 4602 - 4615, 2025.
doi:10.14778/3749646.3749716

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/garlicZhou/Pistis.

1 INTRODUCTION

As one of the bold and innovative aspects of Web 3.0 [30, 46, 76, 87],
decentralized knowledge graph (DKG) platforms represent a new
knowledge management technology that offers global platforms

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749716

where everyone can share, manage, and exploit knowledge from
diverse data sources on the Web [3–5, 52, 88]. Moreover, DKG
platforms promise high data availability and resilience, as their data
is distributed across multiple nodes rather than being centralized
in a single location [5, 21, 32]. However, the decentralized nature
of DKG platforms expose them to malicious threats, especially
Byzantine Attacks [12, 24, 74] and Loss of Ownership [27, 34, 65].
Such attacks can compromise the reliability of DKG platforms and
call for robust defense strategies.

A DKG platform must support three key functionalities, data
integrity, query verifiability, and data ownership, which are cru-
cial in outsourced database scenarios [35, 49, 71]. Specifically, data
integrity ensures that the data stored in a platform is not manipu-
lated or modified without authorization [13, 37]. Query verifiability
ensures that query results can be verified as correct, complete,
and fresh, preventing malicious query executions that could com-
promise the integrity of a platform [42, 44, 71, 72, 84–86]. Data
ownership affords data owners complete control over their KG data,
including the ability to decide with whom to share raw data (e.g.,
patients may share their data with pharmacists) [7, 35, 58, 64, 69].
Offering this functionality is essential to ensure DKG platforms’
operation and facilitate their wider adoption.

Motivation. Real-world applications increasingly require de-
centralized knowledge collaboration with both verifiable query
results and data ownership. In global supply chains, consider a
DKG shared by Unilever (manufacturer), Maersk (logistics), and
Walmart (retailer). Unilever shares RDF-encoded product batches
with supplier relationships, while Maersk provides shipping record
triples with environmental data. Walmart performs KG-backed au-
thenticity checks. Without data ownership, Maersk could exploit
property graph patterns to access Unilever’s manufacturing knowl-
edge to gain unfair advantages in pricing and negotiations. Without
query verifiability, Maersk could falsify edge attributes (e.g., tem-
perature data or routes), compromising Walmart’s quality checks
and potentially allowing unsafe products to reach consumers. Simi-
lar challenges emerge in Industry 4.0 where factories must share
machine data without revealing proprietary processes, and in de-

centralized science where researchers need to validate results
while protecting patient data.

Most existing DKG systems, such as RDFPeers [21] and PIC-
NIQ [4], primarily focus on improving query efficiency, while over-
looking the essential requirements of data integrity, query verifiabil-
ity, and data ownership protection. Some emerging DKG platforms
adopt blockchain technology to ensure data integrity and query

4602

https://doi.org/10.14778/3749646.3749716
https://github.com/garlicZhou/Pistis
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749716
https://www.acm.org/publications/policies/artifact-review-and-badging-current

verifiability [5, 52, 88]. For example, ColChain [5] adopts blockchain
to allow all nodes to collaborate on data updates and maintain a
trusted historical record of all DKG data, which ensures data in-
tegrity. VeriDKG [88] provides query verifiability of DKG through
blockchain consensus-building indexes and cryptographic hash-
ing. This allows participants to confirm that the query results they
receive are accurate and have not been tampered with. However,
enabling this functionality jeopardizes data ownership, as most
blockchain systems store data in plaintext. This gives every DKG
platform participant permanent access to the data, making it im-
possible for data owners to maintain control over their sensitive
information. Existing DKGs cannot guarantee query verifiability
and data ownership simultaneously due to the following dilemma.

The Query Verifiability versus Data Ownership dilemma.

A straightforward way to enable data ownership is for owners
to encrypt their data locally before sharing it on the blockchain.
This ensures only those with decryption keys can access the data,
preserving ownership. However, while effective for ownership, this
strategy introduces a challenge: it limits others’ ability to interact
with the data. In a DKG platform, where data is interconnected,
encryption by multiple owners prevents others from reading raw
data or executing queries across datasets. This poses a problem
for applications requiring verifiable queries over a multi-owner
encrypted KG, as encryption obstructs such verification.

Contributions.We propose Pistis, the first DKG platform en-
suring data integrity, ownership, and query verifiability via two
innovations: owner-managed end-to-end encryption and collabora-

tive query-verification, which we integrate into blockchain-based
DKG management. Specifically, data owners each encrypt their
data independently and then collaborate to build a blockchain-
maintained authenticated data structure (ADS) to share their ci-
phertext in the DKG. The ADS is a structured encrypted Merkle trie
managed by a global key via a new orchestration of secret sharing
and secure multi-party computation. Using this ADS as an index,
any participant can query KG data in ciphertext. Data owner can
determine to whom to disclose their raw data in query results by
managing a private key, thus ensuring data ownership. Next, to
perform SPARQL queries (i.e., standard KG queries) on the multi-
owner encrypted KG data while offering query verifiability, we
propose a new cryptographic scheme, VO-SPARQL (i.e., Verifiable
and Ownership-preserving SPARQL), that facilitates succinct veri-
fication proofs for two-stage SPARQL queries, including subgraph
queries based on the ADS and aggregation queries on encrypted
intermediate results based on a key-aggregate cryptographic primi-
tive. Our contributions are summarized as follows.

• We present Pistis, the first DKG platform to preserve data own-
ership and support verifiable SPARQL queries. Through its new
VO-SPARQL cryptographic scheme that encompasses two novel
techniques, Pistis supports SPARQL query results with succinct
verification proofs and offers data ownership guarantees.
• We present an owner-managed end-to-end encryption scheme
with a newADS called encryptedMerkle semantic trie (EMST). This
scheme allows data owners to encrypt data it enables to prevent loss
of control, and it enables subgraph querying for the data encrypted
by different owners, enabling data ownership.

• We present a collaborative query verification scheme called VO-
SPARQL that enables SPARQL query verifiability in DKG through
two steps while ensuring data ownership. VO-SPARQL includes
EMST’s workflow (i.e., initialization, update, and query) and a
key-aggregate cryptographic primitive allowing one party to per-
form verifiable data aggregation on encrypted intermediate results
queried from the EMST to obtain final results.
• Wepresent a comprehensive security analysis, andwe report on an
empirical performance study of a Pistis prototype implementation
on the widely-used benchmark largeRDFBench. The results show
that Pistis is successful at enabling the targeted functionalities
with practical performance compared to existing approaches.

2 RELATEDWORK

2.1 Decentralized Knowledge Graph

As web content grows, enabling users to effectively access and
navigate structured knowledge is increasingly important. KGs rep-
resent real-world facts as graphs, with nodes as entities and edges
as semantic relationships. Most KGs remain centralized, relying
on SPARQL endpoints [14, 39], limiting users to data consumption
and hindering broader knowledge sharing. Collaborative platforms
like Wikidata [67] support public editing but still store structured
data centrally, risking unavailability, tampering, and single points
of failure. To improve availability and query performance, prior
work [4, 6, 21, 56, 59, 75] explores distributed storage and index-
ing. RDFPeers [21] and PIQNIC [4] use distributed hash tables and
Bloom filter-based indexes for source selection. Other approaches
integrate blockchain to enhance trust and traceability: ColChain [5]
logs RDF updates in blockchain shards for tamper detection, while
VeriDKG [88] builds ADS on blockchain to support verifiable query-
ing. While VeriDKG enables query verifiability, it still leaves room
for attackers to compromise data ownership. Decentralized plat-
forms like Solid [63] and ActivityPub [2] promote user-centric data
ownership and interoperability but lack support for verifiable query-
ing. Our work addresses these gaps, resolving the core dilemma
between query verifiability and data ownership in DKGs.

2.2 Verifiable Query Processing

Numerous studies have explored verifiable query processing in out-
sourced databases [11, 77, 81, 85, 86, 89]. IntegriDB [86] uses ADS
to verify SQL query integrity, while vSQL [85] applies interactive
proof systems for dynamic query verification. However, these sys-
tems incur significant cryptographic overhead. VeriDB [89] relies on
trusted hardware (e.g., Intel SGX) for verification, which is impracti-
cal in a decentralized scenario. SQL Ledger [11], LedgerDB [77] and
GlassDB [81] achieve verifiable query processing by maintaining
tamper-evident logs to trace database updates. However, they target
specific data formats and do not support the rich semantics and
interlinked structures inherent to KGs. Blockchain and ADS-based
approaches like vChain [72] and vChain+ [68] support verifiable
keyword and SQL queries with integrity proofs. Li et al. [43, 44]
propose verifiable queries over graph structures via blockchain, but
do not address semantic richness or data ownership. In summary,
prior work lacks support for verifiable queries over semantically
rich, decentralized KGs with ownership control—challenges that
Pistis is designed to meet.

4603

3 PRELIMINARIES

3.1 Knowledge Graph

The Resource Description Framework (RDF) is the standard format
for KGs on the web. An RDF graph consists of a set of RDF triples [9,
55], and a KG G is often represented by an RDF graph, where nodes
are entities and directed edges are relations. Each RDF triple consists
of a subject, a predicate, and an object.

Definition 1 (RDF Triple). An RDF triple (𝑠, 𝑝, 𝑜) represents a
directed labelled edge 𝑠

𝑝
−→ 𝑜 , where 𝑠 , 𝑝 , and 𝑜 denote the subject,

predicate, and object, respectively. Given infinite and disjoint sets
U representing all URIs (Uniform Resource Identifiers) and IRIs
(Internationalized Resource Identifiers), L representing all literals
(text, string, etc.), and B representing all blank nodes, an RDF triple
(𝑠, 𝑝, 𝑜) ∈ (𝑈 ∪ 𝐵) ×𝑈 × (𝑈 ∪ 𝐵 ∪ 𝐿).

For example, (Alice, worksAt, Meta) and (Bob, knows, Alice) are
two RDF triples.

Definition 2 (Triple Fragment). A triple fragment 𝑓 ⊆ G is a finite
set of RDF triples in a KG G. In this paper, all subgraphs of a KG
are triple fragments.

The de facto query language for KGs is SPARQL [60], and each
such query comprises a set of triple patterns, as defined below.

Definition 3 (Triple Pattern). Given the sets U, L, and B in Defi-

nition 1 and a set of all variables V, a triple pattern is a triple of
the form (𝑠, 𝑝, 𝑜) ∈ (𝑈 ∪ 𝐵 ∪𝑉) × (𝑈 ∪𝑉) × (𝑈 ∪ 𝐵 ∪ 𝐿 ∪𝑉).

A SPARQL query contains basic graph patterns (BGP) [75, 83],
each of which consists of a set of (conjunctive) triple patterns com-
bined with operators such as UNION or JOIN. For example, given two
triple patterns (?who, knows, Alice) and (?who, works at, ?address),
a SPARQL query that searches for the workplace of someone who
knows Alice (i.e., inner join the two triple patterns on their subjects
and select the results on the second triple pattern’s object) can be
formulated as follows.

SELECT ?address WHERE {
(?who, knows, Alice), (?who, worksAt, ?address) . }

Definition 4 (Triple Pattern Fragment). Let 𝑓 be a triple fragment
and tp be a triple pattern. Then 𝑓 is the triple pattern fragment of
tp iff for every RDF triple 𝑡 ∈ 𝑓 , 𝑡 matches tp.

Decentralized knowledge graph. In a traditional KG, the com-
plete graph resides on a centralized and trusted server capable of
executing SPARQL queries using its local storage. In contrast, in a
DKG, the graph is partitioned into subgraphs that are distributed
among DKG communities [1, 5, 57]. Each community comprises
participants responsible for storing identical subgraphs. It is impor-
tant to note that a participant can be part of multiple communities,
while a community exclusively retains a specific subgraph.

3.2 Cryptographic Building Blocks

Our system leverages basic cryptographic primitives to encrypt
data and ensure tamper-proof digests. To support secure SPARQL
query execution, we combine secret sharing, secure multi-party
computation, and structured encryption to construct a verifiable
global index. We further implement verifiable set operations to

prove the correctness of encrypted data aggregation. Blockchain
acts as a decentralized ledger to record index updates and prevent
data manipulation.

Basic cryptographic primitives. An asymmetric encryption
scheme PKE = (Gen, Enc, Dec) consists of three algorithms: 1)
Gen is a probabilistic algorithm whose input is a security parameter
𝜅, and its output is a a key-pair (Pk, Sk), where Pk is a public key
and Sk is a secret key; 2) Enc is a probabilistic algorithm that gen-
erates a ciphertext ct given a key Pk and a message𝑚; 3) Dec is a
deterministic algorithm that takes a key Sk and a ciphertext ct and
returns𝑚. We employ the widely used RSA algorithm as the asym-
metric encryption building block. A pseudo-random function (PRF)
𝐹𝐾 and a pseudo-random permutation (PRP) 𝑃𝐾 are computable
functions that cannot be distinguished from random functions by
any probabilistic polynomial-time adversary. A cryptographic hash
function, hash(·), takes an arbitrary-length message𝑚 as input and
outputs a fixed-length hash digest hash(𝑚), ensuring that hash(𝑚)
is computationally indistinguishable from random data. A Merkle
tree [47] uses cryptographic hashes to efficiently verify data in-
tegrity. Its extension, the Merkle trie, structures data by prefixes,
enabling scalable verification in dynamic key-value stores [31, 82].

Structured encryption. Structured encryption [25, 36] is a gen-
eralization of index-based symmetric searchable encryption, which
gives an idea of generalizing searchable encryption to arbitrarily-
structured data. A semi-dynamic structured encryption scheme
for a data structure DS is Σ𝐷𝑆 = (Init, QueryToken, Query,
AddToken, Add) that contains five algorithms as follows.

• Init(1𝑘)→ (EDS, 𝐾): The input is a security parameter 1𝑘 . The
output is an encrypted data structure EDS and a secret key 𝐾 .
• QueryToken(𝐾,𝑄)→ QTK: The input is a secret key𝐾 and a query
𝑄 . The output is a query token.
• Query(EDS, QTK)→ ct: The input is an encrypted data structure
EDS and a query token QTK. The output is a ciphertext ct.
• AddToken(𝐾, 𝑖𝑡)→ ATK: The input is a secret key 𝐾 and a new
item it. The output is an add token.
• Add(EDS, ATK): The input is an encrypted data structure EDS and
an add token ATK. The output is an updated EDS.

Secret sharing. Secret sharing is an ideal scheme to outsource
a secret by distributing it among a group. Each participant can
only hold a part of the secret and all participants need to combine
their respective sub-secrets to recover the original secret. In par-
ticular, a (𝑡, 𝑛)-threshold secret sharing scheme [66] SS = (Share,
Recover) contains two functions: 1) SS.Share shares the secret
with 𝑛 participants and sets a threshold 𝑡 for secret recovery. 2)
SS.Recover takes as input 𝑡 out of 𝑛 shares and outputs the se-
cret. For example, (𝐾1, 𝐾2) ← SS.Share(𝐾, 2, 2) means the secret
𝐾 is split into two shares 𝐾1 and 𝐾2, which must be combined as
𝐾 ← SS.Recover(𝐾1, 𝐾2) to recover 𝐾 .

Secure multi-party computation. Secure multi-party compu-
tation (MPC) [79] is a cryptographic framework that allows un-
trusted parties to perform computations jointly without revealing
any input data. Two-party secure computation (2PC) is special case
of MPC that allows two parties to jointly compute an arbitrary func-
tion on their input without sharing their input with the opposing
party. We use F 𝑓2𝑃𝐶 to represent 2PC, where 𝑓 is a function that
takes multiple inputs. We only consider the semi-honest attacks in

4604

Custodians

ADS

User

Data Owners

KG

Query
Interface

❹ SPARQL Query

Upload
Interface

❻ Encrypted Result

Txn
Interface

❼ Decryption Key

❷ Encrypted Subgraph

❶ Key Escrow

❺
Ask
Data

Storage Providers

Blockchain

Keys
Interface

❸ Encrypted Metadata

Figure 1: Architecture overview of Pistis.

2PC. Thus, ideal functionalities can be instantiated with standard
semi-honest protocols, such as ABY [26] and MP-SPDZ [38]. For
example, the process of using 2PC to generate and then split a
key 𝐾 between two participants can be represented as (𝐾1, 𝐾2) ←
F 𝑓2𝑃𝐶 (𝑟1, 𝑟2), where 𝑟1 and 𝑟2 are secrets held separately by the
participants, 𝐾 = (𝑟1 ⊕ 𝑟2), and 𝑓 (𝑟1, 𝑟2) = SS.Share((𝑟1 ⊕ 𝑟2), 2, 2).

Verifiable set operation. A verifiable set operation (VSO) [23,
53] transforms a set 𝑋 into a fixed-size digest 𝑎𝑐𝑐 (𝑋), allowing
users to delegate set computation tasks to an untrusted third party.
This includes operations such as intersection (∩), union (∪), and
difference (\). These set operations can be executed in a nested
manner and can be validated using the accumulated values of the
input sets. A VSO includes four steps:
• KeyGen(𝑠)→ (𝑆𝑘, 𝑃𝑘): The input is a random value 𝑠 ∈ Z𝑝 . The
output is a secret key 𝑆𝑘 = 𝑠 and a public key 𝑃𝑘 = (𝑔𝑠 , · · · , 𝑔𝑠𝑞),
where 𝑔 is the generator of a cyclic multiplicative group G and 𝑞 is
an upper-bound on the cardinality of sets in the algorithm.
• Setup(𝑋, 𝑃𝑘)→ 𝑎𝑐𝑐 (𝑋): The input is a set 𝑋 ⊂ Z𝑝 and 𝑃𝑘 . The
output is an accumulated value 𝑎𝑐𝑐 (𝑋).
• Getproof(𝑋𝑖 , 𝑋 𝑗 ,𝑂𝑃, 𝑃𝑘)→ (𝑋 ∗, 𝜋): The input is two sets𝑋𝑖 and
𝑋 𝑗 , a set operation 𝑂𝑃 ∈ {∩,∪, \}, and 𝑃𝑘 . The function returns
the set operation result of these two sets 𝑋 ∗ with a proof 𝜋 .
• Verify (𝑎𝑐𝑐 (𝑋 𝑖), 𝑎𝑐𝑐 (𝑋 𝑗), 𝜋)→ {accept, reject}: The input is two
accumulated values acc(𝑋 𝑖) and acc(𝑋 𝑗) and a proof 𝜋 . The func-
tion returns the validation result.

The unforgeability of VSO has been proved under the q-Strong
Bilinear Diffie-Hellman (q-SBDH) assumption [18].

Blockchain. A blockchain is a public and tamper-proof ledger
composed of a sequence of blocks, each storing transactions, and is
maintained by multiple mutually untrusted nodes [45, 61]. To agree
on the order of valid transactions among nodes, the nodes employ a
consensus mechanism (e.g., Proof of Work [50], Proof of Stake [70],
and Practical Byzantine Fault Tolerance [10]) in the blockchain. In
each block, the transactions are organized as a Merkle tree, and the
Merkle tree root is stored in the block header.

4 PISTIS: OVERVIEW

4.1 System Model

As shown in Figure 1, Pistis provides KG data management services
to two types of participants as follows.

Data owners generate and share their RDF data as triple frag-
ments, collectively forming a KG. They outsource data to Pistis due
to resource limitations, but they still need to control their raw data
and decide what to disclose. Users access the KG by submitting
SPARQL queries to Pistis, which involve triple fragments from one
or more data owners.

To meet the demand of data owners and users, Pistis is a DKG
comprised of the following three roles of nodes.

Blockchain plays the role of a trust anchor in Pistis by building
a public and immutable ledger via consensus. The ledger records
data owners’ RDF data metadata for a global index used to query
and authenticate. Storage providers involve a distributed data
storage protocol similar to IPFS [16]. They can provide efficient,
usable, and cheap off-chain storage. Each storage provider stores a
subgraph of the KG, and an RDF triple of a subgraph can be backed
up to multiple storage providers with an address that can locate
it. Storage providers can collaboratively execute a SPARQL query
on multiple subgraphs. Custodians are responsible for managing
secret keys and generating query-relevant tokens in Pistis. The
number of custodians depends on the choice of MPC adopted in
Pistis. In the following, we consider the case of 2PC, thus the
system will set up two custodians. The custodian selection policy
will be discussed in Section § 7.

4.2 Threat Model

In Pistis, the data owners and users are honest. The custodians are
semi-honest, do not collude with each other and strictly follow the
protocol’s instructions (two non-colluding and semi-honest servers
is a common principle in cryptographic protocols and security sys-
tems, particularly in the decentralized scenario [19, 36]). Blockchain
nodes and storage providers can be malicious for various reasons,
such as program glitches, security vulnerabilities, and commercial
interests. The proportion of malicious blockchain nodes will not
exceed the fault threshold of the blockchain (e.g., 1/2 in Proof of
Work or 1/3 in Practical Byzantine Fault Tolerance). Moreover, to
ensure data availability, for each RDF triple, at least one storage
node storing it is honest [5, 41, 54, 88]. Each participant does not
maliciously communicate with the others in violation of the peer-
to-peer network. Each adversary is computationally bounded and
cannot break standard cryptographic primitives, e.g., finding hash
collisions or forging digital signatures.

There are two types of adversarial attacks in Pistis: (i) Data
breaches [65, 69]: the semi-honest custodians, malicious blockchain
nodes, or malicious storage providers may try to independently
infer or learn sensitive information about data owners’ data without
authorization due to various interests. (ii)Data tampering [33, 82]:
the malicious blockchain nodes or storage providers can launch
data tampering attacks. They can behave arbitrarily, e.g., forge or
tamper with their local data and query results, or provide outdated
information. It is a stronger adversarial attack than data breaches.

4.3 Workflow

The workflow of Pistis relies on two key designs, including an
encrypted Merkle semantic trie (EMST, refer to Section § 5.1), and

4605

a verifiable and ownership-preserving SPARQL query scheme (re-
fer to Section § 5.2). As shown in Figure 1, Pistis consists of the
following five phases.

Phase 1: Initialization. Each data owner generates a pair of
public and private keys to encrypt and decrypt its own RDF data,
respectively. After that, it uses secret sharing to share its private
key with the two custodians through the keys interface, and the
custodians collaboratively generate a global key used to build the
EMST later (Figure 1-❶).

Phase 2: Data outsourcing. A data owner uses its private
key to encrypt its data and then outsources the encrypted data to
storage providers through the upload interface (Figure 1-❷).

Phase 3: Index updating.When a data owner outsources its en-
crypted data to the storage providers, it packs some metadata (e.g.,
the hash and the address) of the encrypted data into a blockchain
transaction. The transaction will be submitted through the transac-
tion (Txn) interface and will be committed to the blockchain (Fig-
ure 1-❸). The blockchain nodes then update the on-chain global
index maintained according to the transaction via a consensus.

Phase 4: Query processing. To query the DKG, a user can send
a SPARQL query request to any storage provider through the query
interface (Figure 1-❹). Next, the storage provider asks blockchain
nodes to search for the addresses of the relevant data by the on-
chain global index, and aggregate the relevant data (Figure 1-❺).
Finally, the storage provider sends the combination of the final
query results and their verification proofs to the user (Figure 1-❻).

Phase 5: Verification. After receiving the encrypted query
results and the corresponding proofs, the user decrypts the results
(Figure 1-❼) with the aid of the two custodians and verifies the
results based on the proof provided by the blockchain nodes and
storage providers.

4.4 Design Goals

Pistis should meet all of the following requirements.
Data integrity. Pistis should ensure that the data outsourced

to storage providers has not been tampered with, i.e., the system
should provide a proof that ℎ′ = ℎ, where ℎ′ is the data received
by users, and ℎ is the data provided by the data owner. Data own-

ership. Pistis should prevent data breaches attacks without the
data owner’s authorization, i.e., the user knows nothing about the
raw data except the query result decrypted by the owner. Like-
wise, blockchain and storage nodes can only conduct authorized
operations on sensitive data without knowing its content. Query
verifiability. Pistis should prevent data tampering attacks, i.e.,
ensure the query results’ correctness (i.e., none of the RDF triples
returned as results have been tampered with), completeness (i.e., no
valid result is missing from the query results), and freshness (i.e.,
the query results are based on the latest version of the DKG).

4.5 Usability

To support usability in a decentralized setting, Pistis provides a
client-assisted key management process. Specifically, data owners
generate a public/private key pair through a user-friendly local
client (e.g., web-based application) that offers an intuitive interface
similar to decentralized tools like MetaMask [48]. The client auto-
matically handles key generation and offers simple backup options

SPARQL in DKG VO-SPARQL in PISTIS

❶ Divide
❷ Locate
❸ Aggregate

SPARQL

BGP1 BGP2 BGP3

tpf1...
tpf2...

tpf3...

OPs SPARQL

BGP1 BGP2 BGP3

tpf1

Result

...
tpf2...

tpf3...

EMST

eVSO

tf1 tfn

...
OPs

... Encrypted by
different data owners

Result tf1 tfn
...

❶

❷

❸

Proof Proof

Proof

Proof

Encrypted by
multiple data owners

Figure 2: Comparison of SPARQL query in DKG and the veri-

fiable and ownership-preserving SPARQL query in Pistis.

(e.g., mnemonic phrases), eliminating the need for cryptographic
expertise. Authentication for subsequent interactions is performed
through digital signatures using the owner’s private key, enabling
secure, decentralized identity verification. In addition, Pistis is com-
patible with existing KG platforms such as Apache Jena [29] and
GraphDB [51], reusing their storage and query interfaces without
modifying underlying data management or execution logic.

5 PISTIS: DETAILED DESCRIPTION

Roadmap. As shown in Figure 2, to process a SPARQL query in a
DKG, a common workflow [3–5] consists of three steps: 1) dividing
the SPARQL query into multiple BGPs, 2) locating the relevant
triple pattern fragments matching each BGP, and 3) aggregating
all triple pattern fragments with set operators (OPs) to get the fi-
nal results. Following this workflow, to implement a verifiable and
ownership-preserving SPARQL query in DKG, we propose a crypto-
graphic scheme called VO-SPARQL (i.e., verifiable and ownership-
preserving SPARQL) in Pistis. In particular, in the locating process,
Pistis adopts a structured encryption-based new Merkle tree vari-
ant, EMST, and constructs it by blockchain consensus for verifiable
and ownership-preserving triple pattern queries. In the aggregating
process, Pistis uses an key-aggregate-based new VSO algorithm,
eVSO (i.e., verifiable set operation for encrypted triples), for veri-
fiable and ownership-preserving set operations between multiple
triple pattern fragments encrypted by different data owners.

5.1 Encrypted Merkle Semantic Trie

Strawman. We first design a strawman ADS (i.e., a basic solution)
with the ability of verifiable triple pattern queries. This structure
extends a Merkle prefix tree (aka trie) by incorporating hashes of
the last prefix bit and values in leaves, as well as hashes in internal
nodes, enabling verifiable prefix matching. We call this structure
the Merkle Semantic Trie (MST). An MST of depth 𝑑 consists of
three node types: 1) a root node containing the Merkle root hash,
2) 𝑑 − 2 layers of branch nodes storing individual characters and
child hashes, and 3) a layer of leaf nodes that store characters, their

4606

hashes, and pointers to RDF triple addresses that match the prefix
from the root to the leaf.

Example. Figure 3 (a) illustrates an example of anMST. Specifi-
cally, 𝑓1, 𝑓2, and 𝑓3 are triple fragments, each containing RDF triples

involving items aa, ab, and ba, respectively. For simplicity, each

triple uses the same term for subject, predicate, and object: 𝑓1 =

{(aa, aa, aa)}, 𝑓2 = {(ab, ab, ab)}, and 𝑓3 = {(ba, ba, ba)}. Suppose
a user issues a triple pattern query like (?who, knows, aa), aiming

to match any subject who knows aa. To verify whether a fragment 𝑓 ′1
returned by a storage provider corresponds to the correct triple pattern

fragment (i.e., equals 𝑓1), a user holding only the Merkle root h6 can

recompute a candidate root h6
′
using the hash of 𝑓 ′1 (denoted h1

′
)

and the Merkle proof {h2, h5}. If h6 = h6
′
, the verification passes,

confirming that the retrieved fragment matches the triple pattern.

However, the strawman ADS only supports verifiable triple pat-
tern queries over plaintext KG data—even if the index stores only
result addresses, plaintext indexing and user queries can still com-
promise data ownership. A naive solution encrypts each node’s
content independently while keeping theMST structure unchanged;
users then encrypt their query triple patterns with the same key
and execute them over ciphertext. While this offers partial privacy,
it still leaks access and search patterns (see § 6.1), including the
number of children per node, identical ciphertexts for the same
characters across layers, and consistent character ordering. For
formal definitions of these leaks, see [25]. A fundamental idea is
to design a new structured encryption scheme that transforms the
MST into an EMST, protecting the above information while keeping
the overall structure unchanged.

Challenge. Most of the structured encryption schemes [25, 36]
break the correlation of messages and their ciphertext by inducing
a random permutation between them to hide the part of access
patterns. However, it is challenging to convert an MST to an EMST
by this idea since inducing a random permutation for all the nodes
in the wholeMST will disrupt the tree structure and let it lose the
prefix-matching functionality.

Design. Therefore, to convert an MST to an EMST, we need
a new random permutation for theMST with its prefix-matching
functionality guarantee. The key of the challenge to achieve it is to
keep the connection relationship between different layers in case
the node position of MST is disturbed. To overcome this challenge,
we design a subtree-based random permutation (STRP) algorithm
to convert MST to EMST.

a) STRP algorithm.The encryption is done by (1) padding the child
nodes of each non-leaf node in an MST to be of the same length;
(2) For each non-leaf node in the MST, encrypting the character
of it using the output of a PRF; (3) For each non-leaf node in the
MST, randomly permuting the location of its child nodes using a
PRP. The purpose of step (1) is to help us hide the number of data
items of non-leaf nodes’ child nodes, and the purpose of steps (2)
and (3) is to prevent index information leakage and hide the part of
access patterns. The formal description of STRP is shown in two
protocols AddToken and Add of the pseudo-code of Figure 4.

Example. An example of the conversion process of EMST is shown

in Figure 3. In Figure 3 (b), the dashed box represents the padding

part of the unbalanced MST shown in Figure 3 (a). After the padding

process, each non-leaf node of the MST has the same number of child

ℎ6

𝑎

𝑓1

ℎ4 𝑏 ℎ5

𝑎 ℎ1 𝑏 ℎ2 𝑎 ℎ3

𝑓2 𝑓3
(a) MST

ℎ7

𝑎

𝑓1

ℎ5

𝑎 ℎ1 𝑏 ℎ2

𝑓2

𝑎

𝑓3

ℎ6

𝑎 ℎ3 𝑏 ℎ4

∅

(b) Padding

ℎ7

𝐹𝐾(𝑎||1)

𝑓1

ℎ5

𝑓2

𝐹𝐾(𝑎||2) ℎ1
𝐹𝐾(𝑏||2) ℎ2

𝐹𝐾(𝑏||1) ℎ6

𝐹𝐾(𝑎||2) ℎ3
𝐹𝐾(𝑏||2) ℎ4

∅
𝑓3

(c) Encrypting

ℎ7′

𝐹𝐾(𝑏||1)

𝑓3

ℎ5′

∅

𝐹𝐾(𝑎||2) ℎ1′

𝐹𝐾(𝑏||2) ℎ2′

𝐹𝐾(𝑎||1) ℎ6′

𝐹𝐾(𝑏||2) ℎ3′

𝐹𝐾(𝑎||2) ℎ4′

𝑓1
𝑓2

(d) Permuting

Figure 3: The process to convert an MST to an EMST (𝜙 is an

empty triple fragment, 𝐹𝐾 () is a pseudo-random functions

with a private key 𝐾 , and ∥ is a cascading symbol).

nodes. Figure 3 (c) shows the encryption process ofMST. In this process,
the character with its level cascaded of each non-root node of theMST
is encrypted by a PRF. The final EMST with the permutation operation

completed is shown in Figure 3 (d).

b) Operations for EMST. As mentioned in Section § 4.3, the EMST
will be updated after a series of transactions submitted by data
owners when the metadata of their RDF data are committed to the
blockchain. The update process involves four different operations
on the EMST, including Insert, Change, Delete, and Query. In
structured encryption, the user needs to use a token (add token or
query token, refer to Section § 3.2) to manipulate a structure.

To simplify the presentation, we omit token generation when
describing the following operations. Algorithm 1 details the Insert
operation, where each component of an RDF triple 𝐼 (subject, pred-
icate, object) is individually encrypted with private key 𝐾 , and
each encrypted character is recursively inserted into the EMST.
The triple’s address 𝐶𝑖𝑑 is then added to the leaf node’s 𝐶𝐼𝐷 set.
Operations Change and Delete follow a similar process. The main
difference is that Insert may create a new path in EMST if the
corresponding keyword is new, while Change and Delete operate
on existing paths, updating or removing 𝐶𝑖𝑑 from the leaf node.

Recall in Section § 4.3 the EMST can be used to find the relevant
data (i.e., the intermediate results of a SPARQL query, which are
some triple pattern fragments). Note that in Section § 5.2, the EMST
can execute a set of triple patterns (i.e, a BGP) in batches. The pseudo-
code of Algorithm 2 shows the detailed processing of the Query
operation. In the Query operation, each prefix in the triple pattern
is encrypted by the private key 𝐾 first, and then is used to match a
path in the EMST. If a triple pattern has more than one variable, the
results R will contain multiple triple pattern fragments. Regardless
of whether the match is successful or not (i.e., null result), the
proof corresponding to the result will be returned. In addition, the
freshness of Pistis is reflected in the fact that queries are always
based on the latest EMST.

Example. Figure 3 (d) shows the EMST before inserting the triple

(?who, worksWith, aa). To determine where to insert the triple, the

data owner first encrypts each character of the object aa using a PRF:

4607

Algorithm 1: Insert operation of EMST

1 Function Insert (EMST, 𝐼 , 𝐾 , 𝐶𝑖𝑑):
Input :EMST root node 𝑟𝑜𝑜𝑡 , the content of an RDF

triple 𝐼 , and a private key 𝐾
Output : the root node 𝑟𝑜𝑜𝑡 ′ of a new state of EMST

2 𝑛𝑜𝑑𝑒 ← 𝑟𝑜𝑜𝑡 ;
3 foreach 𝑖𝑡𝑒𝑚𝑖 ∈ 𝐼 do
4 foreach 𝑐 𝑗 𝑖𝑛 𝑖𝑡𝑒𝑚𝑖 do
5 𝑐′

𝑗
← 𝐹𝐾 (𝑐 𝑗 ∥ 𝑗);

6 if 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑃𝐾 (𝑐′𝑗)] = 𝑛𝑢𝑙𝑙 then
7 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑃𝐾 (𝑐′𝑗)] ← 𝑁𝑒𝑤 (𝑛𝑜𝑑𝑒);
8 𝑛𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑃𝐾 (𝑐′𝑗)];
9 add 𝐶𝑖𝑑 to 𝑛𝑜𝑑𝑒.𝐶𝐼𝐷 ;

10 𝑛𝑜𝑑𝑒.ℎ𝑎𝑠ℎ ← ℎ𝑎𝑠ℎ(𝑛𝑜𝑑𝑒.𝑐′
𝑗
| |𝑛𝑜𝑑𝑒.𝐶𝐼𝐷);

11 while 𝑛𝑜𝑑𝑒 ! = 𝑟𝑜𝑜𝑡 do
12 𝑛𝑜𝑑𝑒.ℎ𝑎𝑠ℎ ← ℎ𝑎𝑠ℎ(𝑛𝑜𝑑𝑒.𝑐′

𝑗
| |𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑);

13 𝑛𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡 ;

14 return 𝑛𝑜𝑑𝑒 ;

Algorithm 2: Query operation of EMST

1 Function Query (EMST, 𝑡𝑝 , 𝐾):
Input :EMST root node 𝑟𝑜𝑜𝑡 , a triple pattern 𝑡𝑝 , and a

private key 𝐾
Output : the query result R with an address set 𝐶𝐼𝐷 , the

Merkle proof set𝑀𝑝𝑟𝑜𝑜 𝑓 of R
2 𝑛𝑜𝑑𝑒 ← 𝑟𝑜𝑜𝑡 ;
3 foreach 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑖 ∈ 𝑡𝑝 do

4 foreach 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑗 𝑖𝑛 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑖 do
5 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 ′

𝑗
← 𝐹𝐾 (𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑗 ∥ 𝑗);

6 add 𝑛𝑜𝑑𝑒.ℎ𝑎𝑠ℎ to𝑚𝑝𝑟𝑜𝑜 𝑓 ;
7 if 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑃𝐾 (𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 ′𝑗)] = 𝑛𝑢𝑙𝑙 then
8 add 𝜙 to R;
9 add the Merkle proof𝑚𝑝𝑟𝑜𝑜 𝑓 to𝑀𝑝𝑟𝑜𝑜 𝑓 ;

Break;
10 𝑛𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑃𝐾 (𝑐′𝑗)];
11 add 𝐶𝐼𝐷 to R;
12 add the Merkle proof𝑚𝑝𝑟𝑜𝑜 𝑓 to𝑀𝑝𝑟𝑜𝑜 𝑓 ;
13 return R,𝑀𝑝𝑟𝑜𝑜 𝑓 ;

𝐹𝐾 (a∥1) and 𝐹𝐾 (a∥2). These encrypted values are used to traverse the
EMST and locate the corresponding fragment 𝑓1 before insertion. The
complete triple is then added to this fragment, resulting in an updated

fragment 𝑓 ′1 = 𝑓1 ∪ {(?who, worksWith, aa)}. After insertion, the
EMST is updated by recalculating hash values from the modified leaf

node up to the root, preserving Merkle integrity.

5.2 VO-SPARQL Scheme

In the section, we describe the design of the VO-SPARQL scheme
in our Pistis system and its usage. The VO-SPARQL scheme Ω =
(InitGlobal, OffchainStore, AddToken, Add, QueryToken,
Query, Aggregate, Verify) consists of eight protocols which we
describe at a high-level below. The detailed pseudo-code is shown
in Figure 4 and Figure 5.

• InitGlobalC1,C2 (1𝑘 , 1𝑘) :
1) C1 randomly samples 𝑟1

$← {0, 1}𝑘 and C2 randomly samples
𝑟2

$← {0, 1}𝑘 ;
2) C1 and C2 execute (𝐾1, 𝐾2, EMST) ← F𝑓2𝑃𝐶 (𝑟1, 𝑟2)

where 𝑓 (𝑟1, 𝑟2) :
a) 𝐾 ← Π.𝐺𝑒𝑛 (1𝑘 , 𝑟1 ⊕ 𝑟2)
b) generate an empty MST and use 𝐾 to encrypt MST, output

EMST to C1
c) (𝐾1, 𝐾2) ← SS.Share(𝐾, 2, 2)
d) output 𝐾1 to C1 and output 𝐾2 to C2

3) C1 sends EMST to blockchain.
• OffchainStoreDO𝑖 (𝑡) :

1)DO𝑖 executes RSA.Gen() to generate a key-pair (𝑃𝑘𝑖 , 𝑆𝑘𝑖), broad-
casts 𝑃𝑘𝑖 , splits 𝑆𝑘𝑖 by (𝑆𝑘1, 𝑆𝑘2) ← SS.Share(𝑆𝑘𝑖 , 2, 2) , and sends
𝑆𝑘1 to C1 and 𝑆𝑘2 to C2.

2) When a data owner DO𝑖 wants to outsource an item 𝐼 with an
RDF triple (𝑠, 𝑝, 𝑜) to the storage providers, it uses 𝑃𝑘𝑖 to encrypt
all the three elements of the triple separately, and sends ℎ𝑎𝑠ℎ (𝐼) and
{RSA.Enc(𝑃𝑘𝑖, 𝐼 .𝑠), RSA.Enc(𝑃𝑘𝑖, 𝐼 .𝑝), RSA.Enc(𝑃𝑘𝑖, 𝐼 .𝑜)} to
the storage providers.

3) The storage providers return the storage address𝐶𝑖𝑑 to DO𝑖 .
• AddTokenC1,C2,DO𝑖 (𝐾1, 𝐾2, 𝐼) :

1) DO𝑖 parses 𝐼 as (𝐼 .𝑠, 𝐼 .𝑝, 𝐼 .𝑜) ;
2) for each member 𝐼 .𝑚 in 𝐼 , do:
a) DO𝑖 computes (𝑝1, 𝑝2) ← SS.Share(𝐼 .𝑚, 2, 2) and sends 𝑝1

to C1 and send 𝑝2 to C2;
b) C1 and C2 execute ATK← F𝑓2𝑃𝐶 (𝐾1, 𝐾2, 𝑝1, 𝑝2)

where 𝑓 (𝐾1, 𝐾2, 𝑝1, 𝑝2) :
(𝐼 .𝑚) ← SS.Recover(𝑝1, 𝑝2) ;
for each character 𝑐 𝑗 in 𝐼 .𝑚, do:
𝑐′
𝑗
← 𝐹𝐾 (𝑐 𝑗 ∥ 𝑗) and add 𝑐′

𝑗
∥𝑖 ∥𝑃𝐾 (𝑐 𝑗) to 𝑎𝑡𝑘𝑖

c) add 𝑎𝑡𝑘𝑖 to ATK
3) add𝐶𝑖𝑑 to ATK and sent ATK to DO𝑖 .

• AddBN𝑙 (EMST, ATK) :
1) BN𝑙 parse ATK as 𝑎𝑡𝑘1, 𝑎𝑡𝑘2, . . . , 𝑎𝑡𝑘𝑖 ;
2) Let 𝑛𝑜𝑑𝑒 = EMST.𝑟𝑜𝑜𝑡 . For each 𝑎𝑡𝑘𝑖 in ATK, do:

a) let 𝑗 = 1, 𝑘𝑤 = 𝑐′
𝑗
in 𝑎𝑡𝑘𝑖 . BN𝑙 do:

a) if 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑃𝐾 (𝑐 𝑗)] = 𝑛𝑢𝑙𝑙 ,
b) 𝑛𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑃𝐾 (𝑐 𝑗)], and 𝑖 + +

b) 𝑛𝑜𝑑𝑒.𝑎𝑑𝑑 (ATK.𝐶𝑖𝑑)
3) BN𝑙 broadcasts EMST to other blockchain nodes;

Figure 4: VO-SPARQL query scheme in Pistis (part 1).

Parties. Pistis involves: a large (dynamic) set of data owners
DO1, . . . ,DO𝜃 , storage providers SP1, . . . , SP𝜏 , blockchain nodes
BN1, . . . ,BN𝜌 , two custodians C1 and C2, and a user Q.

Initializing a global index. To initialize the system, the two
custodians C1 and C2 execute Ω.InitGlobal to generate an empty
EMST on the blockchainwhichwe call the global index and provides
each custodian with a share of the global key. In detail, C1 and C2
execute a 2PC function to 1) generate a global key 𝐾 , 2) generate
an empty MST and use 𝐾 to encrypt MST to EMST , and 3) use
a Shamir secret sharing scheme to distribute 𝐾 to 𝐾1 and 𝐾2 and
share them to C1 and C2 respectively. And then they send EMST
to the blockchain. The global index can support prefix-based triple
pattern queries for RDF triples and return their addresses in the
storage providers. With the addresses, the storage providers can get

4608

• QueryTokenC1,C2,Q (𝐾1, 𝐾2, BGP) :
1) Q parses BGP as {𝑡𝑝1, 𝑡𝑝2, . . . , 𝑡𝑝𝛼 }
2) For each 𝑡𝑝𝑖 in BGP, do:

a) compute (𝑞1, 𝑞2) ← SS.Share(𝑡𝑝𝑖 , 2, 2) and send 𝑞1 to C1
and send 𝑞2 to C2;

b) C1 and C2 execute QTK← F𝑓2𝑃𝐶 (𝐾1, 𝐾2, 𝑞1, 𝑞2)
where 𝑓 (𝐾1, 𝐾2, 𝑞1, 𝑞2) :
𝑡𝑝𝑖 ← SS.Recover(𝑞1, 𝑞2) ;
for each character 𝑐𝑖 in 𝑡𝑝𝑖 .𝑘𝑒𝑦𝑤𝑜𝑟𝑑 , do: \\ assume that there

is one given keyword in 𝑡𝑝𝑖
𝑐′
𝑖
← 𝐹𝐾 (𝑐𝑖 ∥𝑖) and add 𝑐′

𝑖
∥𝑖 ∥𝑃𝐾 (𝑐𝑖) to 𝑞𝑡𝑘𝑖

c) add 𝑞𝑡𝑘𝑖 to QTK
3) sent QTK to Q.

• QuerySP𝑙 (EMST, QTK) :
1) SP𝑙 parse QTK as 𝑞𝑡𝑘1, 𝑞𝑡𝑘2, . . . , 𝑞𝑡𝑘𝑖 ;
2) Let 𝑛𝑜𝑑𝑒 = EMST.𝑟𝑜𝑜𝑡 . For each 𝑞𝑡𝑘 in QTK, do:
a) let 𝑗 = 1, 𝑘𝑤 = 𝑐′

𝑗
in 𝑞𝑡𝑘𝑖 . SP𝑖 do:

a) if 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑃𝐾 (𝑐 𝑗)] = 𝑛𝑢𝑙𝑙 , break;
b) 𝑛𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑃𝐾 (𝑐 𝑗)], and 𝑖 + +

b) add 𝑛𝑜𝑑𝑒.𝐶𝐼𝐷 and𝑚𝑝𝑟𝑜𝑜𝑓 to R and𝑀𝑝𝑟𝑜𝑜𝑓
• AggregateSP𝑙 (R) :

1) SP𝑗 parses 𝑅.𝑡𝑝 𝑓 as {𝑡𝑝 𝑓1, 𝑡𝑝 𝑓2 . . . , 𝑡𝑝 𝑓𝛾 } and extracts all
public keys {𝑃𝑘1, 𝑃𝑘2, . . . , 𝑃𝑘 𝑗 } from R;

2) For each 𝑡𝑝 𝑓𝑖 in R, SP𝑗 caculates 𝐸 (𝑡𝑝 𝑓𝑖) ←
RSA.Enc(𝑃𝑘1, 𝑃𝑘2, . . . , 𝑃𝑘𝜑 , 𝑡𝑝 𝑓𝑖) and add 𝐸 (𝑡𝑝 𝑓𝑖) to 𝐸𝑇𝑃𝐹 ;

3) 𝑆 ← aggregate(ETPF);
4) 𝜋 ← prove(ETPF, 𝑃𝑘SP𝑗);
5) SP𝑗 sends {𝑆, 𝜋, R, 𝑀𝑝𝑟𝑜𝑜 𝑓 } to Q

• VerifyC1,C2,Q (𝑆, 𝜋, R, 𝑀𝑝𝑟𝑜𝑜 𝑓) :
1) Q verifies R by its Merkle proof𝑀𝑝𝑟𝑜𝑜𝑓 .
2) For each 𝑡𝑝 𝑓𝑖 in R, Q calculates 𝑎𝑐𝑐 (𝑡𝑝 𝑓𝑖) and adds it to 𝑎𝑐𝑐 .
3) Q computes 𝑣𝑟 ← 𝑉𝑒𝑟𝑖 𝑓 𝑦𝑃𝑟𝑜𝑜 𝑓 (𝑎𝑐𝑐, 𝜋) and verifies 𝑣𝑟 ;
4) C1 and C2 execute 𝐼 ← F𝑓2𝑃𝐶 (R, 𝑆𝑘1, 𝑆𝑘2)

where 𝑓 (R, 𝑆𝑘1, 𝑆𝑘2) :
a) 𝑆𝑘𝑖 ← SS.Recover(𝑆𝑘1, 𝑆𝑘2)
b) 𝐼 ← RSA.Dec(𝑆𝑘𝑖, R)

Figure 5: VO-SPARQL query scheme in Pistis (part 2).

the ciphertext of relevant RDF triples and execute the aggregation
processing to provide final query results to the user.

Adding a new data item. To add a new triple item 𝐼 , data
owner DO𝑖 executes three protocols: Ω.OffchainStore with stor-
age nodes SP, Ω.AddToken with custodians C1 and C2, and Ω.Add
with blockchain nodes BN. First, DO𝑖 runs Ω.OffchainStore to
generate an RSA key pair (𝑃𝑘𝑖 , 𝑆𝑘𝑖), shares 𝑆𝑘𝑖 with C1 and C2,
broadcasts 𝑃𝑘𝑖 , and uses it to encrypt each element (subject, predi-
cate, object) of 𝐼 . DO𝑖 also signs the ciphertext using 𝑆𝑘𝑖 and sends
the ciphertext to SP to obtain its address 𝐶𝑖𝑑 . Next, DO𝑖 splits the
index (prefix) of 𝐼 into shares 𝑝1 and 𝑝2, sends them to C1 and C2,
and requests them to run Ω.AddToken. Custodians then use 2PC
to: 1) reconstruct the global key 𝐾 ; 2) recover the index from 𝑝1
and 𝑝2; and 3) use PRF and PRP to encrypt and permute keyword
characters to form the add token ATK. Finally, all blockchain nodes
BN run Ω.Add to update the on-chain global index EMST via con-
sensus. Each node BN𝑙 parses ATK into {𝑎𝑡𝑘1, 𝑎𝑡𝑘2, . . . , 𝑎𝑡𝑘𝑖 }, finds
the insertion location in EMST for each 𝑎𝑡𝑘 , and adds its address,
broadcasting the updated structure.

Querying a global index.When a user Q wants to query the
DKGwith a BGP = {𝑡𝑝1, 𝑡𝑝2, . . . , 𝑡𝑝𝛼 }, it first executesΩ.QueryToken
in conjunction with C1 and C2 to generate a query token. In de-
tail, Q splits the BGP into two shares 𝑞1 and 𝑞2 and sends them to
C1 and C2 separately. C1 and C2 use 2PC to securely compute a
function that: 1) recovers the global key 𝐾 from their key shares; 2)
recovers the BGP from their pair shares 𝑞1 and 𝑞2; and 3) for each
𝑡𝑝𝑖 in BGP, uses PRF and PRP to encrypt and permute all charac-
ters of its prefixes, and add them to a query token QTK. Then Q
sends QTK to a storage provider SP𝑙 and asks it to execute Ω.Query
protocol to search for some relevant triples through the on-chain
global index. In detail, SP𝑙 first parses QTK as {𝑞𝑡𝑘1, 𝑞𝑡𝑘2, . . . , 𝑞𝑡𝑘𝛽 },
and then for each 𝑞𝑡𝑘 in QTK, SP𝑙 searches in EMST through any
blockchain node by matching all characters of 𝑞𝑡𝑘 with all layers of
EMST. Finally, if the match is processed successfully, SP𝑙 adds the
addresses of query results of 𝑞𝑡𝑘 and their relevant Merkle proofs
into R and𝑀𝑝𝑟𝑜𝑜 𝑓 separately. R and𝑀𝑝𝑟𝑜𝑜 𝑓 will be sent toQ after
the entire query process is over.

Aggregating intermediate results by eVSO. To get the final
query results, SP𝑙 executes the Ω.Aggregate protocol to aggregate
the intermediate query results from the global index. This protocol
contains an asymmetric key-aggregate-based VSO algorithm eVSO.
In the process of eVSO, first, SP𝑙 fetches and parses R as different
triple pattern fragments {𝑡𝑝 𝑓1, 𝑡𝑝 𝑓2, . . . , 𝑡𝑝 𝑓𝛾 }, check signatures of
all 𝑡𝑝 𝑓 𝑠 , and extracts a public key set 𝑃𝑘𝑠 = {𝑃𝑘1, 𝑃𝑘2, . . . , 𝑃𝑘𝜑 }
from R. Then, SP𝑙 uses 𝑃𝑘𝑠 to re-encrypt all items of all relevant
triples in different fragments. Next, SP𝑙 aggregates these encrypted
triple pattern fragments (ETPF) by executing some set operations
for them and gets the final query results 𝑆 , and generates a verifica-
tion proof of 𝑆 . Finally, after the aggregation process is completed,
SP𝑙 sends 𝑆 , R, and the verification proofs to Q.

Verifying query results. After receiving the final results, the
user Q needs to execute the Ω.Verify protocol to verify the result
in three steps. First, it uses the 𝐶𝐼𝐷 in R and their Merkle proofs
𝑀𝑝𝑟𝑜𝑜 𝑓 to verify whether the storage provider SP𝑙 is correctly
asking the blockchain nodes to perform the triple pattern query
through the on-chain global index. Second, it uses the accumulated
values and the proof of eVSO to verify whether the SP𝑗 is correctly
performing the aggregation processing on the intermediate query
results. Third, C1 and C2 use 2PC to recover the 𝑆𝑘𝑖 and decrypt
the results, and send the raw data of the results to Q.

Cost Analysis. Here we give the time and space complexity of
each function involved in VO-SPARQL. Ω.InitGlobal has 𝑂 (𝑘)
time and space complexity, where 𝑘 is the length of the global key.
Ω.OffchainStore has𝑂 (1) time complexity and𝑂 (𝑘𝑅) space com-
plexity, where 𝑘𝑅 is the length of the RSA key. Ω.AddToken has𝑂 (𝑙)
time and space complexity, where 𝑙 is the length of characters in the
triple. Ω.Add has 𝑂 (𝑙) time complexity and 𝑂 (1) space complexity.
Ω.QueryToken has 𝑂 (𝛼 × 𝑙𝑞) time and space complexity, where 𝛼
is the number of triple patterns and 𝑙𝑞 is the length of characters
in the triple pattern. Ω.Query has 𝑂 (𝛼 × 𝑙𝑞) time complexity and
𝑂 (𝛼) space complexity. Ω.Aggregate has𝑂 (𝛼×𝜑) time complexity
and 𝑂 (𝛼 + 𝜑) space complexity, where 𝜑 is the number of relevant
owners of the query. Ω.Verify has 𝑂 (𝛼 + 𝜑) time complexity and
𝑂 (𝛼) space complexity.

4609

Operations over BGPs. The above content describes how Pis-
tis implements verifiable and ownership-preserving BGP-based
SPARQL queries, while SPARQL also includes several operations
over BGPs, such as property paths, named graphs, restrictions in
the FILTER pattern, and solution sequence modifiers (e.g., ORDER
BY, OFFSET, DISTINCT, LIMIT). To support broader SPARQL expres-
siveness under the constraints of verifiability and data ownership,
Pistis introduces several additional designs, as follows:

To support named graphs and property paths, we propose prefix
declaration and query decomposition methods to integrate them
into VO-SPARQL. Named graphs use URIs (e.g., xmlns.com/foaf /0.1/)
to identify triple scopes. To simplify syntax, we adopt W3C-style
prefix declarations, e.g.: PREFIX foaf : <xmlns.com/foaf /0.1/>
with triple patterns like: (?person, foaf : name, ?name) A global
named graph declaration document and its hash are stored at the
storage providers and on-chain to ensure verifiability. For property
paths, we decompose patterns with operators such as ∗, ?, |, {}
into basic triples. For example: (?x, knows |colleagueOf , ?y) is
rewritten as: (?x, knows, ?y) UNION (?x, colleagueOf , ?y)
enabling per-branch verifiability under VO-SPARQL.

To support FILTER restrictions, the storage provider can use
hash functions, partial EMST paths, VSO, or zero-knowledge proofs
(ZKPs) to prove constraint satisfaction. Matching or non-matching
constraints are verified via hashes, regular expressions via VSO
and EMST proofs, and range conditions via ZKPs such as Bullet-
proofs [20]. We empirically evaluate ZKP generation cost in the
evaluation section. For the solution sequence modifiers, since the
sorting criteria are given by the users, they can verify the query
results themselves without proof. A GROUP BY clause is used to
group query results based on one or more variables, and can also
be checked by users themselves.

6 SECURITY ANALYSIS

We first formalize and prove the security of our design in the
ideal/real-world paradigm [22], and then give a verifiability analysis
of queries in Pistis.

6.1 Ideal/real-world Paradigm

The ideal/real-world paradigm is used to define and prove the secu-
rity of protocols by comparing two scenarios: the ideal world, where
a trusted party ensures perfect security and minimal leakage, and
the real world, where the protocol is actually implemented without
such a trusted entity. The security of a protocol is established by
demonstrating that an adversary cannot distinguish between inter-
actions in the real world and those in the ideal world, ensuring that
any potential information leakage in the real-world scenario is no
greater than what is permissible in the idealized model.

We first define a leakage function L for Pistis, which describes
the information revealed in the query process. The input of the
query protocol is a KGG and a SPARQL querywith a BGP.L(G, BGP)
is defined as follows:

Definition 5 (L(G, BGP)). The leakage function L involves access
pattern and search pattern.
• Access pattern. The access pattern describes the mapping be-
tween a submitted token and its corresponding encrypted RDF
triples, potentially revealing results from previous queries.

• Search pattern. The search pattern reflects whether an token
has been added or queried, based on differences between tokens.

L is always considered as default leaked information in search-
able symmetric encryption [36], and the Adaptive L − 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦
ensures that a query scheme leaks only a predefined amount of in-
formation. If the protocol in a system satisfies AdaptiveL−𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦,
the data ownership in the system can be guaranteed. Adaptive
L − 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 in Pistis can be defined as follows.

Definition 6 (Adaptive L − 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦). Let Ω = (InitGlobal, Off-
chainStore, AddToken, Add, QueryToken, Query, Aggregate,
Verify) be a VO-SPARQL scheme. LetA = (A0, . . . ,A𝑞) and S =

(S0, . . . ,S𝑞) be an adversary and a simulator, respectively, where
𝑞 ∈ G. We define theRealAΩ (1

𝑘) experiment and the IdealAL,S (1
𝑘)

experiment as follows.

Real
A
Ω (1

𝑘): In the real-world execution every party has ac-
cess to ideal F2𝑃𝐶 functionalities. At round 0, C1 and C2 execute
Ω.InitGlobal to generate an encrypted index EMST and send it
to A, and each data owner DO𝑖 executes Ω.OffchainStore with
SP. Then, A adaptively chooses a polynomial number of com-
mands (𝑐𝑜𝑚𝑚1, . . . , 𝑐𝑜𝑚𝑚𝑞) of the form 𝑐𝑜𝑚𝑚𝑟 = (SP𝑟 , 𝑜𝑝𝑟), where
𝑜𝑝𝑟 is either an add operation (Ω.AddToken) or a query operation
(Ω.QueryToken). At round 𝑟 (1 ≤ 𝑟 ≤ 𝑞), SP𝑟 executes 𝑜𝑝𝑟 by Ω
and sends the results toA𝑟 . After 𝑞 round interactions,A produces
a 𝑏 bit message as the output.

Ideal
A
L,S (1

𝑘): In the ideal-world execution every party has ac-
cess to ideal Ω functionalities. At round 0, S0 randomly generates
an index EMST∗ and an encrypted KG G∗ by utilizing L(G, BGP),
and sends EMST∗ to A. Then, A adaptively chooses a polynomial
number of commands (𝑐𝑜𝑚𝑚1, . . . , 𝑐𝑜𝑚𝑚𝑞) of the above form. At
round 𝑟 (1 ≤ 𝑟 ≤ 𝑞), S𝑟 reviews the previous requests and gener-
ates 𝑓𝑟 adaptively. If 𝑜𝑝 𝑗 is an add, with L(G, BGP), S𝑟 generates
an add token ATK𝑟∗ with C1 and C2 and sends ATK𝑟∗ to A𝑟 . After
that, A𝑟 updates EMST∗ by utilizing ATK𝑟∗. If 𝑜𝑝 𝑗 is a query, with
L(G, BGP), S𝑟 generates an appropriate query token QTK𝑟∗ with
C1 and C2 and sends QTK𝑟∗ to A𝑟 . After that, A𝑟 searches EMST∗

by utilizing QTK𝑟∗. After q round interactions, A produces a 𝑏 bit
message as the output.

We say that Ω is adaptively L-secure if for all probabilistic
polynomial-time (PPT) semi-honest adversariesA = (A0, . . . ,A𝑞),
there exists a simulator S = (S0, . . . ,S𝑞) and a negligible function
𝑛𝑒𝑔𝑙 (𝑘) such that���𝑃𝑟 [RealAΩ (1𝑘) = 1

]
− 𝑃𝑟

[
IdealAL,S (1

𝑘) = 1
] ��� ≤ 𝑛𝑒𝑔𝑙 (𝑘) .

Theorem 6.1. If SS and 2PC are secure, and if 𝐹 and 𝑃 are pseudo-

random, then Ω is adaptively L − security.

Proof. We create a simulator S = (S0, . . . ,S𝑞) such that for
an adversary A = (A0, . . . ,A𝑞), the outputs of RealAΩ (1

𝑘) and
Ideal

A
L,S (1

𝑘) are computationally indistinguishable. The simulator
and adversary work as follow.

S0 :S0 simulates (𝐾1, 𝐾2) ← SS.Share(0𝑘 , 2, 2) and F2𝑃𝐶 , and sends
𝐾1 to C1 and 𝐾2 to C2. It then generates an empty EMST.

S𝑟 : For 1 ≤ 𝑟 ≤ 𝑞, if 𝑐𝑜𝑚𝑚𝑟 is an add,S𝑟 simulates F2𝑃𝐶 to generates
an add token ATK𝑟∗. For each element in ATK𝑟∗, S𝑟 sets its value

4610

as a random string {0, 1}∗, whose length is the same as the output
of 𝐹 , and permutes their positions by 𝑃 . Then S𝑟 sends ATK𝑟∗ to
A. If 𝑐𝑜𝑚𝑚𝑟 is a query, S𝑟 first checks whether the query BGP𝑟
has appeared before with the search pattern in L(G, BGP). If it has
appeared before, S0 searches the access pattern in L(G, BGP) and
gets the same QTK𝑟∗ that has used before. If is has not has appeared
before, S𝑟 simulates F2𝑃𝐶 to generate a query token QTK𝑟∗ in the
same way as generating ATK and sends QTK𝑟∗ to A.

Through the two experiments of real-world execution and ideal-
world execution, A obtains some ATK𝑟 and QTK𝑟 from real-world
execution and ATK𝑟∗ and QTK𝑟∗ from ideal-world execution. Since
SS and 2PC are secure, and 𝐹 and 𝑃 are pseudo-random, with all but
negligible probability, A cannot recover 𝐾1 and 𝐾2 to reproduce
the process of F2𝑃𝐶 , thusA cannot distinguish the values in ATK𝑟∗

and QTK𝑟∗ from that in ATK𝑟 and QTK𝑟 , respectively. Therefore, A
cannot distinguish the output of IdealAL,S (1

𝑘) from Real
A
Ω (1

𝑘)
and the scheme Ω is adaptively L − security.

□

6.2 Verifiability Analysis

Definition 7 (Query verifiability). We say a SPARQL query is ver-
ifiable if the success probability of any polynomial-time adversary
A is negligible in the following experiment:
• A selects a set of RDF triples T ;
• The EMST generate algorithm constructs an EMST and its digest
EMST𝑟𝑜𝑜𝑡 based on T ;
• A produces result R and 𝑉𝑂𝑡 for the SPARQL query 𝑄 ;
• A succeeds if one of the following results is true: 1) R includes an
RDF triple which does not satisfy 𝑄 (correctness); 2) There exist
an RDF triple which is not in R but satisfies 𝑄 (completeness); 3)
R includes an RDF triple not from the latest DKG (freshness).

The above definition guarantees that the probability, for a ma-
licious storage provider to convince the user with an incorrect,
incomplete or outdated result, is negligible. Meanwhile, data in-
tegrity is also guaranteed because it can be represented as a query
for a single piece of data.

Theorem 6.2. Pistis is verifiable with respect to Definition 7 if

the cryptographic hash function is a pseudo-random function, the

cryptographic accumulator is secure under the q-SBDH assumption,

and the computing power of malicious nodes is less than 51% of the

blockchain network.

Proof. We intuitively prove Theorem 6.2 by three cases, which
represent proofs of soundness, completeness, and freshness.

Case 1: This case means a tampered or fake RDF triple 𝑡 is re-
turned, which does not satisfy the BGPs of 𝑄 . In this case, once
𝑡 passed the verification of the user under the soundness in Defi-

nition 7, it means that the adversary can get two different triple
pattern fragments with the same digest EMST𝑟𝑜𝑜𝑡 of the ADS or
the adversary can get two different set operation results with the
same accumulator proof 𝜋 . Case 2: This case means an RDF triple
𝑡 that satisfies the BGPs of 𝑄 is missing from R. In this case, if the
returned result R can pass the verification of the user under the
completeness inDefinition 7, it means that the adversary can get a
triple pattern fragment that does not contain some matching triples

and has the same digest EMST𝑟𝑜𝑜𝑡 of the ADS with the genuine
fragment or the adversary can get an incomplete set operation re-
sult with the same accumulator proof 𝜋 of the genuine set operation
result. Case 3: This case means the result 𝑅 involves an old RDF
triple 𝑡 that satisfies 𝑞 but is not from the latest DKG. In this case,
once 𝑡 passed the verification of the user under the freshness in
Definition 7, it means that the adversary can get two different
triple pattern fragments (i.e., a new and an old) with the same digest
EMST𝑟𝑜𝑜𝑡 of the ADS or the adversary can get two different set
operation results with the same accumulator proof 𝜋 .

However, all these three cases contradict two assumptions. The
first is that the digest of the on-chain ADS EMST𝑟𝑜𝑜𝑡 is generated
by the cryptographic hash function, with all but negligible prob-
ability, the adversary can forge another fragment with the same
hash value as the genuine fragment. The second assumption is the
unforgeability for VSO, which has been proved to be held under
the q-SBDH assumption [18].

□

7 DISCUSSION

Custodians. The selection of custodians is vital to the security of
our protocol. Our scheme employs the standard Function Secret
Sharing technique [19], integrated with MPC to manage the secret
key. Function Secret Sharing necessitates that the participants in
MPC are at least 𝑘 ≥ 2 non-collusive custodians. Consequently,
Pistis requires a minimum of two custodians, implemented as
2PC. The number of custodians can be expanded by utilizing MPC
instead of 2PC. For instance, data owners may choose reputable
Certification Authorities (CAs), such as IdenTrust and DigiCert,
to serve as custodians within Pistis. The competitive dynamics
of the CA industry act as a deterrent to collusion, while their ex-
pertise in certificate management ensures they possess sufficient
computational resources.

Data misuse and audit. While Pistis protects against data
breaches and tampering, a key concern is the misuse of data col-
lection within DKG. Authorized users may access substantial raw
data and misuse it for data mining and recommendation systems.
To mitigate this, we suggest limiting access frequency with owner-
defined policies, establishing consensus-based rules, and employing
technical solutions like smart contracts or attribute-based encryp-
tion (ABE) [17]. Additionally, some data owners may encrypt illegal
content, making it difficult to assess legitimacy from ciphertext.
Previous works have proposed using data deduplication to address
this issue [15, 78].

8 EMPIRICAL EVALUATION

8.1 Experimental Setup

Hardware configuration.We run 8 data owner nodes, 16 blockchain
nodes and 16 storage providers nodes on 16 64-bit Linux servers
(Ubuntu 20.04) with Intel i9-11th CPU and 64GBmemory.We set the
bandwidth of connections between them to 20Mbps [5, 40, 73, 80].

Implementation environment. A prototype of Pistis is imple-
mented in Java, C++, Go and JavaScript. The blockchain module is
implemented based on Go-Ethereum [28] and the storage module is

4611

implemented based on IPFS [16]. The prototype has a user-server ar-
chitecture that is implemented based on Spring Boot framework and
the blockchain interfaces and requests are in the form of web3.js.

Cryptographic primitives. For all 2PCs, our prototype uses the
ABY framework [26]. For the PRP, the prototype uses the AES algo-
rithm, which is a popular symmetric key cryptography algorithm.
For the PRF, the prototype uses the HMAC-SHA256 algorithm,
which is a type of keyed hash algorithm constructed from the SHA-
256 hash function. For MPC, our prototype uses JIFF library [8].
For secret sharing, our prototype instantiates a threshold secret
sharing with Shamir secret sharing [66].

Datasets and benchmark. We evaluate the query performance
of Pistis using the datasets and queries from largeRDFBench [62]
benchmark, which is widely used by the DKG community. Larg-
eRDFBench consists of 13 datasets and more than 1 billion triples
in total. The largeRDFBench queries in our evaluation include sim-
ple (S), complex (C), and large data (L) categories. In detail, the S
query has the lowest average number of triple patterns, at 4.3. C
query has the highest number of triple patterns, at 11. L query has
6.2 triple patterns on average, and each triple pattern in L query
corresponds to more than 1,000 query results. To fully assess query
expressiveness, our evaluation includes not only BGPs but also full
SPARQL features such as named graphs and filter expressions.

Metrics. We measure the following metrics of Pistis:

• Storage Cost (SC): The storage space size of the index.
• Token Generation Time (TGT): The amount of time it takes to
generate an add token or query token.
• ItemAdd Time (IAT): The amount of time it takes to add a new item
to Pistis, including adding to the storage network and blockchain.
• Query Execution Time (QET): The amount of time it takes to
receive the full query results.
• Proof Generation Time (PGT): The amount of time it takes to
generate the verification proof of query results.
• Verification Time and Verification Object Size (VT & VO): The
time to verify query results and the proof size.

8.2 Experimental Results

8.2.1 Overall Comparison. A high-level overall comparison be-
tween our Pistis and other state-of-the-art DKG systems is shown
in Table 1. In these three DKGs, Pistis is the only one that imple-
ments SPARQL queries with data integrity, query verifiability and
data ownership. Through the VO-SPARQL scheme, Pistis can give
data owners control over data that is outsourced to a decentralized
storage system. Moreover, Pistis also achieves double verifiability
of raw data and query results in a decentralized byzantine envi-
ronment. For the storage cost of the index on 13 datasets from
largeRDFBench with 1003960176 triples, the size of the index in
RDFPeers is 105873.5 MBs, in PIQNIC and Colchain is 3195.2
MBs, in VeriDKG is 53.7MBs, while on Pistis is 159.9 MBs. The
reason is that EMST compresses the index size by combining the
same prefixes of keywords and Pistis needs a Merkle characteristic
and prefix encryption to guarantee the query verifiability and data
ownership. For the query execution time across the three query
types, RDFPeers with a distributed hash table (DHT) have the low-
est query time. VeriDKG exhibits verifiability at roughly a 6-fold
increase in time cost compared to PIQNIC and Colchain. Meanwhile,

Table 1: Overall comparison of three different systems.

Schemes

Data

integrity

Query

verifiability

Data

ownership

Storage

cost of

index (MB)

Query

execution

time (s)

RDFPeers [21] % % % 105873.5 0.90/8.3/274
PIQNIC [3] % % % 3195.2 0.08/0.7/24
Colchain [5] ! % % 3195.2 0.08/0.7/25
VeriDKG [88] ! ! % 53.7 0.45/3.8/110

Pistis ! ! ! 159.9 0.78/6.8/212

Pistis fulfills all three requirements with an approximately 10-fold
increase in time cost over state-of-the-art unprotected systems but
remains significantly more efficient than classic method RDFPeers.

8.2.2 Performance Evaluation.
Token generation time. We evaluate the performance of the
AddToken and QueryToken protocols by generating a series of add
tokens from the dataset and some different query tokens of dif-
ferent types of queries in the benchmark, and testing their token
generation time (TGT) respectively. We vary the size from 10 up to
10 million RDF triples and then test the TGT of them. The results
demonstrate that generating an add token of a new triple is inde-
pendent of the size of requests and takes about 24 milliseconds per
triple. For the query token generation time, we set 1000 items for
each type of KG query. In the results, generating a simple (S) query
token and a large data (L) query token takes about 96ms and 144ms
respectively, and a complex (C) query token needs about 240ms
because it contains the largest number of triple patterns.

Add time. We evaluate the Add protocol by storing RDF triples
with storage providers and submitting add tokens to the blockchain.
Using all largeRDFBench datasets, each triple is stored on IPFS
and packed into a transaction submitted to Ethereum. The item
add time (IAT) consists of: 1) IPFS node synchronization and 2)
Ethereum block confirmation. Storing a triple in IPFS takes 0.0188s
(vs. 0.0031s in PIQNIC); block confirmation takes 7.112s (vs. 6.73s
in ColChain), making it the dominant factor. Pistis thus incurs
only modest overhead compared to systems without encryption.We
also compare Ethereum and Pistis in terms of block confirmation
efficiency: throughput is 15.2 transactions/s for Ethereum and 14.7
for Pistis, indicating the longer add time stems from Ethereum’s
inherent limits, not our encryption. A scalability test shows that in-
creasing blockchain nodes from 16 to 200 raises block confirmation
time from 6.803s to 10.078s—a 10x node increase results in only a
0.5x increase in time.

Query execution time. To evaluate the performance of the
Query and Aggregate protocols of Pistis, we compare the query
execution time (QET) of Pistis with two baseline systems, including
an original Ethereum-based KG (OE-KG) that stores all encrypted
RDF triples without any index and a variant Pistis system with a
plaintext Merkle prefix tree (Pistis-P). For Pistis, the average QET
for these three types of queries is 0.78s, 6.8s, and 212s, respectively.
For Pistis-P, the average QET for these three types of queries is
0.63s, 6.5s, and 198s, respectively. For OE-KG, the average QET for
these three types of queries is 2.1s, 14.2s, and 815s, respectively. By
comparing the query performance of these systems, we can find that
Pistis and Pistis-P have better performance than OE-KG because
both of them have indexes. Besides, compared with Pistis-P, Pistis

4612

20 40 60 80 100
102

103

104

105
 S
 C
 L

P
ro

of
 g

en
et

ai
on

 ti
m

e
(m

s)

Number of queries
(Merkle proof)

(a) PGT of Merkle proof.

S1 S2 S3 S4 C1 C2 L1 L2
102

103

104

105 S
 C
 L

Types of query
(DG proof)

Pr
oo

f g
en

et
ai

on
 ti

m
e

(m
s)

(b) PGT of DG.

20 40 60 80 100
100

101

102

103

104

Number of queries
(Merkle proof)

V
er

ifi
ca

tio
n

tim
e

(m
s)

V
er

ifi
ca

tio
n

tim
e

(m
s)

20 40 60 80 100
0
5

10
15
20
25
30
35
40

Number of queries
(DG proof)

 S
 C
 L

 S
 C
 L

(c) Verification time.

20 40 60 80 100
100

101

102

103

Number of queries
(Merkle proof)

V
O

 s
iz

e
(K

B
)

Number of queries
(DG proof)

V
O

 s
iz

e
(K

B
) S

 C
 L

 S
 C
 L

20 40 60 80 100
10-1

100

101

102

(d) Verification object size.

Figure 6: Verification cost of Pistis.

achieves efficient query under ciphertext with small performance
loss. With regard to the index size, it should be noted that OE-KE
lacks an index. The index sizes of Pistis-p and Pistis are 97.3 MB
and 159.9 MB, indicating that Pistis requires an additional 60% of
space to store the encrypted index.

Verification cost. We evaluate the performance of the Verify
protocol by executing SPARQL queries and measuring Proof Gen-
eration Time (PGT), Verification Object Size (VO), and Verification
Time (VT). For PGT, we assess the Merkle proof generation time
for three SPARQL query types, and aggregation proofs for four S
queries, two C queries, and two L queries, each with 1000 items. As
seen in Figure 6 (a), C queries have the longest PGT due to more
query-related fragments. In Figure 6 (b), S and C queries generate
aggregation proofs faster, while L queries exhibit longer PGT due to
more intermediate results. Figure 6 (c) presents VT for Merkle and
aggregation proofs, revealing that C queries have slightly longer
VT. This is because all queries compute the same Merkle root hash,
but complex queries process more fragment hashes. VT for data
aggregation proof is rapid, primarily depending on the number of
fragments. Finally, Figure 6 (d) displays the VO size for Merkle and
aggregation proofs across different queries. Both figures indicate
that complex queries produce the largest VO due to the highest
number of fragments. For range conditions in FILTER operations,
we use Bulletproofs to generate ZKPs, where the PGT, VO, and VT
are approximately 30ms, 650bytes, and 5ms, respectively.

End-to-end evaluation. While Pistis preserves full SPARQL
functionality, the protected scenario introduces additional over-
head for cryptographic token generation, verifiable index traversal,
proof construction, and result verification compared to traditional
KGs. To provide a more comprehensive performance analysis of
Pistis, we conduct an end-to-end evaluation, by simulating a feder-
ated scenario, incorporating multiple concurrent data updates and
queries. Using predicate-based partitioning, we distributed 100,000
randomly selected triples from the largeRDFBench dataset across
the data owner nodes. Each owner submits an update request (e.g.,
Insert, Change, or Delete) every 10 seconds, with batches of 50
triples per request. Simultaneously, 10 query users issue diverse
SPARQL queries at a rate of one query every 5 seconds. The ex-
perimental results show that executing 200,000 update operations
takes approximately 19,960 seconds, with an average operation
time of 0.0998 seconds—comprising 0.024 seconds for token gen-
eration, 0.0188 seconds for storage, and 0.057 seconds for block
confirmation. For query operations, 1,000 executions require 5,224
seconds, averaging 5.224 seconds per query. Compared to PIQNIC,
Pistis adds 0.097s per update and 4.79s per query due to encrypted

token generation and blockchain-based verifiability. The extra cost
over VeriDKG is modest (0.009s/update, 1.13s/query), while offering
ownership and full SPARQL support.

Query performance optimization. Compared to state-of-the-
art systems, our solution incurs a 10× higher query overhead, with
73% stemming from proof generation, while query token genera-
tion and query processing contribute 12% and 15% respectively -
making proof generation the primary bottleneck. To reduce the 10×
query latency overhead introduced by verifiability, we explore three
practical optimizations. First, pipelining query and verification

allows asynchronous delivery of results and proofs, reducing per-
ceived latency to 2.7×. Second, parallel and incremental proof

generation improves end-to-end performance by splitting Merkle
and eVSO operations across multiple threads, reducing latency to
4.1×. Finally, reusable proof caching amortizes repeated cryp-
tographic computations, achieving up to 70% cost reduction on
common query patterns. These techniques make verifiable query
processing more practical in real-world DKG deployments.

9 CONCLUSION

In this paper, we have studied ownership-preserving SPARQL queries
of DKG. To satisfy the technical requirements, we design, imple-
ment and evaluate Pistis, an end-to-end encrypted and collabo-
ratively query-verifiable DKG platform with a new cryptographic
scheme. The scheme relies on a novel ADS and a key-aggregate
cryptographic primitive to query the multi-owner KG data in a veri-
fiable and ownership-preserving manner. Security analysis with an
idea/real-world paradigm and experimental evaluations prove the
security and availability of our system. In particular, Pistis achieves
new functionalities at an overhead of microsecond-level computa-
tion time, and kilobyte-level communication costs for a SPARQL
query. Our future work will investigate the semantic queries for
other types of data in Web 3.0, such as semi-structured data and
multimedia data.

ACKNOWLEDGMENTS

This research was supported by fundings from the National Key
R&D Program of China (No.2023YFB2703600), NSFC/RGC Collabo-
rative Research Scheme (Grant No. 62461160332&CRS_HKUST602/24),
Hong Kong RGC General Research Fund (152169/22E, 152228/23E,
162161/24E), Research Impact Fund (No. R5060-19, No. R5011-23),
Collaborative Research Fund (No. C1042-23GF), Areas of Excellence
Scheme (AoE/E-601/22-R), and the InnoHK (HKGAI). We also ap-
preciate the corresponding authors Zicong Hong, Yang Xiao and
Dalin Zhang for their valuable guidance.

4613

REFERENCES

[1] Ibrahim Abdelaziz, Essam Mansour, Mourad Ouzzani, Ashraf Aboulnaga, and
Panos Kalnis. 2017. Query optimizations over decentralized RDF graphs. In 2017

IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 139–142.
[2] ActivityPub. 2025. ActivityPub. https://activitypub.rocks/. Accessed: 2025-05-01.
[3] Christian Aebeloe, Gabriela Montoya, and Katja Hose. 2019. A decentralized

architecture for sharing and querying semantic data. In Proc. of of the European

Semantic Web Conference (ESWC). Springer, Springer, Portorož, Slovenia, 3–18.
[4] Christian Aebeloe, Gabriela Montoya, and Katja Hose. 2019. Decentralized

indexing over a network of RDF peers. In Proc. of the International Semantic Web

Conference (ISWC). Springer, Springer, Auckland, New Zealand, 3–20.
[5] Christian Aebeloe, Gabriela Montoya, and Katja Hose. 2021. ColChain: Collabo-

rative linked data networks. In Proc. of the Web Conference (WWW). 1385–1396.
[6] Julien Aimonier-Davat, Brice Nédelec, Minh-Hoang Dang, Pascal Molli, and Hala

Skaf-Molli. 2024. Fedup: Querying large-scale federations of sparql endpoints.
In Proceedings of the ACM on Web Conference 2024 (WWW). 2315–2324.

[7] Ali M Al-Khouri et al. 2012. Data ownership: who owns “my data”. International
Journal of Management & Information Technology 2, 1 (2012), 1–8.

[8] Kinan Dak Albab, Rawane Issa, Andrei Lapets, Peter Flockhart, Lucy Qin, and Ira
Globus-Harris. 2019. Tutorial: Deploying Secure Multi-Party Computation on
the Web Using JIFF. 2019 IEEE Cybersecurity Development (SecDev) (2019), 3–3.

[9] Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga
Ngomo. 2022. A survey of RDF stores & SPARQL engines for querying knowledge
graphs. The VLDB Journal (2022), 1–26.

[10] Elli. Androulaki. 2018. Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains. In Proc. of the EuroSys Conference (Porto, Portugal)
(EuroSys). Article 30, 15 pages.

[11] Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Sergio Ros-
ales Aceves, Reilly Wong, Jason Anderson, and Jakub Szymaszek. 2021. Sql
ledger: Cryptographically verifiable data in azure sql database. In Proceedings of

the 2021 international conference on management of data. 2437–2449.
[12] Balaji Arun and Binoy Ravindran. 2022. Scalable byzantine fault tolerance via

partial decentralization. Proc. of the VLDB Endowment 15, 9 (2022), 1739–1752.
[13] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,

Zachary Peterson, and Dawn Song. 2007. Provable data possession at untrusted
stores. In Proceedings of the 14th ACM conference on Computer and communications

security. 598–609.
[14] Amr Azzam, Javier D Fernández, Maribel Acosta, Martin Beno, and Axel Polleres.

2020. SMART-KG: hybrid shipping for SPARQL querying on the web. In Proceed-

ings of the Web Conference 2020 (WWW). 984–994.
[15] Andrei Bacs, Saidgani Musaev, Kaveh Razavi, Cristiano Giuffrida, and Herbert

Bos. 2022. {DUPEFS}: Leaking Data Over the Network With Filesystem Dedupli-
cation Side Channels. In 20th USENIX Conference on File and Storage Technologies

(FAST 22). 281–296.
[16] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. arXiv

preprint arXiv:1407.3561 (2014).
[17] John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-policy

attribute-based encryption. In 2007 IEEE symposium on security and privacy

(SP). IEEE, 321–334.
[18] Dan Boneh and Xavier Boyen. 2008. Short Signatures Without Random Oracles

and the SDHAssumption in Bilinear Groups. J. Cryptol. 21, 2 (feb 2008), 149–177.
[19] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function secret sharing: Improve-

ments and extensions. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security (CCS). 1292–1303.
[20] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions
and more. In Proc. of 2018 IEEE symposium on security and privacy (SP). 315–334.

[21] Min Cai and Martin Frank. 2004. RDFPeers: a scalable distributed RDF repository
based on a structured peer-to-peer network. In In Proc. of the International

Conference on World Wide Web (WWW). ACM, New York, NY, USA, 650–657.
[22] Ran Canetti. 2000. Security and composition of multiparty cryptographic proto-

cols. Journal of CRYPTOLOGY 13 (2000), 143–202.
[23] Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Triandopoulos.

2014. Verifiable Set Operations over Outsourced Databases. In Public-Key Cryp-

tography – PKC 2014, Hugo Krawczyk (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 113–130.

[24] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In
Proc. of OSDI, Vol. 99. 173–186.

[25] Melissa Chase and Seny Kamara. 2010. Structured encryption and controlled
disclosure. In Proc. of the International conference on the theory and application of

cryptology and information security. Springer, 577–594.
[26] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-

work for efficient mixed-protocol secure two-party computation. In NDSS.
[27] Jens Ernstberger, Jan Lauinger, Fatima Elsheimy, Liyi Zhou, Sebastian Stein-

horst, Ran Canetti, Andrew Miller, Arthur Gervais, and Dawn Song. 2023. Sok:
data sovereignty. In 2023 IEEE 8th European Symposium on Security and Privacy

(EuroS&P). IEEE, 122–143.
[28] Ethereum. 2013. Go Ethereum. https://github.com/ethereum/go-ethereum.

[29] Apache Software Foundation. 2025. Apache Jena. https://jena.apache.org/.
[30] Wensheng Gan, Zhenqiang Ye, Shicheng Wan, and Philip S Yu. 2023. Web 3.0:

The Future of Internet. In Proc. of the Web Conference (WWW). 1266–1275.
[31] Zheyuan He, Zihao Li, Ao Qiao, Xiapu Luo, Xiaosong Zhang, Ting Chen, Shuwei

Song, Dijun Liu, and Weina Niu. 2024. Nurgle: Exacerbating resource consump-
tion in blockchain state storage via mpt manipulation. In 2024 IEEE Symposium

on Security and Privacy (SP). IEEE, 2180–2197.
[32] Lars Heling and Maribel Acosta. 2022. Federated SPARQL query processing over

heterogeneous linked data fragments. In Proc. of the Web Conference (WWW).
1047–1057.

[33] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. 2022. Cross-chain deals and
adversarial commerce. The VLDB journal 31, 6 (2022), 1291–1309.

[34] Siwon Huh, Myungkyu Shim, Jihwan Lee, Simon S Woo, Hyoungshick Kim, and
Hojoon Lee. 2023. Did we miss anything?: Towards privacy-preserving decen-
tralized id architecture. IEEE Transactions on Dependable and Secure Computing

20, 6 (2023), 4881–4898.
[35] Junbeom Hur, Dongyoung Koo, Youngjoo Shin, and Kyungtae Kang. 2017. Secure

Data Deduplication with Dynamic Ownership Management in Cloud Storage. In
2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 69–70.

[36] Seny Kamara, Tarik Moataz, Andrew Park, and Lucy Qin. 2021. A decentralized
and encrypted national gun registry. In Proc. of the 2021 IEEE Symposium on

Security and Privacy (S&P). IEEE, 1520–1537.
[37] Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun.

2016. Verena: End-to-end integrity protection for web applications. In 2016 IEEE

Symposium on Security and Privacy (SP). IEEE, 895–913.
[38] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party com-

putation. In Proceedings of the 2020 ACM SIGSAC conference on computer and

communications security. 1575–1590.
[39] Maria Krommyda and Verena Kantere. 2021. SPARQL-vision: A Platform for

Querying, Visualising and Exploring SPARQL endpoints. In Proceedings of the

30th ACM International Conference on Information & Knowledge Management

(CIKM). 4730–4733.
[40] Chenxin Li, Peilun Li, Dong Zhou, Zhe Yang, Ming Wu, Guang Yang, Wei Xu,

Fan Long, and Andrew Chi-Chih Yao. 2020. A decentralized blockchain with
high throughput and fast confirmation. In 2020 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 20). 515–528.

[41] Jinyuan Li and David Mazieres. 2007. Beyond One-Third Faulty Replicas in
Byzantine Fault Tolerant Systems.. In NSDI. 10–10.

[42] Siyu Li, Zhiwei Zhang, Jiang Xiao, Meihui Zhang, Ye Yuan, and Guoren Wang.
2024. Authenticated Keyword Search on Large-Scale Graphs in Hybrid-Storage
Blockchains. In 2024 IEEE 40th International Conference on Data Engineering

(ICDE). IEEE, 1958–1971.
[43] Siyu Li, Zhiwei Zhang, Jiang Xiao, Meihui Zhang, Ye Yuan, and Guoren Wang.

2024. Authenticated Keyword Search on Large-Scale Graphs in Hybrid-Storage
Blockchains. In 2024 IEEE 40th International Conference on Data Engineering

(ICDE). IEEE, 1958–1971.
[44] Siyu Li, Zhiwei Zhang, Meihui Zhang, Ye Yuan, and Guoren Wang. 2024. Au-

thenticated Subgraph Matching in Hybrid-Storage Blockchains. In 2024 IEEE

40th International Conference on Data Engineering (ICDE). IEEE, 1986–1998.
[45] Zhenni Li,Wensheng Su, Minrui Xu, Rong Yu, Dusit Niyato, and Shengli Xie. 2022.

Compact Learning Model for Dynamic Off-Chain Routing in Blockchain-Based
IoT. IEEE Journal on Selected Areas in Communications 40, 12 (2022), 3615–3630.

[46] Zhuotao Liu, Yangxi Xiang, Jian Shi, Peng Gao, Haoyu Wang, Xusheng Xiao,
Bihan Wen, Qi Li, and Yih-Chun Hu. 2021. Make Web3. 0 Connected. IEEE

Transactions on Dependable and Secure Computing (2021).
[47] Ralph C Merkle. 1987. A digital signature based on a conventional encryption

function. In In Proc. of the conference on the theory and application of cryptographic
techniques. Springer, Springer, Amsterdam, The Netherlands, 369–378.

[48] MetaMask. 2025. MetaMask. https://metamask.io/.
[49] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. 2006. Authentication

and integrity in outsourced databases. ACM Transactions on Storage (TOS) 2, 2
(2006), 107–138.

[50] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[51] Ontotext. 2025. GraphDB. https://graphdb.ontotext.com/.
[52] OriginTrail. 2025. OriginTrail. https://origintrail.io/. Accessed: 2025-03-01.
[53] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. 2011.

Optimal Verification of Operations on Dynamic Sets. In Advances in Cryptol-

ogy – CRYPTO 2011, Phillip Rogaway (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 91–110.

[54] Sebastiano Peluso, Paolo Romano, and Francesco Quaglia. 2012. Score: A scalable
one-copy serializable partial replication protocol. In ACM/IFIP/USENIX Interna-

tional Conference on Distributed Systems Platforms andOpen Distributed Processing.
Springer, 456–475.

[55] Peng Peng, M Tamer Özsu, Lei Zou, Cen Yan, and Chengjun Liu. 2022. MPC:
minimum property-cut RDF graph partitioning. In 2022 IEEE 38th International

Conference on Data Engineering (ICDE). IEEE, 192–204.
[56] Peng Peng, Lei Zou, Lei Chen, and Dongyan Zhao. 2018. Adaptive distributed RDF

graph fragmentation and allocation based on query workload. IEEE Transactions

4614

https://activitypub.rocks/
https://github.com/ethereum/go-ethereum
https://jena.apache.org/
https://metamask.io/
https://graphdb.ontotext.com/
https://origintrail.io/

on Knowledge and Data Engineering (2018).
[57] Peng Peng, Lei Zou, and Runyu Guan. 2019. Accelerating partial evaluation in

distributed SPARQL query evaluation. In 2019 IEEE 35th International Conference

on Data Engineering (ICDE). IEEE, 112–123.
[58] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari Balakrish-

nan. 2011. CryptDB: Protecting confidentiality with encrypted query processing.
In Proceedings of the twenty-third ACM symposium on operating systems principles

(SOSP). 85–100.
[59] Anthony Potter, Boris Motik, Yavor Nenov, and Ian Horrocks. 2018. Dynamic

data exchange in distributed RDF stores. IEEE Transactions on Knowledge and

Data Engineering (2018).
[60] Eric Prudhommeaux. 2008. SPARQL query language for RDF. http://www.w3.

org/TR/rdf-sparql-query/.
[61] Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin, Beng Chin Ooi,

and Meihui Zhang. 2019. Fine-Grained, Secure and Efficient Data Provenance
on Blockchain Systems. Proc. VLDB Endow. 12, 9 (may 2019), 975–988. https:
//doi.org/10.14778/3329772.3329775

[62] Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. 2018. Larg-
erdfbench: a billion triples benchmark for sparql endpoint federation. Journal of
Web Semantics 48 (2018), 85–125.

[63] Andrei Vlad Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola
Greco, Abdurrahman Ghanem, Dmitri Zagidulin, Ashraf Aboulnaga, and Tim
Berners-Lee. [n.d.]. Solid: a platform for decentralized social applications based
on linked data. ([n. d.]).

[64] Savvas Savvides, Darshika Khandelwal, and Patrick Eugster. 2020. Efficient
confidentiality-preserving data analytics over symmetrically encrypted datasets.
Proceedings of the VLDB Endowment 13, 8 (2020), 1290–1303.

[65] Hossein Shafagh, Lukas Burkhalter, Sylvia Ratnasamy, and Anwar Hithnawi.
2020. Droplet: Decentralized authorization and access control for encrypted data
streams. In 29th USENIX Security Symposium (USENIX Security 20). 2469–2486.

[66] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[67] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free Collaborative

Knowledgebase. Commun. ACM 57, 10 (sep 2014), 78–85. https://doi.org/10.
1145/2629489

[68] Haixin Wang, Cheng Xu, Ce Zhang, Jianliang Xu, Zhe Peng, and Jian Pei. 2022.
vChain+: Optimizing Verifiable Blockchain Boolean Range Queries. In Proc. of

the IEEE International Conference on Data Engineering (ICDE).
[69] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan

Zhang, Yubing Ma, Lie Yan, Yuanyuan Sun, et al. 2022. Operon: An encrypted
database for ownership-preserving data management. Proceedings of the VLDB
Endowment 15, 12 (2022), 3332–3345.

[70] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper (2014).

[71] Min Xie, Haixun Wang, Jian Yin, and Xiaofeng Meng. 2007. Integrity Auditing
of Outsourced Data.. In VLDB, Vol. 7. 782–793.

[72] Cheng Xu, Ce Zhang, and Jianliang Xu. 2019. vchain: Enabling verifiable boolean
range queries over blockchain databases. In Proc. of the 2019 international confer-

ence on management of data (SIGMOD). 141–158.
[73] Jie Xu, Qingyuan Xie, Sen Peng, Cong Wang, and Xiaohua Jia. 2023. Adaptchain:

Adaptive scaling blockchain with transaction deduplication. IEEE Transactions

on Parallel and Distributed Systems 34, 6 (2023), 1909–1922.
[74] Hiroyuki Yamada and Jun Nemoto. 2022. Scalar DL: scalable and practical

byzantine fault detection for transactional database systems. Proc. of the VLDB
Endowment 15, 7 (2022), 1324–1336.

[75] Fan Yang, Adina Crainiceanu, Zhiyuan Chen, and Don Needham. 2021. Cluster-
Based Joins for Federated SPARQL Queries. IEEE Transactions on Knowledge and

Data Engineering (2021).
[76] Sean Yang and Max Li. 2023. Web3. 0 Data Infrastructure: Challenges and

Opportunities. Journal of IEEE Network 37, 1 (2023), 4–5.
[77] Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize Li, and

Wenyuan Yan. 2020. LedgerDB: A centralized ledger database for universal audit
and verification. Proceedings of the VLDB Endowment 13, 12 (2020), 3138–3151.

[78] Zuoru Yang, Jingwei Li, and Patrick PC Lee. 2022. Secure and Lightweight
Deduplicated Storage via Shielded {Deduplication-Before-Encryption}. In 2022

USENIX Annual Technical Conference (USENIX ATC 22). 37–52.
[79] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In Proc. of

the 27th Annual Symposium on Foundations of Computer Science (SFCS ’86). IEEE,
162–167.

[80] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek Saxena. 2020. Ohie:
Blockchain scaling made simple. In 2020 IEEE Symposium on Security and Privacy

(SP). IEEE, 90–105.
[81] Cong Yue, Gang Chen, Tien TuanAnhDinh, Beng Chin Ooi, Zhongle Xie, Xiaokui

Xiao, and Meihui Zhang. 2023. GlassDB: An Efficient Verifiable Ledger Database
System Through Transparency. Proceedings of the VLDB Endowment 16, 6 (2023),
1359–1371.

[82] Cong Yue, Zhongle Xie, Meihui Zhang, Gang Chen, Beng Chin Ooi, Sheng Wang,
and Xiaokui Xiao. 2020. Analysis of indexing structures for immutable data. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management

of Data. 925–935.
[83] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. 2013.

A distributed graph engine for web scale RDF data. Proceedings of the VLDB
Endowment 6, 4 (2013), 265–276.

[84] Meihui Zhang, Zhongle Xie, Cong Yue, and Ziyue Zhong. 2020. Spitz: a verifiable
database system. Proceedings of the VLDB Endowment 13, 12 (2020), 3449–3460.

[85] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2017. vSQL: Verifying arbitrary SQL queries over
dynamic outsourced databases. In Proc. of the 2017 IEEE Symposium on Security

and Privacy (S&P). IEEE, 863–880.
[86] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2015. IntegriDB:

Verifiable SQL for outsourced databases. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security (CCS). 1480–1491.
[87] Rui Zhao and Jun Zhao. 2024. Perennial Semantic Data Terms of Use for De-

centralized Web. In Proceedings of the ACM on Web Conference 2024 (WWW).
2238–2249.

[88] Enyuan Zhou, Song Guo, Zicong Hong, Christian S Jensen, Yang Xiao, Dalin
Zhang, Jinwen Liang, and Qingqi Pei. 2024. VeriDKG: A Verifiable SPARQL
Query Engine for Decentralized Knowledge Graphs. In Proceedings of the VLDB

Endowment.
[89] Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, and Feifei Li. 2021.

Veridb: An sgx-based verifiable database. In Proceedings of the 2021 International

Conference on Management of Data. 2182–2194.

4615

http://www. w3. org/TR/rdf-sparql-query/
http://www. w3. org/TR/rdf-sparql-query/
https://doi.org/10.14778/3329772.3329775
https://doi.org/10.14778/3329772.3329775
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489

	Abstract
	1 Introduction
	2 Related Work
	2.1 Decentralized Knowledge Graph
	2.2 Verifiable Query Processing

	3 Preliminaries
	3.1 Knowledge Graph
	3.2 Cryptographic Building Blocks

	4 Pistis: overview
	4.1 System Model
	4.2 Threat Model
	4.3 Workflow
	4.4 Design Goals
	4.5 Usability

	5 Pistis: detailed description
	5.1 Encrypted Merkle Semantic Trie
	5.2 VO-SPARQL Scheme

	6 Security analysis
	6.1 Ideal/real-world Paradigm
	6.2 Verifiability Analysis

	7 Discussion
	8 Empirical evaluation
	8.1 Experimental Setup
	8.2 Experimental Results

	9 Conclusion
	Acknowledgments
	References

